
On the basis of  macroscopic treatment of  plastic yield, the values o f  maximum 
mechanical stress and maximum superconducting current have been calculated for a super- 
conductor subjected to uniform plastic deformation. The training effect due to strain 
hardening o f  the material is discussed. These results are compared with an analogous 
case when the normal transition is caused by the thermo-magnetomechanical instability. 
The quenching current is shown to depend on the history of  field-current application 
in the presence of  plastic yield. 
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The mechanical stresses which occur in large superconduc- 
ting magnets may exceed the elastic limit of  composite 
superconductors in certain parts of the winding. There- 
fore, the energizing of a large superconducting magnet may 
be accompanied by inelastic deformation of the supercon- 
ductor at least in certain parts of  the winding. As shown in 
the series of the experimental papers, 1~ the heat release 
due to plastic strain may be one of the mechanisms respon- 
sible for training and degradation of superconductors. 

A normal transition of a plastically deformed short sample 
with a given value of the transport current I may occur as a 
result of one of the two following processes. 

In the first case, the heat release due to plastic deforma- 
tion causes the temperature of the conductor to increase 
slowly up to T = T r. At T = Tr the potential emerges in 
the sample (here Tr is found from the equation I = I c (Tr), 
Ic =/cS,jc is the critical current density, S is the cross- 
sectional area of  the conductor). The temperature rises from 
T= To to T = Tr during a time defined by the external 
stress rate. 

In the second case, the superconductor temperature first 
grows slowly up to T = T1 < Tr. Then, as a result of the 
thermo-magnetomechanical instability (jointly developing 
flux jump and strain jerk) 7'8 there occurs a rapid resistive 
(and then normal) transition. The heating rate in this case 
is controlled by the increment of the instability increase. 

The plastic yieled of the material initially occurs in the 
vicinity of some weak spot, ie a portion of the material 
differing from the rest of  the sample by a lower elastic 
limit or higher mechanical stress. If  no special measures 
are taken such weak spots exsist in any sample. The first 
quench starts in the weakest spot. This process, accompanied 
by the intensive local heating, leads to the thermal softening 
of the material and then to an increase of the plastic strain 
and, as a result, to the strain hardening of the respective 
weak spot. Therefore, upon the next loading of the sample, 
plastic yield initiates the vicinity of another weak spot and 
the whole pattern is repeated. As a result at least the initial 
part of the training curve is associated with the strain 
hardening of weak spots in the sample. 6'7 
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After a series of loading-unloading cycles, conditions 
can develop under which the weak spots have already been 
trained. Normal transition of the superconductor will then 
occur as a result of the plastic yield of  the material which is 
homogeneous along the conductor axis. 6'7 

The present paper contains a theoretical study of the normal 
transition and training of short samples due to the uniform 
plastic yield in the case of  a superconductor which is slowly 
heated from T = T O to T = T r. 

Quench caused by slow heating 

Let us consider the experiment shown in Fig. 1. The mech- 
anical stress o is applied along the ~ i s  ~ d  rn~y be produced 
by the effect of the Lorentz force F = I x B and/or by an 
external mechanical force (here B is the magnetic field). The 
value of o = o(t) increases monotonically until at o = Om 
there occurs the resistive transition of the superconductor 
(T = Tr) owing to the heat release due to plastic deformation. 
After transition the sample is unloaded fully or in part. Note 
that in the case of  Nb-Ti alloys, the macroscopic plastic 
yield starts at o = ao "" 10 9 Nm -2 and in the case of super- 
conducting composites with copper matrix - at o ~ 10 8 Nm -2 

The time of the resistive transition and the value o m can be 
found with aid of  the heat equation: 

C a--T-T = V(K VT)  + a (1) 
Ot 

where C and • denote the specific heat capacity and the ther- 
mal conductivity, Q is the specific power of the heat release 
due to inelastic deformation and Joule heating. In the case 
of a stable uniform plastic yield the problem can be simpli- 
fied considerably. 

Indeed, the sample heating rate in the case under consider- 
ation is controlled by the external stress rate. Correspon- 
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Fig. 1 Schematic representation of problem geometry 
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ding time to is usually of  the order o f  10 -1 - 10 s, which 
is considerably higher than the time of  the thermal diffusion 
over the sample cross section 

tl = CR2/t¢ ~ 10 -6 -- 10 -3 s. 

I f  to ~ tl and W = WoR/r '< 1 (I4/o is the coefficient o f  
the external heat removal and R is the conductor radius), 
the temperature in the sample cross-section may be regarded 
as uniform and (1) transforms to 

c - -aT  = a - q (2) 
Ot 

where 

A 
q = _-_ qw ( r -  to) 

v 

qw is the heat flux from the surface, A is the area of  the 
cooled surface, and V is the sample volume. For the case of  
composites the condition W < 1 is always satisfied. For  
example, i f  the sample is cooled by  liquid helium where 
W 0 ~ 10 4 Wm -2 K -1 , then assuming r = 10 2 Wm -l  K -1 
a n d R  = 10 -3 m, one can find I ¢ ~  10 -1 . 

The heat release due to the plastic deformation can be 
written in the form: 

Qo = 3'oe 

where ~ is the rate of  plastic deformation,  a~ is the plastic 
deformation work per unit time, 3' is the coefficient defining 
the fraction o f  this work converted into heat. 

In the region of  plastic yield a mechanical loading occurs 
according to a def'mite law: 9 

O = op(T, e, ~) where O'p (T, 0,0) = O'p (T) 

which is the elastic limit of  the material. In the case which is 
o f  interest to us, the mechanical deformation rate is low. 
This enables one to assume ~ = 0. So, we have % (T, e, 0) 
= Op (T, e). In the case where the extemal  mechanical 
stress varies according to a given law o = o (t) ,  we find for 
Qcr the expression: 

(ae 7" + ae--- b) (3) 0o = 3" o(t) - ~  ao 

where e = e (T, o). 

The calculation of  the Joule heating Q j  represents a rather 
complicated problem. The appropriate expression can not 
be written in a sufficiently general form. However, since we 
are mainly interested in the effect of  plastic strain on the 
normal transition we shall assume that Qo >> QJ. The value 
ofQ o can be estimated as Qa ~ 10 - 10 2 W cm -3 . For  the 
critical current dens i ty]  c ~ lO s A cm -2 the equality Qo = QJ 
is attained at the electric fields E "- 10 -s - 10 -a V cm -1 . 
This corresponds (at I < Ic) to the external magnetic field 
variation rate B ~ 1 - 10 T s -1 or to the transport  current 
variation rate I ~ 10 4 A s q i f  the characteristic dimension 
of  the sample R is of  the order of  1 mm. 

Therefore, to find the value Om one should solve (2) with 
Q= Qa and the initial conditions of  T (0) = To and o (0) 
= Op (To) = Oo. In this case training can only be associated 
with the strain hardening of  the material whose value is the 

greater the higher the plastic strain increement Ae in a given 
loading cycle. Hence, the training effect due to this mecha- 
nism will be substantial only if  Om exceeds appreciably the 
elastic limit in each loading cycle. 

Assume that  the sample is strained with a constant stress 
rate: o (t) = t~t (where ~ = const) and the heat removal 
from the surface, heat capacity and the critical current 
density can be approximated as: 

qw ( T -  To) = Wo ( T -  To), 
3 

where T c is the superconductor critical temperature.  In this 
case 

Tr = To + (1 - /) " (T  c - To) (4) 

where i = 1/1 c (To). 

To obtain quantitative results for o m and to describe the 

training process one has to formulate a model of  plastic 
yield, ie to define the function Op = op (T, e) explicit ly,  
As it may be shown, 9 u  the stress-strain curve may be 
approximated in many cases by  the expression: u 

Op = Oo - b • ( T -  To) + K e  1~ (5) 

where oo = Op ( T o ) , p  > 1 and the difference T -  To is 
assumed to be not  too large (T - To < To). The second 
term in (5) describes the thermal softening o f  the material 
and the third one - the strain hardening. The parameters 
Oo, b, K usually satisfy the inequality E >> K ~ Oo >> b To , 
where E is the Young's modulus. Using the experimental 
stress-strain curves one can estimate the values p,  K and 
b as follows: p ~  2 - 3 ,  6'11 K ""  10  9 Nm -2 (Nb-T i - cop -  
per composi te6) ,b  "" 10 6 - 10 7 Nm -2 K -1.11,12 

Now (2) may be conveniently rewritten in the dimension- 
less form: 

(1 + 0) 3 d0 - - =  Kp r ( r -  1 + /~0) p - I  
dr  

(6) 

where 

b T -  To r = - - t ,  0 - < 0 r , 0 r = (  I _ i )  T c - T 0  
ao To To 

Oo b To A tro 
Kp = 3 'Pc- - -~  ' ~  - o" 0 ' h =  W° - - C  OVO 

To find o m one has to determine rm at which O(rm) = 0r, 
then ffm = O0 7m" Supposing that 7,o "" 1, To = 4 K, CoTo 
"" 1011 J m -a ,  VIA " R  ~ 10-am and a0 ~ 10 8 Nm -2 one 
can find the estimations ~p ~ I - 1 0 , 3 ~  10 -1 - 10 -2 , 
and h from ~ 1 0  2 (Wo ~ 10 2 Wm -2 K q , characteristic for 
cooling by helium gas, b = 10 s Nm -2 s -1) to ~ 10 6 (Wo 
10 4 Wm -2 K - l ,  b =  10 6 Nm -2 s - i ) .  

Over the entire range of  parameters the non-linear (6) can 
only be solved numerically, which will provide the subject of  
a separate communication. To solve the problem analytically, 
one should probably linearize (6). As 0 ~< 0r and 
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(To - To)/To ~ 1, it follows from (4) that  0 ~ 1 if(1 - / )  ,~ 1. 
Therefore, (6) permits the linearization in the case when the 
transport current is close enough to the critical value I¢. On 
the other hand, at the characteristic values of  parameters we 
have 13 ~ 10 -2 - 10 -1 ,¢ 1. Neglecting the terms 130 and 
[3 dO/dt one finds from the (6): 

7" 

0 = Kp f r '  ( r ' -  1 )P- lexp  [h(r ' -  r)l d r '  (7) 
J1 

Thus, we have obtained the transcendental equation for 
determining rm. An analytical solution for ~'m can be ob- 
tained in the two limiting cases, namely, h(rm - 1) ~" 1 
and h "~ 1. As usually h >> 1, the former case seems to be 
more realistic. 

Thus at h(rm - 1) >> 1 (good cooling) we find that: 

Tm ( rm--  1) p-1 - h O r  
/~p 

(8) 

Equation (8) corresponds to the limit C dT/dt ~ O. At p = 2 
we obtain from (8): 

Om = - ~ -  + + ( 1 - i )  W° 
2 3' V b (9) 

At arbitrary p the value of or m can be found in the analytical 
form if 7" m ~ 1 : 

° m = o ° P - 1  + [(1 - i) B I ° ( T c - T ° ) A K P l I / P  7 V p b  

Supposing that p ~ 2 - 3 ,  1 - i ~0.1,  Oo ~ 10 s Nm -2 , 
Wo ~ 10 3 Wm -2 K -t , Tc - To ~ 5K, V/A ~ R  ~ 10-3m, 
K ~  10 9 Nm -2, 6 ~  10 s Nm -2 s - ~ , T p  ~ 1,one can find 
from (9) or (10) that Om ~ 3 x 10 8 Ym -2. 

I f r m  - 1 ~ 1 (or Om~ Oo), then: 

Om =0o + {(1 _ i) Wo (Tc - To)A KP } I/(p-1) 
7 p V o  (11) 

The equation is analogous to (10) at o0 = 0, and p = 3 was 
found by Pasztor and Schrnidt 6 and they have shown that 
this equation provides a good qualitative description of 
their experiments. 

The case h ,~ 1 may be attained only under extremely un- 
favourable thermal conditions. Assuming h = 0 we find from 
(7): 

(197" m + 1) ( r  m -- 1) p - p (p + 1)Or (12) 
Kp 

As at the characteristic values of  the parameters 

0_r ,< 1 (13) 
rp 

p >  1 and rm > 1, then rm - 1 ~ 1 and from (12) one 
readily finds 

{ 1 - i  ) l/p 
O'm = O0 + Co (Tc - T o ) K  p 

')1 o o 

Thus at h ,~ 1 the normal transition occurs at o m ~" o O. 

(14) 

On analysing the obtained results one can see that the 
quenching stress o m decreases with an increase of  transport 
current and stress rate. o m increases with an increase of  
external cooling. These facts are in agreement with the 
experiments.l 

Training due to strain hardening 

As mentioned, superconducting training under conditions of  
the uniform plastic yield is associated with the strain harden- 
ing of  the material. It is clear that in the case where the 
difference (o(m n) - ogn))/og n) is less than, say, 1% no training 
is observed. On the contrary, if  (O(m n) - ogn))/og n) ~ 1, the 
training is appreciable (here O(m n) is the quenching stress at 
n-th step and ~ is the elastic limit attained at the n-th 
step). The values of  o(~ ) and og n) depend on both the 
number of  the training steps n and the experimental 
conditions. In a general form the variations of  the para- 
meters Oo, K, b can not be determined theoretically upon 
successive loading and unloading cycles. Therefore, the 
training curve can only be calculated for some models. 

We shall consider here the simplest case assuming that Oo, 
K and b do not vary in the course of superconducting 
training. Thus neglecting the variation of plastic deformation 
during unloading one can find that the macroscopic plastic 
yield starts at the n-th training step if o > og n) = Oo + K ~l/p. t-n-- 1 
where en_~ is the plastic strain attained at (n -1 ) - th  step. 

Let, for the sake of simplicity, p = 2, Or "~ 1 and ~30r '~ 
r ~  +~)- r ~  ), then analogous with the (7) one can find the 
relation between r ~  +1) and r(m '0 in the form: 

exp / hr(m n+O} [ r(mn+l) 0~ - - x(x - 1) exp (hx) dx 
Kp Jr(m n) 

(15) 

The difference Ao(m n) = O(m n) - O(m n) have a maximum at the 
first step of  the training process. By means of (15) one can 
find Ao O) in the following two cases h (rm - 1) >> 1 and 
h < l .  

In the first case we find: 

AO(ml) - 1 O r e  hrm ln{ h( rm-1- )}2  (16) 

It follows from (1 6) that AO(ml)/Om '~ 1, ie in the case when 
h (rm - 1) >> 1 the training under conditions of  the uniform 
plastic yield with the constant Oo, K, b is small. The realistic 
value ofhT m may be estimated as h r m ~ 10 3 and 
Ao(ml)/Om ~ 1%. This estimate is in good agreement with the 
results of  the experiments by Pasztor and Schmidt 6 (taking 
into account that the f'trst 4-5 normal transitions observed 
by Psztor and Schmidt are due to the local heating of  the 
sample). 

In the case of  bad cooling (h ,~ 1, Or/Kp < 1) one can ob- 
tain: 

0.6 (17) 
O'm 

As seen from (17) in this case Ao~)  "¢ ore. 

The small value of training under uniform plastic yield results 
from the fact that under usual experimental conditions the 
heating due to deformation is high enough. Hence, the 
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quenching occurs rapidly and the value O(m n) could not exceed 
o~ n) appreciably. 

Quenching current caused by plastic yield of the 
material 
Let us consider now the case where the mechanical stress is 
due to the effect of Lorentz force. Here we Fred the value 
of the quenching current ]m at which the normal transition 
occurs. For the geometry shown in the Fig. 1 the expression 
for o can be written as: 

{EL2.2 \1/3 
O = I'~1 B 2) (18) 

where L is the length of the sample (see Fig. 1). While 
deriving (18), it was assumed that the plastic strain e was 
much less than the elastic one o]E and/BL/o "¢ 1 or using 
(18): 

By means of (18) one can readily find o in the form: 

1 (EL21 'lad 
b = -~ \3]B] ~ (]" B) (19) 

Let us assume that rm ~ 1 and p = 2. Then using (9) we have: 

]m B ~- (j" B) = a 1 - /m (20) 
/~/m ] 7  

where 

AK 2 W o ( I~ - To) 
a =  18 

"yE VL 2 

With the aid of (20) one can find/'m in the following two 
cases: One, magnetic field B is increased at the constant 
value of/ ,  ie B = B (t) and /=  const. From (20) one can 
readily find: 

]m = /c " (1 ]~Bi~.) (21) 

In deriving the expression (21)it  is assumed that ]c 2 BB < a 
as with (9) is only true if]  c - ] m  <]c.  Two, the transport 
current increased at a constant value of B, ie ] = ] (t), 
B = const. Then, we obtain from (20): 

]m =]¢ " ( 1 /cB2d])a dt (22) 

In deriving (22) the inequality]cB 2 • d]/dt < a was 
assumed to be realized for the same reason as above. 

One can readily see from (21) and (22) that the function 
]m =ira (B) depends upon the history of the current- 
field application. This effect may be of importance for an 
interpretation of experimental results. In the case when 
]c - ] m  ~ ]c the value Of]m can only be calculated numer- 
ically. 

Discussion 
As mentioned above, the normal transition of a plastically 
deformed superconductor may occur as a result of one of 
at least two processes. Let us now compare the stress oj at 
which the thermomagnetomeehanical instability occurs 
with the stress a m obtained in the preceding sections. 

To find oj explicitly one needs to know the dependence of 
op on o, T, e and e. 7'8 For the sake of simplicity we shall 
assume here the linear dependence of o r, on e: 

% = % (T ,e )  + r/~ (23) 

where 1/is a coefficient independent of T and e. Equation 
(23) may be used to describe the plastic yield regarding the 
dependence of Op on ~ for superconductors reasonably if 
the temperature Tis not too close to To. Equation (23)is 
valid if the rate of plastic strain is not too low. 

Following 7,s and using (5) and (23) one can readily derive 
the value aj in the form: 

°o + °o {1 + 4°o (1 _ i3 #oR2]c 
5- bgo,  

[d ]c l )}  ~ ~  W 0 < ,  (24) 

ej = max (Oo, %), Wo > Wk (25) 

where 

Wk = CoR ~e 

Oc - Wort 1 - Jc 
Rb 

(26) 

here p is the resistivity of the composite,/a o is the vacuum 
magnetic permittivity. For simplicity the plane geometry 
(plate of the thickness 2R) is considered. 

As it follows from the (24)-(26) and the results of the 
preceding sections the functions oj = oj (I, I¢o) and Om= 
am (1, Wo)have the similar qualitative appearance, but the 
quantitative discrepancy between oj and o m may be consid- 
erable. For example, the dependence of oj on i at i -~ 1 is 
not too strong compared with o m . However, the considerable 
uncertainty of the parameters does not allow one to carry out 
the quantitative comparison of oj and Om at present. Note 
further, that (24) and (26) for oj do not include the depen- 
dence on b. As it can be shown, this results from the linear 
relation between op and ~. 
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