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Abstract. The paper investigates the influence of the time-dependent external conditions 
on the stability criterion of the critical state in a hard superconductor with respect to 
flux jumps. It has been shown that the existence of a non-linear region in the current- 
voltage characteristic can result in a significant delay of the onset of the instability. The 
methods developed in this paper make it possible to define the dependence of the 
stability criterion on the rate of change of the external parameters (magnetic field, 
temperature etc). The theoretical results have been compared with the experimental 
data. 

1. Introduction 

The stability criterion of the critical state in hard superconductors is known to have the 
form (e.g. Swartz and Bean 1968) 

where AH is the magnetic field difference in the sample and Hj is the function of the 
parameters of the sample and the external conditions. However, some initial perturba- 
tion is needed to create the flux jump immediately above the stability threshold (or at 
AH= Hj)?. The disturbance should be (i) strong enough to transfer the superconductor 
into the flux flow regime, and (ii) should cover a large volume of the superconductor, 
to  prevent heat transfer from the region of the forming flux jump into undisturbed region. 
Further we shall assume that the second condition is fulfilled. 

The nature of the initial perturbation may be different: some uncontrolled disturb- 
ances of the temperature, magnetic field, current, etc. or disturbances resulted from some 
regular influence on the superconductor in the course of the experiment. This paper 
investigates the dependence of the stability criterion on the rate of variation of the 
external parameters (the external magnetic field, the temperature, etc.). It is shown that 
the existence of the nonlinear region in the current-voltage characteristics of the hard 
superconductor can lead to a sufficient delay in the appearance of instability, i.e. a flux 
jump occurs at A H 9 H j .  

A H <  H5 

2. The current-voltage characteristics of a hard superconductor and the stability of the 
critical state 

The dependence of the current density j on the electric field E has the form shown 
schematically in figure 1 (Campbell and Evetts 1972). 1f.j is lower than the critical value 
t The disregard of this fact complicates the comparison of the theory with the experiment as well as 
the comparison of the results of different experiments. 

0022-3727/79/111929+ 14 $01.00 0 1979 The Institute of Physics 1929 



1930 R G Mints and A L Rakhmanov 

I 
O €0 E 

Figure I .  The I-V characteristics of the hard superconductor. 

j ,  =jc(T, H )  (where Tis  the temperature of the superconductor) then E = 0. At j >  j c ,  and 
with electric field E less than a certain value Eo=Eo(T, H ) ,  the function j = j ( E )  is 
essentially nonlinear (the regime of the flux creep) and j can be presented in the form: 

j=jc(T, H ) + { f  u(E) dE=jc+jN. 

For E > &  the dependencej=j(E) is linear: j = j l f u f E  (the flux flow regime). As the 
nonlinear region is usually small ( j , B j ~ ) ,  then at E >  EO one can write: 

j=jc(T, H )  + OfE. (1) 

Further on we shall deal with magnetic field H B H c l ,  where one can assume the 
magnetic field induction being equal to the magnetic field intensity H,  and the electric 
conductivity q may be expressed as follows: uf=anHc2/H where c n  is the electric 
conductivity in the normal state, Hc,  is the upper critical field. 

Suppose that the sample is placed in the external alternating magnetic field He = He(t) 
and consequently the current of the density jc=jc(T, H )  is excited in it. This current 
screens the magnetic field and the field H decays to zero at a depth 1. Such state is stable 
only iP A H <  Hj. 

The normal current j x  = st a(E) dE, which compensates the drop of j ,  at the spon- 
taneous heating and ‘retards’ the movement of the magnetic flow, is one of the factors 
stabilising the critical state. Therefore, the value of Hj grows with the increasing of the 
conductivity. It can be seen from figure 1 that u(E) decreases with increase of E and o(E) 
achieves the minimum value UP at E>Eo(T, H) .  Hence, the minimum of stability is 
achieved in the case when the volume of the superconductor, along which the current 
passes, is in the flux flow regime. 

For hard superconductors the representative values of the thermal conductivity K 

and the electrical conductivity a n  are relatively low. As the result, at E>Eo(T, H )  the 
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ratio of the coefficients of thermal and magnetic diffusion Tf 

is much smaller than 1 (here v is the specific heat of the superconductor). 
Let us assume the surface of the sample being under isothermal conditions (i.e. T= TO 

at the boundaries, where TO is the bath temperature). Then in the flux flow regime the 
stability criterion has the form (Tf< 1): 

(see for example Swartz and Bean 1968). This relation, as well as all those subsequently 
mentioned, relies on a flat specimen. The corresponding criterion for a sample of other 
geometry differs from expression (3) only by a constant coefficient. 

In order to excite the flux flow in the superconductor the initial disturbance should be 
strong enough. That is, the electric field E should exceed EO in the whole volume of the 
sample, being in the critical state. If this condition is not fulfilled, then the current density 
is equal to:  

j = j c  (T,  H )  + sf o(E) dE  

where a(E) > of (and for values of E not too close to EO U@)$ of). In this case the 
parameter T(E)  = 7 1  U@)/ Uf > Tf (or T ( E )  B v) and the maximum difference of the mag- 
netic field Ha at which the flux jump occurs is obviously larger than Hj. In the range of 
T ( E )  % 1 (weak perturbations), analogous to the case of a superconducting composite with 
T >  1,  the stability criterion can be written in the form (e.g. Hart 1969): 

AH < Ha = Ii3.. $ €I5 (4) 

where 7 is the averaged value of T(E) .  
The dependence of the field Ha on the rate of variation of the corresponding para- 

meters can be found for the instability developing under time-dependent external 
conditions. 

3. The stability criterion (fast variation of the external parameters) 

Let us consider a flat sample in a parallel magnetic field (see figure 2) .  As it is known, in 
the range of the magnetic fields Hc,<H<Hc, the dependence of the critical current 
densityj, versus H can be chosen in the form: 

j C  = -H-- 

for many superconducting materials (Saint-James et aZl969, Campbell and Evetts 1972). 
Taking into consideration the fact that in the equilibrium j ,  Bjiy, we find from the 

Maxwell equation: 

aH 47T = - j , (H) 
ax c 
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H 

Figure 2. The magnetic field distribution in the sample. 

and equation (5) for magnetic field distribution H=H(x): 

where I= cHe2j8xol(T). 

To determine the electric field E we have 

aE - 1 aH 
ax at 

and the boundary condition E=O at x=I. Then one can find 

E= 2 &eH(x)I 
cHe (7) 

The expressions ( 6 )  and (7) were found by assuming that the heating of the sample by 
the alternating external field can be neglected. It is easy to estimate that the following 
conditions are necessary here: 

Be <(8~)3(Tc - TO) ~ ( ~ / c ) ' / H e 5  

A, < ( 8  ~ ) 2  (Tc - TO) W( a/ C) /He' 

where W is the coefficient of the heat transfer into helium. Using the representative 
values of T ,  - TO = 10 K, a/c = IO7 A Oe cm-2, K = IO3 erg cm-1 s-1 K-1, W= 106 erg cm-2 
s-1 K-1, He=3 x lo3 Oe, we obtain Be< IO5 Oe s-l. 

The part of the superconductor 0 < x< xo is in the flux flow regime, where xo is 
defined by the condition E(xo)=Eo: 
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Let us denote H(x0) = Ho. The magnetic field difference in the region where E> EO 
equals 

Assuming that u(E) is a rapidly varying function, one may introduce in the zone 
where E < EO some average value T > Tf. Let 7 %  Tf and T %  1. 

The building-up time of the flux jump in the hard superconductor is small: tj<tK= 
X&/K (Mints and Rakhmanov 1977). However, the development of such rapidly growing 
disturbances is suppressed at T B  1 by the normal current jN. And in the first approxima- 
tion with respect to Tf < 1 , TB 1, the existence of the flux creep region in the sample leads 
to the decrease of the volume where rapidly growing disturbances can appear. Therefore, 
in the absence of some other initial perturbations, except Be, the instability is initiated in 
the region 0 < x < X O .  And one can conclude that flux jump occurs if 

He - Ho > Hj. 

For a simple model this statement is proved in the Appendix. 

it is convenient to represent EO in the form 
The flux flow is achieved at the current density jf -11 + ufEo >jc;  herejf-jc. Therefore 

Eo=---- jf --A - & 
Uf Uf 

where K=K(T, H)=(jf-j1)/jc<1, and substituting j ,  from equation (5) and up= 
allHcz/H into the last expression one easily finds : 

The coefficient K(T, H )  characterises the initial stage of the movement of the vortex 
structure and the non-uniformity of the pinning centres. One can assume that in the 
fields interval Hcl<H<Hcz,  the dependence of K versus H is sufficiently weak. Now, 
using equation (8) and (9) it is easy to find the stability criterion for the critical state in a 
hard superconductor depending on the rate of variation of the external field: 

Hj Hj2 A(T)  A H <  H a = T  + (7 + x) 
where 

4 ~ 0 1 2 (  T)K(  T )  
unHc&T) 

A(T) = ---. 

The dependence of Ha on &e is shown qualitatively in figure 3. At Be + CO, Ha + Hj 
(it follows from equation (10) that HawHj at 8eBA/Hj2) .  

The dependence of Ha on &e is affected by the form of the function j ,  =jc(H).  How- 
ever, the qualitative behaviour of the curves Ha = Ha ( f i e )  does not change. For example, 
if i3jC/aH=O, aEo/aH=O, then for Ha we have: 

The qualitative appearance of the corresponding curve is just the same as shown in 
figure 3. 

146 



1934 R G Mints and A L Rakhmanot; 

Figure 3. The qualitative dependence of H,  on f i e  and ?e at high ke and ?e. 

Analogous speculations allow us to find the dependence of the field difference Ha on, 
for example, the rate of the external heating of the sample T e .  Let 8,=0 and T e  be 
relatively small, i.e. the characteristic time of the temperature variation T o / T e  is much 
higher than the time of the thermal diffusion through the scale I: 

To/Te 1 2 V / K  

(where TO is the initial temperature) or 

Te<tcTo l l2V .  

At the typical values of parameters TO =4G! K, K =  IO3 erg s-1 cm-1 K-1, v = IO4 erg 
cm-3 K-1, 1 2 -  10-2-10-3 cm we have lie< 103-104 K s-1, Under these conditions we 
can assume that at 0 < x < I the temperature is uniform. Then one can obtain the expres- 
sion for the electric field E by means of the magnetic field distribution and the corres- 
ponding Maxwell equation (E=O at x=Z): 

E=- f i e 1  (x---) H ( x )  H ~ ( x )  
C 3 He3 

and for HO we have the following expressions: 

Using expression (6) we obtain: i=CH,'Iol'(T)ITe/8ncl'(T). Wow it is easy to find by 
means of equation (9) that the stability criterion has the following form: 

AH < Ha(Fe) 

where Ha(Fe) is determined by the equation 

The dependence of Ha on T e  in the case of small heating (T-To<T,.-To) is shown 
qualitatively in figure 3. The value of Ha decreases with increase of Te and at TeB 
A(T)a(T)/  I a'(T) I 9 Haw Hj. 
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By the same way one can find Ha= Ha(Te) in the case when ajc/aH=O, aEo/aH=O: 

4. The stability criterion (slow variation of external parameters) 

It follows from equations (10)-(13) that at Be, T e  + 0 the field difference Ha --t CO. 

Actually, Ha is saturated at the low rates of variation of the external parameters, reaching 
a certain finite value as there always exist uncontrolled disturbances in the system. The 
corresponding maximum of the magnetic field difference in the sample Hm is determined 
by the value ?O at EgEo  

Hm Hj . (14) 
where TO depends on the form of the function j ( E )  and the spectrum of the uncontrolled 
fluctuations. 

In order to find the dependence of Ha on &e, Te in the whole range of variation 
of A e  and T e  one has to know the function j ( E )  at arbitrary E. There are no reliable 
empirical or theoretical relations for j ( E )  at E < EO and, on the other hand, to carry out 
the necessary calculations with arbitrary function j ( E )  is too difficult. This is the reason 
to choose some simple I-V curve to find Ha at arbitrary Be and T e .  The most simple 
model is the following (see figure 4) : 

j , ;  E=O 

jc+  o~Eo+ af(E-Eo); E >  Eo. 
j c+a lE;  O<E<Eo 

Figure 4. The model for Z-V characteristics. 

This model describes qualitatively well the peculiarities of the actual I-Vcurve and enables 
us to carry out the necessary calculations. As we are interested here only in the qualita- 
tive aspects, then, to make the task easier, we assume that j,, 01, uf and EO do not depend 
on the magnetic field. 

Under the influence of the changing external variable the part of the superconductor 
which is in the critical state is divided into two regions: (1) E>Eo at O<X<XO;  (2) 
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E < EO at xo < x < 1. Now it is easy to find xo : 

As the rate of the variation of the external parameters appears in the stability criterion 
only through X O ,  it is convenient to determine Ha as a function of xo, and then to calculate 
the dependence of Ha on H ,  and F e  by means of equations (15). 

Figure 5 shows the results of the numerical calculations of the dependence of the 
dimensionless value Ha/Hj versus xo at various ol/uf. The calculations have been 

I 1 - 
c 5  1 
XO 

1 
0 

Figure 5. The curves Hn/Hj= Ha(Xo)/Hj. Solid curves, numerical calculations; curve A 
corresponds to TP=10-2, ~ i = = 1 0 ;  curve B, ~ t = l O - l ,  ~ = 1 ;  curve C,  n=10-2,  TI=^. 
Dashed curve, the result given by equation (11). 

carried out using the methods applied for defining Hj (see for example Mints and 
Rakhmanov 1977). All basic relations are given in the appendix for readers' convenience. 
It should be noted that to determine the values of Hj and Hm more accurate relations (3) 
and (4) can be substituted by the expressions (Kremlev et a1 1977) 

where 

The curves Ha = Ha(xo) found by means of equations (1 5) and (1 1) or (1 3) are shown 
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by the dashed line in figure 5 .  At xo = 1 (high Be, Fe) these curves agree well with the 
numeric calculations. As may be expected when the region of XO,  where the curves are 
close to  each other, is wider, the ratio ol/af is higher. 

5. Comparison of theory and experiment 

Experiments to study magnetic instabilities are performed as a rule with a specimen placed 
in a varying external magnetic field. One must initiate the flux jump in the course of the 
experiment, e.g. by mechanical shock (Evetts et al 1964), in order to determine the true 
instability threshold Hj. This fact has not been taken into account in the vast majority 
of the studies and the flux jumps have been initiated by varying the external field or by 
random factors, and this fact is probably responsible for the contradictions in the results 
of experiments investigating the dependence of the field at which the flux jump occurs 
(Ha in our terms) on Be. So for example, Watson (1967) and Wipf and Lubell (1965), 
and some others, mention a regular decrease of Ha with increase of &e. On the contrary, 
the experiments of Neuringer and Shapira (1966), Levy et aZ(1970), Harrison et aZ(1975) 
did not register such dependence. In particular, the authors of the latter paper had noted 
that the dependence of the external field at which the first flux jump occurred on &e was 
of accidental nature and the actual stability boundary does not depend on it. Such an 
accidental nature of the instability is proved also by the ‘disruptions’ at the regular 
experimental curves.? 

To compare the theory developed in this paper with the experimental results we shall 
use the relations obtained in 93, although the dependences found in $4 would certainly 
give more accurate coincidence between the theory and the experiment. But to take into 
account the saturation of the value Ha at &, + 0 one must introduce an additional 
adjusting parameter m/q, which could not be found from experiment. 

The experimental data obtained by Watson (1967) at various TO and Be are shown in 
figure 6. Figure 7 contains the points of Ha versus at T0=2.5 and 4.2 K;  these data 
were presented in the paper by Wipf and Lubell (1965). The theoretical curves Ha= 
Ha(&e) obtained by means of equation (10) are also shown there. The value A(T)  at 
every fixed TO was chosen so that the theoretical curves lay above the corresponding 
experimental points. 

The experimental data given by Watson (1967) (figure 6) are the most complete for 
the comparison of theory and experiment. Following equation (IO), we have obtained the 
dependence A(T) for the superconductor used in the experiment by Watson (1967) 
(sample with Tc=3.2 K). The corresponding curve is given in figure 8. In the vicinity 
of T ,  the upper critical field H c Z -  (1 -T/Tc)l/2 (De Gennes 1966), and in the same region 
c i ( T ) ~  1 - T/T,. If K ( T )  has no singularity at T -+ T,, then A ( T )  -+ Oat T + T,. Actually, 
A(T) decreases sharply at TO-2.5 K (see figure 8). Besides A(T) ,  the expression (10) 
includes Hj(T). This value has been evaluated by Watson (1967) using equation (3) and 
the experimental data for the specific heat and Tc (see solid curve in figure 6). 

As can be seen from figure 6, the experimental points at A, < 2 kOe min-l lie notice- 
ably lower than the theoretical curves. Ha is apparently close to saturation in this region. 
Quantitative agreement of the theory and the experimental data is worse in the range of 
high &e, as in this range the form of Ha(T) greatly depends on Hj = Hj(T), which is not 
known with sufficient accuracy (Watson 1967). 

In some experiments the growth in Ha=Ha(Be) has been registered in the region of high f i e ,  which is 
apparently explained by sufficient heating of the sample (Rothwarf et al 1968, Chikaba et al 1968). We 
shall not discuss it. 
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Figure 6. The dependence of Ha on TO at different &e. Experimental points by Watson 
(1967) and our theory (dashed curves). Solid line, Hj=Hj(T) found by Watson (1967). 
Line A and points denoted by x correspond to a e = 2  kOe min-l; B and A,  3 kOe 
min-l; C and 0, 4kOemin-1; D and 0, 6 kOemin-l; F and V, 10kOemin-l; 
G and f, 15 kOemin-1; H and A, 30 kOemin-1; I and 0, 58.5 kOe min-l; J, lo3 
kOe min-1. 
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Figure 7. The experimental Points by Wipf and Lube11 (1965) and theory (solid lines); 
points denoted by V correspond to To=4-2K; I?, 0, two different samples at TO= 
2.5 K. 
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As the value of Hj had not been evaluated in the paper (Wipf and Lubell 1965) we 
have to choose two adjusting parameters Hj and A ( T )  to compare the experimental data 
presented in this paper with theory (see figure 7). The values of A and Hj used to plot 
the theoretical curves were: at T 0 = 2 3  K, A =0.85 kOe3 s-I, Hj=4  kOe; and at TO= 
4.2 K, A = 4  kOe3 s-1, Hj= 5 kOe. Expressions (9) and (10) make it possible to estimate 

- 
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0 
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I 

Figure 8. The dependence of A on TO for the curves shown in figure 6. 

Eo=A(T)/4.rra(T) using the value of A ( T )  found from the experimental data. For 
example, let A = 4 kOe3 s-I,  TO) = ar(O)(l - To/Tc), a(0) = 3 x 108 A Oe cm-2, TO = 4 K, 
T,= 10 K then EO" 10-7 V cm-1. Using the values of A obtained by means of the 
dependence Ha = Ha(&e), and the values for Hj = 5 kOe, a(0) = 3 x 108 aOe cm-2, by 
equation (12), it is easy to find out that the magnitude of T e  at which a considerable 
influence of temperature variations on the Ha should be expected lies within the range 
Te= 10-2-10-1 K s-1 for the samples used by Wipf and Lubell (1965). The magnitude 
of Ha achieves the value of the order of Hj at pew 1 K s-1, 

6. Conclusions 

(i) The dependence of the maximum difference of the magnetic field in hard super- 
conductor at which the critical state is stable has been found as a function of the 
the rate of variation of the external magnetic field he and the rate of external 
heating f'e at sufficiently high &e and Fe. Two different models of the critical 
state have been considered ($2). 

(ii) A simple approximate current-voltage characteristic has been chosen for a hard 
superconductor. For this model the stability criterion of the critical state has 
been found at any value of &, and Fe (9 3). 

(iii) A comparison of the theory and the experiment has been made ($4). 
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Appendix 

To define the field difference Ha for a hard superconductor with the model of I-V 
characteristics shown in figure 4,  we shall consider for example a flat sample of thickness 
2b placed in the external magnetic field H e  > H p  =4nbjC/c  (see figure 9). 

Figure 9. The magnetic field distribution in a flat sample at H e s H p ,  ajc/aH=O. 

Let us write down the equation for a small temperature perturbation U. The value 
61F may be presented in the form 

6T= 6(x/b)  exp ( h / v b 2 ) .  

Then using Maxwell’s equation and thermal diffusion equation it is easy to find 

P - A(I + Tf)el l -  A(P - A,,) 0 = o 
6 I V  - A( 1 + T I )  611 - h(P - ATI) 0 = 0 

1x1 >xo 
1x1 <xo 

where 

As the solution is symmetrical with respect to the axis x = 0 it has the form ( x  > 0): 

6= c1 sinh klx  + c2 cosh kl  + c3 sin kzx + c4 cos kpx 
0 = c5 sinh qlx + c6 cosh qlx + c7 sin qpx + C8 cos qzx 

6 ~ 0 ,  E=--  ( h e -  ,p)=o 

x > x o  
X < X O  (16) 

K at x=O 
jcbz 
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To determine C.I one has to use the boundary conditions and also the conditions of 
continuity at I x I = XO. 

Under the isothermal boundary cooling we have : 

e=o, X =  & b. (17) 
It follows from the continuity of the magnetic field at x=O that 

The temperature, heat flow, and electrical and magnetic fields are continuous at 
1x1 = X O .  The set of these conditions leads to the continuity of 0, 61, 011 and 6111 at 
1x1 =xo. 

Finally, we obtain the system of the non-uniform linear equations to define ct 

where arj=arj(P, q, 71, XO), all ct except one equal to zero, ca different from zero equals: 
jcb3 f i e / K C .  

The existence of the growing eigen solutions (i.e., the solutions with X>O) of the 
system of the equations for c$ corresponds to the instability. And therefore the stability 
criterion may be determined from the equalion: det llazj / j  =O at X > 0, where detllatj I /  
is the determinant of the system (19). (This question is discussed in more detail in the 
papers by Kremlev et al(1977) and Mints and Rakhmanov (1977).) Let the minimum 
value of P, at which the eigen solution with X > O  appears first, equals PC, and h=Xc 
respectively. Then the stability criterion has the form 

A H <  Ha= [4nPcvjc/ ljc’(T) I ]l/z 
and the increment of the instability equals tj-l= X C ~ / v b 2 .  The results of the numerical 
solution of this problem are given in figure 5. 

Figure 10 shows schematically the spectrum of the eigen values A= A@) at various XO.  

Figure 10. The functions A =  h(P) at various XO. Curve A: xo is small, the critical state 
is destroyed by the ‘fast’ perturbations; curve B, X O -  1 ,  the critical state is destroyed by 
the ‘slow’ perturbations; curve C, intermediate value of X O .  
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When XO-0 the stability is broken by ‘fast’ (X,Bl) disturbances. At ~ 1 B l  such dis- 
turbances exist in the region I x 1 > xo and are practically suppressed in the creep zone. 
Vice versa, at xo -+ 1 the stability is broken by ‘slow’ ( A c <  1) disturbances developing in 
the whole volume of the sample. These results for the spectrum X = A@), in particular, 
confirm the assumptions made in $2 about the influence of the creep zone on Ha at 
high $le (or ?e). 
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