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Abstract. The paper is devoted to the investigation of critical state stability against 
flux jumps in hard superconductors accounting the critical current density dependence 
on the temperature and magnetic field. A flat sample with finite thickness is considered. 
The stability criteria were found for the Kim-Anderson critical state model as well as for 
the region close to the upper critical field Ha,. It was shown that the stability diminishes 
near Ha,. The stability conditions were found for the total range of external fields 
below Ho,. It was found that under certain conditions the magnetic instabilities may 
develop in two isolated regions of the external fields. 

1. Introduction 

The effect of the transport current on the quantized flux lines (Abrikosov vortexes) in 
hard superconductors (see e.g. de Geiines 1966) is counterbalanced by pinning forces 
provided the current density does not exceed a certain critical valueJ,. At a current 
density abovejc the fluxoids start moving and an electric field occurs in the specimen. 
The superconductor passes into a so-called resistive state. According to the critical 
state concept any applied potential difference causes in hard superconductors the critical 
current with density j,. This critical state model provides a satisfactory description, both 
qualitative and quantitative, for a number of phenomena in hard superconductors. 

The critical state may involve instabilities-disruptions of stationary current flow. 
Flux jumps, occurring at  fluctuations of the temperature T or magnetic induction B in a 
sample, are the typical instabilities of this kind. As j ,  =jc (T,  B )  the current j at growing 
temperature or magnetic field exceeds j ,  and the superconductor goes into the resistive 
state. This fluctuation, depending on the system parameters and external conditions, 
either decays or undergoes avalanche-type increase, and the magnitude of the magnetic 
flux captured in the sample exhibits a jump. 

The occurrence of the flux jump and the stability improvement of the superconductive 
systems has been considered many times. Both qualitative and quantitative theories of 
magnetic instability have been suggested (Wipf 1967, Swartz and Bean 1968, Wilson 
et a1 1970, Kremlev 1973, 1974). 

This work investigates the critical state stability with regard to the flux jumps account- 
ing for the dependences of the critical current on temperature and induction inside the 
sample. A plate of a hard superconductor of finite thickness with an arbitrary transport 
current within the wide range of external fields is considered. The results are compared 
with the stability criterion obtained by use of Bean’s (1964) model (i.e. ajcjaB=O). 
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2. General equations 

We shall consider a flat sample of finite thickness in an external magnetic field (figure 1) 
with initial temperature Ti when a small perturbation develops. The deviation of the 
temperature from the initial value of Ti is denoted by 8(8<Tc - Ti where Tc is the critical 

Figure 1. Sample geometry, the distribution of current and external magnetic field. 

temperature of superconductor) and the electrical field arising during the motion of a 
vortex structure as E. We express the relation between current density and E in the form 

j=jc(Ti + 8, H )  + pf-l E (1) 

j c  being the critical current and pf the resistivity of the superconductor in the resistive 
state. The linear dependence o f j  on E takes place only for sufficiently strong fluctuations, 
but this is not significant for the stability research. The nonlinear region of the volt- 
ampere characteristic is usually small and increasing fluctuations eventually lead to the 
linear region. Decaying fiuctuations are of no interest because only the stability boundary 
is considered. 

The electric field E is taken in the form 

E=E~(x/b)exp [ X t ( ~ / v b ~ ) ]  

where v is the heat capacity and K is the heat conductivity of superconductor. Using 
heat conductivity, Maxwell equations and the relation (l), we can easily find the general 
equation for E, that is the fourth-order differential equation with rather complicated 
coefficients. This equation has to be furnished with four boundary conditions. The 
requirement of the existence of a nontrivial solution E determines the dependence of X 
on the system parameters. The instability region corresponds to h>O. The stability 
criterion obtained by this method determines the stability with respect to any small 
perturbations (of temperature, magnetic field, etc.). 

Usually it is very difficult to find an analytical solution of the general equation for 
for j c  versus H dependences of practical interest; therefore only numerical stability 
research can be carried out. However, in the case of hard superconductors? some 
simplifications is possible. As was demonstrated by Kremlev (1973) and Mints and 
Rakhmanov (1975) within the range of hard superconductors, the stability in Bean's 

t Le., for the materials with D t / D m = 4 v ~ / c ~ v p & l ,  where Dt and Dm are thermal and magnetic 
diffusivities respectively. 
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model is determined by disturbances with high X (A -+ CO). The heat conductivity of the 
material becomes insignificant for the research of the most ‘dangerous’ disturbances 
(heat transport has no time to take place). 

Thus, to consider the flux jump in the case of hard superconductors one can omit 
the term KO’’ in the heat diffusion equation, and then 

v 8 = j,E. (2) 
By using (I), (2) and Maxwell equations in the limit of Dt/Dm+ 0 we obtain an equation 
for EO as follows: 

where 4rb2jc(x)  aj, P(x)= -- __ - 4 ~ b  aj, 
01 (X)” -- - 

c aH c2 v aT‘ 

(3) 

(4) 

Equation (3) has to be supplied with electrodynamical boundary conditions only 
(Mints and Rakhmanov 1975). The current density being equal to 0 at x/b=6 leads to 
the natural condition 

Eo(6b) = 0. ( 5 )  

To obtain the second boundary condition we consider the external magnetic field to 
remain constant during the fluctuation: 

Eo’( f b) = 0. (6) 
The stability is violated (0  > 0, see (2) )  if a nontrivial solution exists for the equation 

(3) with boundary conditions (5) and (6). In the extreme case under consideration 
(X91)  instability in the regions - 1 < x/b < 6 and 6 < x/b < 1 develops independently and 
the total system stability is determined by the least stable zone. 

Figure 2. j ,  versus H dependence: Kim-Anderson model is applicable on curve (a) 
section; on curve (b) section (near H c J  jc=jl( l -H/Hc,) .  

3. The critical state model and stability 

In many cases the dependence j ,  versus H has the qualitative form presented in figure 2. 
In a magnetic field not too close to Hc, (section (a)) it follows the empirical relation 
(Kim et aE 1964) 

j c  =joBo/(H+ BO) j o  = j o (  T) Bo = Bo( TI (7) 
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(the Kim-Anderson critical state model). Near Hca (section (b)), figure 2 jc (H) may be 
taken in the following form: 

jc =jl(l-  H/Hc,) jl =jl(T) Hc,=Hcz(T). (8) 
The initial distribution of magnetic field and current in a sample is easily found for 

the dependences of jc on H (equations 7 and 8) by means of corresponding Maxwell 
equation. Thus for the region 6 < x/b < 1 (figure 1) in the Kim-Anderson model : 

jc(~)=joBo[(He +Bo)'- (8xb/c)joBo(l -x/b)]-'/'. (9) 

jc(x) = j d l  - He/Hcz) exp [(4nb/c)ji/(l -x/b)Hc,I (10) 

Similarly near Hc, 

where He is the external field. 
All relations for the region - 1 < x/b < S have the identical form. 
For the model relations in the form (7) and (8) the stability region can be found exactly. 

It is possible to perform in general terms the qualitative research of the influence of the 
critical current dependence on magnetic field. We try a solution of equation (3) in the 
following form : 

EO = exp (- iK(x) x/b). (1 1) 
We shall assume that K'(x) and K"(x)  are small, which is true, as will be shown, at least 
for sufficiently high magnetic fields. For K(x) from (3) we get the following: 

K ( x )  = (i.(x)/2) i- [P(x)  - (&yX)/4)]1/2. (12) 

Employing boundary conditions (5) and (6) we find that a nontrivial solution of 
equation (3) exists if 

where 

The values 01 and ,8 are taken in a ccrtain intermediate point x. 

COS [(P - ~t'/4)l/' (1 - 8) + #] = O  

#=tan-1{01/[2(/3- d/4)1/2]}. 

Thus the system is stable at 

( p  - .'/4)1'2 (I - 8) + # < x/2 .  

The relative magnitude of terms a2 and p in (13) is 

The following denotations are introduced: 

Hence 

In the fields much less than Hc, the value of TO is evidently - Tc, and Hi -He. Thus in 
sufficiently strong fields it can be assumed that 

.21p < 1 
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(for hard superconductors 
we come to the conclusion that the system is stable when 

1 even at  HI about several kG). In this case from (13) 

which coincides with the stability criterion found in the preceding papers for the Bean 
model (Swarts and Bean 1968, Kremlev 1973, Mints and Rakhmanov 1975). 

Near Hc, one easily finds that 

HI N Hc, - H To Tc(1 - H/Hc,). 

As a result it follows that 

a2 4 r v T c  1 
~~ 

p HcZ2 (l-H/Hc,)* 

Thus the presence of a ( x )  term in the equations is of any importance only in the immediate 
vicinity of H,, (for 1 - H/Hc,  5 10-3). Out of this region a(x )  is still much less than 
.\/p and the stability criterion takes the following form: 

Since the density of critical current decreases with growing external field, it follows 
from (14) that system stability increases at high fields. However, near Hc, stability drops 
again because of the small value of ( I -  H/Hc,) in (1 5).  

Qualitative theory shows the dual effect of j ,  versus H dependence on the stability. 
In the region of the parameters, where the condition a2< ,8 is not satisfied, the derivative 
ajc/aH is directly included into stability criterion; and more essentially, near the upper 
critical field Hc, the derivative i3jCpT may grow drastically and the stability undergoes 
a considerable reduction (compare (14) and (15)). The growth of a jpT  occurs due to the 
fact that jc(Hcz)  = 0, and Hc, is in its turn a function of temperature. 

4. Quantitative results 

In this section we present the stability criterion obtained by means of the exact solution 
of equation (3) with boundary conditions (5) and (6) in the Kim-Andcrson model (7) 
and in the field region near Hcz. 

4 .  I .  Stability criterion in Kim-Anderson model 
Let us find the expressions for the coefficients m(x) and p(x) in equation (3). It is easy to 
obtain from (4), (7) and (9): 

a(x)=a0/[1-2a0(1 - x / b ) ]  

a 0  = a(b) = (47b/c) [jOBO/(H€! + Bo121 

where the following designation is introduced : 

and for P(x) : 



284 

where 

M G Kremlev, R G Mints and A L Rakhmanov 

Bo 1 
Y = ~- He-tBo Tz/’T1+1’ 

Here To( T )  N TI( T )  N T2( T )  N Tc and those are found from the conditions 

Let us introduce the following denotation and a new variable y :  

Then from (3) 

yE0” + ( J J  - p )  Eo = 0. 

Eo = ci Wip/z, 112 (2iy) + cz W-ip/?, 112 (- 2iy). 

(17) 

(18) 

The solution of (1 7) is a linear combination of Whittaker functions : 

Usually Bo51 kG, and in the most interesting case He$=Bo. Then it follows from 
(16) that y$= p at any x. Besides, it is clear from (16) that p 4 1 for hard superconductors. 
Under these conditions the term with p in (17) can be assumed to be zero to the first 
approximation and from (17) we obtain 

EO = CI exp (iy) + c2 exp (- iy). (1 9) 

The boundary conditions (5) and (6) require, for the existence of a nontrivial solution 
(1 9) of equation (1 7), 

cos [y(I)-Y(~)l=O 

lu(l)-v(6)l< 4. (20) 

and the stability criterioii takes the form 

Let us consider now two cues of magnetic field distribution inside the sample as presented 
in figure 3. In the first case (figure 3a) the magnetic field penetrated the entire volume 
of the sample. Here 6 is a free parameter of the problem determined by the relation of 
external magnetic fields to the left side (He1) and right side of the sample (He) (at H e  = He1 

It is easily found from (9) that such a situation takes place when external field 
S=O).  

He > Hp,  where H p  is 

Hp2=(8nb/c) (1 -6)joBo. (21) 

From (20), (21), (16) at He > Hp we can obtain the stability criterion in the form 
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Figure 3. The distribution of the magnetic field H ( x )  in the sample: (a) magnetic field 
penetrates all the volume of superconductor; (b) no field and transport current are 
present in the inner regions in the sample (similar to the case of semi-infinite sample). 
At He= Hp surface current layers join, and the magnetic flux penetrates all the super- 
conductor volume. 

If He2BHp' then it follows from (22) 

Criterion (23) coincides evidently with (14) obtained from the Bean model or by use of 
qualitative theory if j c ,  in the left part of inequality (14), is assumed equal to jc(He). 

For He < Hp in the inner layer of a superconductor the current density is zero (figure 
3b) which is apparently equivalent to the case of a semi-infinite sample. The thickness of 
current carrying layer I is determined by an external magnetic field He. The boundary 
condition (5) should be rewritten as 

Eo(Z) = 0. (5') 

In the determination of I from H(1)=0 one can easily find the stability criterion by 
means of solution (19) with boundary conditions ( 5 )  and (6 ) :  

At He = Hp (24) and (23) naturally coincide. 
It follows from (24) that with growing external field the stability decreases (He < Hp). 
The phenomenon is readily explained by the growing depth of the current-carrying 

layer I. At He > Hp stability increases with growing external field ((22) and (23)). It 
follows from (22) and (23) that the system is least stable at He=Hp. Thus, if (24) is 
satisfied at He=Hp, the stability is preserved within all ranges of external field not too 
close to Hc, (He<Hx see figure 2). Substituting (21) in (24) we obtain a condition of 
the stability for all range of fields He < H k  
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Stability criterion (24) for a semi-infinite sample in a Kim-Anderson critical state 
model was found by Wipf (1967). Note that for a semi-infinite sample in the Bean model 
the stability criterion is exactly identical to (24). 

4.2. Stability criterion in fields close to Hc, 

Let us determine the stability criterion for j c  versus H dependence (8). Assuming the 
sample to be thin enough and H >  HK in all the volume, it is easy to find from (8): 

and for P(x) : 

where 
P (XI = PC exp [4- x/b)l {YC + exp [aC( 1 - x/b)]} 

Here TI', Tz' and TO' can be defined from the conditions 

Let us introduce the following denotation and a new variableZ: 

z=- 'Pc exp [aC(l -x/b)]. 
% 

Then we get from (3) a new equation analogous to (17) 

24%" + (2 + p) Eo = 0. (27) 

Eo = ci W-ipp, 1/2(2iZ) + ~2 Wi,jz, lie( - 2iZ). (28) 

lycl Beu, (29) 

It is solved by a linear combination of Whittaker functions similar to (1 8) : 

It is evident from (26) that for hard superconductors pB 1. Then provided 

and employing the properties of Whittalcer functions one can put down solution (28) 
in the form 

Eo =z1/2 ( C l J 1  [2(p2)1'2] + caN1 [2(pZ)1/2) (30) 
where J1 and N I  are Bessel functions of the first and second kind. The nontrivial solution 
of equation (27) with boundary conditions (5) and (6) exists if the following relation 
takes place : 

where 

Since 0% 1 up to the fields very close to Hc2, Bessel functions in (31) can be substituted 
with their aqymptotic values. Then from (31) for the case 

J o ( 4  Nl(V4 -J1(qu) No(4  =o  
7 = exp [w (1 - 81/21 

(31) 

U= He, (1 -hhe/~~Tz')'/Z. 

U2"c 9 1 
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we obtain 
cos [o(q - l)] = 0. 

Hence the stability criterion is 

At crB 1 and arbitrary a,< 1 we get from (32) stability criterion in the form 

4rb2(1 -8)' jc2(He) r2 < -. .__~___ _____ __ 
C' ~T2 ' (1 -he )  4 (33) 

Since T' N T,, criterion (33) coincides with (19,  j c  =jc(He) and H= He in the left part of 
(15). The stability decrease near Hc2 found on the basis of qualitative speculations is 
confirmed by inequalities (32) and (33). In this case the condition of applicability of the 
qualitative theory (K ' ,  K " < X )  coincides with the requirement ac< 1. 

5. Discussion 

In the preceding section for j c  versus H dependence shown in figure 2 the stability criteria 
were defined. If He'< Hp2= 8rb ( l -8 )  joBo/c (i.e. the magnetic field has not penetrated 
the entire volume of the sample (figure 3b)) stability decreases with growing external 
field. The stability criterion is determined by inequality (24): 

field, and the 

at He'$ Hp2. 

which shows that the region of sufficiently low fields is always stable. 

~ corresponding criterion takes the form (22) 
If the magnetic field He > H p  (figure 3a) the stability grows with increase of external 

He' 1 
457- V T O  

(22) transforms into (23) : 

47~b2 (1 -8) ' jc '  (He) r2 

C2 VTO <4* 
It is clear from (22) and (24) that the critical state is least stable in external field 

He = Hp i.e. when both current-carrying layers overlap (figure 3b). Thus the system is 
stable throughout the whole range of fields He < HIC if the condition (22) is true for He = 
H p  (see (25)) : 

77-2 joBo < ---. 
cv TQ 4 

2b (1 -6) 

At He=Hg j ,  versus H dependence undergoes a qualitative change (figure 2). 
Within the scope of fields He > H K ,  derivatives ajc/aT and aj@H grow and the stability 
decreases considerably, the corresponding criterion being determined from inequality 
(32) which at ac = (47~b/c) (j~/ff~J < 1 transforms into (33). These inequalities demon- 
strate the stability growing with increasing external field. Hence, the critical state is 
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stable for the total range of fields HK < He <He,  if (32) is true at He = H K :  

or for 01, < 1 from (33) : 

(35) 
4rb2 (1 - 6)2 j c 2  (HK) r 2  

c2 vTz'(1 - h K ) < T *  

The presented results enable us to find the stability criterion for the total range of 
external fields Bo < He < H,,. First of all, let us find out which of the conditions is more 
restrictive-(25) or (34) (at a,<l: (35)). To compare (25), (34) and (35) parameters 
jo and BO from (25) shall be related with HK. The necessary relation will be found by 
equating expressions (7) and (8) for j ,  at H =  H K :  

jOBO=jlHK (1 -Ax). 

Substituting this into (25) we obtain 

2b (1 -6) r 2  

cv To 4 ~c(HK) HK < -. 

The case of ac < 1 shall be considered first. From inequalities (36) and (35) the former 
is more restrictive as T2'-To-TC, H K - H ~ ~ ,  161 5 1 and the ratio of the left parts of 
(36) and (35) is about ciC-1B 1. Hence in the case of a,< 1 the system is stable for the 
total range of external fields BO < He < He, if inequality (36) satisfied. 

Let LIS assume the inequality (36) to be violated. If the condition (35) remains true, 
flux jumps may occur in the part of the external fields close to H p  where inequalities (22) 
and (24) are not satisfied. 

If inequality (35) is also violated, then two alternatives arise depending on the para- 
meters of the sample. 

In the first case at He = HK the condition (22) is true and flux jumps occur in two 
isolated regions of external fields-near HK and near H p .  The intermediate fields region 
is stable. As H p 2 / H ~ 2 - ~ C ( 1 - h ~ ) ,  then at a c < l ,  H p 2 < H ~ 2 .  Using (36) and (23) we 
come to the conclusion that the system is stable in the range of the fields 

provided the condition is fulfilled that 

c ( T v T o ) ~ ~ ~  c 2 r v  T2' 1- < h K <  1- 
4b (1 - 6 ) j l  16b2 (1 -6)2 j12 '  

In the second case, inequality (22) is not true at He = HK and both instability regions 
join together. Flux jumps occur throughout the whole range of external fields except 
in the immediate vicinity of Hc, where criterion (33) is satisfied and at very low fields 
where condition (24) is satisfied for certain. 

1. The comparison of inequalities (34) and (36) shows the 
ratio of their left parts to be of the order of 

Consider the case of 01, 

2 {exp [01,/2 (1 - a)] - 1}2 
ac(1 - 6) 
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Hence at me 2 1 the condition (34) is more restrictive and the most ‘dangerous’ region of 
external fields is now found close to Hc2, Inequality (34) is the stability criterion for the 
whole range of external fields. It is to be mentioned that the criterion (34) cannot be 
used at arbitrarily high value of ac as it was obtained from the assumption (29): 

l(1 - h e )  (T2’ITi’- l)/-l$e% 
With condition (34) violated but inequality (36) remaining true flux jumps occur in a 

zone of external fields He near HK (but with He > HK).  
If the condition (36) is violated, two alternatives are possible depending on the para- 

meters of the system (as in the case of cyc < 1). In the first case at He = HK inequality (22) 
is satisfied. Then, the magnetic instabilities occur in two isolated regions of external 
fields close to Hp and HK. 

In the second case the condition (22) is not satisfied at He=HK. Instability areas 
join together. Flux jumps occur in the whole range of external fields except for the 
immediate vicinity of Hc2, where criterion (32) is satisfied and at  very low fields where the 
condition (24) is satisfied for certain. 

6. Concliasions 

In the present paper the critical state stability in a flat sample of a hard superconductor 
against the flux jumps accounting for the critical current dependence on temperature 
and magnetic field is determined. An equation was found describing the development of 
a small disturbance in a superconductor. 

The thermal d i fh ion  accounts just for small corrections in the stability criterion. 
An equation was found describing the development of the fast-growing disturbances in a 
hard superconductor. The corresponding stability criterion does not depend on the 
cooling conditions on the surface. 

A qualitative theory ($3) was elaborated, enabling us to conduct the investigation of 
the critical state stability within the scope of general assumptions. Thej, versus H depen- 
dence was shown to produce the essential effect on the stability of the critical state. At 
He - H,, this effect is connected with the change of TO character determining the derivative 
aje/aT, and in massive samples ajc/aH is directly included into stability criterion. 

For thej, versus H dependence presented in figure 2 the corresponding stability criteria 
were also found (94). It was demonstrated that at He < Hp (the magnetic field did not 
penetrate the whole volume of a superconductor (figure 3b)) stability decreases with grow- 
ing external field. At He > H p  (magnetic flux fills up all the volume of the sample (figure 
3a)) stability grows with growing He. At He> HK the dependence of j c  on H changes 
(figure 2) and the stability of critical state undergoes substantial reduction. 

A condition was found determining the stability throughout the total range of the 
external magnetic fields (95). At ac< 1 it is inequality (36) or the equivalent (25) and at 
a c k  1 inequality (34). Under certain conditions instabilities are shown to occur in two 
isolated regions of external fields-near Hp and HK.  
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