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We consider quasistatic oscillations of the magnet with a periodic domain structure. The spectrum of 
such oscillations has a band character. We obtain the width of the corresponding bands (in terms of 
frequency} and the form of the spectrum. We present analytic expressions for the spectrum near the 
characteristic points. We show also that a surface magnetostatic wave exists on the solitary domain 
wall; we obtain its spectrum and present an explicit expression for it in a number of particular cases. 

1. The influence of the domain structure on the oscil
lation spectrum of a magnet was considered in the 
literature a number of times. Two limiting cases were 
investigated, 'A» L and d »'A~ o (Lis the charac
teristic dimension of the body, d is the transverse 
dimension of the domain, o the thickness of the domain 
wall, and 'A the wavelength). In[ 1• 2 l it was assumed that 
'A » L, and thus the precession of the magnetic mo
ments is homogeneous. In this case the connection be
tween the oscillations and the magnetic moments in 
two groups of flat domains is manifest in the existence 
of a "demagnetizing field" of the domain boundaries. 
Oscillations of the domains inside an individual domain 
boundary ('A<< d) were investigated in[ 3• 4l, 

In this paper we consider the intermediate case 
L » 'A» o. Since 'A« L, the boundary effects and 
the shape of the magnet are immaterial. Thus, the 
domain structure will be assumed periodic and the 
domains will be assumed to be plane-parallel. The 
condition 'A » o makes it possible to neglect the ex
change energy and to disregard the structure of the 
domain boundary, assuming it to be geometrical. The 
spectrum of the magnetostatic oscillations in the wave
length region in question is determined from the 
boundary conditions on the domain wall with allowance 
for the periodicity of the structure. Inside the domain, 
the connection between the alternating components of 
the induction and the magnetic field is given by the 
tensor of the magnetic permeability J.L ik( w ). It should 
be noted that the problem of allowance for the periodic 
domain structure was first formulated inrs,sJ. The 
magnetostatic oscillations were not considered there. 
In conclusion we note that since the magnetic moments 
of the neighboring domains are antiparallel, the struc
ture considered by us, relative to long waves, is a 
"macroscopic antiferromagnet," in which the neigh
boring domains play the role of atoms. We now pro
ceed to solve the problem. 

2. Assume that the magnetization in neighboring 
domains is ±Ms (Ms-saturation magnetization), and 
there is no external magnetic field. As is well known, 
in this case have 

J.l== Jlyy = J.t= 1 + WWM{ (w.'- W1), 

ll•• = -~J.y. =±ill'= =FiwwM I (w.'- w'), 
llu = 1, 
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the remaining components of the tensor are equal to 
zero. The z axis is parallel to the anisotropy axis; 
the y axis is perpendicular to the domain wall; 
w2 = {3yMs; WM = 41TyMs; y > 0 is the gyromagnetic 
ratio, {3 > 0 is the anisotropy constant; J.L xy = + iJ.L' 
for domains in which Ms 11 Oz, J.Lxy = -iJ.L' for do
mains with opposite orientation of the magnetization. 

The magnetization oscillations are described by the 
magnetostatic equations h = -v cp, div b = 0 (bi 
= J.Likhk ), which reduce to an equation for the magnetic 
potential cp 

(1) 

On the domain boundary we have continuous cp and 
by = -J.La cpjay - J.Lyxa cp/ax. The boundary conditions 
should be supplemented by the cqndition of transla
tional invariance cp(y + 2d) = e211((l.cp(y) ( K is the 
transverse wave number and 2d is the· period of the 
magnetic structure). Since w is a periodic function of 
K with a period 2d, it can be assumed that 0 :s K 

:s 1r/ d-1 ). We seek the solution of (1) in the form 

(jln= (A.exp {ik.y} + B.exp {-tk.y}) exp {ik11 p}, 
ku= {k., 0, k,} = {ksinll, 0, kcosll}, 

k is the longitudinal wave number, () is the angle be
tween k 11 and Oz, and n = 0, ± 1, ± 2, ... are the 
numbers of the domains. Substituting this expression 
in (1) gives an equation for ky: 

f.l(k.' + k.') + k,' = 0. (2) 

Using the boundary conditions for y = 0, d and the 
condition for translational invariance, we obtain after 
simple calculations a dispersion equation which, to
gether with (2}, determines the spectrum of the oscil
lations of the magnet with a periodic domain structure: 

The solutions of (1) are divided into two classes. 
Solutions with ky > 0 can naturally be called volume 
solutions. The spectrum of the volume oscillations is 

(3) 

1>We note that the conditions of translational invariance transform 
the "levels" Wn(kx, kz) which occur in the analogous single-domain 
problems [7], into the bands Wn(kx, kz, K). The wave number K plays 
here the role of the corresponding quasimomentum. 
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determined from (3) and lies in the frequency interval 

oo,' = oo.(oo. +roM sin' H) < oo' < oo.(oo. +roM) = oo,'. 

Solutions with ky = -q2 are also possible, and consti
tute surface magnetostatic oscillations. The boundaries 
of the spectrum of the surface oscillations, with re
spect to frequency, are determined by the condition 
q2 > 0 and by the relation ( iJ. ' 2ki - iJ. 2 q2 ) > 0, which 
follows from (3); this yields 

oo,' = oo.' < oo2 < ,oo.(oo. + ·WM sin' 8), 
Wa(Wa + WM) < 002 < (Wa + WM) (Wa + WM Sin' e) = 00/. (4) 

Thus, there exist two branches of surface oscilla
tions. 

Let us investigate first the spectrum of the volume 
oscillations. For the frequencies of the volume oscil
lations, we have the equation 

. , { 1/ w'-w,'} _ . , (w'-oo,') (OJa1 -oo') (5) 
SID kd V 2 2 - SID Xd ( 1 ') ( 1 ')" Uh -ro co -co, Oh -ro 

The left side of (5) as a function of w at any fixed 
kd experiences an infinite number of oscillations in 
the interval (w 2 , w3). The right-hand side vanishes 
when w = w2 , w = w3, and reaches a maximum at 
point w = .J w2 w3 = .J W1W4. The maximum value is 
smaller than unity. Thus, at fixed k, K, and (} there 
exists an infinite set of solutions (5 )-"levels" -and 
the spectrum of the volume oscillations consists of an 
infinite set of overlapping bands, as expected. We 
consider now several particular cases. 

For arbitrary k and K and for (} = 0 we get 

[ OJa'+OJa'(mn/kd±x/k)' ]''• 
~~= .· . 0 

1+(mn/kd±x/k) m~o.t,2 ••• 
(6) 

When (} ¢ 0 the form of the spectrum is similar, but 
the bands do not coalesce at K = n/d (see Figs. 1 and 
2). We note only that at (} ¢ 0 the branch w10> 

vanishes if 

kd<kod 
OJ, cos' e sin xd 

OJzlsinBI 
We present also for illustration the form of the branch 
w10> at (} ¢ 0 and k « ko: 

kdro,.lsin8 I 
(1)(0)~(1).- • 

2sinxd 
(7) 

Let us consider further the spectrum of the surface 
oscillations. The dispersion equation has in this case 
the form 

Y ' z ( ' - ') ( z ') sh' {kd OJ - OJa } = sin' xd OJ 00 ' OJ - OJ, 
OJ2 - OJ,' (OJ'- OJ,') (OJ!- OJ2 ) 

(8) 

As already mentioned, there are two branches of 
surface waves 2>. The high-frequency branch WI (see 
Fig. 3, upper curve) exists for any k and K. In the 
limiting case of long waves (kd « 1) we easily obtain 
for it 

+ OJ.,kdlsinBI 
COt~OOa • 

2sinxd (9) 

The character of the spectrum in the long-wave 
approximation can be understood from intuitive physi
cal considerations. The "activation" frequency 
W3 = .J wa ( wa + WM) is the frequency of the homogen
eous precession of the magnetic moments inside the 
domains in the field Ha = f3M, with allowance for the 
demagnetizing field of the domain walls. 

2lThe solution w = w 2 (q = 0) corresponds, as can be easily verified, 
to the trivial solution 1{1 = 0. 

FIG. 1. Dependence of w on k at 
fixed values of K and 8 for volume 
oscillations. 

FIG. 2. Dependence of w on K at 
fixed values of k and 8 for volume 
oscillations. 

FIG. 3. Dependence of w on 
k for surface waves. 
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In the case of short waves (kd » 1), WI(k) ap
proaches asymptotically w = W4. 

This means that on a "solitary" domain boundary 
there exists a surface magnetostatic wave with fre
quency W4• 

II 

The low-frequency surface branch wn appears at 
k > k0 (Fig. 3, lower curve). wn- w1 at kd >> 1. 
This wave is a surface oscillation of the magnetic 
moment (it is easy to verify that I h I « I m I). A wave 
of this type is missing in an individual domain wall, 
and for its formation it is necessary to have an in
creasing exponential in the solution of (1 ). 

In conclusion, we note that the complicated spec
trum of the oscillations of a magnet with a periodic 
domain structure has a strong influence on the non
linear and magnetoelastic effects. 

The authors are grateful to I. E. Dzyaloshinski'l and 
E. A. Turov for useful discussions. 
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