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Abstract. The critical state stability against flux jumps in hard superconductors is 
considered by means of the WKBJ method. The universal stability criterion for an 
arbitrary critical state model is obtained. 

1. Introduction 

The inherent magnetic instabilities (flux jumps) in hard superconductors have been 
discussed by many authors (e.g. Hancox 1965, Wipf 1967, Swartz and Bean 1968, Wilson 
et a1 1970, Kremlev 1973, 1974). Stability criteria were found for different examples of 
approximation by a simple model (such as a constant critical current density or a critical 
current density that depends on the magnetic field as j c w  l /(H+Bo)).  The flux jumping 
is usually treated as adiabatic process (Swartz and Bean 1968) but this was conclusively 
proved only for ajc/aH=O (Mints and Rakhmanov 1975). 

In the present paper the critical-state stability criterion is determined for an arbitrary 
function j c  =jc(H) and general evidence is given of the adiabatic nature of flux jumping 
in hard superconductors. 

2. The general equation (WKBJ solution) 

Flux jumping in superconductors is accompanied by the change of electric ( E )  and mag- 
netic ( H )  fields and by an increase in the temperature T. The expression for any of these 
values may be found from the heat and Maxwell equations. The relation between the 
currentj and the electric field E may be written as follows: 

j = j c (  T, H) + U f E  

where uf is the flux-flow conductivity. 

form : 

where v is the specific heat, K is the thermal conductivity and 2b is the thickness of the 
sample. The general equation for EO mentioned by Kremlev et aI(1976) is as follows: 

For example, for a flat sample (figure 1) the electric field E may be expressed in the 

E=Eo(x/b) exp ( A f K / V b 2 )  

E o ‘ ” + ( L Y + ~ ~ ’ / ‘ ~ )  Eoff’+ [ Y ” / Y + ~ ( L Y ~ ) ’ / ~ -  h(1 + T ) ]  EO“+ [ ( L Y ~ ) ” / Y - L Y X - ~ ~ ~ T ~ ’ / ~ ]  Eo’ 

+ A  ( A ~ - / 3 - ~ f / y )  Eo=O (1) 
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X 

Figure 1. The slab of thickness 26 in the external field. A, He> H p ;  B, He=Hp;  C ,  
He< Hp. 

where 

D m  and Dt are the magnetic and thermal diffusivities respectively. Equation (1) is 
derived by a procedure similar to the one used by Kremlev (1974). 

Equation (1) must have four boundary conditions. If we assume that the external 
magnetic field is constant during the jump, we have aH( 2 b)/& = cE’( 5 b) = 0. There 
are two more boundary conditions provided by the surface cooling equations 
KT’( 5 b) f hT( 5 b) = 0 (h is the heat transfer coefficient). The function j&) changes 
its sign at x= ab (- 1 < 6 < 1 , see figure 1) and equation (1) is solved in the two independent 
regions x < 6b and x > ab. Then the matching conditions at x= 6b have to be formulated 
(Mints and Rakhmanov 1975) as 

T(6b + 0) = T(Sb - 0) T’(6b + 0) = T’(6b - 0) Eo(6 f 0) = 0. 

If EO is substituted into the boundary and matching relations the dependence 
A= X (By T,  6, . . .) may be found from the requirement that non-trivial solutions of 
equation (1) should exist. The critical state is unstable if A@, T,  6, . . .)>O. 

The dependence of the coefficients of equation (1) on x arises because the dependence 
of the critical current on the magnetic field is not neglected. Therefore, these coefficients 
vary by a considerable amount over the length I which may be defined as 
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If l>b (or cy< 1) equation (1) contains slowly varying coefficients and may be solved 
by the WKBJ meth0d.t As usual we shall use E in the form Eo=exp [if(x/b)], where 
f(x/b) is a smoothly varying function. By substitution of this expression into equation 
(1) one can find (to the first approximation with respect to a(x) < 1) 

f(x/b)= & I/b [(-&l(l + ~ ) f  [$h2(1 -T)2+x/3]1iz}1~2+ . . .] dx. (2) 
Note that the WKBJ solution obviously coincides with the accurate one for case of a=O 
(Bean’s critical state model, Bean 1964). 

We can use solution (2) and the boundary and matching conditions to find the equa- 
tion for A@, T ,  6, . . .) from the requirement of the existence of the non-trivial solution 
EO; e.g. for h=O (adiabatic insulation) it is easy to obtain 

where 

(For simplicity S=O.) Equation (3) is a generalization of the expression obtained by 
Kremlev for cy =O. 

The curves A= A(&) where B e  = /3(He) for different T have the form shown in figure 2; 
this can be demonstrated by equation (3). In particular, if we have determined the value 
Ac (see figure 2), we may evaluate the building-up time of the jump as tj N vb2/hCK (Mints 
and Rakhmanov 1975). The stability is broken down by ‘fast’ (or adiabatic) perturba- 
tions (Ac% 1) in any critical state model if T <  1 (which applies to hard superconductors). 

K1,2(x)= [ & +A(1 + T ) + ( $ A 2 ( l  - T ) 2 +  A/3(x))1/2]1/2. 

! 

Figure 2. The functions X ( f ie)  for different T. Adiabatic boundary conditions. 
A, T = O ;  B, T > O .  

t The WKBJ solution for nth-order linear differential equations had been obtained by Heading (1961) 
and the proof of its validity has been demonstrated by Wasow (1962). 
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3. Simplified scheme 

As has been shown, the flux jumping is an adiabatic process for re 1, and the general 
equation (1) may be reduced to a second-order one (Kremlev et aZl976) 

Eo”+a(x) Eo’+P(x) Eo=O. ( 4 4  
This equation requires only electrodynamical boundary conditions. The equilibrium 
will be violated if a non-trivial solution of equation (4a) exists with boundary conditions 
Eo’( 5 1) = Eo(S) =O. 

Let us introduce a new variable y (see figure 1): 

and equation (4a) becomes 

d2Eo +FEo 0 
dY 

where 

The boundary conditions may be rewritten as dEo(O)/dy=Eo(l) = 0. 
The value TO does not depend on H if the critical current density may be represented 

as jc(T, H )  =jo( T) + (H) and p= constant. Equation (4b) may be solved explicitly and 
the corresponding stability criterion easily found : 

This expression coincides with the criterion obtained for the Bean model (a =0, Swartz 
and Bean 1968). 

In a more general case, equation (4b) may be solved by means of the usual WKBJ 
method (Heading 1962) provided dp1/2/cly < ,&/z or 

The WKBJ solution and the boundary conditions can be used to find the subsequent 
stability criterion: 

The theory of the WKBJ method allows us to evaluate the accuracy E of the latter expres- 
sion as 

As an illustration let us consider the critical-state model where the dependency of 
j ,  on H has the following form: 
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Substitution of expression (6) into the inequality ( 5 )  gives 
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(7) 

The integral on the left-hand side of inequality (7)-Y (he) is shown in figure 3 for differ- 
ent values of ho and t. Bean’s critical-state model corresponds to t=O.  The stability 
may be significantly affected by the dependency of jc on H in the high-fields regions; 
this follows from the results shown in figure 3. 

Figure 3. The function $ (he) for different t and ho. Q t = O ;  x t = l .  A ,  ho=O; 
B, ho=0*5; C, ho=0*9. 

The criterion (5 )  is evidently valid for non-uniform samples with smoothly varying 
properties; in particular, it follows from ( 5 )  that the use of such materials does not lead 
to considerable improvement in stability, The WKBJ method gives us an opportunity to 
find out the stability criteria for samples of different geometrical configurations. For 
example, a cylindrically symmetrical sample is considered in the paper by Mints and 
Rakhmanov (1975b). The qualitative dependence of the stability criterion upon sample 
geometry is found to be just the same as for the Bean model. 

The disturbances with AB 1 can not be caused by external cooling; hence, the instab- 
ility at A =  AcB 1 (if it can occur) is absolute from this point of view. For the supercon- 
ductor clad with a normal metal the equilibrium may be violated by the perturbations 
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with h = Xc 5 1. But the instability region may be shifted up to Xc$ 1 (absolute instability) 
by effects such as external cooling and increasing the normal layer thickness. The instab- 
ility will pass through two stages in this case. Firstly, the flux redistributes rapidly inside 
the superconductor (the jump, h-  hc% 1). Secondly the external magnetic flux sweeps 
into the sample (the rate of the process is determined by the normal metal parameters). 
This was experimentally observed by Onishi (1974). For the situation in question, the 
boundary conditions are E( h b) =O (during the jump), as at  A %  1 the electric field 
E decays inside the normal layer (skin effect) and the term 3.r on the right-hand side of 
inequality ( 5 )  has to be changed by T as can be seen readily from the preceding calcula- 
tions. 

The instability is always absolute in the absence of the normal cladding. 

In this paper the equations describing the initial stage of magnetic instability in hard 
superconductors are solved by the WKBJ method. In the process, the stability criterion 
valid for a wide class of functions jc=jc(H) is obtained and general evidence is given 
of the adiabatic nature of flux jumping in hard superconductors. 

This method allows us to carry out the stability investigations taking into account 
effects such as the transport current, sample geometry, magnetic and thermal diffusivities, 
cladding of the superconductor with a normal metal and surface cooling in the same 
manner as has been done for the Bean model (i.e. at  ajc/aH=O). The method may be 
applied to the investigation of superconducting composites and materials with smoothly 
varying properties. 
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