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Abstract. The limited thermomagnetic instabilities in the critical state have been 
investigated in hard superconductors under an incomplete penetration of the magnetic 
flux into the sample and under different external cooling conditions. A flat plate is 
considered in an external magnetic field parallel to the plate surface. Conditions 
have been found under which it is possible to observe the electric field and temperature 
oscillations in a sample; their period and number have been evaluated. The theory 
is compared with the reported experimental data. 

1. Introduction 

Magnetic flux jumping is the well-known instability occurring in the critical state in 
hard and composite superconductors. The fast penetration of the magnetic flux occurring 
under specific conditions is responsible for this phenomenon (Hancox 1965, Hart 1969). 
The motion of the fluxoid structure is accompanied by a strong heating and results 
in a partial or total penetration of the magnetic field into the sample. The corresponding 
stability criteria have been discussed earlier (Wipf 1967, Swartz and Bean 1968, Mints 
and Rakhmanov 1977) and are in good agreement with experiment. 

However, the conditions under which limited instabilities occur have not yet been 
researched. The so-called incomplete flux jumps usually lead to partial magnetic flux 
penetration. Such processes have been experimentally observed in many investigations 
(see, e.g., Urban 1970, Shimamoto 1974). 

The instability criteria and the dynamics of such thermomagnetic instabilities depend 
largely on the heat transfer conditions, provided that the process goes on slowly compared 
to the thermal diffusion time (composite superconductors, weak external cooling, . , . ). 
There is no heating in the inner part of the superconductor if the flux jump occurs 
under an incomplete magnetic field penetration. Therefore, the heat is transferred 
both to the cooler and to the inner section of the sample. The latter circumstance 
has so far not been taken into account in the previous analytical treatments of critical 
state stability, Nevertheless, the experiments have most often been carried out on thick 
samples. 

In the present paper, the critical state stability criteria have been found. The condi- 
tions have been determined under which limited flux jumps and the oscillations of 
electrical field and temperature occur. 
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We shall consider a flat plate of thickness 2b placed in a magnetic field parallel to 
the sample surface for the case b>L,  where L is external magnetic field penetration 
depth. The theoretical results obtained in this work are compared with the available 
experimental data (Chicaba 1970, Zebouni et a1 1964). 

2. General equations 

The perturbations of temperature 0 and electrical field E are described by the heat 
diffusion and Maxwell equations 

where v and K are the heat capacity and the heat conductivity of the superconductor, 
respectively, and j is the current density. The expression for j in the linear approxima- 
tion? is the following: 

. i = . j c ( T ~ ) + ~ E -  -- 0 

where j, = jc( T )  is the critical current density (for simplicity, we are using Bean's ( I  964) 
critical state model : aj,/aH = 0), and 0 is the electrical conductivity of the superconductor 
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Figure 1. 

in the resistive state. 
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Magnetic field H a n d  current j distribution for the geometry considered. 

Note that magnetic flux jumps are possible only if (aj,/aT) < 0 
(de Gennes and Sarma 1966). Let us choose the coordinates in the following manner: 
the external magnetic field Hliz, the (x, y )  plane is parallel to the sample surface, and 
x=O is at the middle of the plate. The magnetic field and current distribution for this 
geometry is shown in figure 1. The perturbations we are interested in are one-dimensional, 
i.e. 

0 = 0(x,  t ) ,  E =(O, E(x ,  t ) ,  0). 
We shall try the solution of the system (1) in the following form: 

0 = O(x). exp [X(K/VL~)~] 
E =E(x) .  exp[h(~/vL2)t] 

where X is the eigenvalue to be defined, L = cH14-rrjc. 
I 111e dppllLdLJlllL~ VI SULII a11 a p p ~ u a u ~  I I ~ L  LJGCII UISLUSSFU 111 ueiaii 111 111r rdriicr papera UI me present 
series (Mints 1978, Maksimov and Mints 1979). 
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By using system (1) and the current density expression, it is now easy to obtain an 
equation for e=e(x> (Kremlev 1973, Mints and Rakhmanov 1975): 

8Iv-X(1+ T)~II-~(P-AT)O=O. (2)  
Here 

4 ~ 0 ~  Dt 
T=.--=- 

c2 v Dm' 

Dt and Dm are the thermal and magnetic diffusion coefficients, respectively. The 
differentiation is carried out with respect to  the dimensionless variable x( - b/L G x Q b/L). 
The relationship between the electric field and 0 is 

O <  1x1 <(b-L)/L 
(3) 

To determine e(x), E(x)  and the eigenvalue spectrum h=h(P, 7 . . . ), equation (2) 
has to be supplied with four boundary conditions. Both the temperature and electric 
field are continuous at  x = xo = (b - L)/L. So we obtain 

E = [  0,  
(KljCL2)(he- q ,  (b-L)/L< 1x1 <b/L. 

- 
81- W0Iz=,,=O (4) 
xe - e11 1 z=zo = o ( 5 )  

where =A112 tanh [A1/2(b -L)/L]. Since the solutions we look for are obviously 
symmetrical relative to the x axis, the other two conditions are the surface cooling and 
the electrodynamical boundary condition f?(b/L) = 0 

e'+ WldIz=b/L=O (6) 

he'- e1"1 z=b/L=O (7) 
where W1= WO. L/K, and WO is the coefficient of heat transfer from the superconductor 
to the cooler. Note that the intensity of the heat transfer m inside the sample strongly 
depends on h and on the ratio (b  - L)/L. 

3. The qualitative theory 

In the case of an incomplete magnetic field penetration into the sample ( L  < b), the 
heat is generated in part of the superconductor volume. Accordingly, the heat is removed 
not only to the cooler but also to  the internal zone of the sample. This circumstance 
is the main physical feature of the present situation. Evidently, the heat transfer to 
the inside of the sample can be effective only if the perturbation develops slowly com- 
pared to heat diffusion (in a layer of thickness L), which is equivalent to the condition 
I X I  1. However, from the expression for @ we have @< A1/z<  1 when I h 1 < 1. Thus, 
the critical state stability criterion can differ appreciably from the case b=L only if 
the heat transfer to the cooler is small, W15 @ < 1. When WI 2 1, the presence of an 
internal zone, especially in the case lhl < 1, has an influence merely on certain features 
of the temperature and electric field distribution. As shown by Maksimov and Mints 
(1 979) it can change only the critical state dynamics considerably. 
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In the case of complete penetration of the magnetic field (b =L), ‘slow’ perturbations 
dominate either at  r> 1 or at WIG 1 in the parameter range preceding the stability 
threshold. In the latter case, I X I < 1, provided that the ratio of the times of magnetic 
(tm) and thermal ( tK)  diffusion tm/tx=r exceeds a certain critical value r > r c  (Mints 
and Rakhmanov 1977). The incomplete magnetic field penetration ( L  < b) is charac- 
terised by ‘slow’ perturbations under the same conditions. Note that now tK=b2v/tc 
and tm=4roL2/c2, and, consequently, tmitK=(L/b)2r. As a result, in the case of a weak 
external cooling I X I < 1, provided that r,(L/b) < r ,  where rc -(b/L)2 for L/b  < 1. 

Let us consider now the simplest situation : WI = CO, r 9 1, and b /LB  1 (correspondingly, 
m=X1/2). The ‘slow’ perturbations occur in the immediate vicinity of the stability 
threshold. In the first approximation with respect to XrB 1, the process proceeds under 
a fixed magnetic flux (Mints and Rakhmanov 1977). With the same accuracy it follows 
from the Maxwell equation 

Substituting the latter into the heat diffusion equation we get for 0 

eII+(p/.)e=o. (9) 
From equation (9) and the boundary conditions we come to the conclusion that in the 
first approximation (A= 0) the ‘slow’ perturbations appear at /3/r = 71.214 (the Iength L 
corresponds to one-quarter of a wavelength). 

To determine X it is necessary to take into account the heat transfer to the inside 
of the sample, i.e. the boundary condition (4). At X = X O ,  E=O, the relation between 
the electric field and the temperature perturbations (equation (8)) is valid, therefore, 
only when ( X O  + 8) < I x I . Here 61- 1 / ( X T ) ~ / ~  is the dimensionless magnetic diffusion 
length. 

With the required accuracy the boundary condition (4) becomes the following: 

e y  I s=s0+8L = xw (10) 
Using equations (9) and (10) it is easy to obtain a relationship for X=h(P, r . . . ) 

From equation (11) it follows that in the range of 

X appears to be a complex value, X = Xo + iX1, where ho > 0. For /3 = PO 
h = ih, = i n2/4r1/2 

where X, =A(,&). At /3 = pc a real positive value h = A, appears, and consequently, p = pc 
represents the critical state stability criterion. The function X=h(/3) is shown in 
figure 2. 

As is seen from equation (1 l), the value hc undergoes the greatest variation compared 
to the similar situation with b=L (see Maksimov and Mints 1979). Comparison of the 
corresponding results shows that the characteristic perturbation development time 
has increased (when b = L, Xc = (71.41 16r)1/3). 
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Figure 2. The function A=A(/3). (U )  Real and (6) imaginary part of h(/3). 

Thus, electric field and temperature oscillations may precede the magnetic flux 
jump. Their nature strongly depends on the electric field intensity in the sample (Mints 
1978). When the critical state stability is investigated in an external magnetic field 
varying at a rate of fi, an electric field of the order Eiw ( L / c ) A  arises inside the sample. 
When Ei > Eo(T), where Eo(T) is the linear section boundary of the curve j =j (E ,  T) ,  
the above relationships are valid. Thus, the oscillations with an amplitude up to  LH/c 
can really occur, if Ei > EO. The typical magnetic field variation rate is, as a rule, small 
compared to the magnetic field variation rate due to a magnetic flux jump. This circum- 
stance enables one to estimate the number of oscillations N observed under a given 
I?. The eigenvalue spectrum region X O  > 0, X I  # 0 apparently corresponds to the interval 

where Hj is determined from the equality P(Hj)=PC. The variable magnetic field is 
in the interval A H  during the time At =Hi&. Hence the number of oscillations N 
may be evaluated as the ratio of At  to the oscillation period 

The result is that 

It is seen that N z  1 if the external magnetic field variation rate is within the range 

4. The limited instabilities region 

It has been shown that if the complex eigenvalue spectrum X-X(p, 7, W1) exists, the 
consecutive series of limited flux jumps, i.e., electric field and temperature oscillations, 
are observed (Maksimov and Mints 1979). The range of parameters P, T, W1 in which 
the limited instabilities exist are given by the relationships 

X O @ ,  7, Wl)>o Xl@, 7, Wl)#O. 
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These inequalities determine the following range of parameter p 
PO(T, VI) < P < Pc(T,  Wl). 

The maximum possible number of oscillations can be evaluated as 

where W O  =AI(,&). The requirement of the existence of a nontrivial solution of equation 
(2) with the corresponding boundary conditions determines the relationship h = A@, 7, WI) 
In the general case, the resultant equation may be solved only numerically. Here, we 
shall consider the most interesting extreme case I X I  < 1, which permits an analytical 
solution. We shall obtain simple algebraic equations for the determination of 
A=@?, T ,  WI )  and find PO, PC, hc, W O ,  as well as evaluate N. 

4.1. Adiabatic boundary conditions (W1= 0)  

The eigenvalue spectrum h=h(P, T )  is determined in this case from the equation 

ka(kl2 - A) tan kz - kl(k22 + A) tanh kl - X1/2(k12 + k 2 2 )  tanh [Xll2(b -L)/L] = 0 (12) 

where 

It is easy to find that h equals zero when /3=/31=3 b/L. By investigating the relation 
X = A@, T )  in the vicinity of the point p =PI one may obtain an expression for the critical 
value T = T~ = .rc(L/b) : 

T C  = W(b2/L2) - +(b/L) ++. (1 3) 
When T~ < T ,  hc = 0 and consequently, the limited instabilities and oscillations cannot 
occur (Maksimov and Mints 1979). The value /&=PI here increases with b/L. When 
T < T ~ ,  A, # 0, and consequently, there exist limited instabilities. The evolution of the 
h=h(P, T )  curve with the increase of Tc(L/b) is shown in figure 3 for T B ~ .  

In the range 1 < T 5 .rc(L/b) one easily finds 

Figure 3. The evolution of the A=@, T )  curve with increasing T ~ ( L / D ) .  Curve A, T~ i T ;  

B, T c = T ;  c, T c > T .  
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Figure 4. Graph of Hj versus b for T$ 1. 

If 1 <T<b2/L2 one may set tanh [Xl/z(b-L)/L]= 1 and easily compute from 
equation (14): 

he = 2.517 pc= 3.8 ~ 1 1 2  

W O  2.517 ,&=2.4 r1I2 

It is seen that under the adiabatic insulation, the heat transfer to the inside of the 
sample may appreciably increase the magnitude of magnetic flux jump field Hj. The 
value Hj versus b is shown in figure 4 for 

T $  l ( H o ' = 4 ~ v j ~ / I a j ~ / a T  1 ,  bo=2/3.cHo/4n-je). 

Let us consider the close vicinity of T = ~ ~ ( 0  < ( T ~  - < 1). From equation (12) 
a simple algebraic equation for the determination of h = h(P, T )  immediately follows : 

From equation (15) it follows that 

7 6 - 7  3'2 Hj ( T c  I 5,' N w  -- 

The period of the oscillations and their number N are relatively small 

(&/WOw [(Tc - T ) / T c ] ' / ~  < 1) 
just as it is in the analogous case for b=L.  

4 . 2 .  The isothermal boundary conditions ( W1 = cc) 

As mentioned by Maksimov and Mints (1979), in the presence of external cooling 
there always exists a range of parameters where the limited instabilities and oscillations 
occur. 
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In the case of 7-1 < I h I < 1 the value h = A@, T )  is determined by the equation 

hT(2 tanh [h'/'(b-L)/L] +A1/'}+ [(n2/4)T-P]h1/2+n2T1/2/2=0. (16) 

If 1 <h1iz b/L, then equation (16) is identical with equation (1 1) that we have derived 
on the basis of qualitative considerations. Therefore, all the results obtained from 
equation (1 1) are valid if 1 <~<0-25(b /L)~ .  The estimation of N is 

Equation (16) permits an analytical solution in the contrary extreme case 
hl/z(b-L)/L< 1, as well. From equation (16) it follows that 

h3"~[2(b/L)- 11 + [(57'2/4)T-P]h1/2 +7T2T1/2/2=0. (17) 
Equation (1 7) enables us to determine the parameters 

It follows from the expression for hc that equation (17) is valid if 

Comparison of these results with the corresponding ones for the case of b = L  shows 
that the appearance of the heat transfer to the inside of the sample can significantly 
enhance the critical state stability. The range in which it is possible to observe 
oscillations expands, and their period relatively increases. 

4 . 3 .  Arbitrary thermal boundary conditions 

The presence of finite external cooling does not qualitatively change the relationship 
A@), as compared to the case of isothermal boundary conditions. In the general case, 
the solution of equations for X = h(P, T ,  Wl)  can be obtained only numerically. There- 
fore, we shall consider a situation where WI< 1 and I AI<< 1. An analytical solution 
of this extreme case can be found. 

The equation for A=@, T ,  W1) in the most interesting range of parameters T > T ~  

is 
1.2(b/L)(~- Tc)h2  4- (PI -P)h+ 3 w1=0. (18) 

From equation (18) it follows that 

b Hj N - -  Wl _-. 
L Ht, 
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Note that equation (18) is valid for an arbitrary relation between L and b. Both the 
oscillation period and the magnetic flux jump time are relatively large (to the measure 
of 1 /Ac) ,  as in the case of b = L. 

5. Results, discussions and conclusions 

Electric field and temperature oscillations in hard superconductors have been observed 
experimentally in an external magnetic field which varied at a constant rate (Chicaba 
1970, Zebouni et a1 1964). We shall now compare the reported experimental data 
with the theory developed by Maksimov and Mints (1979) and that of the present 
paper. 

The oscillations under investigation can be observed immediately before the magnetic 
flux jump, provided that b>L.  In the increasing external magnetic field, the latter 
series of oscillations corresponds to the case b=L due to  the dependence of j ,  on H, 
and may not end in a magnetic flux jump. This situation was observed by Chicaba 
(1970). 

From estimates of N,  it appears that the number of oscillations increases as the rate 
of external magnetic field variation decreases. This fact is in agreement with the cor- 
responding experimental results (Chicaba 1970). 

The period and number of oscillations as a function of the sample temperature has 
been investigated by Zebouni et a1 (1964). The relatively long oscillation period and 
the limited contact between the sample and the helium bath suggest that these experi- 
ments were carried out under weak external cooling ( W I < ~ ) .  Thus it follows from 
the results of the present work that the number of oscillations increases and their period 
decreases as the temperature decreases (basically, due to  the heat capacity dependence 
on temperature). In fact, this situation was realised in the experiment (Zebouni et 
al 1964). It is not possible to compare the quantitative results, since Zebouni et al 
give no data concerning the materials employed and the nature of the external heat 
transfer. Note that cylindrical samples were used in these experiments. Naturally, the 
comparison between the present theory and the experiment can be only qualitative. 

6. Summary 

The critical state stability has been studied under an incomplete magnetic field penetra- 
tion into the sample. The conditions have been determined under which the limited 
instabilities and oscillations occur. The instability dynamics depending on the external 
cooling parameter and the ratio of the thermal and magnetic flux diffusion coefficients 
have been determined. The oscillation period has been calculated and the maximum 
possible number of oscillations has been estimated. It is shown that the theory and 
experiments are in agreement. 

References 

Bean CP  1964 Rev. Mod. Phys. 36 31-9 
Chicaba J 1970 Cryogenics 10 306-13 
de Gennes P G and Sarma J 1966 Solid Si. Commun. 4 449-52 



1698 I L Maksirnov and R G Mirqts 

Hancox R 1965 Phys. Lett. 16 208-9 
Hart H R  1969 J. Appl. Phys. 40 2085-6 
Kremlev M G  1973 Zh. Eksp. Teor. Fiz. Pis, Red. 17 312-6 
Maksimov I L  and Mints R G  1979 Fiz. Nizk. Temp. 5 842-53 
Mints R G  1978 Zh. Eksp. Teor. Fiz. Pis. Red. 27 445-8 
Mints R G  and Rakhmanov A L  1975 J .  Phys. D :  Appl. Phys. 8 1769-82 

~ 1977 Usp. Fiz. Nauk 121 499-524 
Shimamoto S 1974 Cryogenic3 14 568-73 
Swartz PS and Bean C P  1968 J .  Appl. P h y ~ .  39 4991-8 
Urban E W  1970 Cryogenics 10 62-3 
Wipf SL 1967 Phys. Rev. 161 404-16 
Zebouni N H, Venkataram A, Rao G N, Grenier C G and Reynolds J M 1964 PhyJ. Rev. Lett. 13 606-9 


