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Abstract. In  the  present  work  the  critical  state  stability in non-uniform  superconducting 
composites is investigated,  taking  into  account  the  plastic  yield of the  material.  It is shown 
that  the  critical  state  instability  in  the  non-uniform  region  may  occur  considerably  earlier 
than  in  the  uniform  part of the  sample.  The instability  criteria  have  been  obtained  for  a 
number of particular  cases.  The  training  phenomenon in superconducting  composites is 
discussed  as  a  sequence of local  magnetic flux jumps  and  plastic  strain  jerks  developing 
simultaneously 

1. Introduction 

Thermodynamic instabilities are well known  instabilities of the critical state in super- 
conductors  (see  e.g.  the review paper by Mints  and  Rakhmanov (1977) and  references 
therein).  The  thermomagnetomechanical instability-a somewhat  different critical state 
instability-can occur  provided  the  superconducting  sample is plastically deformed 
(Mints  1980,  Maksimov  and  Mints  1981a,  b).  In  uniform  superconductors  both  the 
thermomagnetic  and  thermomagnetomechanical instabilities appear first as  a  result of 
the  development of perturbations  extending  over  the  entire  sample volume  (Mints  and 
Rakhmanov 1977,  Mints  1980,  Maksimov and  Mints 1981a, b). 

In  non-uniform  superconductors  the critical state stability  threshold  can  be deter- 
mined  mainly by these  sections of the  sample in which the local variation of physical 
properties  results in the stability  decrease  (‘weak’ spots). Such  ‘weak’ spots  are  con- 
nected,  for  example, with an  increase of resistivity p, decrease of critical current density 
j c ,  increase of plastic  strain rate i ,  etc. In general,  a  ‘weak’  spot  occurs in the region 
where  heat  generation  due  to  perturbations of a physical nature is larger  than  that in the 
other  part of the  sample. 

In the  present  paper  the critical state stability is investigated with respect  to  the small 
thermomagnetic  and  thermomagnetomechanical  perturbations in non-uniform  super- 
conducting  composites. The training  phenomenon in non-uniform  composites is dis- 
cussed as  a  sequence of local  thermomagnetomechanical  instabilities  (Mints  1980).  For 
simplicity,  a  cylindrical  sample with a  radius R and  transport  current l i s  considered,  and 
the  external cooling is assumed to  be  weak. 
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2. Stability criterion 

Being  interested in the critical state stability in composites, we shall regard the composite 
superconductors  as  an  anisotropic, locally uniform  medium. The physical properties of 
such  a  medium are defined by characteristics of the  superconducting  filaments  and 
normal  matrix,  averaged  over  the  cross-section of the  sample.  The applicability of such 
an  approach  to  the  problem of interest  has  been discussed in detail by Mints  and 
Rakhmanov (1977). The heat diffusion equation, describing, in the  linear  approxima- 
tion,  the  development of small temperature  perturbations 8 = T - To ( 9  e To) in a 
composite  superconductor,  has  the  form: 

Here TO  is the  cooler  temperature, E is the electric field intensity, 0 is the mechanical 
stress  applied to  the  sample, U and K are  the specific heat capacity and  heat  conductivity 
of the  superconductor, respectively.  Note that  the last term in equation (1) describes 
the  heat  release  due  to  the plastic yield of the  material. 

For  composite  superconductors  (even in the case of liquid helium  cooling) the typical 
values of parameters satisfy the inequalities: 

(UT) e w e  1 (2) 

where 
4n K 2woR T = " 
c2 up 

W=- 
K 

Here p is the resistivity of composite  superconductor in the flux  flow regime  and WO is 
the coefficient of heat  transfer  to  the  coolant.  In  this  case  (see  Mints  and  Rakhmanov 
1977): 

(1) The electric field intensity E and  temperature eare connected by the  relationship 

(2) The  perturbations  develop slowly near  the instability  threshold, so one  can 
assume that in equation (1) 

ao  
at 
" - 0. 

(3) the  temperature Ois practically uniform  over the cross-section of the  sample,  i.e. 
8 = e(x) where x is the longitudinal axis of the  conductor. 

The  equation  to  determine 8 = O ( x )  can be easily obtained by integrating  equation 
(1) over  the cross-section  and using the relations (3) and (4). As a  result,  one can find 
the  equation of interest in the following form: 

Thus,  the critical state stability  threshold in superconducting  composites is deter- 
mined  from  the  condition of existence of a  non-trivial  solution of equation (5). Note 
that in the  non-uniform  superconductors all the  parameters of equation (5) may depend 
on  the  coordinate x. 
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The characteristic  dimension L of the  spatial  variation of temperature 0, as  seen 
from  equation ( 5 ) ,  can  be  evaluated  as 

L b Lo (6) 

where 

Lo = RIW'l2 R 

is the characteristic  thermal  length.  We shall further  assume  the  non-uniformity  to  be 
localised in the  layer 1x1 S I4 L (local  non-uniformity)  and  the physical properties of 
superconductor  at 1x1 < 1 to  be  symmetrical relative to  thex axis. Then  equation (5) can 
be  written (with  accuracy liL 4 1) in the following form: 

L@Y + (& + p - 1)e + . e . 6 ( x )  = o (7) 

where 

Here  and below the  parameters  relating  to  the  non-uniformity region (1x1 < I )  are 
designated  as q ( x ) ,  while the  analogous  parameters  relating  to  the  uniform  part of the 
sample (1x1 > l) are designated  as q. The value of (D (to  be defined  below)  characterises 
the  power of the  additional local  heating  due  to  the  presence of the  perturbation of 
temperature 8 in the  non-uniform  region.  Naturally,  the instability is mainly localised 
near  the cross-section x = 0. Away  from this  region the  perturbations  should be absent. 
Therefore  a  non-trivial  solution of equation (7), decreasing  at infinity,  describes the 
instabilitywith  an  extremely  smallincrement  (see  condition (4)). By integratingequation 
(7) from - 0 to + 0 one can  obtain  the  boundary  condition  for 13 = e(x) at x = ? 0: 

In  the / x /  > I region  the  solution,  decreasing  at infinity,  as follows from (7), has the  form: 

Substituting the expression  (9)  into  the  condition (g),  one can find the critical state 
stability  criterion for  uniform  superconducting  composites: 

(D2/4La < 1 - & - b. (10) 

It follows from  condition (10) that, if CP - LO, the  variation of the stability  criterion is 
considerable  as  compared with the case of a  uniform  composite  superconductor 
(CP = 0). Physically,  in  this  case, the  heat  released on the  non-uniformity is  of the  order 
of the  heat  released  over  the  characteristic  space  length LO. Note  further  that  the scale 
of spatial  variation of temperature e at 1x1 > 1 is: 

L = Lo/( 1 - CE. - p>1:*. (11) 

Let us now derive  the  expression  for CP. To this end  one  should solve equation (5) in 
the 1x1 < I region  and  join  the  solution with the  analogous  one in the / x /  > I region  at the 
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boundary 1x1 = l. At / x /  < l one can  assume  that 

em - e, e e, 
where em =e(O), = e(1). Then it follows from ( 5 ) :  

where 

The condition of applicability of equation (12)  evidently follows from  the  inequality 
em - 8, Gem, which is equivalent  to 

At 1x1 > 1 the solution of equation ( 5 )  can  be  represented in the following form: 

The  temperature  and  heat flux are  continuous  at 1x1 = 1. Then, joining the  solutions (12) 
and  (15) at 1x1 = l ,  one can obtain  the  expression  for (D' with the  required  accuracy: 

Note  that in a  uniform  sample (D 0 and  the  criterion (10) coincides with an  appropriate 
criterion  obtained  for  the  uniform case  (Mints  and  Rakhmanov 1977, Mints  1980): 

& + p <  1. (17) 

3. Effect of non-uniformity on critical state stability 

The criterion  (10)  defines on  the  plane of parameters &, f l  a  certain  curve = &(CY) 
determining  the stability  region.  Evidently, the system is stable if 6 < f l c ( & ) .  The actual 
form of the function B =  BC(&) depends largely on  the  nature of non-uniformity.  We 
shall  consider  here  a  number of examples  corresponding to different physical situations 
and  illustrating  the  application of the  criterion (10) obtained. 

3.1 Uniform  plastic  yield of the  material (& = const) 

In  this  case  a  local  violation of stability  can  only be  connected with the  non-uniformity 
of the critical state  parameters  and  the  thermal  characteristics of the  sample. 

Let us consider first the case of a local absence of heat  removal,  i.e. W&) = 0 at 
1x1 < 1. Then, it follows from  equation (16): 

(D' = 41*(& + p). (18) 

Substituting  this  expression  for (D2 into  condition (lo),  one can  obtain  the stability 
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criterion in the  form: 

ff+ p <  1 - (l/Lo)2. 

The condition of applicability of expressions ( 1 8 )  and ( 1 9 )  is limited by the  inequality 
16 Lo. It is seen  that, if the  non-uniformity is caused by a local deterioration of external 
heat  removal,  the stability  criterion in a  non-uniform  sample  remains  practically  the 
same  as in the  uniform  one. 

Now,  let  the  non-uniformity  be  connected with a local increase of resistivity.  We 
shall  consider  here two  possibilities. In  the first case K = const  and in the  second case K 
is related  to p by means of the  relationship ~p = ~(7') (for  example. by the 
Wiedemann-Franz  law).  Accordingly,  one  can  obtain with the aid of equation (16): 

0' = Pp2Ra - 8P&1 - ff - @R1 (20) 

0' = Pp(1 - &)R; - 812(1 - ff) (1 - ff - @RI. (21 )  

Here 

It  follows from  a  thorough analysis of the  expressions (20)  and  (21)  that  a significant 
variation of the critical state stability  criterion in non-uniform  composites is possible 
only if R. - R I  S 1.  Then,  the first term is the main one  both in the expressions  (20) and 
(21), as will be  assumed  further.  Substituting  equations (20) and (21) into  condition (10) 
one  can find the stability  criterion in the following form: 

@)p@) = const 
l - f f  B < B C C f f )  = + p (  - &) 

where 

r = -  R01 
2Lo 

The  parameter r characterises  here  the  ratio  between  the  additional resistance of non- 
uniform  sample  section  and  the resistance of uniform  section with the  length  2L0. 

As follows from  the  condition (14), the applicability of criteria  (24)  and ( 2 5 )  is limited 
by the  inequalities respectively: 

r ( l /Lo)  1 r2 < 1. 

The function p = bC(&) for 6 1 is shown schematically  on the figure 1 (curve B). It is 
seen  from  criteria  (24),  (25),  that in the case  when the  nonuniformity is caused by a local 
increase of resistivity, the  criterion of critical state stability  may  differ  essentially  from 
an  analogous  criterion in  a  uniform  sample.  This  situation  takes place  provided  that  the 
additional  resistance of non-uniform  section is  of the  order of resistance of a  composite 
superconductor with the  length of  2Lo. 
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0 - 
a 1 

Figure 1. The function B=&(&) for  different r,  rl. Curves: A. r = r, = 0; B. r 5 1, 
rl = 0; c ,  r - r, G 1. 

3.2. Non-uniform  plastic  yield 

Consider  now  the case  when the plastic yield of composite  superconductor is non- 
uniform  along  the x axis. For definiteness,  let us assume  that  the plastic  strain is 
concentrated in bands of thickness l ,  disposed through  a  distance d from  each  other, 
with l 4  L 4 d.  Hence  the local rate of plastic  strain &loc is relatively high 

d 
I &,,, - - E' % E' 

( E  is the plastic  strain rate  averaged along the  sample).  Correspondingly,  the local heat 
release due  to plastic  strain is relatively  high, too.  The  condition L e d enables  one  to 
consider  the  stability of the critical state  and plastic yield independently in the vicinity 
of each  one of the  bands  where  the plastic yield is concentrated. 

Let us first discuss the case  when  only the plastic yield of the  material is non-uniform. 
With the aid of equation (16 )  one can easily obtain  the expression for Q2 in the following 
form: 

a2 = 1'cPA; - 8l2&(1 - & -  B)Al. (26) 

Here 

As in the previous  case  (see $ 3 . 1 )  it follows from  expressions (10) and (26)  that  an 
appreciable  variation of the critical state stability  threshold in a  non-uniform  composite 
is possible  only if A .  - A1 % 1. Hence  the first term in the expression  (26) is the  main 
one  and  the  stability  criterion  has  the  form: 

p<&(&)  = 1 - & -  &T: (29)  
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where 
l rl = A ~ - .  

2Lo 

Physically, the  parameter rl characterises  the  ratio  between  the  rates of plastic strain in 
the  non-uniform  part with the length 21 and in uniform  section of the  sample with the 
length  2L. By the  order of magnitude  parameter rl can  be  evaluated  as rl - d/Lo % 1 
(see  Mints  and  Petukhov 1980). From  the inequality (14) it follows that  the  criterion is 
valid provided  rlNLo < 1. 

The  criterion (29) shows that  the non-uniformity of the plastic yield of the  material 
leads to a  considerable  variation of the  stability  criterion  both of critical state  and plastic 
yield compared  to  the uniform  case  (Mints 1980, Petukhov  and  Estrin 1975, Mints  and 
Petukhov 1980). 

Let us consider  now  the  case  when  the  non-uniformity of plastic yield is accompanied 
by a resistivity increase in the 1x1 < l region. We shall assume  for simplicity that 
K = const  and Ro, A .  S 1. Then, it follows from  equation (16) that: 

(D2 = 1 2 ( & 4 0  + PRO)? (30) 

Substituting  the  relation (30) in condition (10) one can obtain  the critical state stability 
criterion in non-uniform  superconducting  composites  to  have  the  form: 

The  functionp =p,(&) for  the  present case is shown in figure 1, curve C. It follows from 
the  comparison of the expressions (24) and (31) that  the  presence of plastic yield non- 
uniformity  results in the  considerable  decrease of the critical state stability. 

4. The training phenomenon 

As was shown in the  present  work,  thermomagnetomechanical instabilities  can exist in 
the critical state of non-uniform  superconductors.  This  fact allows us to  understand  the 
training  phenomenon in superconductors  as  a  process of successive strain  hardening of 
the  material  (Mints 1980). Under  conditions of non-uniform plastic yield,  the thermo- 
magnetomechanical  instability  appears first in the vicinity of a  certain  non-uniformity 
with the least  stable  critical  state.  This,  as  seen  from  the  criterion (lo), corresponds  to 
a  non-uniformity with the maximum  value of the  parameter Cp. A simultaneous  develop- 
ment of a  magnetic flux jump  and  a plastic strain  jerk is accompanied by intense local 
heating,  thermal  softening of the  material  and results in strain  hardening in that  place 
where  the instability occurred.  At  the next cycle of mechanical  loading,  this  process will 
apparently  recur  at  a  higher aand in the vicinity of another non-uniformity  corresponding 
to  a  somewhat  smaller Cp. Therefore, successive strain  hardening of ‘weak’  spots  distri- 
buted  at  random  along  the  sample axis leads to  a relatively  strong  training of composite 
superconductors,  especially on the initial part of the training  curve.  This  conclusion is 
in good  agreement with the  experimental  investigation of training in ‘short’  samples 
(Pasztor  and  Schmidt 1978). Note  that  a  random  distribution along the  sample of ‘hot’ 
regions,  where instability  occurs, was observed  directly by Pasztor  and  Schmidt  (1978). 
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Beginning  from  some  training step,  the non-uniformities  remain in the  sample 
corresponding  only to relatively low values of the  parameter Cp. In its turn, this  leads to 
an  increase of the  characteristic  thermal length L. Indeed, as follows from  expression 
(1 1) and  criterion (lo),  at  the stability  threshold L can be  estimated  as 

Lo 2 L$ 
(1 - & -  Cp ' 

L =  - 
" 

With  a  decrease of @ it may occur that 

L a d  

i.e.  the plastic yield of the  material becomes  thermally  uniform. The stability of the 
critical state  and plastic yield in this  case  can  be  studied in a  framework of the  theory 
developed by Mints  (1980),  Maksimov  and  Mints (1981a, b)  for uniform 
superconductors. 

5. Conclusions 

The critical state stability in non-uniform  superconducting  composites  has  been  studied 
in the  presence of the plastic yield of the  material.  It is shown that  the  thermomagnetic 
and  thermomagnetomechanical  instabilities in the vicinity of 'weak'  spots  occur  earlier 
than in the uniform  section of sample.  The stability  criterion  has  been  found in the case 
of both uniform  and  non-uniform  yield. The stability  criteria  obtained enable us to 
explain the initial part of the  superconductor  training  curve by strain  hardening of 'weak' 
spots. 
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