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As well known, a ferromagnet in the non-magnetized state is stratified into domains [1]. The saturation

magnetic moment inside each domain equals M0 = M0(T ) ∼ 102 − 103 Oe. In the transition region between

the domains, the magnetic-moment vector is rotated through an angle, corresponding to the domain structure.

The width of the transition region (the domain wall) is δ ∼ 10−5 − 106 cm. The induction ~B = 4π ~M is thus

homogeneous inside the domain and inhomogeneous in the domain wall. In a ferromagnet, the induction field
~B plays a role of an external magnetic field relative to the conduction electrons. The characteristic size of

the orbit in the homogeneous induction field ~B0 = 4π ~M0 is R ∼ 10−2 − 10−4 cm, i.e., R � δ. This makes it

possible to identify the conduction electrons by the character of their motion, in the following manner. One

group of electrons moves without crossing the domain wall, i.e., in a homogeneous induction field. The other

group (near the domain wall) crosses the region of the inhomogeneous induction field; these electrons “feel”

the field ~B1 and the field ~B2 ( ~B1 and ~B2 are the induction vectors in the neighboring domains).

We consider in this paper the quantization of the conduction-electron energy near the domain wall. We

recall that the quantization of electron energy inside the domains is well known (Landau quantization) [2]. Of

course, it is necessary here to satisfy the condition Ωτ � 1, where Ω = eB0/mc is a cyclotron frequency and

τ is the electron free-path time.

It is clear from the foregoing that the motion of an electrons in ferromagnet is determined by the domain

structure, i.e., by the relative orientations of ~B1, ~B2, and the domain wall. The domain structure can be one of

two types: 1) The projections B1y and B2y, of the induction vectors ~B1 and ~B2 on the direction perpendicular

to the domain wall (the y-axis) are not equal to zero (then B1y = B2y = By by virtue of div ~B = 0). 2) The

projections of the induction vectors ~B1 and ~B2 on the y-axis are B1y = B2y = 0.

In the domain structure of the first kind, the motion of the electrons is in general infinite and aperiodic,

owing to the presence of By components. As is well known, such a motion is not quantized.
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Fig. 1. Trajectory of electron motion near the

domain wall: a) ∆ � δ, b) ∆ � δ.

Let us consider the other type domain structure. The motion of the electrons in the fields ~B1 and ~B2

in the y direction is finite. As a result, the motion in the direction transverse to the domain wall is finite

and periodic. Such a motion is quantized, and energy levels are produced spaced a distance ∆εn ∼ h̄ω

apart (ω is the frequency of the classical motion). Let us now estimate the order of magnitude of ω for

the electrons near the domain wall in the simplest case. Let the electrons have a quadratic dispersion law,
~B1 = − ~B2 = ~B0 and ∆ � δ, where ∆ is the characteristic dimension of the transverse motion of the electrons.

It is clear that ω = Ωπ/2φ (see Fig. 1); if ∆ � R, then φ ∼
√

∆/R � 1 and ω ∼ Ω
√

R/∆ � Ω. Thus

∆εn ∼ h̄Ω
√

R/∆ � h̄Ω. In a field B0 ∼ 102 − 103 Oe we have ∆εn ∼ 1 − 10 K. It is easily seen that the
level system which we consider as an example and which arises in the domain structure with B1 = −B2 is

similar to the system of magnetic structure levels. The exact correspondence is established by the formula

εdom(n) = εsur(n/2).

It should be noted that, owing to the spin, near the domain wall the conduction electron interacts via

exchange with the spin system of the ferromagnet, which is inhomogeneous in the wall. The energy of this

interaction is of the order of ε0 (a/δ)2, where ε0 ∼ 104 K is the Fermi energy and a is the interatomic distance.

Thus, ∆ε >> ε0 (a/δ)2 and the exchange interaction with wall spins can be neglected.

We consider now the solution of the classical problem of electron motion in a domain structure of the

second kind, assuming for simplicity a quadratic dispersion law. The motion of the particle in the magnetic

field is described by the Hamiltonian equation

~̇p = −∂H
∂~r

, ~̇r = −∂H
∂~p

, (1)

where H =
(

~P − e ~A/c
)2

/2m. As already mentioned, ~B = ~B(y) = curl ~A. By virtue of the fact that

|B1| = |B2| = 4πM0, the z axis can be chosen such that Bz(0) = 0. Then Bz(+∞) = −Bz(−∞) = Bz,
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Bx(−∞) = Bx(+∞) = Bx, and B2
x + B2

z = B2
0 . We take the vector potential ~A in the form

Ax(y) = −
∫ y

Bz dy′, Az =
∫ y

Bx dy′, Ay = 0.

Since Py = py, we obtain for the function H the expression

H =
p2

y

2m
+ U(y),

where

U (y) =
1

2m

{

(

Px −
e
c
Ax

)2
+

(

Pz −
e
c
Az

)2
}

.

From (1) we obtain

Px = px +
e
c
Ax (y) = const, Pz = pz +

e
c
Az (y) = const,

p2
y

2m
+ U (y) = E. (2)

Thus, the motion of the electron along the y axis has been reduced to uniform motion of a particle in

a field U(y) with energy E at specified Px and Pz. Substituting the solution of this problem in (2), we can

readily obtain the electron motion along the x and z axis. We consider now in greater detail the case ∆ � δ.

Then Ax = −Bz|y|, Az = Bxy, and we obtain for the field U(y) the expression

U (y) =
P 2

x + P 2
z

2m
− mΩ2y2

0

2
+

mΩ2 (y − y0)
2

2
,

where

Ω =
eB0

mc
, y0 =

c
eB0

BxPz −BzPx sign y
B0

=
BxRz −BzRx sign y

B0
.
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Fig. 2. The field U(y) is represented

by the solid line. Depending on the

sign of d, it consists of different parts

of two identical parabolic potential

wells: a) d < 0, b) d = 0, c) d > 0.

Depending on the value of d = y0(y < 0)− y0(y > 0), the field U(y) has a different character (see Fig. 2). It

is easily to find that ω(d > 0) > ω(d = 0) = Ω > ω(d < 0), where ω is the frequency of the oscillations in the

field U(y). In the case ∆ � R(d > 0) we have ω ∼ Ω
√

R/∆. For a domain structure with Bx = 0 (B1 = B2)

we get U(y) = U(−y).

Let us consider now the case ∆ � δ. Near the origin, in the zeroth approximation in ∆/δ, we have

Bx(y) = B′
x and Bz(y) = B′

z(y/δ), where B′
x ∼ B′

z ∼ B0. From this we obtain for the vector potential A and

the field U(y) the expression

Ax = −B′
z

y2

2δ
, Az = B′

xy,
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U (y) =
P 2

x + P 2
z

2m
+

B′
zePx

2mcδ

(

y − B′
xPzδ

B′
zPx

)2

=
P 2

x + P 2
z

2m
+

mΩ′2

2
R′x
δ

(y − a)2 .

If Px > 0 and B′
xPz/B′

zPx ∼ Pz/Px � 1, then the motion along the axis takes place in a potential well and

the condition ∆ � δ is fulfilled. It is clear that the motion in the field U(y) is a harmonic oscillation with

frequency ω = Ω′
√

R′x/δ � Ω′ ∼ Ω0.

The foregoing solution of the classical problem can be generalized in a natural manner to include the

quantum case by making the substitution py → p̂y = −ih̄(∂/∂y) and solving the Schrodinger equation in the

field U(y). The resultant quantization of the energy levels is of interest only in the quasiclassical region, and

is obtained from the formula
∮

py dy = 2πnh̄. In the case ∆ � δ we have

εn =
P 2

x + P 2
z

2m
+

(

3π
4

)2/3

(nh̄Ω)2/3
(

P 2
x

2m

)2/3 [

1− PzBx

PxBz

]2/3

.

If B1 = −B2, we obtain from this

εn =
P 2

x + P 2
z

2m
+

(

3π
4

)2/3

(nh̄Ω)2/3
(

P 2
x

2m

)1/3

.

For the case ∆ � δ we get

εn =
P 2

x + P 2
z

2m
+ nh̄Ω

√

R′x
δ

=
P 2

x + P 2
z

2m
+ nh̄

√

eB′
zPx

m2cδ
.

Thus, the distance between the levels arising near the domain walls is ∆εn ≈
√

h̄ΩR/∆, and for an

electron moving inside the wall we have ∆ = δ; on the other hand, when ∆ � δ the character of the spectrum

(the dependence on n, Px, Pz) differs from that of the case ∆ � δ.

The existence of the considered energy levels leads, for example, to resonant absorption of ultrasound
(ω ∼ 1010 − 1011 sec−1). A detailed discussion of this effect will be presented in a later paper.

I am grateful to M. Ya. Azbel’ and I. E. Dzyaloshinskii for valuable discussions.
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