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Abstract

In a network creation game, initially proposed by Fabrikant et. al. [FLM+03], selfish players build

a network by buying links to each other. Each player pays a fixed price per link α > 0, and suffers

an additional cost that is the sum of distances to all other players. We study an extension of this

game where each player is only interested in its distances to a certain subset of players, called its

friends.

We study the social optima and Nash equilibria of our game, and prove upper and lower bounds

for the Price of Anarchy, the ratio between the social cost of the worst Nash equilibria and the

optimal social cost. Our upper bound on the Price of Anarchy is

O

(
1 + min

(
α, d̄H , log n +

√
nα/d̄H ,

√
nd̄H/α

))
= O(

√
n),

where n is the number of players, α is the edge building cost, and d̄H is the average number of

friends per player. We derive a lower bound of Ω(log n/ log log n) on the Price of Anarchy for a

specific family of games which we construct. We also bound the Price of Stability, the ratio between

the social cost of the best Nash equilibria and the optimal social cost. We provide additional bounds

for specific friendship structures, namely a forest and a cycle. Finally, we show equivalent upper

bounds on the Price of Anarchy for a weighted extension of our game.
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Chapter 1

Introduction

In many natural settings entities form links to other entities, in a distributed and selfish manner,

in order to increase their utility. A few examples include social networks, trade networks and most

importantly communication networks such as the Internet. The structure of such networks, and

in particular the Internet, has been recently of prime research interest. In this work we will focus

primarily on the loss of efficiency due to the distributed and selfish behavior of the entities.

We model the network creation as a game between selfish players and focus on networks that

are in equilibrium (no player can benefit by deviating). Our measure of the “loss of efficiency”

would be the well known Price of Anarchy [KP99], which is the ratio between the social cost of

the worst Nash equilibrium and that of the socially optimal solution. The concept of the Price of

Anarchy was introduced by Koutsoupias and Papadimitriou in their seminal paper [KP99], and has

been successfully studied for a wide range of problems including job scheduling, routing, facility

location, and network design (see e.g. [BG00, JV01, CKV02, CV02, FKK+02, RT02, ADTW03,

HS03, ADK+04, CSSM04]).

We study an extension of the network creation game proposed by Fabrikant et. al. [FLM+03],

where n players form a network by building edges to other players, and bought edges may be used by
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CHAPTER 1. INTRODUCTION 6

any player in both directions. The player’s cost models both the “infrastructure cost” (of building

the edges) and the “communication cost” (of reaching the other players). Formally, each player pays

a fixed price α > 0 for each edge it builds, and suffers an additional distance cost, which is the sum

of distances to all other players in the resulting network. The social cost is the sum of the players’

costs. This basic game and several extensions were studied in [FLM+03, CP05, AEED+06, AFM07].

By focusing on the distance to all players for the distance cost, the model implicitly assumes

that the communication needs of every player are uniformly distributed over all other players.

This may be far from true in many real world networks. For instance, Autonomous Systems in the

Internet rarely communicate equally with every other Autonomous System. Our model extends the

original game by specifying which pairs of players have non-negligible communication needs. We

call such pairs of players friends, and model this new information using an undirected graph called

the friendship graph, whose vertices are the players and edges connect pairs of friends. We initially

assume that friendship is symmetric, hence our use of an undirected graph. Players, as before,

build an edge to any other player (friend or non-friend) at a cost of α, however, their distance

cost now includes only the distance to their friends (rather than the distance to all the players).

The social cost, as before, is the sum of the players’ costs. We call our game a network creation

game with nonuniform interests (NI-NCG). It is obvious that the original network creation game of

[FLM+03] is a special case of our game, and we call it the complete interest network creation game.

We also study a weighted extension of our game, where each player has a non-negative friendship

weight assigned to every other player, and the distance cost for the player is the weighted sum of

distances to all other players.

For the complete interest network creation game, [FLM+03] demonstrated that both from a

social perspective and from a selfish perspective, it is not always best to build edges to all friends

(i.e., a complete graph). In an NI-NCG we may ask also whether there are cases in which players
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prefer to build edges to non-friends. In other words, is the network resulting from either socially

optimal design, or selfish uncoordinated design, always a subgraph of the friendship graph. As

it turns out, this is not the case, and there are situations where it is beneficial to build edges to

non-friends.

1.1 Our Results

We first prove, by explicit construction, the existence of pure Nash equilibria for most values of

α, specifically for α ≤ 1 and α ≥ 2, for α ∈ (1, 2) when the friendship graph has girth at least

6, and for α ∈ (1, 1.5) when the friendship graph has girth 5. This is an important step in our

analysis, since the Price of Anarchy is not defined if no Nash equilibrium exists. Note that while

the existence of a Nash equilibrium in mixed strategies is always guaranteed [Nas51], this is not

the case for pure strategy Nash equilibria, which is our primary focus. We remark that for games

where α ∈ (1, 2) and the friendship graph has girth 3 or 4, or where α ∈ [1.5, 2) and the friendship

graph has girth 5, we have not resolved the question whether some pure Nash equilibrium is always

guaranteed to exist.

Our main result is an upper bound of O
(
1 + min

(
α, d̄H , log n +

√
nα/d̄H ,

√
nd̄H/α

))
= O(

√
n),

on the Price of Anarchy of any NI-NCG, where n is the number of players and d̄H is the aver-

age degree of the friendship graph H, i.e., the average number of friends per player. For either

α = O(1), d̄H = O(1), or α = Ω(nd̄H), this upper bound is a constant. By comparison, Albers et.

al. [AEED+06] show that for the complete interest game, the Price of Anarchy is a constant for

α = O(
√

n) and α ≥ 12n log n, and is at most O

(
1 +

(
min

(
α2

n , n2

α

))1/3
)

= O(n1/3) for any α.

As part of the proof of our bound we also show that the ratio of the edge building cost to the social

optimum cost is at most O(log n). We show an improved O
(
log n/ log

(
4 d̄H

α log n
))

bound on this

ratio when α < 4d̄H log n. (In contrast, [AEED+06] show that for the complete interest game this
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ratio is only a constant.)

For a lower bound, we construct a family of games, for any large enough number of players

n, for which the Price of Anarchy is Ω(log n/ log log n). Our construction relies on well known

constructions of regular graphs of a given girth and degree with a minimal number of vertices, also

known as cage graphs. The resulting games have α = Θ(log n/ log log n) and d̄H = Ω(log n), and

they have the special property that some Nash equilibrium is achieved when players build exactly

the friendship graph, i.e., every pair of friends has an edge connecting them. Our lower bound

construction also gives a lower bound of Ω(log n/ log log n) on the ratio of the edge building cost to

the social optimum. Hence, our upper and lower bounds for this ratio are tight. We remark that

no non-constant lower bound for the Price of Anarchy in the complete interest game is known.

We provide bounds on the Price of Stability (the social cost ratio between the best Nash equi-

librium and the social optimum), and show that it is at most 2. We also study games with specific

classes of friendship graphs. For games with an acyclic friendship graph (i.e., a forest), we show

that the friendship graph itself is both the unique Nash equilibrium and a social optimum, hence

the Price of Anarchy and Price of Stability are both always 1. For games where the friendship

graph is a simple cycle, we show upper and lower bounds in the range [1, 2) for the Price of Anar-

chy. We also use such games to demonstrate that an NI-NCG may have a Price of Stability that

is not 1 even for non-constant α, i.e., an NI-NCG may have a social optimum that is not a Nash

equilibrium.

For the weighted extension of our game, we show equivalent upper bounds on the Price of

Anarchy to those achieved for the un-weighted variant. Our results allow us to deduce upper

bounds on the Price of Anarchy for several special cases: an asymmetric un-weighted variant, and

(2) a distributional variant where each player has a probability distribution over all other players,

and its distance cost is the expected distance to other players under this distribution. A weighted
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variant of the game was also studied in [AEED+06], but the model used there did not permit zero

weights, and the upper bound proven grows to O(n) (a trivial bound) as wmin, the minimum weight

in the game, approaches 0, making their bounds unapplicable for our game.

1.2 Organization

The remainder of this paper is organized as follows. In Chapter 2 we give some background and

briefly review related research. In Chapter 3 we define our model and notation. Chapter 4 presents

basic results for an NI-NCG, including Nash equilibria existence and social optimum bounds. In

Chapter 5 we prove our main upper bound on the Price of Anarchy, and in Chapter 6 a lower bound

is shown. Chapter 7 contains bounds for the Price of Stability. Chapter 8 studies NI-NCGs for

specific families of friendship graphs, and Chapter 9 studies the weighted extension of our game.



Chapter 2

Background and Related Work

The research in this paper is part of a growing body of work on network creation games and

computational game theory in general. We provide some background on these fields and review

related research. Note that formal definitions of concepts used in this paper are provided in Chapter

3, not in this section.

2.1 Non-Cooperative Games and Nash Equilibria

Non-cooperative game theory studies situations where multiple players make decisions aiming at

maximizing their returns, and their returns are the outcome of the collective decisions made by all

players. In a game with pure strategies, each player may select an action from a certain action

space, and the return of a player is a function (per player) of the actions selected by all players.

In a game with mixed strategies, each player may select a probability distribution over its action

space, and the return of a player is the expected return under the joint probability distribution

over the collective action space. The solution concept of a Nash equilibrium, introduced by Nash

[Nas51], offers a model of an “optimal state” in such games, and is probably the most widely used

and well studied solution concept in this field. A Nash equilibrium is optimal in the sense that no

10



CHAPTER 2. BACKGROUND AND RELATED WORK 11

player can gain by unilaterally changing only her own strategy. Nash showed in [Nas51] that in

a non-cooperative game with mixed strategies and a finite number of players and actions, a Nash

equilibrium is guaranteed to exist. This is not generally true, however, for games that allow only

pure strategies.

If the players employ a greedy best response algorithm, in which they repeatedly modify their

strategies to maximize their return if it is not already maximal, given the current strategies of

the other players and in an uncoordinated manner, then Nash equilibria are absorbing states of

the resulting dynamic. Even though convergence to a single state is not generally guaranteed in

such a scenario, Nash equilibria are sometimes reasonable “candidates” for the final state of such

a dynamic. Our interest in the “social quality” of Nash equilibria follows from this property.

Additional solution concepts for games have been developed as well. Among these is the concept

of a strong equilibrium, proposed by Aumann [Aum59], which is a state where no coalition of players

can deviate and improve the return of all its members. It isolates the effects of selfishness from

the effects of lack of coordination, focusing on the former. Another interesting solution concept

is that of a correlated equilibrium [Aum74], where a probability distribution “recommends” joint

strategies to the players, and no player gains from deviating given that all other players are following

the recommendation. Note that every strong equilibrium is a Nash equilibrium, and every Nash

equilibrium is a correlated equilibrium. A sink equilibrium [GMV05] extends the concept of a Nash

equilibrium to a set of states rather than requiring a single equilibrium state. A sink equilibrium

is defined as a strongly connected component in the best response state transition graph, that has

no outgoing edges. In other words, it is a set of states for which any greedy best response dynamic

starting in the set may reach any other state in the set, but never leave it. These concepts are

beyond the scope of this paper, and we mention them for completeness only and as suggestions for

further research regarding our game.
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2.2 Computational Game Theory

Much of the classical research in computer science is focused on solving certain optimization prob-

lems. In the classical setting, our task is to devise an efficient algorithm that finds an optimal

solution to a specific problem and is to be carried out by a machine (or several machines), or to

understand the computational characteristics of the problem in such a setting. Most of this work

is based on the underlying assumption that all machines (or agents) involved in the solution of the

problem share a single goal - the optimization of a single global (or social) function. In many cases,

however, the various agents involved are selfish and are motivated by optimizing their own utilities,

rather than reaching a solution that is socially optimal. This is the classical setting of game theory.

The intersection of these two paradigms, computer science and game theory, has spawned a field

of research known as computational game theory, which has been of much interest recently.

A basic question we may ask when attempting to optimize some social function using distributed

and selfish agents is: how good can the social outcome be, compared to what a central authority

could achieve? How bad? Such questions usually serve as a prelude to more complex algorithmic

and computational questions. A key metric used to answer some of these questions is the Price of

Anarchy [KP99], which is defined as the ratio between the social cost of the worst Nash equilibrium

and the optimal social cost. The Price of Anarchy measures the worst-case “loss of efficiency” due

to selfishness and lack of coordination. Closely related is the Price of Stability [ADK+04], the ratio

between the social cost of the best Nash equilibrium and the social optimum. The Price of Stability

models the best loss of efficiency that can be guaranteed by an initial coordinated effort, followed

by selfish, uncoordinated behavior.

Since their introduction, the Price of Anarchy and Price of Stability have been studied for

a wide range of problems, including load balancing [KP99, CKV02, CV02, AART03], routing

[MS01, Rou02a, Rou02b, RT02], facility location [Vet02], and network formation [BG00, JV01,
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FKK+02, ADTW03, FLM+03, HS03, ADK+04, CSSM04, AEED+06]. Similar metrics have been

recently researched for other game theoretic solution concepts, such as the Strong Price of Anarchy

and the Strong Price of Stability [AFM07], and the Price of Sinking [GMV05], but these are beyond

the scope of this paper.

2.3 Network Creation Games

The formation of networks by distributed and selfish agents has been the focus of much research

lately. Anshelevich et. al. [ADTW03] study a game where players aiming to connect a certain set

of terminals, select edges to purchase in some underlying graph and offer a payment for each such

edge. An edge is built in the resulting network if and only if the sum of the payments made for it

by all players is at least the edge’s cost. It is shown in [ADTW03] that it is not guaranteed that a

pure strategy Nash equilibrium exists in such a game, and that even if it does, both the Price of

Anarchy and Price of Stability can be quite high (as high as the n, the number of players). They

present, however, algorithms for finding approximate Nash equilibria that are close to the social

optimum. Anshelevich et. al. [ADK+04] consider a similar game where each player selects only a

set of edges she wishes to purchase, and the cost of an edge is shared equally among all players who

purchased it. They show that a pure strategy Nash equilibrium always exists, and that the Price of

Stability is at most H(n) =
∑n

i=1
1
i (although the Price of Anarchy may still be as high as n). They

also extend these results to games with design costs and latency costs, under certain conditions.

Additional research on cost sharing and network design includes [JV01, GST04, JMT06].

The model used by [ADTW03, ADK+04] allows agents to purchase any link in the network. The

model we are interested in is different in that each player is a certain network node, and we allow a

player to purchase only links incident on it. Bala and Goyal [BG00] study such a model where the

payoff of each player decreases with the number of links it builds, and increases with the number of
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other players in its connected component in the resulting network. They also provide some results

for a similar model where the benefit of being connected to some player exhibits exponential decay

depending on the distance from the player. Haller and Sarangi [HS03] extend this model by allowing

heterogenous link failure probabilities instead of distance-based exponential decay. The models of

[BG00, HS03] seem especially suitable to information exchange networks (such as social networks),

where players benefit from the collective information made available to them by the other players

in their network, but the actual cost of communication over the links is negligible.

The game proposed by Fabrikant et. al. [FLM+03] and further studied in [AEED+06], which is

the basis of the game studied in this paper, is similar to [BG00, HS03] in that players are network

nodes and may only purchase links incident on themselves. However, in their game, players suffer

an additional cost that is the sum of distances to all other players in the resulting network. The

game is therefore suitable for scenarios where communications incur a latency or cost proportional

to the hop count in the shortest route available. The results obtained in [FLM+03, AEED+06] were

reviewed in the introduction to this paper (see Chapter 1). Albers et. al. [AEED+06] also studies

a cost sharing variant of this game where each player may pay a fraction of an edge’s cost, and

the edge is built only if the sum of fractional payments exceeds 1. Another cost-sharing variant

is studied by Corbo and Parkes [CP05], where players must both consent to building an edge

between them and they share the edge’s cost equally. Their work analyzes the game in the face of

pairwise coalitions, and not just unilateral deviations. The effects of coordination on the game from

[FLM+03] are further studied by Andelman et. al. [AFM07]. They use the concept of a Strong

Equilibrium and define its related Strong Price of Anarchy, to measure the cost of selfishness alone,

when coordination is permitted. They show that for almost all values of α a strong equilibrium

exists, and that the Strong Price of Anarchy is at most 2.



Chapter 3

The Model

A network creation game with nonuniform interests (NI-NCG), is a tuple N = 〈V, H, α〉 where

V = {1 . . . n} is the set of players, H = (V,EH) is an undirected graph whose vertices are V and

edges are EH (H is called the friendship graph) and α ∈ R+ is an edge building price. A strategy

Sv for a player v is a subset of the other players Sv ⊆ V − {v} (these are the players to which v

builds an edge). A joint strategy ~S is an n-tuple of player strategies, i.e., ~S = (S1, S2, . . . , Sn).

Given an NI-NCG, we say that players v and u are friends iff (v, u) ∈ EH , and player v’s

neighborhood in H, denoted NH(v) = {u : (v, u) ∈ EH}, is also called the friend set of v. Given

a joint strategy ~S, we associate a joint strategy graph G∗(~S) = (V, E) with vertices V and directed

edges {(v, u) : v, u ∈ V ∧ u ∈ Sv}. The network created by ~S, denoted G = G(~S), is the underlying

undirected graph of G∗(~S). We limit our discussion to NI-NCGs for which H has no isolated

vertices (and hence n ≥ 2 and the number of connected components is at most n/2). The special

case H = Kn (the complete graph over n vertices) is called the complete interest network creation

game, and was extensively studied in [FLM+03, AEED+06, AFM07].

The cost of a player v ∈ V in a joint strategy ~S is CN (~S, v) and it is the sum of two components:

an edge building cost BN (~S, v) = α|Sv|, which implies a cost of α per edge bought, and (2) a distance

15
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cost which is DistN (~S, v) =
∑

u∈NH(v) δG(v, u), where δG(v, u) is the distance between v and u in

G = G(~S) (if there is no path in G between v and u then δG(v, u) = ∞).

We define the social cost of a joint strategy ~S as the sum of the player costs, i.e., CN (~S) =

∑
v∈V CN (~S, v), and the social edge building cost and social distance cost are defined similarly. The

minimal social cost of all joint strategies of an NI-NCG N is denoted OPT (N ), and any joint

strategy ~S that yields this cost is a social optimum strategy for N . We say that a graph G is a

social optimum network if there is a social optimum strategy ~S that creates G, i.e., G = G(~S).

Let N = 〈V, H, α〉 be an NI-NCG, ~S be a joint strategy, and v ∈ V some player. We denote

by ~S−v the tuple of strategies of players u 6= v in ~S, i.e., ~S−v = (S1, . . . , Sv−1, Sv+1, . . . , Sn).

Let Av ⊆ V − {v} be some strategy for v. A unilateral deviation of v to Av in ~S, denoted

(~S−v, Av), is the joint strategy obtained by replacing the strategy for v in ~S by Av, i.e.,(~S−v, Av) =

(S1, . . . , Sv−1, Av, Sv+1, . . . , Sn).

Given a game N and joint strategy ~S, the best response of player v to ~S−v is BR(~S, v) =

arg minAv⊆V−{v}CN ((~S−v, Av), v). A joint strategy ~S is a Nash equilibrium for the game N if

every player v is playing a best response, i.e., ∀v ∈ V, Sv ∈ BR(~S, v). We say that a network G

is a Nash equilibrium network, if there exists a Nash equilibrium ~S that creates it, i.e., G = G(~S).

We will show that for almost all values of α (the edge building price), an NI-NCG has a Nash

equilibrium.

Let Φ(N ) be the set of Nash equilibria of an NI-NCG N and assume that Φ(N ) 6= ∅. The Price

of Anarchy (Price of Stability, respectively), denoted PoA(N ) (PoS(N )), is the ratio between the

maximal (minimal) social cost of a Nash equilibrium and the cost of a social optimum, i.e.,

PoA(N ) =
max~S∈Φ(N ) CN (~S)

OPT (N )
and PoS(N ) =

min~S∈Φ(N ) CN (~S)

OPT (N )
.

Note that the Price of Anarchy and Price of Stability are defined only if some Nash equilibrium

exists.
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We present some additional terminology used throughout this paper. A friendship edge is an

edge that connects two friends. A strategy Av for v ∈ V is called a friendship strategy if it builds

edges only to v’s friends, i.e., Av ⊆ NH(v). Given a joint strategy ~S, strategy Av is called a complete

friendship response for v in ~S if it builds edges exactly to all friends of v that have not built edges

to v in ~S, i.e., Av = {u ∈ NH(v) : v 6∈ Su}.

A sensible joint strategy is a joint strategy in which no two players build edges to each other,

i.e., ~S is sensible iff ∀v, u ∈ V, u ∈ Sv ⇒ v /∈ Su. Clearly, if a joint strategy ~S is not sensible, then it

is neither a social optimum nor a Nash equilibrium. For any network G, we denote by S(G) the set

of sensible joint strategies that create the network G. Notice that the set of joint strategy graphs

corresponding to S(G) is exactly the set of all directed orientations of G, and that they all have

exactly |E(G)| edges.

We use the following graph-theoretical notations: for any undirected graph G = (VG, EG), we

denote by dG(v) = |NG(v)| the degree of vertex v in G, and by d̄G =
∑

v∈VG
dG(v)/|VG| the average

vertex degree of G. The girth of G, denoted g(G), is the minimal length of a cycle in G (if G is

cycle free then g(G) = ∞).



Chapter 4

Basic Results

We begin our analysis by providing a tight bound on the social optimum and proving the existence of

Nash equilibria. For the complete interest game (H = Kn), the complete graph is a social optimum

network for α ≤ 2 and the star graph is a social optimum network for α ≥ 2 (see [FLM+03]). For

a general graph H, we do not provide a complete characterization of the social optimum network

of the related NI-NCG, but rather only bound the minimal social cost as follows:

Theorem 4.1. Let N = 〈V,H, α〉 be an NI-NCG. Then:

n(α/2 + d̄H) ≤ OPT (N ) < 2n(α/2 + d̄H) .

Proof: Let G be some social optimum network. Clearly, G must have at least n/2 edges, because

otherwise it has an isolated vertex, which has an infinite cost, and yields an infinite social cost,

contradicting optimality. Therefore, nα/2 is a lower bound on the social edge building cost. Clearly,

the distance between any pair of friends is at least 1, hence the social distance cost is at least

2|EH | = nd̄H . Summing these two lower bounds yields the lower bound on OPT (N ). For the

upper bound, let G′ be a network that is a star graph on V , and let ~S ∈ S(G′) be some sensible

joint strategy that creates G′. Obviously ~S builds exactly n − 1 edges. Additionally, the distance

18
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in G′ between any pair of friends is at most 2, hence:

CN (~S) ≤ (n− 1)α + 4|EH | < 2n(α/2 + d̄H) ,

which upper bounds the social optimum.

The above theorem gives a 2-approximation of OPT (N ), without specifying the exact social

optimum. We also have the following specific characterization for α ≤ 2, which follows since adding

any friendship edge which is missing from the network increases the social edge building cost by

α ≤ 2 and reduces the social distance cost by at least 2.

Theorem 4.2 (Proof in Appendix A). Let N = 〈V, H, α〉 be an NI-NCG with α ≤ 2. Then H

is a social optimum network, and any sensible joint strategy ~S that creates it (i.e., ~S ∈ S(H)) is a

social optimum. Furthermore, for α < 2, H is the unique social optimum network.

We also show the following constraint on the number of edges in a social optimum:

Lemma 4.3 (Proof in Appendix A). Let N = 〈V, H, α〉 be an NI-NCG, ~S a social optimum

for N , and G = G(~S). Then |E(G)| ≤ |EH | with equality possible if and only if G = H.

We proceed to the issue of existence of Nash equilibria, which is important for establishing Price

of Anarchy. For the complete interest game, the complete graph Kn is a Nash equilibrium network

for α ≤ 1, and it is unique for α < 1 (see [FLM+03]). Since for α ≤ 1 a player cannot lose by

adding a friendship edge, we have the following equivalent result for a general NI-NCG,

Theorem 4.4 (Proof in Appendix A). Let N = 〈V,H, α〉 be an NI-NCG with α ≤ 1. Then H is

a Nash equilibrium network, and any joint strategy ~S ∈ S(H) is a Nash equilibrium. Furthermore,

for α < 1, H is the unique Nash equilibrium network.

Theorem 4.4 and Theorem 4.2 imply that for α < 1, any Nash equilibrium is a social optimum,

hence PoA(N ) = PoS(N ) = 1. We therefore focus in the remainder of our discussion on the case
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α ≥ 1. For α ≥ 1 the star graph is a Nash equilibrium network for the complete interest game

[FLM+03]. For a general NI-NCG we have the following result:

Theorem 4.5 (Proof in Appendix A). Let N = 〈V, H, α〉 be an NI-NCG with α ≥ 2. There

exists a Nash equilibrium for N whose cost is at most n(α + 2d̄H).

Our proof gives a specific construction of a Nash equilibrium for α ≥ 2, where the distance

between any two friends is at most 2 and the resulting network is a forest (but not necessarily a

star), consisting of a spanning tree for every connected component of H. It also shows that for

certain NI-NCGs, a Nash equilibrium may contain non-friendship edges.

For α ∈ (1, 2), we have not resolved the question whether some Nash equilibrium always exists.

In Chapter 6 we show that if the girth of the friendship graph g(H) is at least 6, existence of a Nash

equilibrium is guaranteed for α ∈ (1, 2) as well, and if g(H) = 5, it is guaranteed for α ∈ (1, 1.5)

(Lemma 6.3).



Chapter 5

Upper Bounds On The Price Of

Anarchy

In this section we present several upper bounds on the Price of Anarchy and conclude by combining

them into our main result, an upper bound of:

O

(
1 + min

(
α, d̄H , log n +

√
nα/d̄H ,

√
nd̄H/α

))
= O(

√
n) .

Our results in this section apply to games for which a Nash equilibrium exists. We showed that

this holds for α ≥ 2 (Theorem 4.5) and α ≤ 1 (Theorem 4.4) but not necessarily for α ∈ (1, 2).

Our first step is showing a simple upper bound of O(1 + min(α, d̄H)), which is due to the following

lemma:

Lemma 5.1. Let N = 〈V, H, α〉 be an NI-NCG and ~S a Nash equilibrium of N . Then:

CN (~S) ≤ (α + 1)nd̄H .

Proof: Every player v ∈ V is playing a best response in ~S, hence its strategy Sv is no worse than

the complete friendship response for v. The cost of the complete friendship response for v is at

most αdH(v) + dH(v) = (α + 1)dH(v), and summing over all players completes the proof.

21
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Using Lemma 5.1, Theorem 4.1 and Theorem 4.2, we obtain the following upper bound on the

Price of Anarchy:

Theorem 5.2 (Proof in Appendix B). Let N = 〈V,H, α〉 be an NI-NCG, and assume that a

Nash equilibrium exists. Then:

PoA(N ) ≤





1 if 0 < α < 1

2− 2
α+2 if 1 ≤ α ≤ 2

1 + d̄Hα
α/2+d̄H

if 2 < α

= O(1 + min(α, d̄H)) .

This result already provides us with some basic insights. In particular, if either α or d̄H are

constant, then the Price of Anarchy is at most some constant.

5.1 Upper Bound: Edge Building Cost

In this section we show an upper bound for the edge building cost. For the complete interest

game, the contribution of the edge building cost to the Price of Anarchy was shown to be at

most a constant (see [AEED+06]). We show a similar (but weaker) result for a general NI-NCG,

specifically an upper bound of O
(
1 + min

(
1, d̄H

α

)
log n

)
, which is at most O(log n). We begin by

defining weights for edges built in a joint strategy:

Definition 5.3. Let N = 〈V, H, α〉 be an NI-NCG, ~S a joint strategy of N and G = G(~S). We

denote by ΨG(v, x) the set of shortest paths between vertices v and x in the graph G. For any

v, u ∈ V such that u ∈ Sv (i.e., v builds an edge to u in ~S), we define:

ΓH
G (v, u) = {x ∈ NH(v) : ΨG(v, x) 6= ∅ and ∀p ∈ ΨG(v, x), u ∈ p} ,
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i.e., ΓH
G (v, u) is the set of friends of v whose distance from v would increase should the edge (v, u)

be removed from the network. We define w(v, u) = |ΓH
G (v, u)|, and W =

∑
v∈V,u∈Sv

w(v, u).

Intuitively, the weight w(v, u) measures effectiveness of the edge (v, u). Note that while w and

W are dependent on N and ~S, for simplicity of our notation we ignore this dependance. Next, we

show a constraint on these weights. The proof of the following lemma is by analyzing a specific

deviation of v that removes the edge (v, u).

Lemma 5.4 (Proof in Appendix B). Let N = 〈V, H, α〉 be an NI-NCG, ~S a Nash equilibrium

for N and G = G(~S). If v builds an edge to u in ~S (i.e., u ∈ Sv), then α ≤ w(v, u)(δG′(v, u)− 1),

where G′ is the graph G without the edge (v, u).

We use the above lemma to bound the average degree in G, based on a parameter β (that we

select later).

Lemma 5.5. Let N = 〈V, H, α〉 be an NI-NCG, ~S a Nash equilibrium of N and G = G(~S). Then

for any β > 0

d̄G ≤ 1 +
2d̄H

β
+ n2β/α .

Proof: Our first step is to transform G by removing all edges (v, u) ∈ E(G) for which w(v, u) ≥ β

(where v builds the edge in ~S). We denote the resulting graph by Gβ, and by m the number of

removed edges. The total weight of edges removed is at least βm, and at most the total weight of

edges in the original graph, W . Therefore, βm ≤ W . On the other hand, for any pair of friends

v, x, there is at most one u ∈ Sv such that x ∈ ΓH
G (v, u) (these sets, for a fixed player v, must be

pairwise disjoint). Therefore every such pair is counted at most twice in W (at most once in each

direction), hence W ≤ 2|EH |. Combining these inequalities we get |E(Gβ)| ≥ |E(G)| − 2|EH |/β.

After dividing by n/2, we have

d̄Gβ
≥ d̄G − 2d̄H

β
. (5.1)
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For d̄Gβ
≤ 2 this yields d̄G ≤ 2d̄H

β + 2 and the claim holds trivially since n2β/α > 1. We therefore

assume that d̄Gβ
> 2. This implies that Gβ has a cycle. Let C be a cycle in Gβ of minimal

length g(Gβ), and note that C is also a cycle in G. Let (v, u) be an arbitrary edge in C, built

by v, and recall that we have w(v, u) ≤ β. Using Lemma 5.4 for this edge we now obtain α ≤

w(v, u)(g(Gβ) − 2) ≤ β(g(Gβ) − 2), or g(Gβ) ≥ 2 + α
β . We now use a bound due to Alon et. al.

[AHL02] on the number of vertices in a graph based on its girth and average degree. This bound

is an extension of the Moore bound (see [BB94], p. 180) for irregular graphs (see Appendix F).

Restated as a bound on average degree, it says that the average degree of a graph with n vertices

and girth g is at most 1 + n2/(g−2). Therefore, for our graph Gβ we have:

d̄Gβ
≤ 1 + n

(
2

g(Gβ)−2

)

≤ 1 + n2β/α ,

and using this with inequality (5.1) completes the proof.

Finally, by using the above lemma with β = α
2 log2 n and the lower bound on social optimum

(Theorem 4.1), we obtain our improved bound:

Theorem 5.6 (Proof in Appendix B). Let N = 〈V, H, α〉 be an NI-NCG, and ~S a Nash

equilibrium of N . Then:

BN (~S)
OPT (N )

≤ 3 +
d̄H

α/2 + d̄H
(2 log2 n− 3) = O

(
1 + min

(
1,

d̄H

α

)
log n

)
= O(log n) .

5.2 Upper Bound: Distance Cost

In this section we show an upper bound on the contribution of the distance cost to the Price of

Anarchy. The bound we show is O
(
1 + min

(
1, d̄H

α

)
min

(
n,

√
nα/d̄H

))
, which is at most O(

√
n).

We first show several lemmata:

Lemma 5.7 (Proof in Appendix B). Let N = 〈V, H, α〉 be an NI-NCG, ~S a joint strategy and

G = G(~S). Let v ∈ V be a player who is playing a best response in ~S. Let T be a shortest path
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tree of v in G. For any vertex u ∈ V (T ) (note that it is possible that V (T ) 6= V ), denote by ku the

number of friends of v that are descendants of u in T (including, possibly, u itself). Then:

∀u ∈ V (T ), α ≥ (δG(v, u)− 1)ku .

The proof of Lemma 5.7 is done by an analysis of a specific deviation by v that builds an

additional edge to u. Using Lemma 5.7 we bound the distance cost for a single player as follows.

Lemma 5.8. Let N = 〈V, H, α〉 be an NI-NCG and let ~S be a joint strategy. Let v ∈ V be a player

who is playing a best response in ~S. Then:

DistN (~S, v) ≤ 2
√

(n− 2)αdH(v) + dH(v) .

Proof: Let G = G(~S). All w ∈ NH(v) must be in the same connected component as v (otherwise v

could have strictly improved its cost by building edges to all disconnected friends). For any integer

h ≥ 2, we define Fh = {w ∈ NH(v) : δG(v, w) ≥ h}, i.e., Fh is the set of friends of v in depth at

least h in T , where T is the shortest path tree of v in G. Then:

DistN (~S, v) =
∑

w∈NH(v)/Fh

δG(v, w) +
∑

w∈Fh

δG(v, w)

≤ (h− 1)(dH(v)− |Fh|) +
∑

w∈Fh

δG(v, w)

= (h− 1)dH(v) +
∑

w∈Fh

(δG(v, w)− h + 1) . (5.2)

For any w ∈ Fh, the term δG(v, w) − h + 1 is exactly the number of vertices on the path between

depth h in T and w. Therefore, summing this value over all w ∈ Fh is equivalent to counting each

vertex u ∈ V (T ) in depth h or greater exactly ku times. Hence, using Lemma 5.7 and the fact that

h ≥ 2, we have:

∑

w∈Fh

δG(v, w)− h + 1 =
∑

u∈V (T ):δG(v,u)≥h

ku ≤
∑

u∈V (T ):δG(v,u)≥h

α

δG(v, u)− 1
≤ (n− 2)α

h− 1
,
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and using this in inequality (5.2) yields:

DistN (~S, v) ≤ (h− 1)dH(v) +
(n− 2)α

h− 1
,

for any h ≥ 2. Selecting h = 1 + d
√

(n− 2)α/dH(v)e completes the proof.

Lemma 5.8, summed over all players, yields the following theorem:

Theorem 5.9 (Proof in Appendix B). Let N = 〈V,H, α〉 be an NI-NCG and ~S a Nash equi-

librium for N . Then:

DistN (~S)
OPT (N )

≤ d̄H

α/2 + d̄H

(
1 + min(n− 2, 2

√
(n− 2)α/d̄H)

)

= O

(
1 + min

(
1,

d̄H

α

)
min

(
n,

√
nα

d̄H

))
= O(

√
n) .

5.3 Upper Bound: Price Of Anarchy

We now present our main upper bound, which follows by combining Theorem 5.6 and Theorem 5.9.

Theorem 5.10 (Proof in Appendix B). Let N = 〈V, H, α〉 be an NI-NCG, and assume that a

Nash equilibrium exists. Then:

PoA(N ) ≤





1 if 0 < α < 1

2− 2
α+2 if 1 ≤ α ≤ 2

3 + d̄H

α/2+d̄H
min

(
α, 2 log2 n− 2 + min

(
n− 2, 2

√
(n− 2)α/d̄H

))
if 2 < α

= O

(
1 + min

(
α, d̄H , log n +

√
nα

d̄H
,

√
nd̄H

α

))
= O(

√
n) .

As stated in the theorem, in all cases we have an upper bound of O(
√

n) on the Price of

Anarchy, but for many combinations of n, α and d̄H we get a better bound. For example, we

get a constant upper bound in the case that either α or d̄H are constant, and similarly in the
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case that α = Ω(nd̄H) = Ω(|EH |), i.e., α is very large. When α is moderately small, specifi-

cally α = O(max(log n, n/d̄H)) the bound is simply O(min(α, d̄H)). When the friendship graph

is dense enough, namely d̄H = Ω(n/ log n), and α is between Ω(log n) and O(d̄H log2 n/n) =

O(log2 n) we get an upper bound of O(log n). In the remaining cases we have an upper bound of

O

(√
nmin

(
d̄H
α , α

d̄H

))
.

5.4 Additional Edge Building Cost Bounds

We show two additional improvements of our upper bound on the contribution of the edge building

cost to the Price of Anarchy. The first results from a different choice of β for Lemma 5.5.

Theorem 5.11 (Proof in Appendix B). Let N = 〈V, H, α〉 be an NI-NCG, ~S a Nash equilibrium

for N , and G = G(~S). Denote γ = 4 d̄H
α log2 n. If γ > 1 then:

BN (~S)
OPT (N )

≤ α

α + 2d̄H

(
1 + η

γ

log2 γ

)

= O


min

(
1,

d̄H

α

)
log n

log
(
4 d̄H

α log n
)


 = O


 log n

log
(
4 d̄H

α log n
)


 ,

where η = 2 + 1
e ln(2)−1 ≈ 3.131.

Later we show that this result is tight (see Chapter 6). We also have the following upper bound:

Lemma 5.12 (Proof in Appendix B). Let N = 〈V, H, α〉 be an NI-NCG, ~S a Nash equilibrium

for N , and G = G(~S). Denote by VR the set of players that have friends that are not adjacent to

them in G and by Vr the set of players that build at least one edge to a non-friend. Let RH(~S) = |VR|

and rH(~S) = |Vr|. Then:

|E(G)| ≤ |EH | − RH(~S)− rH(~S)
2

≤ |EH | ,

and:

BN (~S)
OPT (N )

≤ d̄Hα

α + 2d̄H
= O(min(α, d̄H)) .
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Note that for small values of α, specifically α = o(log n), Lemma 5.12 provides a better upper

bound on the contribution of the edge building cost to the Price of Anarchy than Lemma 5.6.

This does not improve our asymptotic upper bound on the Price of Anarchy from Theorem 5.10,

however, since that bound is already O(min(α, d̄H)).



Chapter 6

Lower Bound: NI-NCG with

PoA = Ω(log n/ log log n)

We now proceed to show that for large enough n there is an NI-NCG with n players for which the

Price of Anarchy is bounded from below by Ω(log n/ log log n) (we remark that a similar lower bound

result for the complete interest game is not known). Our construction is based on the observation

that if the friendship graph of the game has large enough girth, then it is a Nash equilibrium

network itself. The existence of a graph with large enough girth and large enough average degree

follows using well known constructions of cage graphs. Our first step is to prove the aforementioned

sufficient condition for Nash equilibria. Before that, we need the following lemmata:

Lemma 6.1 (Proof in Appendix C). Let N = 〈V, H, α〉 be an NI-NCG, ~S a joint strategy of

N and G = G(~S). Let v ∈ V be some player and u ∈ NH(v) a friend of v. If v’s strategy, Sv, is a

best response in ~S, then δG(v, u) ≤ min(α + 1, n− 1).

Lemma 6.2 (Proof in Appendix C). Let N = 〈V, H, α〉 be an NI-NCG, ~S a joint strategy and

G = G(~S). Let v be a player that is playing a best response in ~S. If v builds an edge to u, and u is

29
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not a friend of v, then |ΓH
G (v, u)| ≥ 2.

The key condition for our construction is the following:

Lemma 6.3. Let N = 〈V, H, α〉 be an NI-NCG, such that 0 < α < g(H)
2 − 1. Then H is a Nash

equilibrium network, and any ~S ∈ S(H) is a Nash equilibrium.

Proof: Let ~S be some sensible strategy that creates H, i.e., ~S ∈ S(H). We will show that all players

are using a best response strategy in ~S. Let v ∈ V be a player, and assume, for contradiction,

that v’s strategy in ~S is not a best response. Then there is an alternative best response strategy

S′v 6= Sv for v. Let ~S′ = (~S−v, S
′
v) and G′ = G(~S′). We analyze two cases:

• S′v is not a friendship strategy, i.e., S′v −NH(v) 6= ∅

In this case there is a player u ∈ S′v that is not a friend of v. By Lemma 6.2 we have

|ΓH
G′(v, u)| ≥ 2. We arbitrarily select w, x ∈ ΓH

G′(v, u) such that w 6= x. Vertices u,w, x are all

in the same connected component of G′ (by definition of ΓH
G′(v, u)), so let Puw, Pux and Pwx

be shortest paths in G′ between u and w, u and x, and w and x respectively. By the triangle

inequality we have |Pwx| ≤ |Puw| + |Pux|. Also, if v were included in Pwx, it would split it

into two shortest paths from v to w and from v to x respectively. By definition of ΓH
G′(v, u),

this would imply that both these segments of Pwx contain u, which is a contradiction to it

being a shortest path. Therefore, Pwx does not include v, hence it is also a path in H. We

now construct a simple cycle in H by starting with the edge (v, w), following path Pwx to x

and concluding with the edge (x, v). By definition, the length of this cycle must be at least

g(H), and the lemma assumes that g(H) > 2α + 2, so:

δG′(v, w) + δG′(v, x) = 2 + |Puw|+ |Pux| ≥ 2 + |Pwx| ≥ g(H) > 2α + 2 ,

which is a contradiction to Lemma 6.1 for either (v, w) or (v, x).
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• S′v is a friendship strategy, i.e., S′v ⊆ NH(v)

We know that S′v 6= Sv, and Sv is a complete friendship response for v in ~S, so v has a friend

u ∈ NH(v) that is not adjacent to v in G′. Let Puv be some shortest path from v to u in G′

(such a path must exist since S′v is a best response). Since in this case E(G′) ⊆ EH , Puv is

also fully contained in H. Adding the edge (u, v) to Puv we obtain a simple cycle in H, whose

size must be at least g(H). Therefore:

δG′(v, u) ≥ g(H)− 1 > 2α + 1 > α + 1 ,

which is a contradiction to Lemma 6.1.

Therefore no deviation to S′v 6= Sv can produce a best response, so Sv itself must be a best

response. Since this is true for every v ∈ V , ~S is a Nash equilibrium. Note that the proof also

holds when g(H) = ∞.

We now construct games satisfying this condition, with large enough average degree (of the

friendship graph). To do this we use well known constructions of cage graphs - regular graphs of a

given girth and degree with a minimal number of vertices (see page 107 in [Bol78] for a history of

results in this area). We shall use the following proposition (see Appendix F):

Proposition 6.4. For any integer g ≥ 3 and n ≥ 2g, there is a graph with n vertices and girth g

of average degree at least 1
2(n/4)1/(g−2).

We are now ready to state our lower bound.

Theorem 6.5 (Proof in Appendix C). For any integer n ≥ 64 there is an NI-NCG N =

〈V, H, α〉 with n players, α = Θ(log n/ log log n), and d̄H = Ω(log n), whose Price of Anarchy is

Ω(log n/ log log n).

Our proof also implicitly shows that the contribution of the edge building cost to the Price of
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Anarchy for the construction is Ω(log n/ log log n). Since α = o(d̄H), we know that for large enough

n we must have α < 4d̄H < 4d̄H log2 n, so Theorem 5.11 applies to our construction. An upper

bound on this contribution is therefore:

O

(
log n/ log

(
4d̄H

α
log n

))
= O(log n/ log log n) ,

since 4d̄H/α > 1, hence our upper bound from Theorem 5.11 is tight.

Note that Lemma 6.3 guarantees the existence of a Nash equilibrium for α ∈ (1, 2) if g(H) ≥ 6,

and for α ∈ (1, 1.5) if g(H) = 5. For the class of games with g(H) ∈ {3, 4} and α ∈ (1, 2) and

games with g(H) = 5 and α ∈ [1.5, 2), the existence of Nash equilibria remains unresolved.



Chapter 7

Bounding The Price Of Stability

For the complete interest game, it was shown (in [FLM+03]) that for α ≤ 1 and α ≥ 2 there is

a social optimum that is also a Nash equilibrium, hence the Price of Stability is 1. In a general

NI-NCG, we have the following result:

Theorem 7.1. Let N = 〈V,H, α〉 be an NI-NCG. Then:

1 ≤ PoS(N ) ≤





1 if α ≤ 1

2− 2
α+2 if 1 < α < 2

2 if α ≥ 2

.

Proof: The case α ≤ 1 is trivial given that in this case H is both a social optimum network

(Theorem 4.2) and a Nash equilibrium network (Theorem 4.4). For 1 < α < 2, the claim follows

from Theorem 5.2, because the Price of Stability is not greater than the Price of Anarchy.

If α ≥ 2 then we have shown in Theorem 4.5 that there is a Nash equilibrium whose cost is at

most n(α + 2d̄H), so using the lower bound on the social optimum cost given in Theorem 4.1, we

get:

PoS(N ) ≤ CN (~S)
n(α/2 + d̄H)

≤ α + 2d̄H

α/2 + d̄H
= 2 .
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Note, however, that unlike the complete interest game, there are games for which the Price of

Stability is not 1, even for non-constant α. We provide such an example for the cycle NI-NCG (see

Chapter 8.2).



Chapter 8

Specific Friendship Graphs

8.1 The Forest NI-NCG

We now consider the NI-NCG where H is a forest, i.e., a collection of trees. Our main result is that

for such games, H is both the unique social optimum network and the unique Nash equilibrium

network, and consequently both the Price of Anarchy and the Price of Stability are 1.

Theorem 8.1 (Proof in Appendix D). Let N = 〈V, H, α〉 be an NI-NCG, where H is a forest.

Then H is the unique social optimum network and the unique Nash equilibrium network. Conse-

quently PoS(N ) = PoA(N ) = 1.

8.2 The Cycle NI-NCG

We now consider the special case of an NI-NCG when H is a cycle on its n vertices. It should be

clear from our discussion of general NI-NCGs that for such games, both the Price of Anarchy and

the Price of Stability are at most a certain constant (because the average degree of the friendship

graph is 2, a constant). This section focuses on obtaining constant bounds that are as tight as

possible.
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8.2.1 Notation and Terminology

An NI-NCG where H is a cycle can be completely defined (up to graph isomorphism) by the number

of players and α. We therefore denote such a game by N = 〈V, H = C,α〉, where V = {0, . . . , n−1}

is the set of players and α is an edge building price. The friendship graph H is implied from V ,

and it is a cycle with edges (v, v + 1), where “player arithmetic” is performed modulo n. We also

require that n ≥ 3.

Given a Cycle NI-NCG we use the term cycle edge occasionally as a synonym for friendship

edge. The term the cycle refers to H itself. The term segment refers to any simple path in the

cycle, including the empty path (consisting of no vertices), any path with a single vertex, and

the path that is the entire cycle. The term line refers to a segment with n − 1 edges. Note that

these terms refer specifically to subgraphs of H, they are not applicable to any cycle, line or path.

(respectively) on the n vertices.

8.2.2 Basic Results

We begin our discussion with the social optimum. We provide a complete characterization of the

social optimum based on the value of α. We first show the following two lemmata:

Lemma 8.2. In a Cycle NI-NCG, a social optimum network is either the cycle or a tree.

Proof: This follows trivially from Lemma 4.3. As shown, if G is a social optimum network, then

|E(G)| < |EH | or G = H. When H is the cycle, this implies that either |E(G)| < n or G = H.

The former implies that G is a tree (since it must be connected), the latter that G is the cycle.

Lemma 8.3 (Proof in Appendix D). In a Cycle NI-NCG, the social cost of any tree network

that has a DFS traversal which discovers players in the order in which they appear in the cycle, is

minimal among all networks that are trees. Any line or star network is such a minimal cost tree.
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Our social optimum characterization follows from these lemmata:

Theorem 8.4 (Proof in Appendix D). Let N = 〈V, H = C, α〉 be a Cycle NI-NCG. The cycle

is a social optimum network if and only if α ≤ 2n− 4. Any line and any star are social optimum

networks if and only if α ≥ 2n− 4. Other social optimum networks may exist only if α ≥ 2n− 4,

and they must be trees.

Next we show that for a Cycle NI-NCG a Nash equilibrium always exists. We prove that for

various values of α, either the cycle, a line or a star (or several of them) are Nash equilibrium

networks.

Theorem 8.5 (Proof in Appendix D). Let N = 〈V, H = C, α〉 be a Cycle NI-NCG. The cycle

is a Nash equilibrium network if and only if 0 < α ≤ n− 2. Any line is a Nash equilibrium network

if and only if α ≥ n − 2. Any star is a Nash equilibrium network if α ≥ 2. Consequently, a Nash

equilibrium always exists for a Cycle NI-NCG.

8.2.3 Upper Bound On The Price Of Anarchy

We proceed to show an upper bound on the Price of Anarchy for a Cycle NI-NCG. As a function

of α, our upper bound is 1 for α < 1, increases for 1 ≤ α < n − 2, reaches its maximum value of

2 − 2
n when α = n − 2, and decreases for α > n − 2, going asymptotically to 1. The proof relies

on the following lemma, which provides a characterization of all possible Nash equilibria for Cycle

NI-NCGs:

Lemma 8.6 (Proof in Appendix D). Let N = 〈V, H = C,α〉 be a Cycle NI-NCG, ~S a Nash

equilibrium for N , and G = G(~S). Then there is a segment P of the cycle (which may contain

anywhere between 0 and n vertices) such that:

1. G contains P , and players in P only build edges to other players in P .
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2. For any v ∈ V − V (P ), v’s strategy in ~S builds a single edge to player u that is not a friend

of v, so that u is contained in some shortest path (in G) between v’s friends, and v is not

contained in any such shortest path.

Note that P may also be empty (i.e., containing no vertices at all), and that this is not the

same as P that consists of a single vertex. The Nash equilibria permitted by Lemma 8.6 include

the cycle (if P is the entire cycle) and the line (if P is a line). Note also that apart from the case

P = H or V (P ) = ∅ all other Nash equilibrium networks are trees (because there are n− 1 edges).

The following lemma further characterizes Nash equilibria based on the value of α.

Lemma 8.7 (Proof in Appendix D). Let N = 〈V, H = C,α〉 be a Cycle NI-NCG, ~S a Nash

equilibrium for N , G = G(~S), and P as in Lemma 8.6. If α > n− 2 then V (P ) 6= ∅, P 6= H, and

G is a tree.

This characterization of Nash equilibria in a Cycle NI-NCG allows us to bound the Price of

Anarchy:

Theorem 8.8 (Proof in Appendix D). Let N = 〈V,H = C, α〉 be a Cycle NI-NCG. Then:

PoA(N ) ≤





1 if α < 1

2− 2
α+2 if 1 ≤ α ≤ n− 2

1 + n−1
α+2 − 1

n if n− 2 < α ≤ 2n− 4

1 + n−2
α+4 if 2n− 4 < α

,

which is less than 2 for 1 ≤ α < 2n− 4, less than 3/2 for α ≥ 2n− 4, and goes to 1 as α →∞.

8.2.4 Lower Bound On The Price Of Anarchy

To show a lower bound on the Price of Anarchy for a Cycle NI-NCG, we present an explicit

construction of a Nash equilibrium.
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Definition 8.9 (Stretched Star Xk,n). Let N = 〈V,H = C, α〉 be a Cycle NI-NCG, and recall that

the players are V = {0, 1, ..., n− 1}. Let 2 ≤ k < n be an integer, such that n− k − 1 ≡ 0(mod 4).

The joint strategy Xk,n is defined as follows (Figure 8.1): players 0, ..., k − 1 each build a single

edge to their successor, i.e., player i ∈ [0, k) builds an edge to player i + 1. Player k does not build

any edges. Starting from players k + 1 and k + 2, each pair of players build a single edge to either

player 1 or player k − 1 in alternating order: players k + 1 and k + 2 both build a single edge to

player 1, players k + 3 and k + 4 both build a single edge to player k − 1, players k + 5 and k + 6

both build a single edge to player 1, etc..., until all players are exhausted.

Figure 8.1: Xk,n

Note that for k = 2, Xk,n is a star, and for k = n− 1, Xk,n is a line. Next, we show that that

Xk,n is a Nash equilibrium for certain values of α.

Lemma 8.10 (Proof in Appendix D). Let N = 〈V, H = C, α〉 be a Cycle NI-NCG and k an

integer such that 2 ≤ k < n and n − k − 1 ≡ 0(mod 4). If α ≥ k then Xk,n is a Nash equilibrium

for N .

We now use our construction to prove lower bounds on the Price of Anarchy.

Theorem 8.11 (Proof in Appendix D). For infinitely many n, for any α ≥ (n+1)/2, and any
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N = 〈V, H = C, α〉 (of n players and edge building price α), we have:

PoA(N ) ≥





1− 1
n + 1

4
n+1
α+2 for α < 2n− 4

1− 2
α+2 + n+1

4(α+4) for α ≥ 2n− 4

.

Additionally, for any n and any N = 〈V, H = C,α〉 with 2 ≤ α ≤ (n + 1)/2, if α is an integer for

which α ≡ n− 1 (mod 4), then:

PoA(N ) ≥ 2− 2
α + 2

− α− 2
n

− 6
(α + 2)n

.

Note that there is a gap between the lower and upper bounds. For large n the gap is roughly

0 for α = 2, increases to 3
4 as α goes from 2 to n− 2, and then decreases, going to 0 as α/n →∞

and n →∞. Figure 8.2 displays a chart of our bounds and the gap between them.

Figure 8.2: Cycle NI-NCG PoA Bounds (n = 2500)

8.2.5 The Price Of Stability

The Price of Stability for a Cycle NI-NCG is simple to analyze:
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Theorem 8.12. Let N = 〈V,H = C, α〉 be a Cycle NI-NCG. Then:

PoS(N ) =





1 if α ≤ n− 2

(
1 + 2

α+2

) (
1− 1

n

)
if n− 2 < α < 2n− 4

1 if α ≥ 2n− 4

.

Proof: The claim is trivial for α ≤ n − 2 and α ≥ 2n − 4, since in these cases, by Theorem 8.4

and Theorem 8.5 the social optimum is also a Nash equilibrium. For n − 2 < α < 2n − 4, all

Nash equilibria must be trees by Lemma 8.7. By Theorem 8.5, any line network is such a Nash

equilibrium, and by Lemma 8.3 it has lower social cost than any other tree network, hence it is the

Nash equilibrium of minimal social cost. The social cost of a line network is (α + 4)(n− 1), so the

Price of Stability is exactly:

PoS(N ) =
(α + 4)(n− 1)

(α + 2)n
=

(
1 +

2
α + 2

)(
1− 1

n

)
.

Note that it is possible to achieve a Price of Stability as close as we wish to 1 + 1
n − 2

n2 by

selecting α ≈ n−2. This proves the existence of NI-NCGs with non-constant α for which the Price

of Stability is not 1.



Chapter 9

A Weighted Interests Network

Creation Game

Our model for an NI-NCG contains several restrictions that we would like to eliminate. The fact

that for a given player v ∈ V , the distance cost is the straightforward sum of the distances to all its

friends, implies that the economic significance of efficient communications between any two friends

is identical. For example, it means that any player v is equally interested in efficient communications

with all its friends. It also means that if u1 is v1’s friend and u2 is v2’s friend, then it is equally

important for v1 to communicate efficiently with u1 as it is for v2 to communicate efficiently with

u2. Finally, our model is symmetric: if v is interested in communicating with u, then u is equally

interested in communicating with v. In real world network creation scenarios we can expect several

or all of these assumptions to be wrong.

We therefore study an extension of an NI-NCG where each player associates a non-negative

friendship weight with every other player. In our new game, the distance cost of each player is the

weighted sum of distances to all other players, instead of the straightforward sum of distances. We

develop upper bounds on the Price of Anarchy for this variant. Through our analysis of this new
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game, we also obtain results for additional variants, including an NI-NCG where friendship may be

asymmetric, and a game where the distance cost of a player is the expected distance to its friends

under some given distribution.

A weighted network creation game was also studied by Albers et. al. [AEED+06], but their

model did not permit zero friendship weights. Moreover, unless α is very large, their upper bound

approaches O(n) (a trivial bound) as wmin, the minimum friendship weight, approaches 0. Our

results allow 0 weights, are always O(
√

n), and are not as sensitive to outlier weights.

9.1 The Model

Formally, a network creation game with weighted interests (WI-NCG), is a tuple N = 〈V, f, α〉

where V = {1 . . . n} is the set of players, f : V × V → R+ ∪ {0} is a friendship weight function

and α ∈ R+ is an edge building price. Given a WI-NCG, we say that player u is player v’s friend

iff f(v, u) > 0. Note that unlike the NI-NCG, we do not require friendship to be symmetric. The

friendship graph of N , denoted H = H(N ), is the directed graph H = (V, EH) whose vertices

are the players V and edges are EH = {(v, u) : f(v, u) > 0}. Player v’s out-neighborhood in H,

denoted N+
H (v) = {u : (v, u) ∈ EH}, is also called the friend set of v. We say that v and u are

semi-friends if v is a friend of u or u is a friend of v. As before, we limit our discussion to NI-NCGs

for which H has no isolated vertices.

The definitions of strategies and costs of a WI-NCG are identical to the NI-NCG, except that

the distance cost for player v ∈ V is defined as DistN (~S, v) =
∑

u∈V f(v, u)δG(v, u). All definitions

of social optima, Nash equilibria, Price of Anarchy, Price of Stability, sensible joint strategies and

complete friendship responses remain as before. We use the same graph-theoretical notation as

before, but add the following notation. For any directed graph H = (VH , EH), we denote by

d+
H(v) = |N+

H (v)| the out-degree of vertex v in H, and by d̄+
H =

∑
v∈VH

d+
H(v)/|VH | the average



CHAPTER 9. A WEIGHTED INTERESTS NETWORK CREATION GAME 44

vertex out-degree of H. Additionally, we denote by F =
∑

v,u∈V,v 6=u f(v, u) the sum of all friendship

weights, by f̄V = F/n the average friendship weight per player, and by f̄H = F/|EH | = f̄V /d̄+
H the

average friendship weight over all edges in H. Note that since H has no isolated vertices, we must

have F > 0, f̄V > 0, and f̄H > 0.

Clearly, an NI-NCG is a special case of a WI-NCG where all friendship weights are 0 or 1

and friendship weights are symmetric. We also study certain additional special cases of a WI-

NCG: (1) an Asymmetric NI-NCG, where friendship weights are 0 or 1 but may be asymmetric,

and (2) a Distributional WI-NCG where the sum of friendship weights per player must be 1, i.e.,

∀v ∈ V,
∑

u∈V−{v} f(v, u) = 1. A distributional WI-NCG models a scenario where each player has

a probability distribution over all other players, and its distance cost is the expected distance to the

other players under this distribution. In a distributional WI-NCG the game is unbiased towards any

specific player, while in a general WI-NCG, the distances of players with higher outgoing friendship

weights have a larger impact on cost (both individual and social).

9.2 Upper Bound On The Price of Anarchy

We now present several upper bounds for the Price of Anarchy of a WI-NCG. Note that unlike the

NI-NCG, we do not show existence of Nash equilibria for a general WI-NCG. Hence, our upper

bound is contingent on the assumption that Nash equilibria exist. We first show that our previous

upper bound on the Price of Anarchy for the NI-NCG from Theorem 5.10 still holds, if we replace

α by α/f̄H and d̄H by d̄+
H , and disregard the special cases for α ≤ 2. The proof has the same

structure as our proof of Theorem 5.10.

Theorem 9.1 (Proof in Appendix E). Let N = 〈V, f, α〉 be a WI-NCG, and assume that a
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Nash equilibrium exists. Let α̂ = α/f̄H . Then:

PoA(N ) ≤ 3 +
d̄+

H

α̂/2 + d̄+
H

min
(

α̂, 2 log2 n− 2 + min
(

n− 2, 2
√

(n− 2)α̂/d̄+
H

))

= O


1 + min


α̂, d̄+

H , log n +

√
nα̂

d̄+
H

,

√
nd̄+

H

α̂





 = O(

√
n) .

Note that given a WI-NCG, multiplying both α and f by the same positive constant c yields a

game which is equivalent in the sense that its player and social costs are c times the costs of the

original game. The use of α̂ instead of α in our bound therefore makes sense, since it is independent

of this “scaling factor”.

The bound in Theorem 9.1 is, however, somewhat awkward, because it produces a bound that

is far too large when the game has many small positive friendship weights. Specifically, the use

of the parameters d̄+
H and α̂ means that by modifying certain friendship weights that are zero

to be positive and very small, we can increase the bound substantially. Note that we sometimes

indeed expect a “jump” in the social cost of the social optimum and worst Nash equilibrium when

we apply such a modification, since there is a fundamental difference between zero weights and

nonzero weights. While a zero friendship weight between players allows them to be in different

connected components in the network, a nonzero weight (as small as it may be) requires them to

at least be in the same connected component. Therefore, in some cases, changing zero weights to

small positive weights may require the construction of additional edges in the network, regardless

of the actual value of the new weights, producing a “jump” in the social costs of the social optimum

and Nash equilibria. However, our claim is that Theorem 9.1 produces a “jump” that is much too

large. We explain this behavior through the following example.

Example 9.2. Let N = 〈V, H, α〉 be an NI-NCG with 2k players (k ≥ 2) denoted {1, 2, . . . , 2k −

1, 2k}, such that α = 1/2 and the players are divided into disjoint pairs of friends, i.e., players

2i − 1 and 2i are friends, for any i ∈ {1, k}. By Theorem 4.2 and Theorem 4.4 the unique social
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optimum network and unique Nash equilibrium network are both H itself, hence PoA(N ) = 1.

Clearly, N can also be viewed as a WI-NCG N = 〈V, f, α〉, in which case every edge in H is

replaced by two directed edges in opposite directions, and f assigns weight 1 to every such edge

and weight 0 to any other pair of players. Viewed as a WI-NCG, we have f̄H = 1, d̄+
H = 1 and

α̂ = 1/2. Theorem 9.1 therefore produces an upper bound PoA(N ) = O(1). We now construct a

new WI-NCG, N ′ = 〈V, f ′, α〉, where:

f ′(v, u) =





1 if (v, u) ∈ EH

ε if v ≡ u ≡ 0 (mod 2)

,

for some ε > 0. In other words, N ′ is N after modifying the 0 weights between all pairs of even

players to ε. The cost of the social optimum for N ′ is at least α(2k−1)+2k since all players must be

in the same connected component. For small enough ε, it is easy to see that any Nash equilibrium

network of N ′ must still be a tree containing H. Therefore the cost of any Nash equilibrium for

N ′ is at most α(2k− 1) + 2k + ε(2k− 1)k(k− 1). Therefore we have PoA(N ) ≤ 1 + εk(k− 1), and

selecting ε < 1
k(k−1) ensures PoA(N ) < 2. Note that while there is a jump in the costs, the effect

on the Price of Anarchy is small.

On the other hand, let H ′ = H(N ′) be the friendship graph of N ′. Clearly, d̄+
H′ = k+1

2 , and:

f̄ ′H′ =
F ′

k(k + 1)
=

2k + εk(k − 1)
k(k + 1)

=
2

k + 1
+ ε

(
1− 2

k + 1

)
,

so by selecting ε to be small enough we can have f̄ ′H′ as close as we wish to 2
k+1 , and α̂ as close

as we wish to k+1
4 . Specifically for ε < 1

k(k−1) we have k+1
5 < α̂ < k+1

4 . By Theorem 9.1 in such a

case we will have:

PoA(N ′) = O(
√

k) .

Therefore, for small ε, we have a very large gap between the Price of Anarchy for N ′ and our bound

from Theorem 9.1. Moreover, the bound itself exhibits a very large difference between N and N ′,
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even though the game parameters are as similar as we wish.

It is also possible to construct a similar example where both games have a single connected

component, i.e., the difference between zero weights and nonzero weights is not as fundamental,

but the bound “jumps” around zero weights nonetheless. We can trace this behavior of Theorem

9.1 to our proof of the weighted equivalent of Lemma 5.1. The proof of this lemma relies on an

analysis of the complete friendship response for player v ∈ V . However, when v has many friends

with very small friendship weights, the complete friendship response is obviously a bad choice of

alternative strategy for v, since building edges to all these friends costs much but has a small impact

on distance cost. What we would like to do is devise some kind of partial friendship response that

takes this into account. This is achieved by the following lemma.

Lemma 9.3. Let N = 〈V, f, α〉 be a WI-NCG and ~S a Nash equilibrium for N . Let Hh = (V, Eh)

be a directed graph where Eh = {(v, u) ∈ EH : f(v, u) > α
n−2}, i.e., Hh is the subgraph of H = H(N )

with all friendship edges of “heavy” weight (greater than α
n−2). Denote l̄V = 1

n

∑
(v,u)∈EH−Eh

f(v, u),

i.e., l̄V is the average cumulative “light” friendship weight per player. Then:

CN (~S) < n(α(d̄+
Hh

+ 1) + f̄V + (n− 2)l̄V ) .

Proof: Let G = G(~S), and T a spanning forest for G. Let v ∈ V be any player, and denote

Tv = Sv ∩NT (v), i.e., Tv is a strategy of v that builds only the edges in Sv that are also in T . We

define an alternative strategy S′v as follows:

S′v = Tv ∪N+
Hh

(v) ,

i.e., S′v builds edges to all friends of v with friendship weight higher than α
n−2 , and also all edges

built in Sv that belong to T . Clearly |S′v| ≤ |Tv| + d+
Hh

(v). Let ~S′ = (~S−v, S
′
v) be the deviation

of v to S′v in ~S, and G′ = G(~S′). Clearly G′ contains T . Since v must be in the same connected
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component as all its friends in G, we conclude that it must be in the same connected component

as all its friends in G′, hence the distance in G′ between v and any friend is at most n − 1. The

distance in G′ between v and any friend u ∈ N+
Hh

(v) is exactly 1. Denoting fv =
∑

u∈N+
H(v) f(v, u)

and lv =
∑

u∈N+
H(v)−N+

Hh
(v) f(v, u), we conclude that v’s cost in ~S′ is at most:

CN (~S′, v) ≤ α|Tv|+ αd+
Hh

(v) +
∑

u∈N+
Hh

(v)

f(v, u) +
∑

u∈N+
H(v)−N+

Hh
(v)

f(v, u)(n− 1)

= α|Tv|+ αd+
Hh

(v) + fv + lv(n− 2) .

Since v is playing a best response in ~S this must be at least v’s cost in ~S. Summing over all players

v ∈ V we get:

CN (~S) ≤ α
∑

v∈V

|Tv|+ αnd̄+
Hh

+ nf̄V + n(n− 2)l̄V ,

and since for every edge (v, u) ∈ E(T ) we have either u ∈ Tv or v ∈ Tu, but not both (since ~S must

be sensible), we conclude that
∑

v∈V |Tv| ≤ n− 1 < n, hence:

CN (~S) < n(α(d̄+
Hh

+ 1) + f̄V + (n− 2)l̄V ) .

Note that the choice of our weight threshold, α
n−2 , has no impact on the proof, but it achieves

the minimal bound, and also guarantees that this bound is continuous. Using Lemma 9.3 we can

now revise our upper bound.

Theorem 9.4 (Proof in Appendix E). Let N = 〈V, f, α〉 be a WI-NCG, and assume that a

Nash equilibrium exists. Then:

PoA(N ) ≤ 3 +
f̄V

α/2 + f̄V
min

(
α

d̄+
Hh

f̄V
+ (n− 3)

l̄V
f̄V

, 2 log2 n− 2 + 2
√

(n− 2)α/f̄V

)

= O(
√

n) .

Applied to Example 9.2, for k ≥ 4 and ε < 1/k(k−1), we have d̄+
Hh

= 1, f̄V = 1+ε(k−1)/2 > 1,

and l̄V = ε(k − 1)/2 < 1
2k . We therefore have α

d̄+
Hh

f̄V
+ (n − 3) l̄V

f̄V
≤ 1

2 + 2k 1
2k = 3

2 , and therefore

Theorem 9.4 produces a bound of O(1), as we wanted.
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For an asymmetric NI-NCG we have f̄V = d̄+
H . If α < n − 2 then all friendship edges are

“heavy”, hence d̄+
Hh

= d̄+
H and l̄V = 0. If α ≥ n − 2 then all friendship edges are “light”, hence

d̄+
Hh

= 0 and l̄V = f̄V . We therefore have the following corollary:

Corollary 9.5 (Asymmetric NI-NCG PoA Upper Bound). Let N = 〈V, f, α〉 be an asym-

metric NI-NCG. Then:

PoA(N ) ≤ 3 +
d̄+

H

α/2 + d̄+
H

min
(

α, n− 2, 2 log2 n− 2 + 2
√

(n− 2)α/d̄+
H

)

= O(
√

n) .

Note that for an NI-NCG (symmetric), Corollary 9.5 provides a better numeric upper bound

than Theorem 5.10 when α ≥ (n − 2)max(1, d̄H/4). For a distributional WI-NCG, since f̄V = 1,

we have:

Corollary 9.6 (Distributional WI-NCG PoA Upper Bound). Let N = 〈V, f, α〉 be a distri-

butional WI-NCG. Then:

PoA(N ) ≤ 3 +
1

α/2 + 1
min

(
αd̄+

Hh
+ (n− 3)l̄V , 2 log2 n− 2 + 2

√
(n− 2)α

)

= O(
√

n) .



Chapter 10

Topics for Further Research

Any improvement of our upper and lower bounds on the Price of Anarchy would be good news.

The techniques used in [AEED+06] to achieve an O(n1/3) upper bound on the Price of Anarchy of

the complete interest game do not seem directly applicable to an NI-NCG since they rely heavily

on large intersections of the friend sets of the players. We would also like to see a resolution of

the question of Nash equilibrium existence for α ∈ (1, 2) and g(H) ∈ {3, 4}, or α ∈ [1.5, 2) and

g(H) = 5, as well as the WI-NCG. There are several additional open questions and topics that may

merit further research:

• We have studied the loss of efficiency in a fully uncoordinated and selfish setting. Studying

the loss of efficiency in other settings seems desirable. Especially interesting is the solution

concept of a Strong Equilibrium and the related Strong Price of Anarchy, which models the

loss of efficiency when player coalitions are allowed. These concepts were studied in [AFM07]

for the complete interest game.

• We have studied the specific classes of a cycle and a forest. We also have partial results for

friendship graphs with large girth and degree in Chapter 6. Additional interesting classes of
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friendship graphs, that are relevant for various real world scenarios, include grids, degenerate

graphs, hypercubes, random graphs and expanders.

• Our model, while nonuniform in the players’ friend sets and (in a WI-NCG) the friendship

weights, still employs a uniform edge building cost function and edge efficiency function.

Various extensions of the model in this respect are interesting, including nonuniform distances

for the network edges, nonuniform edge building costs, and more elaborate payment functions

where edge efficiency is determined by the amount paid for it.

• Most research for this class of network creation games has been focused, so far, on the

theoretical bounds for loss of efficiency. There are various algorithmic, computational and

mechanism design topics related to our model of network creation by distributed agents, that

have received little attention. A progression to research of these issues would be both natural

and useful.
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[RT02] T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the ACM

(JACM), 49(2):236–259, 2002.

[Sau67] N. Sauer. Extremaleigenschaften regularer Graphen gegebener Taillenweite I and II.

Sitzungberichte Osterreich Akad. Wiss. Math. Vatur. Kl. SB II, 176:9–25, 1967.

[Vet02] A. Vetta. Nash equilibria in competitive societies, with applications to facility location,

traffic routing and auctions. Foundations of Computer Science, 2002. Proceedings. The

43rd Annual IEEE Symposium on, pages 416–425, 2002.

[Wal65a] H. Walther. Eigenschaften von regularen Graphen gegebener Taillenweite und mini-

maler Knotenzahl. Wiss. Z. Techn. Hochsch. Ilmenau, 11:167–168, 1965.

[Wal65b] H. Walther. Uber regulare Graphen gegebener Taillenweite und minimaler Knotenzahl.

Wiss. Z. Techn. Hochsch. Ilmenau, 11:93–96, 1965.

[Wei84] A. Weiss. Girths of bipartite sextet graphs. Combinatorica, 4:241–245, 1984.



Appendix A

Proofs From Chapter 4

Theorem 4.2 (Restated). Let N = 〈V, H, α〉 be an NI-NCG with α ≤ 2. Then H is a social

optimum network, and any sensible joint strategy ~S that creates it (i.e., ~S ∈ S(H)) is a social

optimum. Furthermore, for α < 2, H is the unique social optimum network.

Proof: Let ~S be a social optimum. We first prove for α < 2. If there is a pair of friends v, u ∈

V, (v, u) ∈ EH that are not adjacent in G(~S), then modifying ~S by building the edge between v and

u (in any direction) increases the social edge building cost by α, and reduces the social distance cost

by at least 2 (1 for every direction of the friendship relation), which yields a social cost reduction,

contradicting the optimality of ~S. Therefore H ⊆ G(~S), which implies H = G(~S) (since removing

any excess edges decreases the cost), proving that H is a unique social optimum network (there

must be at least one social optimum, of course).

Similarly, for α = 2, if there is a pair of friends v, u ∈ V, (v, u) ∈ EH that are not adjacent in

G(~S), then modifying ~S by building the edge between v and u cannot increase the social cost, so

the resulting joint strategy must also be a social optimum. Therefore by repeatedly adding missing

edges from H to the joint strategy, starting from ~S, we always obtain a social optimum. We can

add edges this way until we get some social optimum ~S′, for which H ⊆ G(~S′). This will necessarily
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happen after a finite number of steps, and then we must also have H = G(~S′), proving that H is a

social optimum network (albeit, not necessarily unique).

Lemma 4.3 (Restated). Let N = 〈V, H, α〉 be an NI-NCG, ~S a social optimum for N , and

G = G(~S). Then |E(G)| ≤ |EH | with equality possible if and only if G = H.

Proof: Let ~SH ∈ S(H) be any sensible joint strategy that creates the network H. The joint

strategy ~SH achieves the absolute minimum social distance cost, hence DistN (~S) ≥ DistN (~SH).

Since ~S is a social optimum, we must have CN (~S) ≤ CN (~SH). These two inequalities imply that

BN (~S) ≤ BN (~SH), and since ~SH builds exactly |EH | edges, we have |E(G)| ≤ |EH |.

If equality holds, then BN (~S) = BN (~SH), which implies that DistN (~S) = DistN (~SH) (other-

wise ~S would not be a social optimum). This is only possible if ~S achieves distance 1 between any

pair of friends, i.e., EH ⊆ E(G). Since |E(G)| = |EH | we must have G = H.

Theorem 4.4 (Restated). Let N = 〈V, H, α〉 be an NI-NCG with α ≤ 1. Then H is a Nash

equilibrium network, and any joint strategy ~S ∈ S(H) is a Nash equilibrium. Furthermore, for

α < 1, H is the unique Nash equilibrium network.

Proof: We start with the case α ≤ 1. Let ~S be any sensible joint strategy that creates H. For

any v ∈ V , v’s strategy in ~S is a complete friendship response, which achieves the smallest possible

distance cost. Therefore v can only hope to reduce its cost by a unilateral deviation if it deviates

to a strategy that builds less edges. But if v builds k fewer edges, it will have at least k friends that

are non-adjacent in the new network. The distance to each one of these will be at least 2, which is

an increase of at least 1, for an overall increase of distance cost of at least k. The decrease in edge

building cost is αk ≤ k, so no cost reduction is possible. This completes the proof for α ≤ 1.

If α < 1, let ~S be any Nash equilibrium for the game and let G = G(~S) be the network it

creates. If (v, u) is a friendship edge not included in G, then v would prefer to deviate by building
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this additional edge to u, since the reduction in its distance cost would be at least 1, and α−1 < 0.

This contradicts the fact that v is playing a best response in ~S, so we conclude that H ⊆ G. If

G 6= H then there is an edge (v, u) ∈ E(G)−EH . Assume w.l.o.g that this edge is built by v in ~S.

Then v would benefit from removing this edge, since it has distance 1 to all its friends even without

it (because H ⊆ G and (v, u) /∈ EH). This is a contradiction, hence G = H, which completes the

proof for α < 1.

Theorem 4.5 (Restated). Let N = 〈V,H, α〉 be an NI-NCG with α ≥ 2. There exists a Nash

equilibrium for N whose cost is at most n(α + 2d̄H).

Proof: We show an explicit construction of a Nash equilibrium. We denote by m the number of

connected components in H, and by Vi the set of vertices in component i. Let ~S∗ be the joint

strategy defined by the following process, performed independently for each connected component

of H: for connected component i ∈ {1 . . . m}, we initialize Ui = Vi, where Ui denotes the set of

players we need to assign a strategy in ~S∗. At each iteration, we search for two players v, u ∈ Ui

such that u is v’s only friend in Ui, i.e., |NH(v) ∩ Ui| = {u} (we choose an arbitrary pair if more

than one exists). We remove v from Ui, and set v’s strategy in ~S∗ to be S∗v = {u} (i.e., v builds a

single edge to u). We repeat this process until we cannot find such a pair. Note that before the

first step Ui 6= ∅, and after every step we have u ∈ Ui, hence necessarily Ui 6= ∅ when the process

ends. We now select an arbitrary ri ∈ Ui, and let Ai = Ui−{ri}. For any player v ∈ Ai, we set the

strategy of v in ~S∗ to be S∗v = {ri} (i.e., v builds a single edge to ri). Finally, we set the strategy

of ri to be S∗ri
= ∅. We denote U =

⋃m
i=1 Ui (at the end of the construction), and by G∗ = G(~S∗)

the network created by ~S∗.

Our construction process uses arbitrary choices, so it actually generates a family of joint strate-

gies and not a single joint strategy. Our claims and proofs hold for any ~S∗ in this family. The

following characteristics of ~S∗ and G∗ are easily verifiable:
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• Each connected component of G∗ is a rooted tree with a root ri, and hence G∗ is a forest.

• The players ri do not build edges. All other players build a single edge to their parent in G∗.

Players in V − U build this single edge to a friend.

• All players in V − U are using complete friendship responses in ~S∗.

• The distance in G∗ between any two friends is 1 or 2.

• For any component i and player v ∈ Ai, v has at least two friends in Ui = Ai ∪ {ri}.

We claim that ~S∗ is a Nash equilibrium. Let v ∈ V be a player, and let S∗v be v’s strategy in

~S∗ and S′v be some alternative strategy for v. Let i indicate the connected component of H that v

belongs to. We split our analysis into several cases:

1. v = ri

In this case, v has distance 1 from all its friends in the network G∗ without building any

edges, and so no unilateral deviation can reduce its cost.

2. v ∈ V − U

In this case S∗v is a complete friendship response for v in ~S∗. Therefore v can benefit by

unilateral deviation to S′v only if S′v builds fewer edges, i.e., S′v = ∅. This would cause v to

become disconnected from a friend of his (specifically, his parent in G∗), yielding infinite cost.

Therefore, no cost reduction is possible.

3. v ∈ Ai

We denote by x the number of new edges built in S′v (i.e., x = |S′v − S∗v |). Since the distance

to a friend is at most 2, each such edge can reduce the network distance to at most one friend

of v, by at most 1, for a total distance reduction of at most x. If S′v does not remove any
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edges built in S∗v , then the edge building cost for v increases by xα ≥ x, so no cost reduction

is possible. If S′v only removes the edge in S∗v (without building any new edges), then since

v must have friends in Ai, S′v disconnects it from at least one friend and yields infinite cost,

so no cost reduction is possible. Therefore, the only possibility for cost reduction is if S′v

removes the edge in S∗v but builds at least one new edge (i.e., x ≥ 1). In this case, the edge

building cost increase is exactly (x− 1)α. We have two sub-cases:

• v and ri are friends

In this case, the distance cost reduction is at most x− 1 (at most x for the new edges,

minus at least 1 for the distance increase to ri). Therefore the total cost increase is at

least (x− 1)(α− 1). Since α ≥ 1 and x ≥ 1 this yields no total cost reduction.

• v and ri are not friends

The distance cost reduction is at most x, so the total cost increase is at least (x−1)α−x ≥

x−2, since α ≥ 2. Therefore, if x ≥ 2 there is no cost reduction. If x = 1 then v improves

the distance cost to at most one friend by at most 1. But by doing so while removing

the edge to ri, it increases the distance to any other friend in Ai by at least 1. Since v

must have at least one such additional friend in Ai (it has at least 2 friends in Ui, none

of which can be ri in this case), we conclude that the distance cost cannot be reduced.

Since the edge building cost is unchanged, no total cost reduction is possible for x = 1

either.

Therefore no alternative strategy for any player v yields a total cost improvement, so ~S∗ is a

Nash equilibrium. Since every player builds at most one edge, and the distance between any two

friends is at most 2, the cost of ~S∗ is at most nα + 4|EH | = n(α + 2d̄H).



Appendix B

Proofs From Chapter 5

Theorem 5.2 (Restated). Let N = 〈V, H, α〉 be an NI-NCG, and assume that a Nash equilibrium

exists. Then:

PoA(N ) ≤





1 if 0 < α < 1

2− 2
α+2 if 1 ≤ α ≤ 2

1 + d̄Hα
α/2+d̄H

if 2 < α

= O(1 + min(α, d̄H)) .

Proof: For α < 1 the Price of Anarchy must obviously be 1 since H is the unique Nash equilibrium

network (Theorem 4.4) and also a social optimum network (Theorem 4.2). For 1 ≤ α ≤ 2, H is a

social optimum network (Theorem 4.2), so using Lemma 5.1 we have:

PoA(N ) ≤ (α + 1)nd̄H

αnd̄H/2 + nd̄H
=

α + 1
α/2 + 1

= 2− 2
α + 2

.

For α > 2, we use our lower bound on social optimum cost from Theorem 4.1 to obtain:

PoA(N ) ≤ (α + 1)nd̄H

n(α/2 + d̄H)
≤ 1 +

d̄Hα

α/2 + d̄H
≤ 1 + min(α, 2d̄H) = O(1 + min(α, d̄H)) .

62
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Lemma 5.4 (Restated). Let N = 〈V, H, α〉 be an NI-NCG, ~S a Nash equilibrium for N and

G = G(~S). If v builds an edge to u in ~S (i.e., u ∈ Sv), then α ≤ w(v, u)(δG′(v, u)− 1), where G′ is

the graph G without the edge (v, u).

Proof: If v and u become disconnected in G′ then the claim is obvious (since then δG′(v, u) = ∞).

Let us therefore assume that they remain connected in G′. Let ~S′ = (~S−v, Sv−{u}) be the unilateral

deviation of v obtained by removing the edge to u. Clearly ~S′ creates the network G′. To bound

the change in distance cost for v, we notice that the set of friends whose distance from v changes

as a result of the deviation is exactly ΓH
G (v, u). For any such friend x ∈ ΓH

G (v, u), we must have

δG(u, x) = δG′(u, x). Using this and the triangle inequality we have:

δG′(v, x) ≤ δG′(v, u) + δG′(u, x) = δG′(v, u) + δG(u, x) = δG′(v, u) + δG(v, x)− 1,

and therefore δG′(v, x)− δG(v, x) ≤ δG′(v, u)− 1. Summing this over all x ∈ ΓH
G (v, u) we get that

the change in distance cost for v is at most w(v, u)(δG′(v, u)−1). Since v is playing a best response

in ~S, the increase in distance cost must be at least as much as the reduction in edge building cost

for v, and the latter is precisely α, which completes the proof.

Theorem 5.6 (Restated). Let N = 〈V, H, α〉 be an NI-NCG, and ~S a Nash equilibrium of N .

Then:

BN (~S)
OPT (N )

≤ 3 +
d̄H

α/2 + d̄H
(2 log2 n− 3) = O

(
1 + min

(
1,

d̄H

α

)
log n

)
= O(log n) .

Proof: Let G = G(~S). We select β = α
2 log2 n and using Lemma 5.5 we get:

d̄G ≤ 1 +
4d̄H log2 n

α
+ n1/ log2 n = 3 +

4d̄H log2 n

α
.

The number of edges built by ~S is 1
2nd̄G, so using the lower bound on the social optimum cost from
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Theorem 4.1 we obtain:

BN (~S)
OPT (N )

≤ αnd̄G/2
n(α/2 + d̄H)

≤
3α
2 + 2d̄H log2 n

α/2 + d̄H
= 3 +

d̄H

α/2 + d̄H
(2 log2 n− 3)

≤ 3 + 2 min
(

1,
2d̄H

α

)
log2 n = O

(
1 + min

(
1,

d̄H

α

)
log n

)
= O(log n) .

Lemma 5.7 (Restated). Let N = 〈V, H, α〉 be an NI-NCG, ~S a joint strategy and G = G(~S).

Let v ∈ V be a player who is playing a best response in ~S. Let T be a shortest path tree of v in

G. For any vertex u ∈ V (T ) (note that it is possible that V (T ) 6= V ), denote by ku the number of

friends of v that are descendants of u in T (including, possibly, u itself). Then:

∀u ∈ V (T ), α ≥ (δG(v, u)− 1)ku .

Proof: If δG(v, u) ≤ 1 then the claim is trivial. We therefore assume that u is not v and not

adjacent to v in G. Let us consider a deviation for v in ~S, in which it builds an additional edge to

u. Any vertex w that is a descendant of u in T has a shortest path from v that goes through u, so

in the alternative strategy it will have a new, shorter path, that uses the new edge instead of the

original segment from v to u. For each such w the reduction in distance is at least δG(v, u) − 1,

and for any other vertex the distance cannot increase, so the total decrease in distance cost for v

is at least (δG(v, u)− 1)ku. Since v is playing a best response this must be at most the increase in

v’s edge building cost, which is precisely α.

Theorem 5.9 (Restated). Let N = 〈V, H, α〉 be an NI-NCG and ~S a Nash equilibrium for N .

Then:

DistN (~S)
OPT (N )

≤ d̄H

α/2 + d̄H

(
1 + min(n− 2, 2

√
(n− 2)α/d̄H)

)

= O

(
1 + min

(
1,

d̄H

α

)
min

(
n,

√
nα

d̄H

))
= O(

√
n)

Proof: Summing the bound in Lemma 5.8 over all v ∈ V yields:

DistN (~S) ≤ nd̄H + 2
√

(n− 2)α
∑

v∈V

√
dH(v) .
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Using the Cauchy-Schwartz inequality we obtain:

∑

v∈V

√
dH(v) ≤

√
n

∑

v∈V

dH(v) = n
√

d̄H ,

hence:

DistN (~S) ≤ nd̄H + 2n
√

(n− 2)αd̄H .

Since all friend pairs must be connected in ~S, the distance between any two friends is at most n−1,

hence DistN (~S) ≤ nd̄H(n− 1). Combining the two bounds we get:

DistN (~S) ≤ nd̄H

(
1 + min

(
n− 2, 2

√
(n− 2)α/d̄H

))
,

and dividing by the lower bound on social optimum (from Theorem 4.1) we get:

DistN (~S)
OPT (N )

≤ d̄H

α/2 + d̄H

(
1 + min(n− 2, 2

√
(n− 2)α/d̄H)

)

≤ 1 + min
(

1,
2d̄H

α

)
min

(
n− 2, 2

√
(n− 2)α

d̄H

)

= O

(
1 + min

(
1,

d̄H

α

)
min

(
n,

√
nα

d̄H

))
.

Theorem 5.10 (Restated). Let N = 〈V, H, α〉 be an NI-NCG, and assume that a Nash equilib-

rium exists. Then:

PoA(N ) ≤





1 if 0 < α < 1

2− 2
α+2 if 1 ≤ α ≤ 2

3 + d̄H

α/2+d̄H
min

(
α, 2 log2 n− 2 + min

(
n− 2, 2

√
(n− 2)α/d̄H

))
if 2 < α

= O

(
1 + min

(
α, d̄H , log n +

√
nα

d̄H
,

√
nd̄H

α

))
= O(

√
n) .

Proof: For α ≤ 2 the claim follows trivially from Theorem 5.2. For α > 2, combining our bounds

from Theorem 5.9 and Theorem 5.6 we get:

PoA(N ) ≤ 3 +
d̄H

α/2 + d̄H

(
2 log2 n− 2 + min

(
n− 2, 2

√
(n− 2)α/d̄H

))
.
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Combining the bound from Theorem 5.2 we have:

PoA(N ) ≤ 3 +
d̄H

α/2 + d̄H
min

(
α, 2 log2 n− 2 + min

(
n− 2, 2

√
(n− 2)α/d̄H

))

≤ 3 + min(1, 2d̄H/α)min
(

α, 2 log2 n + n− 4, 2 log2 n− 2 + 2
√

(n− 2)α/d̄H

)

= O

(
1 + min(1, d̄H/α)min

(
α, n, log n +

√
nα/d̄H

))

= O

(
1 + min

(
α, d̄H , n,

nd̄H

α
, log n +

√
nα/d̄H ,

d̄H

α
log n +

√
nd̄H/α

))
. (B.1)

The third case in the minimum, n, is never minimal since d̄H < n. We now want to show that the

term d̄H
α log n can be removed from the last case in the minimum. For α < d̄H we have that the

fifth case in the minimum is smaller than the last, i.e., log n+
√

nα/d̄H < d̄H
α log n+

√
nd̄H/α. For

α ≥ d̄H and n ≥ 16 we have that:

(
d̄H

α
log n

)2

≤ d̄H

α
log2 n ≤ nd̄H

α
,

hence d̄H
α log n ≤

√
nd̄H/α so the term d̄H

α log n is insignificant in (B.1) in any case and can be

removed.

For the fourth case in the minimum in (B.1), nd̄H/α, we notice that for any x ≥ 0 we have

1 + x ≥ 1
2(1 +

√
x), and setting x = nd̄H/α gives that 1 + nd̄H/α = Ω(1 +

√
nd̄H/α), so removing

this case from the minimum does not change the bound. These simplifications yield the following

upper bound:

PoA(N ) = O

(
1 + min

(
α, d̄H , log n +

√
nα

d̄H
,

√
nd̄H

α

))
.

Theorem 5.11 (Restated). Let N = 〈V,H, α〉 be an NI-NCG, ~S a Nash equilibrium for N , and

G = G(~S). Denote γ = 4 d̄H
α log2 n. If γ > 1 then:

BN (~S)
OPT (N )

≤ α

α + 2d̄H

(
1 + η

γ

log2 γ

)

= O


min

(
1,

d̄H

α

)
log n

log
(
4 d̄H

α log n
)


 = O


 log n

log
(
4 d̄H

α log n
)


 ,
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where η = 2 + 1
e ln(2)−1 ≈ 3.131.

Proof: First, notice that for any x > 0 we have x/e ≥ ln x. Hence, for γ ≥ 1 we obtain using

x = log2 γ that:

log2 γ − log2 log2 γ ≥ x− lnx/ ln(2) ≥ x

(
1− 1

e ln(2)

)
=

1
η − 1

log2 γ > 0 . (B.2)

Therefore, selecting:

β = 2d̄H
log2 γ − log2 log2 γ

γ

guarantees β > 0. Using Lemma 5.5 with this β (and using inequality (B.2) again) we obtain:

d̄G ≤ 1 +
γ

log2 γ − log2 log2 γ
+ n

log2 γ−log2 log2 γ
log2 n = 1 +

γ

log2 γ − log2 log2 γ
+

γ

log2 γ

≤ 1 +
γ

log2 γ

(
1

1/(η − 1)
+ 1

)
= 1 + η

γ

log2 γ
.

We now use the lower bound on the social optimum from Theorem 4.1 to obtain:

BN (~S)
OPT (N )

≤ αnd̄G/2
n(α/2 + d̄H)

≤ α

α + 2d̄H

(
1 + η

γ

log2 γ

)

= O


min

(
1,

d̄H

α

)
log n

log
(

4d̄H
α log n

)

 = O


 log n

log
(

4d̄H
α log n

)

 .

Note that we can’t simply eliminate the 4 constant, since we need a guarantee that the log in

the denominator is positive. Requiring γ > 4 (instead of γ > 1) would allow us to eliminate this

constant.

Lemma 5.12 (Restated). Let N = 〈V, H, α〉 be an NI-NCG, ~S a Nash equilibrium for N , and

G = G(~S). Denote by VR the set of players that have friends that are not adjacent to them in G

and by Vr the set of players that build at least one edge to a non-friend. Let RH(~S) = |VR| and

rH(~S) = |Vr|. Then:

|E(G)| ≤ |EH | − RH(~S)− rH(~S)
2

≤ |EH | ,
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and:

BN (~S)
OPT (N )

≤ d̄Hα

α + 2d̄H
= O(min(α, d̄H)) .

Proof: Obviously if a player v builds an edge to a non-friend u, then it cannot be adjacent in G to

all its friends, because in that case it would benefit from not building the edge (v, u). This implies

that Vr ⊆ VR.

We also denote by kv = |Sv − NH(v)| the number of edges v builds to non-friends, and by

mv = |NH(v)−NG(v)| the number of friends of v that are not adjacent to it in G. Clearly kv = 0

iff v /∈ Vr and mv = 0 iff v /∈ VR. Also,
∑

v∈V kv = |E(G)− EH | (because ~S must be sensible) and

∑
v∈V mv = 2|EH − E(G)|.

For any v ∈ Vr, we consider the set:

Wv =
⋃

u∈Sv−NH(v)

ΓH
G (v, u) ,

i.e., the set of all w that are friends of v for which there is a single edge built by v to a non-friend

u, that is included in all shortest paths from v to w. The sets ΓH
G (v, u) in the union are pairwise

disjoint (by definition of ΓH
G (v, u)), so the size of Wv is the sum of their sizes. There are kv sets in

the union, and for each set we must have |ΓG(v, u)| ≥ 2, by Lemma 6.2 (since v builds an edge to

u and u is not a friend of v). Therefore |Wv| ≥ 2kv. On the other hand, all members of Wv are

friends of v that are not adjacent to v in G, so |Wv| ≤ mv. Combining these two bounds we get

2kv ≤ mv. Summing over all v ∈ Vr we get:

2|E(G)−EH | ≤
∑

v∈Vr

mv =
∑

v∈VR

mv −
∑

v∈VR−Vr

mv =
∑

v∈V

mv −
∑

v∈VR−Vr

mv

For any v ∈ VR − Vr we know that mv ≥ 1. So we get:

2|E(G)−EH | ≤ 2|EH − E(G)| − (RH(~S)− rH(~S))

or

|E(G)− EH | ≤ |EH −E(G)| − RH(~S)− rH(~S)
2

≤ |EH − E(G)|
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where the right inequality is due to Vr ⊆ VR. Adding |E(G)∩EH | to all sides proves the first part

of the lemma. The second part follows by BN = |E(G)|α ≤ nd̄Hα/2 and Theorem 4.1.



Appendix C

Proofs From Chapter 6

Lemma 6.1 (Restated). Let N = 〈V, H, α〉 be an NI-NCG, ~S a joint strategy of N and G = G(~S).

Let v ∈ V be some player and u ∈ NH(v) a friend of v. If v’s strategy, Sv, is a best response in ~S,

then δG(v, u) ≤ min(α + 1, n− 1).

Proof: If v and u are adjacent in G the claim is trivial. Let us therefore assume they are not

adjacent in G. Clearly v and all its friends must be in the same connected component in G (otherwise

v could strictly improve its cost by adding edges to all its disconnected friends). Therefore δG(v, u) ≤

n− 1. Moreover, since v’s cost is finite, if v were to build an additional edge to u it would exhibit

an additional edge building cost of α, but reduce its distance cost by at least δG(v, u)− 1. Since v

is playing a best response in ~S we conclude that necessarily α− (δG(v, u)−1) ≥ 0, which completes

the proof.

Lemma 6.2 (Restated). Let N = 〈V, H, α〉 be an NI-NCG, ~S a joint strategy and G = G(~S).

Let v be a player that is playing a best response in ~S. If v builds an edge to u, and u is not a friend

of v, then |ΓH
G (v, u)| ≥ 2.

Proof: If |ΓH
G (v, u)| = 0 then v can deviate by removing the edge to u, thus reducing its edge

70
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building cost without increasing its distance cost, yielding a total cost reduction, contradicting the

fact that v is playing a best response in ~S. If |ΓH
G (v, u)| = 1 then let w be the single element of

ΓH
G (v, u). It is impossible that u = w because u is not a friend of v, so δG(v, w) > 1. Therefore,

adding the edge (v, w) strictly reduces the distance cost, and subsequently removing the edge (v, u)

does not increase the distance to any friend, and maintains that the edge building cost did not

change. Therefore, if v deviates by replacing the edge (v, u) with (v, w), it achieves cost reduction,

hence v cannot be playing a best response in ~S. Therefore, we must have |ΓH
G (v, u)| ≥ 2.

Theorem 6.5 (Restated). For any integer n ≥ 64 there is an NI-NCG N = 〈V, H, α〉 with n

players, α = Θ(log n/ log log n), and d̄H = Ω(log n), whose Price of Anarchy is Ω(log n/ log log n).

Proof: Our goal is to construct a graph of large enough girth and average degree, which meets the

conditions of Lemma 6.3. We select:

α =
log(n/4)

2 log
(

1
2 log(n/4)

) − 1 and g = d2α + 3e.

For n ≥ 64, clearly g ≥ 3, and 2g ≤ 22α+4 ≤ 4 · 2log(n/4) = n. Therefore, by Proposition 6.4, there

is a graph H with n vertices and girth g, such that:

d̄H ≥ 1
2

(n

4

)1/d2α+1e
≥ 1

2

(n

4

) 1
2α+2 =

1
2

(n

4

) log( 1
2 log(n/4))
log(n/4) =

1
4

log(n/4) = Ω(log n).

Clearly, by our selection of g, we have α < g
2 − 1, so this graph meets the conditions of Lemma 6.3,

hence H is a Nash equilibrium network for the NI-NCG N = 〈V, H, α〉. Let ~S ∈ S(H) be a Nash

equilibrium that creates the network H. Then the social cost of ~S is CN (~S) = α|EH | + 2|EH | =

1
2(α + 2)nd̄H , and using the upper bound on social cost from Theorem 4.1, we have:

PoA(N ) ≥ (α + 2)nd̄H

4n(α/2 + d̄H)
≥ 1

2
d̄H

+ 4
α+1

≥ 1
8

log(n/4) +
8 log( 1

2
log(n/4))

log(n/4)

=
log(n/4)

8 log log(n/4)
= Ω(log n/ log log n) .



Appendix D

Proofs From Chapter 8

Theorem 8.1 (Restated). Let N = 〈V, H, α〉 be an NI-NCG, where H is a forest. Then H

is the unique social optimum network and the unique Nash equilibrium network. Consequently

PoS(N ) = PoA(N ) = 1.

Proof: We begin by proving that H is the unique social optimum network. Let ~S be a social

optimum of N , and G = G(~S). If |E(G)| < |EH | then G must have a larger number of connected

components than H (since H is a forest), which implies that there are two friends that are discon-

nected in G, hence CN (~S) = ∞, contradicting the optimality of ~S. Therefore |E(G)| ≥ |EH |, and

by Lemma 4.3 this implies that G = H.

To prove that H is the unique Nash equilibrium network, let ~S be a Nash equilibrium of N and

G = G(~S). We must have |E(G)| ≥ |EH |, otherwise, G has too many connected components and

we have a player with an infinite cost. Therefore we can use Lemma 5.12 to obtain:

|EH | ≤ |E(G)| ≤ |EH | − RH(~S)− rH(~S)
2

,

which implies RH(~S) ≤ rH(~S). Recall that RH(~S) = |VR| is the number of players with non-

adjacent friends in G, and rH(~S) = |Vr| is the number of players building an edge to a non-friend.

72
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By definition, rH(~S) ≤ |E(G) − EH |, because each player counted in rH(~S) builds at least one

directed edge to a non-friend. Moreover, subtracting |E(G)∩EH | from both sides of the inequality

in Lemma 5.12 yields |E(G)−EH | ≤ |EH − E(G)|. Combining these inequalities we obtain:

RH(~S) ≤ |EH − E(G)| . (D.1)

Let us define H −G as the subgraph of H with vertices VR and edges EH −E(G). This is a valid

graph since by definition of VR, for every edge (v, u) ∈ EH − E(G) both v ∈ VR and u ∈ VR. By

inequality (D.1), H −G has at least as many edges as it has vertices. This implies that if H −G is

not empty then it must contain a cycle, which is a contradiction since H −G is a subgraph of H,

and H does not contain cycles. Therefore we must have RH(~S) = 0, which implies (by definition

of RH(~S)) that EH ⊆ E(G). Since by by Lemma 5.12 |E(G)| ≤ |EH |, we conclude that G = H.

This shows that H is the only possible Nash equilibrium network. Existence of a Nash equilib-

rium is guaranteed by Lemma 6.3, since g(H) = ∞.

Lemma 8.3 (Restated). In a Cycle NI-NCG, the social cost of any tree network that has a DFS

traversal which discovers players in the order in which they appear in the cycle, is minimal among

all networks that are trees. Any line or star network is such a minimal cost tree.

Proof: Let N = 〈V, H = C,α〉 be a Cycle NI-NCG, and ~S a joint strategy for N that creates a

tree network T = G(~S). Let P be a tour of the players over the tree, starting from some player

i, following the unique path in T to i + 1, then to i + 2, and so on until we reach player i − 1

(cyclically), and finally back to player i. Clearly, the number of edges in this tour is half the social

distance cost of ~S. Let us view T as rooted on player i. Let (v, u) ∈ E(T ) be some edge in T and

assume w.l.o.g. that v is u’s parent in T . Clearly (v, u) must be traversed at least twice, since the

tour must reach u, and once it reaches u for the first time, it must leave u’s subtree in T at some

point (to return eventually to player i). Therefore, the length of the tour is at least 2(n − 1) and
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the social distance cost at least 4(n− 1). If T has a DFS traversal as required, then this traversal

defines such a tour P for which every edge is traversed exactly twice, hence the social distance cost

is exactly 4(n− 1). Since the social edge building cost of any sensible joint strategy creating a tree

network is identical, we conclude that the social cost of trees with DFS traversals as required have

minimal social cost among all sensible joint strategies creating tree networks. Since any line and

any star has a DFS traversal that discovers players in the order in which they appear in the cycle,

the proof is complete.

Theorem 8.4 (Restated). Let N = 〈V,H = C,α〉 be a Cycle NI-NCG. The cycle is a social

optimum network if and only if α ≤ 2n − 4. Any line and any star are social optimum networks

if and only if α ≥ 2n − 4. Other social optimum networks may exist only if α ≥ 2n − 4, and they

must be trees.

Proof: Any sensible joint strategy that creates the cycle network has social cost (α + 2)n. Any

sensible joint strategy that creates the line network has social cost (α + 4)(n− 1). For α < 2n− 4,

therefore, the cycle is strictly better than any line and by Lemma 8.3, strictly better than any tree.

By Lemma 8.2, it is therefore the only social optimum network. For α > 2n− 4, any line and any

star are strictly better than the cycle, and therefore the cycle is not a social optimum network. By

Lemma 8.2, only tree social optimum networks exist, and by Lemma 8.3, the line and star are two

of those. For α = 2n− 4, the cycle, line and star are all social optimum networks.

Theorem 8.5 (Restated). Let N = 〈V, H = C, α〉 be a Cycle NI-NCG. The cycle is a Nash

equilibrium network if and only if 0 ≤ α ≤ n − 2. Any line is a Nash equilibrium network if

and only if α ≥ n − 2. Any star is a Nash equilibrium network if α ≥ 2. Consequently, a Nash

equilibrium always exists for a Cycle NI-NCG.

Proof: Let ~S be any sensible joint strategy that creates the cycle. All players in ~S are using a
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complete friendship response. Therefore a player can only reduce its cost by building less edges.

This is impossible for players that build no edges. For a player that builds a single edge, building

no edges yields a cost increase of n− 2− α. For a player that builds two edges, building no edges

yields infinite cost, while building one edge yields a cost increase of n− 2− α, regardless of which

edge is built. Therefore, if n − 2 − α ≥ 0, ~S is a Nash equilibrium. Conversely, if there is some ~S

that creates the cycle and is a Nash equilibrium, then it must have at least one vertex that builds

one or two edges, so necessarily n− 2− α ≥ 0.

Let ~S now be a sensible joint strategy that creates some line. It is obvious that all the internal

players (in the line) are using best response strategies - they are using complete friendship responses,

but building fewer edges would necessarily disconnect them from at least one friend. A deviation

for any of the players at any end of the line cannot reduce its cost if it doesn’t build additional

edges. The best deviation for such a player, among those that do build additional edges, is the one

that builds a single edge to the other end of the line. Such a deviation yields a cost reduction of

n − 2 − α. Therefore, for α < n − 2, ~S cannot be a Nash equilibrium, and for α ≥ n − 2, ~S is a

Nash equilibrium.

Finally we notice that for H that is a cycle, the graph constructed in the proof of Theorem 4.5

is a star graph, and moreover, any star network may be constructed using the process described in

the proof. Therefore, any star is a Nash equilibrium network for α ≥ 2.

Lemma 8.6 (Restated). Let N = 〈V, H = C, α〉 be a Cycle NI-NCG, ~S a Nash equilibrium for

N , and G = G(~S). Then there is a segment P of the cycle (which may contain anywhere between

0 and n vertices) so that:

1. G contains P , and players in P only build edges to other players in P .

2. For any v ∈ V − V (P ), v’s strategy in ~S builds a single edge to player u that is not a friend
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of v, so that u is contained in some shortest path (in G) between v’s friends, and v is not

contained in any such shortest path.

Proof: We first analyze the possible best responses for a player v ∈ V . If we denote by kv the

number of friends that build edges to v in ~S, then v’s best response cannot build more than 2− kv

edges (because a complete friendship response would be better). Moreover, if it builds exactly

2 − kv edges then it must use a complete friendship response (building these edges to the friends

that have not built edges to v). This implies that all the non-friendship edges built in ~S are built

by players v ∈ V for which kv = 0. Moreover, these players build exactly a single such edge.

Let us denote by Q ⊆ V the set of these players (that build a single edge to a non-friend). We

analyze 3 cases to prove the first part of the lemma:

1. Q = ∅

In this case only friendship edges are built, and we must have that G is either a line or the

entire cycle, so defining P = G satisfies the first part of the lemma.

2. Q = V

In this case all players build a single non-friendship edge, so defining P to be the empty graph

satisfies the first part of the lemma.

3. Q 6= V and Q 6= ∅

In this case we define U = V − Q and P as the induced subgraph of H over U . P has

n − |Q| vertices and it is acyclic, so it has at most n − 1 − |Q| edges. Let us denote by W

the set of friendship edges built in ~S. Clearly if a friendship edge is built in ~S, both its ends

must be in U , because a player cannot belong to Q if a friendship edge is built by it or to

it. Therefore, W ⊆ E(P ), so |W | ≤ |E(P )| ≤ n − 1 − |Q|. However, we must also have
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|W |+ |Q| = |E(G)| ≥ n− 1 (otherwise G is disconnected). Combining these inequalities we

conclude that |W | = |E(P )| = n−1−|Q|, so P must be connected, and since it is a subgraph

of H, it must be a segment. We also conclude that W = E(P ) (because W ⊆ E(P )), so P

is contained in G. Since all friendship edges built in ~S are in P , and all non-friendship edges

built in ~S are not built by players in P , we conclude that players in P only build edges to

other players in P .

For the second part of the lemma, for every player v ∈ V −V (P ) (i.e., v ∈ Q), we already know

that v builds a single edge to a non-friend u. We have |ΓH
G (v, u)| ≥ 2 by Lemma 6.2, and since v

has exactly two friends, we conclude that any shortest path in G between v and its friends must

begin with the edge (v, u). Denoting the friends of v by x and w, this implies that no shortest

path between x and w in G may contain v, since splitting such a path into two parts by v produces

two shortest paths, from v to each friend, and it is not possible that both parts contain (v, u).

Moreover, since any shortest path between v and x or v and w begins with (v, u), we conclude that

v’s distance cost is 2+ δG(u, x)+ δG(u,w), so v must select u to minimize this sum, which happens

only when u is contained in a shortest path between x and w.

Lemma 8.7 (Restated). Let N = 〈V, H = C, α〉 be a Cycle NI-NCG, ~S a Nash equilibrium for

N , G = G(~S), and P as in Lemma 8.6. If α > n− 2 then V (P ) 6= ∅, P 6= H, and G is a tree.

Proof: From Theorem 8.5 P 6= H. To see why V (P ) = ∅ is impossible, assume for contradiction

V (P ) = ∅. We notice that the joint strategy graph G∗(~S) must contain a single cycle C (since

it has exactly n edges and n vertices). Moreover, C must consist of edges built in a single cycle

orientation, otherwise there is a player that builds at least 2 edges, contradicting Lemma 8.6. For

any player v ∈ V and friend u ∈ NH(v), any shortest path from v to u must begin with the edge

v built, otherwise v would have preferred to build an edge to his other friend (recall that since



APPENDIX D. PROOFS FROM CHAPTER 8 78

V (P ) = ∅, all players build a single edge to a non-friend). Since this also holds for u, we conclude

that any shortest path between friends has two edges directed at each other, hence, no two friends

may be members of C (since it has a single edge orientation). Therefore the length of C is at

most bn/2c. For any player v ∈ V (C), using Lemma 5.4 on the single edge it builds we now get

α ≤ 2(|C| − 2) ≤ n− 4 < α, which is a contradiction.

The only cases from Lemma 8.6 where G may have more than n − 1 edges are V (P ) = ∅ or

P = H. We have shown that both are impossible for α > n − 2, and G must be connected, so it

must be a tree.

Theorem 8.8 (Restated). Let N = 〈V, H = C, α〉 be a Cycle NI-NCG. Then:

PoA(N ) ≤





1 if α < 1

2− 2
α+2 if 1 ≤ α ≤ n− 2

1 + n−1
α+2 − 1

n if n− 2 < α ≤ 2n− 4

1 + n−2
α+4 if 2n− 4 < α

,

which is less than 2 for 1 ≤ α < 2n− 4, less than 3/2 for α ≥ 2n− 4, and goes to 1 as α →∞.

Proof: For α < 1 the Price of Anarchy is 1 (by Theorem 5.2). For 1 ≤ α ≤ n − 2, the cycle is a

social optimum network (Theorem 8.4), and has cost (α + 2)n. Lemma 5.1 gives an upper bound

of 2(α + 1)n on the social cost of any Nash equilibrium. Hence in this case:

PoA(N ) ≤ 2(α + 1)n
(α + 2)n

= 2− 2
α + 2

< 2 .

For α > n − 2, let ~S be any Nash equilibrium, G = G(~S), and P as defined in Lemma 8.6. From

Lemma 8.7 we know that V (P ) 6= ∅, P 6= H, and G is a tree, hence it has n−1 edges. We therefore

analyze the distance cost as follows:
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1. For any player v ∈ V − V (P ), let x and w be v’s two friends. We know that v builds a

single edge to some non-friend u. Let D be v’s distance cost in ~S. By Lemma 8.6, u lies on

a shortest path between x and w, and any shortest path from v to x or w begins with (v, u),

so we must have D = 2 + δG(x,w). Since x and w must be connected and v is not on the

shortest path between them, we have δG(x,w) ≤ n − 2, so we obtain D ≤ n. Therefore the

total distance cost contribution of these players is at most of (n− |V (P )|)n.

2. For every friendship edge in P , the distance is 1. We have a total distance cost contribution

of 2(|V (P )| − 1) for these friendship edges (recall that |V (P | ≥ 1).

3. The only friendship edges we have not accounted for are those not in P , that are incident on

one of the players at any end of P . Note that if P is a line, there is one such friendship edge,

and we have not counted its distance in any direction so far. If P is not a line then there are

2 such edges, and we have counted each in one direction, but not in the other. The distance

between the friends on these edges is at most n − 1 for a total distance cost contribution of

at most 2(n− 1) (recall that P is not the entire cycle).

Therefore we get an upper bound of:

DistN (~S) ≤ 2(|V (P )| − 1) + 2(n− 1) + (n− |V (P )|)n

= n2 + 2n− 4− |V (P )|(n− 2) ≤ n2 + n− 2 ,

since |V (P )| ≥ 1. Adding the edge building cost of (n− 1)α we get:

CN (~S) ≤ αn + n2 + n− 2− α . (D.2)

For n− 2 < α ≤ 2n− 4, the cycle is the social optimum. Therefore:

PoA(N ) ≤ αn + n2 + n− 2− α

(α + 2)n
= 1 +

n− 1
α + 2

− 1
n

< 2− 2
n

< 2 .
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For α > 2n− 4, the line is a social optimum network with cost (α + 4)(n− 1), so we get:

PoA(N ) ≤ αn + n2 + n− 2− α

(α + 4)(n− 1)
= 1 +

n− 2
α + 4

<
3
2
− 1

n
<

3
2

.

Lemma 8.10 (Restated). Let N = 〈V, H = C, α〉 be a Cycle NI-NCG and k an integer such that

2 ≤ k < n and n− k − 1 ≡ 0(mod 4). If α ≥ k then Xk,n is a Nash equilibrium for N .

Proof: Let G = G(Xk,n). It is obvious that no player may benefit from building fewer edges, since

this would disconnect it from at least one friend. We now consider the players one by one. Players

1, ..., k− 1 are all using best response strategies, since they are using complete friendship responses

while building a single edge (that cannot be removed).

For player 0, its distance to its friend player 1 is exactly 1, and its distance to its other friend,

player n−1, is exactly 1+k−1 because player n−1 must be connected to player k−1 (this is true

even if k = n−1). Player 0 therefore has distance cost of 1+k. Deviating by building a single edge

to any other node cannot reduce the distance cost since player 1 and n − 1 are at distance k − 1.

The best deviation that builds more than one edge is the complete friendship response, building a

single edge to each friend, and this deviation increases the cost by at least (2α + 2)− (α + 1 + k)

which is positive for α ≥ k. Hence, player 0 is using a best response. A similar consideration

applies to player k. Its only viable alternative to not building any edges (its strategy in Xk,n) is a

complete friendship response, building an edge directly to player k +1, which yields a cost increase

of (α + 2) − (k + 1), which is, once again, positive for α ≥ k. Hence, player k is also using a best

response.

Each player i, for k < i < n, builds a single edge to some player j ∈ {1, k− 1}. It is easy to see

that in any case, one of i’s friends is connected to the same player j, while the other is connected

to the other player k − j (it is possible that both j and k − j are the same player if k = 2). Note

that this also holds for players i = k + 1 and i = n− 1. The distance cost for player i is therefore
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2 + k. The possible deviations for player i are:

1. Not building any edges, which yields infinite cost.

2. Building a single edge to a different player, which cannot decrease the distance cost, since in

Xk,n player i builds an edge to a point on the shortest path between its friends, i − 1 and

i + 1.

3. Of the deviations that build more than one edge, the best is necessarily the complete friendship

response, which yields a cost increase of (2α+2)−(α+k+2) which is non-negative for α ≥ k.

Therefore, for any k < i < n player i is also playing a best response, which completes the

proof.

Theorem 8.11 (Restated). For infinitely many n, for any α ≥ (n+1)/2, and any N = 〈V, H =

C,α〉 (of n players and edge building price α), we have:

PoA(N ) ≥





1− 1
n + 1

4
n+1
α+2 for α < 2n− 4

1− 2
α+2 + n+1

4(α+4) for α ≥ 2n− 4

.

Additionally, for any n and any N = 〈V, H = C,α〉 with 2 ≤ α ≤ (n + 1)/2, if α is an integer for

which α ≡ n− 1 (mod 4), then:

PoA(N ) ≥ 2− 2
α + 2

− α− 2
n

− 6
(α + 2)n

.

Proof: Lemma 8.10 shows that Xk,n is a Nash equilibrium for α ≥ k. Its cost is given by:

CN (Xk,n) = α(n− 1) + 2k + 2k + (n− k − 1)(2 + k) = (α + 2)(n− 1) + k(n + 1)− k2 ,

which, as a function of k (over the real numbers), is monotonously increasing for k <= (n + 1)/2,

and monotonously decreasing for k > (n + 1)/2. Our goal is to select an integer k so that α ≥ k
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and n− k − 1 ≡ 0 (mod 4), that maximizes the cost CN (Xk,n). For the first case in the theorem,

if 2 ≤ α ≤ (n+1)/2 and α is an integer such that α ≡ n− 1(mod 4) then we select k = α, and get:

CN (Xk,n) = (α + 2)(n− 1) + α(n + 1)− α2 = (2α + 4)n− 2n− (α + 2)(α− 2)− 6 ,

and therefore the Price of Anarchy is at least:

PoA(N ) ≥ 2− 2
α + 2

− α− 2
n

− 6
(α + 2)n

.

For the second case, let n be any integer so that n ≡ 3 (mod 8). Selecting k = (n+1)/2 guarantees

that n− k − 1 ≡ 0 (mod 4) and α ≥ k, so Xk,n is a Nash equilibrium. The cost is:

CN (Xk,n) = (α + 2)(n− 1) + (n + 1)2/2− (n + 1)2/4 = (α + 2)(n− 1) + (n + 1)2/4 .

The Price of Anarchy in this case for α < 2n− 4 is therefore at least:

PoA(N ) ≥ 1− 1
n

+
1
4

(n + 1)2

(α + 2)n
≥ 1− 1

n
+

n + 1
4(α + 2)

,

and for α ≥ 2n− 4 it is at least:

PoA(N ) ≥ 1− 2
α + 2

+
1
4

(n + 1)2

(α + 4)(n− 1)
≥ 1− 2

α + 2
+

n + 1
4(α + 4)

.



Appendix E

Proofs From Chapter 9

Theorem 9.1 (Restated). Let N = 〈V, f, α〉 be a WI-NCG, and assume that a Nash equilibrium

exists. Let α̂ = α/f̄H . Then:

PoA(N ) ≤ 3 +
d̄+

H

α̂/2 + d̄+
H

min
(

α̂, 2 log2 n− 2 + min
(

n− 2, 2
√

(n− 2)α̂/d̄+
H

))

= O


1 + min


α̂, d̄+

H , log n +

√
nα̂

d̄+
H

,

√
nd̄+

H

α̂





 = O(

√
n) .

To prove this theorem, we first prove the following lemmas, the equivalents of our results from

Chapter 5.

Lemma E.1 (Weighted Equivalent of Theorem 4.1). Let N = 〈V, f, α〉 be a WI-NCG. Then:

n(α/2 + f̄V ) ≤ OPT (N ) < 2n(α/2 + f̄V ) .

Proof: Let G be some social optimum network. As for an NI-NCG, G must have at least n/2

edges, otherwise it has infinite cost. The distance between any pair of semi-friends is at least 1,

hence the social distance cost is at least F . This proves the lower bound. The upper bound is

obtained by analyzing a sensible joint strategy that creates the star network, which builds n − 1

edges and has distance at most 2 between any two semi-friends.

83
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Lemma E.2 (Weighted Equivalent of Lemma 5.1). Let N = 〈V, f, α〉 be a WI-NCG and ~S

a Nash equilibrium of N . Then:

CN (~S) ≤ nd̄+
H f̄H(α̂ + 1) .

Proof: Every player v ∈ V is playing a best response in ~S, hence its strategy Sv is no worse than

the complete friendship response for v. The cost of the complete friendship response for v is at

most αd+
H(v) +

∑
u6=v f(v, u), and summing over all players completes the proof.

Lemma E.3 (Weighted Equivalent of Theorem 5.2). Let N = 〈V, f, α〉 be a WI-NCG, and

assume that a Nash equilibrium exists. Then:

PoA(N ) ≤ 1 +
d̄+

H α̂

α̂/2 + d̄+
H

= O(1 + min(α̂, d̄+
H)) .

Proof: Using Lemma E.2 and our lower bound on social optimum cost from Lemma E.1 we get:

PoA(N ) ≤ nd̄+
H f̄H(α̂ + 1)

n(α/2 + f̄V )
≤ 1 +

d̄+
H α̂

α̂/2 + d̄+
H

≤ 1 + min(α̂, 2d̄+
H) = O(1 + min(α̂, d̄+

H)) .

Definition E.4 (Weighted Equivalent of Definition 5.3). Let N = 〈V, f, α〉 be a WI-NCG, ~S a

joint strategy of N and G = G(~S). We define ΓH
G (v, u) exactly as before, as the set of friends of v

whose distance from v would increase should the edge (v, u) be removed from the network:

ΓH
G (v, u) = {x ∈ N+

H (v) : ΨG(v, x) 6= ∅ and ∀p ∈ ΨG(v, x), u ∈ p} .

For any v ∈ V and u ∈ Sv we define wf (v, u) =
∑

x∈ΓH
G (v,u) f(v, x), and Wf =

∑
v∈V,u∈Sv

wf (v, u).

Lemma E.5 (Weighted Equivalent of Lemma 5.4). Let N = 〈V, f, α〉 be a WI-NCG, ~S

a Nash equilibrium for N and G = G(~S). If v builds an edge to u in ~S (i.e., u ∈ Sv), then

α ≤ wf (v, u)(δG′(v, u)− 1), where G′ is the graph G without the edge (v, u).

Proof: As in the proof of Lemma 5.4, if v and u become disconnected in G′ then the claim is

obvious. Otherwise, let ~S′ = (~S−v, Sv −{u}) be the unilateral deviation of v obtained by removing
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the edge to u. The set of friends whose distance from v changes as a result of the deviation is

exactly ΓH
G (v, u). For any such friend x ∈ ΓH

G (v, u), we have δG′(v, x) − δG(v, x) ≤ δG′(v, u) − 1.

Hence:

DistN (~S′, v)−DistN (~S, v) =
∑

x∈ΓH
G (v,u)

f(v, x)(δG′(v, x)− δG(v, x))

≤
∑

x∈ΓH
G (v,u)

f(v, x)(δG′(v, u)− 1) = wf (v, u)(δG′(v, u)− 1) .

Since v is playing a best response in ~S, this must be at least α (the reduction in v’s edge building

cost), completing the proof.

Lemma E.6 (Weighted Equivalent of Lemma 5.5). Let N = 〈V, f, α〉 be a WI-NCG, ~S a

Nash equilibrium of N and G = G(~S). Then for any β > 0

d̄G ≤ 1 +
2f̄V

β
+ n2β/α .

Proof: Our first step is to transform G by removing all edges (v, u) ∈ E(G) for which wf (v, u) ≥ β

(where v builds the edge in ~S). We denote the resulting graph by Gβ, and by m the number of

removed edges. The total weight of edges removed is at least βm, and at most the total weight of

edges in the original graph, Wf . Therefore, βm ≤ W + f . On the other hand, for any v ∈ V and

x ∈ N+
H (v) (a friend of v), there is at most one u ∈ Sv such that x ∈ ΓH

G (v, u) (these sets, for a

fixed player v, must be pairwise disjoint). Therefore f(v, x) is added at most once in the sum Wf ,

hence Wf ≤ F . Combining these inequalities we get |E(Gβ)| ≥ |E(G)| − F/β. After dividing by

n/2, we have

d̄Gβ
≥ d̄G − 2f̄V

β
. (E.1)

For d̄Gβ
≤ 2 this yields d̄G ≤ 2f̄V

β + 2 and the claim holds trivially since n2β/α > 1. We therefore

assume that d̄Gβ
> 2, in which case Gβ has a cycle. Using Lemma E.5 (as in the proof of Lemma
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5.5) and the bound of Alon et. al. [AHL02] on the number of vertices in a graph of given average

degree and girth (see Appendix F), we get:

d̄Gβ
≤ 1 + n

(
2

g(Gβ)−2

)

≤ 1 + n2β/α .

Using this with inequality (E.1) completes the proof.

Lemma E.7 (Weighted Equivalent of Theorem 5.6). Let N = 〈V, f, α〉 be a WI-NCG, and

~S a Nash equilibrium of N . Then:

BN (~S)
OPT (N )

≤ 3 +
f̄V

α/2 + f̄V
(2 log2 n− 3) = O

(
1 + min

(
1,

f̄V

α

)
log n

)
= O(log n) .

Proof: Let G = G(~S). We select β = α
2 log2 n and using Lemma E.6 we get:

d̄G ≤ 1 +
4f̄V log2 n

α
+ n1/ log2 n = 3 +

4f̄V log2 n

α
.

The number of edges built by ~S is 1
2nd̄G, so using the lower bound on the social optimum cost from

Lemma E.1 we obtain:

BN (~S)
OPT (N )

≤ nαd̄G/2
n(α/2 + f̄V )

≤
3α
2 + 2f̄V log2 n

α/2 + f̄V
= 3 +

f̄V

α/2 + f̄V
(2 log2 n− 3)

≤ 3 + 2 min
(

1,
2f̄V

α

)
log2 n = O

(
1 + min

(
1,

f̄V

α

)
log n

)
= O(log n) .

Lemma E.8 (Weighted Equivalent of Lemma 5.7). Let N = 〈V, f, α〉 be a WI-NCG, ~S a

joint strategy and G = G(~S). Let v ∈ V be a player who is playing a best response in ~S. Let T be

a shortest path tree of v in G. For any vertex u ∈ V (T ) (note that it is possible that V (T ) 6= V ),

denote by Λu the set of friends of v that are descendants of u in T (including, possibly, u itself).

Let ku =
∑

w∈Λu
f(v, w) be the total friendship weight for v in u’s subtree. Then:

∀u ∈ V (T ), α ≥ (δG(v, u)− 1)ku .
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Proof: If δG(v, u) ≤ 1 then the claim is trivial. Otherwise we consider a deviation for v that builds

an additional edge to u. For any vertex w that is a descendant of u in T the reduction in distance

is at least δG(v, u)− 1, and for any other vertex the distance cannot increase, so the total decrease

in distance cost for v is at least
∑

w∈Λu
f(v, w)(δG(v, u)−1) = (δG(v, u)−1)ku. Since v is playing a

best response this must be at most the increase in v’s edge building cost, which is precisely α.

Lemma E.9 (Weighted Equivalent of Lemma 5.8). Let N = 〈V, f, α〉 be a WI-NCG and

let ~S be a joint strategy. Let v ∈ V be a player who is playing a best response in ~S, and denote

fv =
∑

w 6=v f(v, w). Then:

DistN (~S, v) ≤ 2
√

(n− 2)αfv + fv .

Proof: Let G = G(~S). All w ∈ N+
H (v) must be in the same connected component as v. For any

integer h ≥ 2, we define Fh = {w ∈ N+
H (v) : δG(v, w) ≥ h}, i.e., Fh is the set of friends of v in

depth at least h in T , where T is the shortest path tree of v in G. Then:

DistN (~S, v) =
∑

w∈N+
H(v)/Fh

f(v, w)δG(v, w) +
∑

w∈Fh

f(v, w)δG(v, w)

≤ (h− 1)
∑

w∈N+
H(v)/Fh

f(v, w) +
∑

w∈Fh

f(v, w)δG(v, w)

= (h− 1)fv +
∑

w∈Fh

f(v, w)(δG(v, w)− h + 1) . (E.2)

For any w ∈ Fh, the term δG(v, w) − h + 1 is exactly the number of vertices on the path between

depth h in T and w. Therefore in (E.2), for every w ∈ Fh and every vertex on the path from depth

h in T to w, we add f(v, w). Changing the summation order, this is equivalent to adding ku for

every u ∈ V (T ) in depth h or greater. Hence, using Lemma E.8 and the fact that h ≥ 2, we have:

∑

w∈Fh

f(v, w)(δG(v, w)− h + 1) =
∑

u∈V (T ):δG(v,u)≥h

ku ≤
∑

u∈V (T ):δG(v,u)≥h

α

δG(v, u)− 1
≤ (n− 2)α

h− 1
,
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and using this in inequality (E.2) yields:

DistN (~S, v) ≤ (h− 1)fv +
(n− 2)α

h− 1
,

for any h ≥ 2. Selecting h = 1 + d
√

(n− 2)α/fve completes the proof.

Lemma E.10 (Weighted Equivalent of Theorem 5.9). Let N = 〈V, f, α〉 be a WI-NCG and

~S a Nash equilibrium for N . Then:

DistN (~S)
OPT (N )

≤ f̄V

α/2 + f̄V

(
1 + min(n− 2, 2

√
(n− 2)α/f̄V )

)

= O

(
1 + min

(
1,

f̄V

α

)
min

(
n,

√
nα

f̄V

))
= O(

√
n)

Proof: Summing the bound in Lemma E.9 over all v ∈ V yields:

DistN (~S) ≤ F + 2
√

(n− 2)α
∑

v∈V

√
fv .

Using the Cauchy-Schwartz inequality we obtain:

∑

v∈V

√
fv ≤

√
n

∑

v∈V

fv = n

√
f̄V ,

hence:

DistN (~S) ≤ F + 2n
√

(n− 2)αf̄V = nf̄V

(
1 + 2

√
(n− 2)α/f̄V

)
.

Since all semi-friend pairs must be connected in ~S, the distance between any two semi-friends is at

most n− 1, hence DistN (~S) ≤ nf̄V (n− 1). Combining the two bounds we get:

DistN (~S) ≤ nf̄V

(
1 + min

(
n− 2, 2

√
(n− 2)α/f̄V

))
,

and dividing by the lower bound on social optimum (from Lemma E.1) we get:

DistN (~S)
OPT (N )

≤ f̄V

α/2 + f̄V

(
1 + min(n− 2, 2

√
(n− 2)α/f̄V )

)

≤ 1 + min
(

1,
2f̄V

α

)
min

(
n− 2, 2

√
n− 2α

f̄V

)

= O

(
1 + min

(
1,

f̄V

α

)
min

(
n,

√
nα

f̄V

))
.
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We are now ready to prove Theorem 9.1.

Proof of Theorem 9.1: For any ~S that is a Nash equilibrium, we can rewrite Lemma E.7 using

α̂ as:

BN (~S)
OPT (N )

≤ 3 +
d̄+

H

α̂/2 + d̄+
H

(2 log2 n− 3) ,

and Lemma E.10 as:

DistN (~S)
OPT (N )

≤ d̄+
H

α̂/2 + d̄+
H

(
1 + min(n− 2, 2

√
(n− 2)α̂/d̄+

H)
)

.

We now notice that these rewritten lemmata, along with Lemma E.3, are exactly the same as

we had for the NI-NCG in Theorem 5.6, Theorem 5.9, and Theorem 5.2 (for the case α > 2),

respectively, after replacing α by α̂ and d̄H by d̄+
H . The rest of the proof is therefore identical to

the proof of Theorem 5.10.

Theorem 9.4 (Restated). Let N = 〈V, f, α〉 be a WI-NCG, and assume that a Nash equilibrium

exists. Then:

PoA(N ) ≤ 3 +
f̄V

α/2 + f̄V
min

(
α

d̄+
Hh

f̄V
+ (n− 3)

l̄V
f̄V

, 2 log2 n− 2 + 2
√

(n− 2)α/f̄V

)

= O

(
1 + min

(
α

d̄+
Hh

f̄V
+ n

l̄V
f̄V

, d̄+
Hh

+ n
l̄V
α

, log n +
√

nα/f̄V ,
√

nf̄V /α

))
= O(

√
n) .

Proof: By Lemma 9.3 and Lemma E.1 we have:

PoA(N ) <
n(α(d̄+

Hh
+ 1) + f̄V + (n− 2)l̄V )

n(α/2 + f̄V )
≤ 2 +

αd̄+
Hh

+ (n− 2)l̄V − f̄V

α/2 + f̄V

≤ 2 +
αd̄+

Hh
+ (n− 3)l̄V

α/2 + f̄V
, (E.3)

and by Theorem 9.1 we have:

PoA(N ) ≤ 3 +
d̄+

H

α̂/2 + d̄+
H

min
(

α̂, 2 log2 n− 2 + min
(

n− 2, 2
√

(n− 2)α̂/d̄+
H

))

= 3 +
f̄V

α/2 + f̄V
min

(
α

d̄+
H

f̄V
, 2 log2 n− 2 + min

(
n− 2, 2

√
(n− 2)α/f̄V

))
. (E.4)
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To combine the two bounds we first notice that d̄+
Hh
· α

n−2 < f̄V − l̄V , since all edges in Hh have

friendship weight greater than α
n−2 . Therefore, αd̄+

Hh
+ (n − 3)l̄V < (n − 2)f̄V , so the n − 2 case

in (E.4) may be removed. We also have l̄V ≤ (d̄+
H − d̄+

Hh
) α

n−2 , since all edges in EH − E(Hh) have

friendship weight at most α
n−2 . This yields αd̄+

Hh
+ (n− 3)l̄V < αd̄+

H , so the αd̄+
H/f̄V case in (E.4)

may also be removed. The combined bound can therefore be written as:

PoA(N ) ≤ 3 +
f̄V

α/2 + f̄V
min

(
α

d̄+
Hh

f̄V
+ (n− 3)

l̄V
f̄V

, 2 log2 n− 2 + 2
√

(n− 2)α/f̄V

)

= O(
√

n) .



Appendix F

Cage Graphs

This paper uses several results regarding the connection between the girth and average degree of

a graph. Specifically, we use adaptations of well-known upper and lower bounds for the number

of vertices in cage graphs. A (d, g)-cage graph is a regular graph of degree d and girth g, with a

minimal number of vertices. A well known lower bound on the number of vertices of cage graphs

is the Moore bound (see [BB94], p. 180). The Moore bound states that the number of vertices in

a regular graph of degree d and girth g is at least n0(d, g), where:

n0(d, 2r) = 2
r−1∑

i=0

(d− 1)i (F.1)

n0(d, 2r + 1) = 1 + d

r−1∑

i=0

(d− 1)i = 1 +
d

2
n0(d, 2r) (F.2)

A similar result was proven by Alon et. al. [AHL02] for irregular graphs as well, substituting d by

the average degree d̄, and assuming d̄ ≥ 2.

For the upper bound the basic result was provided by Erdös and Sachs [ES63], and it was

initially improved by Sauer [Sau67] and Walther [Wal65a, Wal65b]. Margulis [Mar82] provided the

first explicit construction of a high-girth graph of high degree. Additional constructions and bound

improvements are provided in [Imr84, BH83, Wei84, Mar88, LPS88, LU95, LUW95] (see page 107

91
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in [Bol78] for a history). We use the result from Sauer [Sau67] in this paper. Denoting by v(d, g)

the number of vertices of a (d, g)-cage, the bound states that:

v(d, g) ≤





4
3 + 29

122g−2 for d = 3 and g odd

2
3 + 29

122g−2 for d = 3 and g even

2(d− 1)g−2 for d ≥ 4 and g odd

4(d− 1)g−3 for d ≥ 4 and g even

. (F.3)

We use a simplified (and weaker) version of this bound:

Proposition 6.4 (Restated). For any integer g ≥ 3 and n ≥ 2g, there is a graph with n vertices

and girth g of average degree at least 1
2(n/4)1/(g−2).

Proof: We simplify the bound in inequality F.3 to:

v(d, g) ≤ 4(d− 1)g−2 (F.4)

which holds for any g ≥ 3 and d ≥ 3. Now, given g ≥ 3 and n ≥ 2g we select d to be:

d =
⌊(n

4

) 1
g−2

⌋
+ 1,

which ensures that d ≥ 3 because n ≥ 2g. Using the bound (F.4) we know that there is a d-regular

graph G1 of girth g with n1 vertices where n1 ≤ 4(d − 1)g−2 ≤ n. Let m = bn/n1c. Obviously

m ≥ 1. Also, since m ≥ n/n1 − 1, we have:

mn1 ≥ 1
2
mn1 +

1
2

(
n

n1
− 1

)
n1 =

n

2
+

m− 1
2

n1 ≥ n

2
.

We construct the graph G by taking m copies of G1 along with n−mn1 single vertices and connecting

them all in a line (a single edge connects each component, a copy of G1 or a single vertex, to the

next). G obviously has n vertices, and girth g. It’s average degree is:

d̄G ≥ mdn1

n
≥ d

2
≥ 1

2

(n

4

) 1
g−2

,
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so G satisfies the claim.
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