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Abstract

Local computation algorithms (LCAs) produce small parts of a single solution to a
given search problem using time and space polylogarithmic in the size of the input.
Consider, for example, a massive graph on which we would like to compute a maximal
independent set (MIS). The graph is so big that computing the entire solution would
simply take too long, and we do not have enough space to store the solution. Assume,
though, that we never need the entire solution at any given time. Instead, we are
occasionally queried about whether certain vertices are in the MIS. An LCA would
allow us to reply to these queries consistently (i.e., if the LCA is queried on all of the
vertices the replies would conform to a coherent solution), using polylogarithmic time
and space. In this work we study several techniques for designing LCAs, and provide

some useful tools for future research.

We introduce a new graph family, d-light graphs, that includes graphs of constant
bounded degree and several interesting randomly generated graphs, such as Erdds-
Rényi graphs, and bipartite graphs where vertices on one side are linked to d vertices
on the other, chosen uniformly at random. We show how to reduce LCAs for certain
problems on this graph family to distributed and online algorithms.

The reduction to distributed algorithms is due to Parnas and Ron [86]; its analysis
on d-light graphs is new. We derive a reduction to online algorithms that is based
on an idea by Onak and Nguyen [79]: generate a random order on the vertices and
simulate the online algorithm on this order. We show a small seed of length O(logn) is
sufficient to generate the randomness we need, and that with high probability, we do
not require more than O(log2 n) time or space to reply to each query. These reductions
allow us to obtain LCAs for problems such as MIS, maximal matching, load balancing
and vertex coloring on d-light graphs. We also extend these techniques to obtain a
(1 — €)-approximation LCA to maximum matching on graphs of constant bounded
degree.

We further show that in some cases, we can design LCAs whose running time (and



space) is independent of the size of the graph, and depends only on the maximal degree.
Specifically, we give a (1 — €)-approximation LCA to the maximal weighted base of a
graphic matroid (i.e., maximal acyclic edge set); LCAs for approximating multicut and
integer multicommodity flow on trees; and a local reduction of weighted matching to
any unweighted matching LCA, such that the running time of the weighted matching

LCA is independent of the edge weight function.

The field of mechanism design involves designing algorithms for strategic environ-
ments - ones in which input to the algorithm consists of (or includes) private information
divulged by agents who have a stake in the outcome. We introduce local computation
mechanism design - designing mechanisms that are queried on a single agent, and are
required to return the part of the solution that is relevant to her (the agent), while
preserving the required global game theoretic properties. As an example, consider an
auction of millions of items to millions of agents. When queried on an agent, we would
like our mechanism to tell us which items she gets and how much she has to pay, and at
the same time incentivize all agents to be truthful about their valuations for the items.
Similarly to LCAs, local computation mechanisms reply to each query in polylogarith-
mic time and space, and the replies to different queries are consistent with the same
global feasible solution. When the mechanism employs payments, the computation of
the payments is also done in polylogarithmic time and space.

We present local computation mechanisms for a variety of classical game-theoretical
problems: (1) stable matching, (2) job scheduling, (3) combinatorial auctions for unit-
demand and k-minded bidders, and (4) the housing allocation problem.

For stable matching, some of our techniques have implications to the global (non-
LCA) setting. Specifically, we show that when the men’s preference lists are bounded,
we can achieve an arbitrarily good approximation to the stable matching within a fixed

number of iterations of the Gale-Shapley algorithm.
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Chapter 1

Introduction

Solving combinatorial problems on graphs, such as maximal matching and vertex col-
oring, has been at the heart of computer science research since the first half of the
previous century (e.g., [16, 40]), well before computers became household objects. Al-
though we would generally like to solve any problem as fast as possible, we would also
like a notion of what it means for a problem to be solvable “quickly”. The most widely
accepted definition of “quickly” in this context is polynomial time (see, e.g., [22, 50]).
In the 1970s, it was shown that many combinatorial problems cannot be solved in poly-
nomial time, unless P = NP [50]. This inspired research devoted to what can be done
in polynomial time, which includes finding polynomial-time approximation algorithms
to some of these N P-hard problems (for a survey of approximation algorithms, see
[107]). For many years, research in algorithms focused on what can and cannot be
done in polynomial time, but in the past two decades, many computer systems have
become so big that polynomial-time tractability is not enough. An algorithm that runs
in O(n?) will simply not be practical on a graph with 1 billion nodes. A few decades
ago, such graphs were rare, but today, they are ubiquitous: the Internet has over 4
billion indexed pages, and an estimated 45+ billion pages overall [1]; social networks
have become huge: Facebook has over 1 billion users [111]; astronomical, biological,
environmental, finance and sensor network data is often measured in petabytes (10'°
bytes) [43].

The rapid growth in the size of networks and databases over the past decade or so
has inspired a large volume of work on handling the challenges posed by these massive
systems - systems so large, in fact, that algorithms cannot even be required to run in

linear time. Much of the research on these problems therefore focuses on what can
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be done in sublinear time. Despite this common denominator, the approaches have
been diverse. The field of property testing [37, 91] asks whether some mathematical
object, such as a graph, has a certain property, or is “far” from having that property;
streaming algorithms [73, 113] are required to use limited memory and quickly process
data streams that are presented as a sequence of items; sublinear approximation algo-
rithms (e.g., [79, 86, 97]) give approximate solutions to optimization problems. All of
the above examples compute some approximation to a solution: property testing al-
gorithms usually reply ”yes/no”; streaming algorithms usually compute some statistic
on the input; sublinear approximation algorithms usually return an integer that is an
estimate of the size of a solution. Local computation algorithms (LCAs) offer a differ-
ent approach: instead of computing a value (or values) that give information about a

feasible solution, we would like to actually compute some small part of the solution.

The need for LCAs arises in situations when we require fast and space-efficient
access to part of a solution of a computational problem, but we never need the entire
solution at once. Consider, for instance, a wireless network with millions of nodes. If
two neighbors broadcast at the same time, this will cause interference; therefore we
would like to schedule broadcasts such that neighboring nodes do not broadcast at
the same time. A customary solution to this problem is to compute a coloring of the
graph - each node is allocated a color, so that no two adjacent nodes have the same
color, and all nodes of the same color broadcast at the same time. Assume now that
each node may query when to broadcast (i.e., what its color is), but we are never
required to compute the entire solution at once; in fact, as accessing shared memory
is expensive, we do not even want to store any part of the solution that we may have
already computed. Instead, we are allocated space polylogarithmic in the number of
nodes, and are required to reply to each query in polylogarithmic time. Although at
any single point in time, we can be queried the color of a single node, over a longer
time period, we may be queried about all of the nodes. We therefore want all of our

replies to be consistent with a feasible coloring.

LCAs are also useful in other scenarios: if uncoordinated processors are required to
compute consistent results on a very large data set, LCAs immediately offer a solution in
which the processors need access to a very small amount of shared memory (or in some
cases, none at all), and they can reply to queries quickly and consistently. Another

interesting non-trivial application of LCAs is the following. Assume that we have a
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linear program with an exponential number of variables and constraints. However, we
are only interested in the value of a polynomial number of variables in some “good”!

solution. LCAs can allow us to obtain our required solution in polynomial time.

1.1 Local Computation Algorithms

Local computation algorithms were formally introduced by Rubinfeld et al. [98], al-
though by then quite a large volume of work had been devoted to LCAs and very closely
related topics. A well-known example is the computation of the relative importance of
web pages (often simply called PageRank) (e.g., [6, 15, 49]). We can view the Internet
as a directed graph, in which the websites are represented by vertices, and an edge
(u,v) exists if there is a hyperlink on u that directs to v. The idea of PageRank is that
important pages have many pages (including other important pages) linking to them,
and unimportant pages have few, mostly unimportant pages linking to them. The im-
portance of every vertex is a function of every other vertex. Because the Internet is
huge, computing the exact PageRank of each vertex would take a very long time, and in
addition, the Internet is constantly changing; we would like to be able to compute the
approximate value of a website’s PageRank by looking only at only a small number of
other websites. Many of the PageRank algorithms developed (including the ones cited
above) are in fact LCAs. Other examples of algorithms that are LCAs are locally de-
codable codes [51]: Suppose m is a string with encoding y = E(m). On input x, which
is close in Hamming distance to y, the goal of locally decodable coding algorithms is
to provide quick access to the requested bits of m, by looking at a limited (sublinear)
number of bits of z. More generally, the reconstruction models described in [2, 99]
describe scenarios where a string that has a certain property, such as monotonicity, is
assumed to be corrupted at a relatively small number of locations. Let P be the set
of strings that have the property. The reconstruction algorithm gets as input a string
x that is close (in Hamming distance) to some string y in P. For various types of
properties of P, the above works construct algorithms that give fast query access to
locations in y.

Part of what makes LCAs exciting is that they share the motivation and concepts

of several major topics in theoretical computer science. This allows us to build upon

“What constitutes a “good” solution will vary from problem to problem, depending on our specific
needs. For example, it is often enough to find an approximate solution.
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well-known results and techniques and make new connections. Interestingly, as the
connection is bidirectional, results that are discovered in research on LCAs are often
immediately useful in other settings (for example, Even et al. [29] used LCAs to design
distributed approximation algorithms to maximum matching). In the next subsections
we give a history of LCAs along with the relationship to other work. We also highlight

the contributions of this thesis.

1.1.1 Sublinear Approximation Algorithms

There has been much recent interest in devising local algorithms for problems on con-
stant degree graphs and other sparse optimization problems. The goals of these al-
gorithms have been to approximate quantities such as minimal vertex cover, maxi-
mal/maximum matching, and sparse packing and covering problems [55, 69, 79, 86, 89,
112]. See [23, 97] for surveys. One feature of these algorithms is that they show how
to construct an oracle that, for each vertex (or edge), returns whether it is part of the
solution whose size is being approximated - for example, whether it is in the vertex
cover or maximal matching. Their results show that this oracle can be implemented
in time independent of the size of the graph (depending only on the maximal degree
and the approximation parameter). However, because their goal is only to compute
an approximation of some quantity, they can afford to err on a small fraction of their
local computations. Thus, their oracle implementations give LCAs for finding relaxed
solutions to the the optimization problems that they are designed for.

Parnas and Ron [86] (see Chapter 3) gave a simple reduction from constant-time
distributed labeling algorithms to sublinear approximation algorithms (a labeling al-
gorithm is simply an algorithm that assigns vertices (or edges) labels that meet some
set of constraints: a maximal independent set algorithm assigns each vertex a boolean
label indicating whether or not it is in the independent set; a vertex coloring algorithm

assigns each vertex a color).

Theorem 1.1.1. [86] Let G = (V, E) be a distributed network with degree at most
d. Let D be a deterministic distributed algorithm that computes a labeling D(G) in k
rounds. Then it is possible, for any node v € V' to compute D(v) in time and space
complezity O(d¥) using a single processor, where the algorithm uses only neighbor and

degree queries.

Using this reduction, the approximation algorithm queries a constant number of
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vertices, and based on the replies, computes an approximate size of the labeling prob-
lem. We can use the same reduction to obtain an LCA for labeling problems, on graphs
of bounded degree, as the reply to every query will be consistent with the output of
the distributed algorithm.

Rubinfeld et al. [98] designed LCAs for several problems such as hypergraph 2-
coloring and MIS on graphs of bounded degree.? Their LCA for MIS is based on the
Parnas-Ron reduction of Luby’s distributed algorithm [65], only instead of running
Luby’s algorithm for O(logn) rounds (which would imply a d°(°¢™) running time), it
is stopped after a constant number of rounds. This guarantees that most of the vertices
are accounted for (either in the independent set or neighbors of vertices that are in the
independent set). They then used the Lovész Local Lemma to show that after the
above vertices® are removed from the graph, any remaining connected component must
be of size O(logn) with high probability (w.h.p.), and so the greedy algorithm can be

used. Their focus was on the time bounds of these algorithms.

1.1.2 Simulating Online Algorithms

Nguyen and Onak [79] showed how to simulate certain online algorithms to obtain sub-
linear approximation algorithms for problems like vertex cover and maximum matching
on graphs whose degree is bounded by a constant, by generating a random order on
the vertices, and simulating some online algorithm A using this order. Their key ob-
servation is that in expectation, we only need to make a constant number of probes to
the graph in order to determine the output of A on any vertex. Then, we can query a
constant number of vertices to determine whether they are in, say, the vertex cover, to
get an approximation to the size of the vertex cover. (If we find that we need too many
probes for determining the reply to a specific vertex, we abort and query another vertex
instead.) The idea behind the complexity analysis is the following: give each vertex,
uniformly at random, a real number between 0 and 1, called its rank. Simulate the
online algorithm on the order implied by these ranks (where the rank represents arrival
time). Say we want to evaluate A on some vertex v. Create a tree rooted at v, and add
all the neighbors of v that arrived before v. Continue to iteratively add neighbors of

vertices in the tree until no more can be added. This query tree is an upper bound to

2The graphs need to obey certain other combinatorial properties, specifically, to meet the require-
ments of the Lovasz Local Lemma.
3i.e., the vertices that are accounted for
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the number of probes to the graph that we need to make in order to evaluate A on v.
For intuition to why a query tree has constant size in expectation, assume that v has
rank 0.5. In expectation, half of its neighbors arrive before it. Half of them will have
a rank of at most 0.25, and most of their neighbors will arrive after them. Thus, the
degrees of the vertices of the tree quickly drop. We would like to use the same reduction
(generating a random order and simulating an online algorithm on this order) be used
to obtain LCAs and not just approximation algorithms; the main difference between
the two is that sublinear approximation algorithms are content with having a reply to
a constant fraction of the queries, while LCAs require an answer for every query. Thus,
an LCA cannot just abort if a computation takes too long. Fortunately, it turns out

that w.h.p., the query tree will not be too big.

Our contributions. In [4], we bounded the size of the query tree to show that every
query requires a polylogarithmic* number of probes with high probability (w.h.p.). The
idea behind the proof is the following: assume that the maximal degree of the graph
is d. Consider a partition of [0,1] into d + 1 equal intervals. We say that the vertices

% i+1
d+1’ d+1

whose rank is in the interval [ ) are on level 1. In the query tree, if there are k
vertices on level ¢, it is unlikely that there will be much more than O(klogn) vertices
on level 7 + 1, as each vertex on level ¢ has, in expectation, less than 1 neighbor on
level i + 1. In [67], we used a more subtle bounding of the query tree to show that
the number of probes per query is logarithmic in the number of vertices w.h.p. In [90],
we used a different technique to logarithmically bound the number of probes required
by this simulation; the result holds for a larger family of graphs, which we discuss in

Subsection 1.1.4. As the result [90] subsumes the results of [4] and [67], it is the one

that we present in this dissertation, in Chapter 4.

1.1.3 Pseudorandom Orderings

Bounding the size of the query tree allows us to bound the number of probes to the
graph, and hence the running time of the LCA (the running time is not exactly the
number of probes, but they are usually closely related - see Chapter 4 for a more
detailed discussion). These bounds depend on the fact that we use some randomness

to determine the order; as we want the replies of the LCA to be consistent with the

1Specifically O(log?! n), where n is the number of vertices and d is the maximal degree of the
graph.
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same solution, we must use the same randomness every time. Therefore, we need to
store this randomness, which affects our space requirements. If we wanted to store a
permutation of the vertices, this would require 2(nlogn) bits, assuming there are n
vertices. Consider the most intuitive way to store a permutation: map each vertex v
to a unique value in {1,2,...,n}; denote this mapping by 7. Vertex v appears before
vertex u in the permutation iff w(v) < 7(u). In order to store this mapping, we need
to store logn bits for each vertex, for a total of nlogn bits. Unfortunately, this is
the best we can do asymptotically (see, e.g., [12]). We therefore use pseudorandom
generators. A pseudorandom generator is an algorithm that takes as input a short,
perfectly random seed and then returns a (much longer) sequence of bits that “looks”
random. We clearly sacrifice some randomness when we do this: the permutation we
get is defined by the random seed, and if the seed is of length k, there are only 2F
possible distinct values of the seed. However, in certain cases, this randomness can be
good enough for our purposes. Consider the case that we want N random variables,
but we don’t need them to be completely independent; it suffices that every two of
them are independent. This is known as pairwise independence and is quite common in

randomized algorithms; possibly the best known example is Luby’s MIS algorithm [65].

In Luby’s algorithm, each vertex chooses itself with some (small) probability, and
if none of its neighbors is chosen, it adds itself to the independent set (IS). The choices
of any vertex that is not v’s neighbor are irrelevant to whether or not v is added to
the IS. In fact, all we require is that the choices of every two neighboring vertices
are independent - we require pairwise independence. Although we need to generate n
random variables, we do not need n random bits, in fact we only need O(logn) random
bits. A very simple example of a construction of pairwise independent random variables

is the following [56].

Assume for simplicity that n is a prime number, and that every vertex v has a
unique ID between 1 and n (we represent this ID by v as well). Further assume that we
want to generate for each vertex a (not necessarily unique) random label between 1 and
n, such that the labels are pairwise independent. We can sample uniformly at random
two integers, a and b, from {1,2,...n}, and consider the hash function h(v) = av + b.
We claim that h(v) is uniformly distributed, and every two labels are independent. It
is easy to see why this is true: if we know h(v) for some vertex v, h(u) is uniformly

distributed for any u. Notice however, that if we know h(u) and h(v), we can determine
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a and b, and hence completely know h (and therefore the evaluation of h on any other
w € {1,2,...n}). Therefore h is pairwise independent, but not k-wise independent for
any k > 2. This notion of k-wise independent hash functions was introduced by Carter
and Wegman [18]. They also introduced almost k-wise independent hash functions,
which we will touch upon shortly. The notion of limited independence has been used in
many aspects of computer science; for an excellent introduction to pseudorandomness

and k-wise independence, see [106].

Back to our scenario, we know (from bounding the query tree) that we will
not require more than O(logn) probes per query, and so we only require O(logn)-
independence for our bounds to hold. In fact, we don’t need log n-wise independence -
almost log n-wise independence is sufficient for our purposes. Informally, a hash func-
tion h is almost k-wise independent if the evaluation of h on a set of at most k variables
“looks” like the uniform distribution. In other words, it is difficult to distinguish be-
tween k truly random bits and the evaluation of the hash function on any k variables.
We provide a more formal discussion in Chapter 4. Naor and Naor [75] showed that
using almost k-wise independence allows us to further reduce the seed length; Alon et

al. [3] showed simpler constructions of almost k-wise independent hash functions.

Our contributions. In [4], we showed that to generate the randomness necessary for
the LCAs that we obtain using the reduction to online algorithms, we can use a random
seed of length O(log®n), using an implementation of the constructions of [3]. The idea
is the following: generate for each vertex an (O(logn)-wise independent) integer in
[1,n%). The probability that there is any collision is at most # If there is a collision,
we cannot guarantee the number of probes or running time, but the probability of this
happening is negligible. In [90], we showed that, for the same reduction, it is sufficient
to give each vertex a number in [1, L], where L is some constant. There will (w.h.p.)
be collisions, but even using an arbitrary tie-breaking rule, the number of probes to the
graph can be shown to still be O(logn) w.h.p., and hence, using a new construction of
almost k-wise independent random variables of [72], they showed that a seed of length

O(log n) suffices. The latter result is presented in Chapter 4.
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1.1.4 d-light Graphs

Most of the research on LCAs (e.g., [4, 28, 60, 68, 98, 98]) focuses on graphs of bounded
constant degree. A natural question to ask is “(Other than graphs of bounded degree),
which graphs admit LCAs?” We take an important step forward in characterizing these

graphs.

Our contributions. In [67] (and later in [42]), we considered graphs where the degree
is distributed binomially (and its expectation is constant). We showed that the size of
the query tree is bounded by O(logn) w.h.p. in this case as well. In [90], we expanded
the family for graphs for which the online reduction holds to a family of graphs called
d-light graphs. The high-level idea behind d-light graphs is the following: given that
some subgraph has already been exposed, we would like the degree of the next exposed
vertex to be bounded by a distribution that has expected value d and whose tail is light.
A formal definition is given in Section 2.3. We will see that this definition encompasses

a broad range of graphs, for example:
e Graphs with degree bounded by d, where d = O(loglogn),
e The random graphs G(n,p), where p = d/n, for any d = O(loglogn),

e Bipartite graphs on n consumers and m producers, where each consumer is con-

nected to d producers at random.

In Chapter 3, we show that the Parnas-Ron reduction can be used on d-light graphs

to obtain an LCA whose number of probes and running time is O(logn) w.h.p.

1.1.5 Graphs of Constant Bounded Degree

The family of graphs of constant bounded degree has been extremely well studied in
the context of distributed algorithms (in particular, the LOCAL model [87]). Naor and
Stockmeyer [76] investigate the question of what can be computed on these networks
in constant time, and show that there are nontrivial problems under these constraints.
They investigate locally checkable labeling (LCL) problems, where the legality of a
labeling can be checked in constant time (e.g., coloring). They describe constant-time

algorithms for several problems, notably for c-weak coloring,® for some constant c, on

Sc-weak coloring means coloring the vertices with at most ¢ colors such that every vertex has at
least one neighbor colored differently from itself
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graphs of odd degree. Cole and Vishkin [21] showed that it is possible to obtain a
3-coloring of an n-cycle in O(log™n) communication rounds (assuming that there are
unique node identifiers). This was shown to be tight by Linial [61]. This field has
received considerable interest over the past three decades, e.g., [38, 54, 55, 85]; see [87]
for an introductory book and [100] for a recent (2013) survey.

Even et al. [28] investigate the connection between local distributed algorithms
and LCAs. They show how to color the vertices in a small neighborhood of a graph
to obtain an acyclic orientation of the neighborhood. Their coloring algorithm is an
adaptation of the techniques of Panconesi and Rizzi [85] and Linial [61], and produces
a coloring in O(log* n) rounds. This orientation defines an order on the vertices, and an
online algorithm can be simulated on this order, similarly to the technique presented
in Subsection 1.1.2. This generates a deterministic LCA for MIS on constant degree

graphs that requires O(log™ n) probes.

Our contributions. In [66], we showed that there are some non-trivial LCAs that
only require a constant number of probes (and running time), removing the dependency
on n completely. Specifically, they give an LCA that computes an approximately op-
timal maximal weight forest; LCAs for multicommodity flow and multicut on trees;
and give a constant-time reduction from weighted matchings to unweighted matchings.

These results are presented in Chapter 6.

1.2 Algorithmic Game Theory

Algorithmic game theory (AGT) is an area in the intersection of game theory and
algorithm design, whose objective is to design algorithms in strategic environments:
the input, or some part of it, is given to the algorithm by selfish agents that have
a stake in the outcome. Therefore, unlike in classical algorithm design, we cannot
assume that the input given to us is correct, and so we need to incentivize the agents
to truthfully report their part of the input. The field was started by Nisan and Ronen
in their seminal 1999 paper [81]. Since then, it has flourished, with thousands of
papers being written on it. We cannot hope to provide even a brief summary of the
many interesting results of AGT - we refer the reader to [80] as a good starting point.
In this work we tackle three very different game-theoretic scenarios: stable matching

(Chapter 8), machine scheduling (Chapter 9) and combinatorial auctions (Chapter 10).
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In the stable matching problem, there is a set of men and a set of women, where each
man has a preference list over the women and each woman has a preference list over
the men. We want to find a matching that is stable; i.e., that there is no pair of a man
and a woman who prefer each other over their given partner (and hence would prefer to
defect from the suggested matching). In machine scheduling problems, we would like
to assign jobs to machines so that the last job terminates as quickly as possible, and in
combinatorial auctions, we would like to assign items to buyers so that the social welfare
(or “total happiness”) is maximized. In the last two settings, we use payments in order
to ensure that the agents (the machines and buyers respectively), report truthfully
(their computational power and how much they value the items respectively). Because
the three settings are very different, we provide a brief introduction to each of them

(along with a discussion of related work) in their respective chapters.

1.3 Overview of the Thesis

1.3.1 Part I - Designing Local Computation Algorithms

In the first part of the thesis, we introduce the model of local computation algorithms
and describe some techniques for designing LCAs. In Chapter 2, we introduce the
model and define the performance criteria for LCAs on graphs. The five criteria are:
the number of probes the LCA makes to the graph per query; the memory required to
store the source of randomness, if our LCA is randomized; the running time per query;
the space requirement for computing the reply to a query; and the probability that the
LCA deviates from the specified number of probes, time or space.

We then introduce a family of graphs, which we call d-light graphs: A d-light graph
is a graph that is sampled from some distribution of graphs, such that whenever some
subgraph has already been exposed, the degree of the next exposed vertex is bounded
by a light-tailed distribution that has expected value d. Many natural graphs fall within
this family, including graphs of bounded degree and random (Erdds-Rényi) graphs. We
show that given that some sufficiently large subgraph has been exposed, then w.h.p.
the neighborhood of the subgraph is not much bigger than the subgraph itself.

We end Chapter 2 by showing that some problems, even ones that are solvable in
polynomial time, may not have LCAs. Specifically, we show that there can be no LCA

for maximum matching,.
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In Chapters 3 and 4 we show how to we can transform certain distributed and
online algorithms, respectively, to LCAs. The idea behind the reduction to distributed
algorithms is as follows: If we are queried on a vertex v and there is a distributed
algorithm D for the problem terminates after a constant number of rounds k, then we
can simulate D on all vertices at distance at most k from v. If the graph is d-light, we
show that the total number of these vertices is at most logarithmic in the size of the
graph, w.h.p. The reduction to online algorithms is conceptually (almost) as simple: we
generate some random order on the vertices and simulate an online algorithm A on this
order. Because we want the replies to all queries to be consistent with a single feasible
solution, we have to simulate A on the same order for every query. We therefore have to
remember this ordering. Unfortunately, our results depend on this order being random,
and so we cannot use some arbitrary ordering (for example, ordering the vertices by
ID). Although we require that the ordering is random, we do not require complete
randomness. It turns out that a logarithmic number of truly random bits suffices for
our purposes. Using this small seed, we can generate an “almost” random order on
the vertices that still guarantees that we only probe the graph a logarithmic number
of times per query in the worst case, w.h.p. We also show that in expectation, we only
require a constant number of probes. In Chapter 5, we show an LCA for approximating
the maximum matching on graphs of constant degree.

We end the first part of the thesis by showing that we can sometimes design LCAs
whose running time is independent of the size of the graph, and depends only on the
maximal degree (Chapter 6). We design and LCA for finding a forest whose weight is
a (1 — €) approximation to the weight of the maximal spanning forest, and LCAs for
computing integer multicommodity flow and multicuts on trees that are a 4- and i—
approximation to the maximal flow and minimal cut respectively. Finally, we show that,
given a constant-time a-approximation algorithm (« < 1) for unweighted matching, we
can design a constant-time g-approximation algorithm for weighted matching. The
running time of our weighted matching LCA is independent of the weight function as

well as the size of the graph.

1.3.2 Part II - Local Computation Mechanism Design

In the second part of the thesis, we design local computation mechanisms (LCMs) -

game-theoretic mechanisms that run in polylogarithmic time and space. In Chapter 7



1.3. OVERVIEW OF THE THESIS 13

we formally define our model and give a simple example - an implementation of the
random serial dictatorship algorithm. In the housing allocation problem, there is a list
of houses and a list of buyers, and the buyers have a preference list over the houses.
We would like to find a “good” allocation of houses to buyers. The random serial
dictatorship algorithm has some nice game-theoretic properties, such as the buyers
having no incentive to lie about their preference list. The local mechanism requires
that the input obey some restrictions (specifically that each buyer’s preference list
includes a constant number of houses, chosen uniformly at random), and, when queried
about a buyer, returns which house she is allocated, while still guaranteeing all the nice

properties that the non-local mechanism has.

In Chapter 8, we show how to implement the Gale-Shapley stable matching algo-
rithm [34] as an LCA in the setting where each man’s preference list has a constant
number of women, selected uniformly at random. In the Gale-Shapley algorithm, each
man approaches his most preferred woman. The woman tentatively accepts the man
she prefers out of all of the men that approached her, and rejects the rest. In the next
round, every man that was just rejected approaches the next woman on his list. Each
woman once again tentatively accepts the man whom she prefers (out of all the men
standing in front of her, including the man she tentatively accepted in the previous
round, if there was one). This continues until each man is standing in front of a single
woman, at which point the algorithm terminates. Gale and Shapley showed that this
matching is stable. Our local implementation is straightforward: we simulate this al-
gorithm for a constant number of rounds, k, and disqualify any man that is rejected
on round k. We show that by appropriately selecting the number of rounds, we can
guarantee that at most an e fraction of the men is disqualified, for any e. This assures
that our matching is e-almost stable (at most an e fraction of the men (and women)
would prefer each other to their matched partner). We use our techniques to show
that in the general case when the men’s lists have bounded length (even in cases that
do not admit an LCA), we can find arbitrarily good matchings® (up to both additive
and multiplicative constants) by truncating the Gale-Shapley algorithm to a constant

number of rounds.

In Chapter 9, we consider the problem of scheduling jobs on machines. In the

makespan minimization problem, we want to schedule n jobs on m machines so as

6See Section 8.1 for a formal discussion.
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to minimize the maximal running time (makespan) of the machines. This problem
has many variations; we consider the scenario in which m identical jobs need to be
allocated among n related machines. The machines are strategic agents, whose private

information is their speed. We show:

1. A local mechanism that is truthful in expectation’ for scheduling on related ma-

chines, that provides an O(loglog n)-approximation to the optimal makespan.

2. A local mechanism that is universally truthful® for the restricted case (i.e., when
each job can run on one of at most a constant number of predetermined machines),

that provides an O(loglog n)-approximation to the optimal makespan.

We also show some subtle and surprising results on the truthfulness of our algo-
rithms.

In Chapter 10, we consider matching combinatorial auctions. Combinatorial auc-
tions (CAs) are auctions in which buyers can bid on bundles of items. We consider the
following scenario: m items are to be auctioned off to n unit-demand buyers, where
each buyer is interested in a set of at most k items, sampled uniformly at random. We
show universally truthful local mechanisms for the following variations, both of which

1

give a j-approximation to the optimal solution:

1. When all buyers have an identical valuation for the items in their sets, and the

buyers’ private information is the sets of items they are interested in.

2. When the sets are public knowledge, and the buyers’ private information is their

valuation.

If each buyer is interested in a set of at most k items, and has private valuation for this

set, we show a universally truthful local mechanism that admits a %—approximation to

the optimal social welfare.

1.4 Published and Submitted Papers

e Chapter 4 is based on

"For formal definitions of truthfulness in expectation and universal truthfulness, see Section 9.1.
8See Footnote 7.
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Chapter 2

The Local Computation Model

In this chapter we formally define the model of local computation algorithms. We first

introduce some notation.

2.1 Notational Conventions

We denote the set of integers {1,2,...,n} by [n]. We write N for the set of nonnegative
integers, and R for the set of reals.

Let X be a random variable, distributed according to the Binomial distribution
with parameters n and p; we denote this by X ~ B(n,p).

Let G = (V,E) be a simple undirected graph. The neighborhood of a vertex v,
denoted N (v), is the set of vertices that share an edge with v: N(v) = {u: (u,v) € E}.
The degree of a vertex v, is |[N(v)|. The neighborhood of a set of vertices S C V,
denoted N(5), is the set of all vertices {u : v € S,u € N(v)\ S}. The distance between
two vertices u and v, denoted dist(u,v), is the minimal number of edges required to
reach v from u (or vice-versa). For any vertex v, its k-neighborhood (for k£ > 0),
denoted N¥(v), is the set of all vertices at distance at most k from v. For any edge
e = (u,v), its k-neighborhood is defined as N*(e) = N¥(u) U N¥(v).

We assume that each vertex v € V has a unique label between 1 and some n =
poly(|V|). For simplicity, assume n = |V (or in other words V' = [n]).

We use “with high probability” (w.h.p.) to mean with probability at least 1— m,
where polyn is some polynomial in n. Although we state our results with a specific

(asymptotic) failure probability, such as n—12, they can all easily be extended to have a

1

e, for any constant c.

failure probability of

17
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2.2 The Model

We assume the standard uniform-cost RAM model, in which the word size is O(logn)
bits, where n is the input size, and it takes O(1) to read and perform simple words
operations.

Before formally defining LCAs, we define the measures by which the complexity of
LCAs is quantified.

o Number of probes. An LCA can access a vertex in the input graph and ask for a

list of its neighbors, or the ID of a neighbor. This is called a “probe”.

e Running time. The running time of an LCA, per query, is the number of word
operations that the LCA is required to perform in order to output a reply to the
query. In the running time calculation, a probe to the graph is assumed to take
O(1). Note, however, that if we wish to perform an operation on a the entire list
of neighbors and the list is of size ¢, (such as committing the list to memory or

finding the maximal ID), this will take O(¢) operations.

e Enduring memory. As a preprocessing step, before it is given its first query, the
LCA can be allocated some memory to which it is allowed to write. Once the
first query is given to the algorithm, it can only read from this memory and can
never modify it. This can be viewed as the LCA being allowed to augment the

input with some small number of bits.

e Transient memory. This is simply the amount of memory (measured in the
number of words) that an LCA requires in order to reply to a query. It does not

include the enduring memory.

Failure probability. The LCA is allowed to deviate from the number of probes,
running time or transient memory that it requires per query. In this case, we say
that the algorithm “fails”. We require that, even if the LCA is queried on all
vertices, the probability that it will fail on any of them is still very low. Note
that the algorithm is never allowed to reply incorrectly - the failure is only a
function of its complexity. Note further that the LCA is never allowed to use

more enduring memory than it requested.

We define LCAs as follows.
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Definition 2.2.1 (Local computation algorithm). A (p(n),t(n),em(n),tm(n), )-
local computation algorithm A for a computational problem is a (possibly randomized)
algorithm that receives an input of size n, and a query x. Before the first query, A
is allowed to write em(n) bits to the enduring memory, and may only read from it
thereafter. Algorithm A makes at most p(n) probes to the input in order to reply to any
query x, and does so in time t(n) using tm(n) transient memory (in addition to the
enduring memory). The probability that A deviates from the probe, time or transient
memory bounds is at most §(n), which is called A’s failure probability. Algorithm A
must be consistent, that is, the algorithm’s replies to all of the possible queries combine

to a single feasible solution to the problem.

2.3 d-light Graphs

In this section we introduce the family of graphs for which our reductions to distributed
and online algorithms apply. We then prove a probabilistic bound on the size of the
neighborhood of any set of adaptively exposed vertices of such a graph. We only
discuss undirected graphs, but both the definitions and algorithms easily extend to the
directed case. We call these graphs d-light; they generalize a large family of graphs
(see below). Before defining d-light graphs, we need to define certain processes that
adaptively expose vertices of a graph. A wvertex exposure procedure is a procedure P
that is allowed to probe vertices in the graph (usually according to some predetermined
set of rules), to obtain their list of neighbors. Such procedures can be used, for example,
to adaptively learn the structures of neighborhoods of graphs. Once a vertex has been

probed by P, it is said to be exposed.

Definition 2.3.1 (Adaptive vertex exposure). An adaptive vertex exposure process P
is a process that receives a limited oracle access to a graph G = (V, E) in the following
sense: P maintains a set of vertices S C 'V, (initially S = (), and updates S iteratively.
In the first iteration, P exposes an arbitrary verter v € V, learns the IDs of all of the
neighbors of v, and adds v to S. In each subsequent iteration, P can choose to expose
any u € N(S): u is added to S, and P learns the IDs of u’s neighbors. If a subset

S C V was exposed by such a process, we say that S was adaptively exposed.

Before defining d-light graphs, we need one more definition.



20 CHAPTER 2. THE LOCAL COMPUTATION MODEL

Definition 2.3.2 (Stochastic dominance). For any two distributions over the reals, X
and Y, we say that X is stochastically dominated by' Y if for every real number = it

holds that Pr[X > x] < Pr[Y > z|. We denote this by X <q Y.

For a more in-depth discussion of the properties of (and some new results on)

stochastic dominance that we will require, see Appendix A.2.

Definition 2.3.3 (s-conditional d-light distribution). Let d,s > 0, G = (V, E) be a
graph sampled from some distribution, and P be an adaptive vertex exposure process.
If, for every S C V, |S| < s, that is adaptively exposed by P, conditioned on any
instantiation of S U N(S) and set of edges Es = {(u,v) € E | uw € S}, we have that
for every v € N(S)\ S (or any v in the case that S is empty), there is a value d <
a(v,S) < |V, such that |N(v) \ S| is stochastically dominated by B (a(v,S), ﬁ),
we say that the degree distribution of G is s-conditionally d-light (or, for simplicity,
that G is s-conditionally d-light). If this property holds for s = |V| — 1, we say that G
1s d-light.

Remark 2.3.4. We shall see that, because we are interested in LCAs whose complex-
ity measures are polylogarithmic, it suffices to consider polylogn-conditionally d-light
graphs. For simplicity, we state most of our results in terms of d-light graphs. All of
these results also hold for polylogn-conditionally d-light graphs; the proofs may need
to be slightly modified, and we remark on these differences when they arise. We espe-
cially note that the results of Chapter J hold for (polylogn)-conditionally d-light graphs

without modification.

The family of d-light and conditionally d-light graphs includes many well-studied

graphs in the literature; for example,

e d-regular graphs, or more generally, graphs with degree bounded by d (taking
a=d),

e The random graphs G(n,p), where p = —4-. Each one of the (g) edges is selected

n—1"

independently with probability p; therefore the degree of each vertex is distributed

according to the binomial distribution B(n — 1, -%7). Note that in general, the

' n—1

degrees are not independent (for example, if one vertex has degree n — 1 then all

IThis is usually called first-order stochastic dominance. As this is the only measure of stochastic
dominance we use, we omit the term “first-order” for brevity.
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other vertices are connected to this vertex). However, once a subset W C V has
been exposed (as well as the edges in the cut (W, G\ W), for any v ¢ W, |[N(v) \
W| ~ B(n — |[W| -1, %), which is stochastically dominated by B(n — 1, -%-).

' n—1

e Bipartite graphs on n consumers and n producers, where each consumer is con-

nected to d random producers are (n/2)-conditionally 2d-light. See Claim 2.3.5.

Claim 2.3.5. The family of bipartite graphs on n consumers and n producers, where
each consumer is connected to d < n producers uniformly at random is (n/2)-

conditionally 2d-light.

Proof. Let S be any adaptively exposed set of size at most n/2. We prove that the de-
gree of any producer/consumer i ¢ S is stochastically dominated by B (a(z’, S), %)
(This is stronger than the requirements of Definition 2.3.3 in that (1) we prove it for
every vertex in V' \ S which is a superset of N(S) \ S, and (2) we bound |N(v)|, and
IN@)| = IN@)\ 5.)

The degree of any consumer i (in S or not) is at most d - which is trivially stochas-
tically dominated by B(2d, 1) (taking «(i,.S) = 2d). The degree of any producer i not
in S is stochastically dominated by B (n, #‘b) = B(n,2d/n): Let P C S denote the

set of producers in S. Set |P| = ¢ < n/2. Consider a consumer j, and let r be the

d—r
n—q

number of neighbors it has in P. j chooses ¢ w.p. < %. As there are at most n
consumers, each choosing ¢ w.p. at most 2d/n, taking a(i,.S) = n completes the proof

of the claim. ]

Assumption 2.3.6. When considering d-light graphs (or conditionally d-light graphs)

in this work, we assume that d is a constant.

In fact, as we show in Section 4.5, we can allow d to be as large as ©(loglogn).
However, we only explicitly compute the complexity of the LCAs on d-light graphs for
constant d. If d is super-constant, the complexity parameters deteriorate. We discuss
this further in Section 4.5, but for now we state that for the LCAs on d-light graphs in
this work, the number of probes, running time, enduring memory and transient memory

all remain polylogarithmic for d = O(loglogn).

2.3.1 Bounding the Neighborhood of Exposed Sets

Many of the results on d-light graphs of this thesis depend on a crucial property:

any exposed subgraph of a d-light graph does not have “too many” neighbors. For
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motivation, consider the following strong property:

Property 2.3.7. Every connected subgraph with s vertices has at most O(d - s) neigh-

bors.

Property 2.3.7 holds trivially for graphs of degree bounded by d, but it does not
necessarily hold for d-light graphs. We could ask for a weaker property:

Property 2.3.8. Every connected subgraph with s vertices has at most O(d-s) neighbors
w.h.p.

Unfortunately, Property 2.3.8 does not hold for d-light graphs either. It applies to
large subgraphs, but not small ones. Consider the subgraph that is a single vertex,

whose degree is distributed binomially deg(v) ~ B(n,d/n). With probability ©(1/n),

deg(v) = Q(lolgﬁ) gn) We therefore ask for two weaker properties, given by Proper-
ties 2.3.10 and 2.3.11. The first property is that when we adaptively expose a large
enough connected subgraph, the number of neighbors it has is unlikely to be much
larger than the subgraph itself. The second property is that if we adaptively expose
a small enough connected subgraph, the number of neighbors it has is unlikely to be
more than clogn, for some constant c¢. The proofs of both properties depend on the

following proposition. Note that in the following, we are counting the number of edges,

one of whose endpoints (at least) is in S. The other endpoint may or may not be in S.

Proposition 2.3.9. Let {X; j}icim] jein2) be n?-m independent Bernoulli random vari-
ables such that Pr[X;; = 1] = 2d/n? for every i € [m] and j € [n?]. For every
(s-conditionally) d-light graph G = (V, E) with |V| = n and every adaptively exposed

subset of the vertices S C V' of size m (where m < s),

m n2

H{(u,v) € E | ue S} <g 2dm+ ZZXM'
i=1 j=1

Proof. Denote |S| = m. Label the vertices of S: 1,2,...m, according to the order of
exposure. That is, vertex 1 is the first vertex that was exposed, and so on. Denote
by S; the set of vertices {1,2,...,i}, and by Y; the random variable representing the
number of neighbors of vertex i that are not in S;_;. That is, Y; = [N(S;) \ Si—1]. The
quantity we would like to bound, [{(u,v) € E | u € S}|, is at most >_.*, Y;.

From the definition of s-conditional d-light distributions, conditioned on every pos-

sible realization of S;_;, N(S;—1) and the edges adjacent to S;_1, there exists some
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d < a; < n such that Y; <4 B(aj,d/a;). By Lemma A.2.8, under the same condi-
tioning, Y; <g Z ~ 2d + B(n?, i—gl) This implies that conditioned on any realization
of Y1,...,Yi_1 we have that ¥; <, Z. By Lemma A.2.3 we now have that ) ", Y; is

stochastically dominated by the sum of m independent copies of Z.
2

n
Note that for every i we have that Z X;; ~ B(n* 2d/n*). By the definition of Z
j=1

m m n2
Y Yi<a2dm+) Yy Xij.
i=1

i=1 j=1

we now have that

O

Property 2.3.10. There exists some constant ¢ > 0, such that for every (s-
conditionally) d-light graph G = (V,E) with |V| = n and every adaptively exposed
subset of the vertices S C V' of size at least clogn (and at most s), we have that
Pr[[{(u,v) € E | u € S}| > 6d|S|] < 1/n°. In particular, Pr[|N(S)| > (6d — 1)|S]] <
1/nd.

Proof. Letting |S| = m, from Proposition 2.3.9,

m ’I’L2

{(u,v) € B |ue S} <q2dm+Y_ % Xij.
i=1 j=1

m TLQ

By the linearity of expectation, E[Z ZXM] = 2dm. By the Chernoff bound, there
i=1 j=1

m 7’L2

exists a constant ¢ such that when m > clogn it holds that Pr[z ZXW > 4dm] <
i=1 j=1
1/n°. O

Property 2.3.11. There exist constants ¢’ > ¢ > 0, such that for every d-light graph
G = (V,E) with |V| = n and every adaptively exposed subset of the vertices S C V
of size at most ¢'logn, we have that Pr[|{(u,v) € E | u € S}| > ¢"logn] < 1/n°. In
particular, Pr[|N(S)| > ¢’logn] < 1/nS.

Proof. Similarly to the proof of Corollary 2.3.10, let|S| = m. From Proposition 2.3.9,

m TL2

{(u,v) € E|ue€Své¢ S} <g 2dm+ ZZXM. By the linearity of expectation,
i=1 j=1

m 7’L2

E[Z Z X ;] < 2dc’ log n. By the Chernoff bound of Theorem A.1.1, taking ¢’/ > 4edc,
i=1 j=1
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m TL2
it holds that Pr[z ZXW > ’logn] < 1/n°. O
i=1 j=1

2.4 Crisp Algorithms

We provide general reductions of LCAs to distributed and online algorithms, and we
wish to bound the complexity measures of our LCAs. The number of probes is inde-
pendent of the implementation of the online algorithm, and as we shall see later on,
the amount of enduring memory required will usually not be affected, as long as the
implementation is “reasonable”. However the running time and space requirements
clearly depend on the running time and space requirements of the simulated algorithm:
If we probe one vertex, but the simulated algorithm performs some computation that
requires time proportional to the number of bits used to represent the vertex’s ID, the
running time of the LCA will be O(logn), and not O(1). However, this is not usu-
ally the case with online algorithms for combinatorial problems, and many algorithms

“behave well”. To quantify what we mean by this, we introduce the following definition.

Definition 2.4.1. We say that an algorithm A is crisp if A requires time and space
linear in its input length (where the input length is measured by the number of words),

and the output of A is O(1) per query.

Most of the algorithms that we wish to convert to LCAs using the techniques of this
paper are indeed crisp; for example the greedy algorithm for maximal independent set
requires computation time and space linear in the number of neighbors of each vertex,
and the output per vertex is a single bit. Not all the algorithms we wish to handle
are necessarily crisp; in the case of vertex coloring, the output of the greedy algorithm
can be log A, where A is the maximal degree of the graph. Nevertheless, as to avoid
a cumbersome statement of our results, we restrict ourselves to crisp algorithms; it is

straightforward to extend our results to non-crisp algorithms.

We note that the analysis of distributed algorithms often assumes that the “expen-
sive” part of the computation is the message passing, while the processors themselves
have unrestricted computational power. Nevertheless, many distributed algorithms are

actually very efficient.
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2.5 An Impossibility Result for Maximum Matching

In the rest of the thesis, we will focus on designing LCAs for problems. We remark
that not all problems that are polynomial-time tractable admit LCAs. An example
of one such problem is maximum matching (either weighted or unweighted). Efficient
polynomial algorithms exist, such as Edmonds’ celebrated blossom algorithm [26] but
unfortunately, no LCA can exist. In fact, no LCA can exist for the simpler problem of
finding a maximum matching on bipartite graphs. This is shown by the theorem and

corollary below.
Theorem 2.5.1. There does not exist an LCA for the maximum matching problem.

Proof. To see why it is not always possible to solve the maximum matching locally,
consider the following family of homomorphic graphs: G = {G;}. All G; € G have 2n
vertices: {v1,v2,...,v2,}. In each G; = (V;, E;), vertices V; \ {v;} comprise an (odd)
cycle, and vertex v; is connected to vertex v;—; (modulo 2n). Each G; has a unique
maximum matching. We are given as input a graph G € G, (i.e., we know it is G; for
some 4, but we don’t know the value of 7). We would like to know whether the edge
e = (v1,v2) is in the maximum matching. Note that the edge e will be in exactly half
of the maximum matchings.

Assume w.l.o.g. that the graph is either GG, or G,,+1. In the distributed model, this
implies that the distance between the edge e = (v1,v2) and the vertices that distinguish
between of G, and G,4+1 (vertex v,—1 and vertex v,) is n — 2 edges, which will be a
lower bound on the time to detect the correct graph.

In the local computation model, we can write the edges in a random order. This
implies that one needs to query, on average, n — 2 edges to distinguish between G, and
Gp+1-

Therefore there cannot exist an LCA for maximum matching. 0

Corollary 2.5.2. There does not exist an LCA for the maximum matching problem in

bipartite graphs.

Proof. The proof is similar to the general case. In the bipartite case, though, in each Gj,
the vertices v1,v9,...,v;—1, Vit2,...,V2, comprise an even cycle. Vertex v; is connected
to vertex v;_; and vertex v;;1 is connected to vertex v;yo (modulo 2n). Note that

the edges (vi—1,v;) and (vj41,v+2) must be in the maximum matching, because the
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maximum matching in this case is of size n, meaning all vertices must be matched,

including v; and v;41. ]



Chapter 3

Reducing LCAs to Distributed
Algorithms

The next few chapters describe general techniques for designing LCAs. We build upon
the vast literature on distributed and online algorithms, and give black-box reduc-
tions of LCAs to distributed and online algorithms for certain families of problems and
graphs. In this chapter, we describe a simple method for converting any distributed
algorithm that requires a constant number of rounds to an LCA. This reduction was
proposed by Parnas and Ron [86]. After describing the reduction, we show how to
improve the trivial bounds on the number of probes, running time and memory re-

quirements when the resulting LCA is executed on d-light graphs.

3.1 The Parnas-Ron Reduction

Let G = (V, E) be a graph, and let O be some arbitrary finite set. Parnas and Ron
[86] noticed the following: Assume that there is a (crisp) distributed algorithm .4 that
computes some function F': V' — O. If A terminates after a constant number of rounds,
£, then it is suffices to simulate A on the f-neighborhood of any vertex v to obtain the
value of F'(v) (Theorem 1.1.1). It is easy to see why this is true: if A terminates after
¢ rounds, no information from a vertex whose distance from v is greater than ¢ can
reach v. In fact, this reasoning shows that it suffices to simulate the first round of A
on the Ny(v), the second round on N;_1(v), and so on. For simplicity, we assume that

the distributed algorithm is simulated on the entire neighborhood for ¢ rounds, as this

27
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Algorithm 1: Distributed Maximal Matching Algorithm for Bipartite Graphs
Input : G = (UUW,E) with degree bounded by d
Output: A matching M
// All ties are broken by ID/port number

M « (;

for i+ 1 toddo
L All unmatched u € U send a proposal to the first available neighbor;

Each w € W accepts the first proposal it receives;

does not asymptotically affect the running time.'

This reduction immediately allows
us to convert any /-time distributed algorithm to an (O(d*), O(¢d"),0,0(¢d"),0)-LCA
for graphs of degree bounded by d.

As an example, let us consider the simple distributed maximal matching algorithm
for bipartite graphs of Hanckowiak et al. [41], Algorithm 1. Let G = (U U W, E) be
a bipartite graph. In each round, each vertex u € U sends a proposal to one of its
unmatched neighbors, and each vertex w € W that was proposed to, accepts one of the
proposals. If the maximal degree is d, it is easy to see that after d rounds, we have a
maximal matching: Denote the matching found by the algorithm after d rounds by M.
Consider any edge e = (u, w). If e was considered at some round by u, then w must be
matched, either to u or to another vertex, and hence M U {e} is not a matching. If e
was not considered, this is because either u or w was already matched. (Note that u will
never propose to any neighbor more than once.) Using Theorem 1.1.1, we immediately
get a (O(d?),0(d?),0,0(d?),0)-LCA for this problem, on graphs of degree bounded by
d.

Consider now the following scenario: there is a set M of n men and a set W
of n women, and each man chooses d women uniformly at random. This scenario
is quite common - it can be found in the context of, e.g., stable matchings [47, 53],
see also Chapter 8; and load balancing [9, 14, 108], see also Chapter 9. (In the case
of load balancing, M would be a set of balls/jobs and W the set of bins/machines).
By Claim 2.3.5, this graph is (n/2)-conditionally 2d-light; applying the Parnas-Ron
reduction to s-conditionally d-light graphs guarantees that the number of probes, run-

ning time and transient memory are O(log®n) (if the distributed algorithm requires

IThere is a small nuance: to simulate the second round of A on u, a vertex at distance ¢ from v,
we might need to simulate the first round of A on u’s neighbors, which may be at distance £ + 1 from
v. But for the purpose of the simulation, we can assume that u has no neighbors that are at distance
¢+ 1 from v, as anything that happens to w after the first round cannot affect v. Therefore, once we
have uncovered the ¢-neighborhood of v, we can ignore the rest of the graph.
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¢ rounds). We show that this analysis is far from tight, in fact these complexity
measures are all O(logn).? In other words, Algorithm 1 can be implemented as an
(O(logn),O(logn),0,0(logn), - )-LCA. We note that in order to guarantee that the
correctness proof still holds, the men need to propose to the women. The more general
result is formally stated below as Theorem 3.2.2; we prove it by bounding the size of
the f-neighborhood of v, for any v € V.

The results of the following subsection are stated for d-light graphs; they also hold
(without modification of the proofs) for (polylogn)-conditionally d-light graphs.

3.2 Bounding the Neighborhood Size

Recall that N;(v) is the set of vertices at distance at most ¢ from v.

Claim 3.2.1. For any integer i > 0, there exists a constant ¢; such that for any d-light
graph G = (V, E) and vertez v € V., it holds that Pr[|N;j(v)| < ¢;logn] >1— 1 .

Proof. Let N be the random variable representing the number of vertices in the 4-
neighborhood of vertex v. We prove by induction that Pr[AN? < ¢;logn] > 1 — n%,
where ¢; = (4ed)"1¢y.

For the base, from Property 2.3.11, taking S = {v}, it holds that there exists a
constant ¢y such that , Pr]N1 > ¢;logn] < 1/n°

Assuming that the claim holds for all integers smaller than i, we show that it holds

for i. We use the law of total probability.

Pr[N* > ¢;logn] =Pr[N" > ¢;logn|N*™! < ¢;_1logn] Pr[N"™! < ¢;_1 logn]
+ Pr[N? > ¢;logn|Nt > ¢; 1 logn] PrN*™! > ¢;_; log n]

<Pr[N? > ¢;logn|N™! < ¢;_1logn] + PrN™! > ¢;_1 logn)]

<1 7 —1
_ﬁ—’_ nd

where the last inequality uses Property 2.3.11 and the inductive hypothesis. 0
We conclude the following.

Theorem 3.2.2. Let G = (V,E) be a d-light graph, where d > 0 is a constant, let

O be some finite set and let F' : 'V — O be some function on the vertices. As-

2¢ appears exponentially in the constant.
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sume that A is a crisp constant-time distributed algorithm for F'. Then there is an

(O(logn),O(logn),0,0(logn), =5 )-LCA for F.

Proof. From Claim 3.2.1, the ¢-neighborhood of any vertex is number of probes re-
quired to simulate the distributed algorithm is O(logn), for some constant ¢ > 0, with
probability at least % Assume that the distributed algorithm A runs for ¢ rounds. As
A is crisp, simulating it on this neighborhood requires time ¢- O(1) - O(logn), and this
is clearly also an upper bound on the required transient memory. A union bound gives

the required failure probability. O



Chapter 4

Reducing LCAs to Online
Algorithms

In the previous chapter we showed a reduction of LCAs to distributed algorithms. In
this chapter, we show a similar reduction to online algorithms. This reduction, however,
is much more involved, and requires a more sophisticated set of tools for analysis. The
idea is simple - we generate a random order on the vertices, and simulate an online
algorithm on this order. Two major problems arise: how do we bound the number
of probes the algorithm makes to the graph, and how do we store this randomness in
polylogarithmic space?

This chapter is based mainly on [90], but also in part on [4] and [67].

4.1 Preliminaries

For simplicity, we only consider online graph algorithms on vertices; an analogous defi-
nition holds for algorithms on edges, and our results hold for them as well. Intuitively,
such an algorithm is presented with the vertices of a graph G = (V, E) in some arbi-
trary order. Once the algorithm is presented with a vertex v (as well as the edges to
the neighbors of v that arrived before v), it must irrevocably output a value which we
denote f(v). The output of the algorithm is the combination of all of these interme-
diate outputs, namely the function f : V — O (where O is some arbitrary finite set).
The correctness of our LCAs is immediate (from the correctness of the global (online)
algorithm); the focus of this chapter is therefore proving the probe, memory (enduring

and transient) and time complexity.
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Algorithm 2: Online (Greedy) MIS Algorithm

Input : G = (V,E) and vertex permutation 7
Output: An independent set S

I+ 0
Assume the vertices are ordered vy, v, ..., v, in 7;
for i < 1 ton do
if Vu € N(v;), u ¢ I then
L L I+ TU{v};

We require that the online algorithm will be neighborhood dependent in the sense
that the value f(v) is only a function of the values { f(u)} for the neighbors u of v that

the algorithm has already seen. Formally,

Definition 4.1.1 (Neighborhood-dependent online graph algorithm). Let G = (V, E)
be a graph, and let O be some arbitrary finite set. A neighborhood-dependent on-
line graph algorithm A takes as input a vertex v € V and a sequence of pairs
{(u1,01),...(ug,00)} where Yi,u; € V,0; € O, and outputs a value o € O. For ev-
ery permutation 11 of the vertices in V', define the output of A on G with respect to
IT as follows. Denote by UZH the vertex at location i under 1I. Define f(vzn) recur-
sively by invoking A on vi' and the sequence of values (v}j, f(vjn)), such that j < i and
(v}_[, o) e B

Let R be a search problem on graphs. We say that A is a neighborhood-dependent
online graph algorithm for R if for every graph G and every permutation 11, the output

of A on G with respect to 11 satisfies the relation defining R.

For example, consider the following online algorithm for computing an MIS, Algo-
rithm 2. The algorithm is essentially the following: Initialize the set I = (). When a
vertex v arrives, the algorithm checks whether any of v’s neighbors is in 1. If none of
them is, v is added to I. Otherwise, v is not in I. Algorithm 2 is clearly neighborhood-
dependent; furthermore, it is crisp. The reader might find it useful to refer to this
algorithm while reading this chapter, as it is simple yet illustrative. It is easy to see
that many other online algorithms on graphs, such as the greedy algorithms for vertex
coloring and maximal matching, and many load balancing algorithms (see Chapter 9),
are also neighborhood-dependent.

We wish obtain an LCA A for MIS. The high-level idea of the reduction is the

!Note that in a general online algorithm, we only require that j < i and (v;-_[7 f(v?))
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following. A receives as input a graph G = (V, E). The first time it is invoked, it
samples a hash function A : V — @, where () is some finite set, and writes h to the
enduring memory. The function h is used to define some ordering m on the vertices
(we will elaborate extensively on how this is done). When A is queried on a vertex v,
it simulates Algorithm 2 on G, where the vertices arrive in the order of w. It replies

“yes” if and only if Algorithm 2 determines that v is in the MIS.

4.1.1 Static and Adaptive k-wise Independence

Our probe and time bounds rely on the fact that we can generate a random order on
the vertices. Storing a random order over all of the vertices would require 2(nlogn)
enduring memory; in order to only use polylogarithmic memory, we use a hash function

that guarantees that our ordering is “sufficiently random”.

Definition 4.1.2 (k-wise independent hash functions). Forn, L,k € N such that k < n,
a family of functions H = {h : [n] — [L]} is k-wise independent if for all distinct
x1,T2,...,2k € [n], when H is sampled uniformly from H we have that the random

variables H(x1), H(x2), ..., H(zy) are independent and uniformly distributed in [L].

To quantify what we mean by “almost” k-wise independence, we use the notion of

statistical distance.

Definition 4.1.3 (Statistical distance). For random variables X and Y taking values

in U, their statistical distance is
A(X,Y) = mazpcy| Pr[X € D] — Pr[Y € DJ|.

For € >0, we say that X andY are e-close if A(X,Y) <e.

Definition 4.1.4 (e-almost k-wise independent hash functions). For n, L,k € N such
that k < n, let Y be a random wvariable sampled uniformly at random from [L]k For
€ >0, a family of functions H = {h : [n] — [L]} is e-almost k-wise independent if for
all distinct x1,x2,...,x € [n], we have that (H(z1), H(z2),...,H(zx)) and Y are e-
close, when H is sampled uniformly from H. We sometimes use the term “e-dependent”

instead of “e-almost independent”.

Another interpretation of e-almost k-wise independent hash functions is as functions

that are indistinguishable from uniform for a static distinguisher that is allowed to query
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the function in at most k places. In other words, we can imagine the following game:
the (computationally unbounded) distinguisher D selects k inputs z1,x2, ...,z € [n],
and gets in return values F'(z1), F(x2),..., F(zy), where F : [n] — [L] is either chosen
from H (which we denote by DF <), or is selected uniformly at random. H is e-almost
k-wise independent if no such D can differentiate the two cases with advantage larger
than e. In this paper we will need to consider adaptive distinguishers that can select

each z; based on the values F(z1), F(z2),...,F(x;i_1).

Definition 4.1.5 (e-almost adaptive k-wise independent hash functions). Forn, L,k €
N such that k < n and for e > 0, a family of functions H = {h : [n] — [L]} is e-almost
adaptive k-wise independent if for every (computationally unbounded) distinguisher D

that makes at most k queries to an oracle F it holds that
| Pr[DFH = 1] - Pr[DFY = 1] <,

where G is the set of all functions F' : [n] — [L].
We say that H is adaptive k-wise independent if it is 0-almost adaptive k-wise

independent.

Maurer and Pietrzak [71] showed a very efficient way to transform a family of
(static) almost k-wise independent functions into a family of adaptive almost k-wise
independent functions with similar parameters. For our purposes, it is enough to note
that every family of (static) almost k-wise independent function is in itself also adaptive
almost k-wise independent. While the parameters deteriorate under this reduction, they

are still good enough for our purposes. We provide the reduction here for completeness.

Lemma 4.1.6. [71] For n,L,k € N such that k < n and for € > 0, every family of
functions H = {h : [n] — [L]} that is e-almost k-wise independent is also adaptive

eLF-almost k-wise independent.

Proof. The proof is by a simulation argument. Consider an adaptive distinguisher D
that makes at most k queries; assume without loss of generality that D always makes
ezactly k distinct queries. We can define the following static distinguisher D’ with oracle
access to some function F' as follows: D’ samples k distinct outputs yi,y2, ..., yx € [L]
uniformly at random. D’ then simulates D by answering the ith query z; of D with

y;. Let o be the bit D would have output in this simulation. Now D’ queries F
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for @1, 29, ...z (note that D’ makes all of its queries simultaneously and is therefore
static). If the replies obtained are consistent with the simulation (i.e. y; = F(z;) for

every i) then D’ outputs o. Otherwise, it outputs 0. By definition,
PrDF M = 1) = L pr[DFEH = 1).
This implies that for every H and G
P = 1) — Pr DT = 1) = LK Pr[DF M = 1] — Pr[DFI = 1)].

The proof follows. ]

In particular, Lemma 4.1.6 implies that k-wise independent functions are also adap-

tive k-wise independent, and we get the following theorem:

Theorem 4.1.7 (cf. [106] Proposition 3.33 and Lemma 4.1.6). For n,k € N such that
kE < mn and n is a power of 2, there exists a family of functions H = {h : [n] — [n]}
that is adaptive k-wise independent, whose seed length is klogn. The time required
to evaluate each h is O(k) word operations and the memory required per evaluation is

O(logn) bits (in addition to the memory for the seed).

Naor and Naor [75] showed that relaxing from k-wise to almost k-wise independence
can imply significant savings in the family size. As we we also care about the evaluation
time of the functions, we will employ a recent result of Meka et al., [72] (which, using
Lemma 4.1.6, also applies to adaptive almost k-wise independence). The following is

specialized from their work to the parameters we mostly care about in this work.

Theorem 4.1.8 ([72] and Lemma 4.1.6). For every n,L,k € N and € > 0 such that
n and L are powers of 2, and such that k- L = O(logn) and 1/e = poly(n), there is
a family of adaptive e-almost k-wise independent functions H = {h : [n] — [L]} such
that choosing a random function from H takes O(logn) random bits. The time required
to evaluate each h is O(log k) word operations and the (enduring) memory is O(logn)

bits.

The property of almost k-wise independent hash functions H that we will need is
that an algorithm querying H will not query “too many” preimages of any particular
output of H. Specifically, if the algorithm queries H more than cL logn times, none of

the values will appear more than twice their expected number. More formally:
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Proposition 4.1.9. There exists a constant ¢ such that following holds. Letn, L,k € N
be such that k <n and let € > 0. Let H = {h : [n] = [L]} be a family of functions that
1s e-almost adaptive k-wise independent. Let A be any procedure with oracle access to
H sampled uniformly from H and let £ be any value in [L]. Define the random variable
m to be the number of queries A makes and the random variables x1,x2, ..., Ty to be

those queries. Then conditioned on cLlogn < m <k, it holds that:
1
Pr{[{z;|H (z;) = £}| > 2m/L] < —— + .
2n
Proof. Consider any A as in the theorem and assume for the sake of contradiction that

1
Pr[|{z;|H(x;) = ¢}| > 2m/L | cLlogn <m < k] > 75 +e
n

Consider A with access to a uniformly selected G : [n] — [L]. Define m’ to be the
number of queries A makes in such a case and let «7,...,2, , be the set of queries.
By the Chernoff bound, conditioned on any fixing of m’, we have that Pr[|{x}|H (2}) =
¢}| > 2m//L] is exponentially small in m'/L. Therefore, by a union bound, for a
sufficiently large ¢ we have that Pr(|{z;|H (2;) = ¢}| > 2m//L | cLlogn <m/ < k] < 55
(note that L < n, otherwise the theorem is trivially true). We thus have that A
distinguishes the distribution H from the distribution G with k queries, with advantage

€, in contradiction to H being e-almost adaptive k-wise independent. O

We study the application of adaptive e-almost k-wise independent functions to d-

light graphs extensively in this chapter. We do not explicitly give the dependence of €

on n, d and k, although we assume that ¢ = pollyn and (in Subsection 4.4), that € < d%.

4.2 Almost k-wise Random Orderings

Our LCAs will emulate the execution of online algorithms (that are neighborhood de-
pendent as in Definition 4.1.1). One obstacle is that the output of an online algorithm
may depend on the order in which it sees the vertices of its input graph (or the edges,
in case we are considering an algorithm on edges). As the combined output of an
LCA on all vertices has to be consistent, it is important that in all of these execu-
tions the algorithm uses the same permutation. Choosing a random permutation on n

vertices requires 2(nlogn) bits which is disallowed (as it will imply enduring memory
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Q(nlogn)). Instead, we would like to have a derandomized choice of a permutation
that will be “good enough” for the sake of our LCAs and can be sampled using as few
as O(logn) bits.

Past works on LCAs (e.g., [4, 42, 67, 68]) have used k-wise and almost k-wise
independent orderings to handle the derandomized ordering of vertices. A family of
ordering IT = {II, },cr, indexed by R is k-wise independent if for every subset S C [n]
of size k, the projection of IT onto S (denoted by II(S)) is uniformly distributed over
all k! possible permutations of S. Denote this uniform distribution by U(S). We have
that II is e-almost k-wise independent if for every k-element subset S we have that
A(II(S),U(S)) < e (where A is the statistical distance, see Definition 4.1.3). One
can give adaptive versions of these definitions (in the spirit of Definition 4.1.5). The
following “warm up” theorem shows that if L = poly(n) and H = {h : [n] — [L]}
is k-wise independent, then II = {IIj}ncy is a family of 1/poly(n)-almost k-wise
independent orderings, and that this requires a seed of length O(klogn). It is easy to
show that k-wise independent functions (or even almost k-wise independent functions),

directly give e-almost k-wise independent orderings.

Lemma 4.2.1. For every n,L,k € N,e > 0, such that k < n and L > k*/e, if
H ={h:[n] = [L]} is k-wise independent then I1 = {11, }ney is a family of e-almost

k-wise independent ordering.

Proof. Fix the set S. There is probability smaller than e on the choice of h € H that
there exist two distinct values i and j in S such that h(i) = h(j). Conditioned on such

collision not occurring the order is uniform by the definition of k-wise independent

hashing. O

Lemma 4.2.1 and Theorem 4.1.7 imply Theorem 4.2.2.

Theorem 4.2.2. For everyn,k € N, e > 0, such that k < n, there exists a construction

of e-almost k-wise independent random ordering of [n| whose seed length is O(klogn).

This could potentially be further improved, but one can observe that a lower bound
on the seed length of almost logn-wise independent ordering is Q(lognloglogn). We
now show how to define derandomized orderings that require seed O(logn) and, while

not being almost log n-wise independent, are still sufficiently good for our application.
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4.3 Upper Bounding the Number of Probes

Let us now consider what happens if we let L be much smaller, namely a constant.
This will reduce the seed length to O(k + logn) (when we let H be almost k-wise
independent). However, we will lose the k-wise almost independence (for sub-constant
error) of the ordering: Consider two variables ¢ < j. Conditioned on h(i) # h(j),
the order of ¢ and j under I} is uniform. But with constant probability h(i) = h(j)
and then, according to Definition 4.3.2, ¢ will come before j under IIj (recall that the
ordering is based on the labels (h(i),4)). Nevertheless, even though II is no longer 1/n-
almost k-wise independent, we will show that a constant L suffices for our purposes.

To formally define what this means we introduce some definitions.

Definition 4.3.1 (Level, Levelhood). Let G = (V, E) be a graph. Let h: V — N be a
function that assigns each vertex an integer. For each v € V', we call h(v) the level of
v. Denote the restriction of a set of vertices S C V' to only vertices of a certain level
l, {x e S:h(x)="}, by S|.

Let S C 'V, and let Ny(S) be the neighbors of S that are in level £. That is Ny(S) =
{u eV :ue N(S),h(u) = £}. The £ levelhood of S (denoted V,(S)), is defined
recursively as follows. Wy(0) = 0. V,(S) = {S U Y(Ny(S))}. In other words, we
initialize Wy(S) = S, and add to Wy(S) neighbors of level £, until we cannot add any

more vertices.
We define the rank of a vertex to be the concatenation of its level and ID. Formally,

Definition 4.3.2 (Ranking). Let L be some positive integer. A functionr : [n] — [L] is
a ranking of [n], where r(i) is called the level of i. The ordering II, which corresponds
to r is a permutation on [n| obtained by defining 11,(i) for every i € [n] to be its
position according to the monotone increasing order of the relabeling i — (r(i),i). In
other words, for every i,j € [n] we have that I1,(i) < I1.(j) if and only if r(i) < r(j)
orr(i) =7r(j) and i < j. The pair (r(i),i) is called the rank of i.

Informally, vertices of higher rank “arrive earlier”.
Definition 4.3.3 (Relevant vicinity). The relevant vicinity of a vertexr v, denoted
Sh(v) (relative to a hash function h : V. — [L]), is defined constructively as follows.

Let 11, be the permutation defined by h, as in Definition 4.3.2. Initialize Sp,(v) = {v}.

For each u € 3y(v), add to Sp(v) all vertices w € N(u) : IIp(w) < p(u). Continue
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adding vertices until no more can be added. The relevant vicinity of a set of vertices U

is the union of the relevant vicinities of the vertices in U.

The relevant vicinity of a vertex v is exactly the vertices that our LCA will sim-
ulate the online algorithms on when queried about v.2 Because we cannot make any
assumptions about the original labeling of the vertices, we upper bound the size of the
relevant vicinity by defining the containing vicinity, where we assume that the worst
case always holds. That is, if two neighbors have the same level, the one that is queried
first appears before the other in the permutation. The size of the containing vicinity is

clearly an upper bound on the size of a relevant vicinity, for the same hash function.

Definition 4.3.4 (Containing vicinity). The containing vicinity of a vertez v (relative
to a hash function h : V — [L]), given that h(v) = £, is UV (Vr_1(... Yor1(Pe(v))...)).
In other words, let Sy be the (' levelhood of v, and fori € {+1,..., L}, S; = ¥;(S;_1).
The containing vicinity is then Sp. The containing vicinity of a set of vertices U is the

union of the containing vicinities of the vertices in U.

4.3.1 Upper Bounding the Size of the Relevant Vicinity

Lemma 4.3.5. Let G = (V, E) be a d-light graph, |V| = n, and let L be a (constant)
integer such that L > 24d. Let ¢ be such that Proposition 4.1.9 and Property 2.3.10
hold, and let k = 2lclogn. Let k = 6dk, and let h be an adaptive e-almost k-wise
independent hash function, h : V. — [L]. For any adaptively exposed set of vertices
U CV, whose size is at most clogn, the relevant vicinity of U has size at most k with

probability at least 1 — % + %

Corollary 4.3.6. Let the conditions of Lemma 4.5.5 hold. For any vertex v € G, the

relevant vicinity of v has size at most k with probability at least 1 — 7714 + %
The following claim will help prove Lemma 4.3.5.

Claim 4.3.7. Let the conditions of Lemma 4.53.5 hold; assume without loss of gen-
erality that for all v € U, h(v) = 1, and let Sy = U,S1 = ¥1(So),...,Se1 =

2In specific cases, better implementations exist that do not need to explore the entire relevant
vicinity. For example, once an LCA for maximal independent set sees that a neighbor of the inquired
vertex is in the independent set, it knows that the inquired vertex is not (and can halt the exploration).
Nevertheless, in order not to make any assumptions on the online algorithm, we assume that the
algorithm explores the entire relevant vicinity.
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\Ifg_H(Sg), e ,SL = \I’L(SL—l)- Then fOT all 0 S ) S L,
i i+l 2
Pr[|Si| < 2'clogn A [Sit1] > 2" clogn] < —.
n

Proof. Fix i and denote the bad event for i as B;. That is, B; = |S;| < 2iclognA|S;y1| >
2i*t1clogn. We make the following observation:

|Sit1]

Bi = |Sit1] > 2 clogn A [Sigaliva] > 5

(4.1)

because S;ii1|i+1 = Sir+1 \ Si. In other words, this means that if B; occurs then the

majority of elements in S;;; must have come from the (i + 1)*-levelhood of S;.

For all 0 <i < L let T; = S; U N(S;). Define two bad events:

B} = [Siy1| > 2* clogn A |Tip1| > 6d] Sy

) 12d
B? = [Si1| > 2 elogn A | Tiga ||| > T|Si+1|

From Equation (4.1), the definition of L, and the fact that Tj+1/i+1 = Si+1]/i+1, we get
B; = B?.
By Property 2.3.10,

Pr[B}] < = (4.2)

because S;y1 is an adaptively exposed subset, T;11 = Si+1 U N(S;j+1) and the size of
S; 1 satisfies the conditions of the proposition. Given |S;11| > 2'T!clogn, it holds that
|T;41| > 27+ clogn because S;1 1 C Ty 1. Also note that Tjy; was defined based on the
value of h on elements in T;11 only. Therefore, the conditions of Proposition 4.1.9 hold

for |T;11].

12d
Pr(Bf : =B;] < Pr[|Tislita1] > 7 |Sial [ Toa] < 6d]Sital]

2|T;
< Pr(|Tiva[lia| > |£+1|]
1
< 4.3

where the last inequality is due to Proposition 4.1.9,
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Because

Pr[B}] = Pr[B} : B{|Pr[B}]| + Pr[B} : =B}] Pr[-B}],
from Equations (4.2) and (4.3), the claim follows. O

Proof of Lemma 4.5.5. To prove Lemma 4.3.5, we need to show that

1

1
Pr[|Sg| > 2Fclogn] < — — —,
n

n4

We show that for 0 < i < L,Pr[|S;| > 2iclogn] < %, by induction. For the base
of the induction, |Sp| = 1, and the claim holds. For the inductive step, assume that

Pr[|Si| > 2'clogn] < 2. Then

Pr[|S;y1| > 2 clogn] = Pr[|Siy1| > 2 clogn : | S| > 2iclogn] Pr[|S;| > 2clogn]

+ Pr[|Sis1| > 27 clogn : |S;| < 2'clogn] Pr[|S;| < 2'clogn).

From the inductive step and Claim 4.3.7, using the union bound, the lemma follows. [J

From Lemma 4.3.5 and Property 2.3.10, we immediately get

Corollary 4.3.8. Let G = (V, E) be a d-light graph, where |V| = n, and let L be an
integer such that L > 24d. Let ¢ be such that Proposition 4.1.9 and Property 2.5.10
hold, and let k = 2%clogn. Let k = 6dk, and let h be an adaptive k-wise e-almost
independent hash function. For any vertex v € G, let S be the relevant vicinity of v.
Then

Pr[|{(u,w) € E | u € Sp}| > k] < 1/n%.

Corollary 4.3.8 essentially shows the following: Assume that G = (V, E) is a d-light
graph, and there is some function F': V — R that is computable by a neighborhood-
dependent online algorithm A. Then, in order to compute F'(v) for any vertex v € V', we
only need to look at a logarithmic number of vertices and edges with high probability.
Note that in order to calculate the relevant vicinity, we need to look at all the vertices
in the relevant vicinity and all of their neighbors (to make sure that we have not
overlooked any vertex). This is upper bound by the number of edges which have an
endpoint in the relevant vicinity, as the relevant vicinity is connected. Furthermore, as
we will see in Section 4.5, we would like to store the subgraph induced by the relevant

vicinity, and for this, we need to store all of the edges.
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Applying a union bound over all the vertices gives that the number of probes we
need to make per query (i.e., each time the LCA is queried about a vertex) is O(logn)

with probability at least 1 — 1/n? even if we are queried about all the vertices.

4.4 Expected Size of the Relevant Vicinity

In Section 4.5, we show constructions of the subgraph induced by the relevant vicinity
whose running times and transient memory requirements are dependent on t, and
te, the size of the relevant vicinity and the number of edges adjacent to the relevant
vicinity, respectively. All the dependencies can be upper bound by O(#?). In this
section, we prove that the expected value of ¢? in a d-light graph is a constant (when

d is a constant).

Proposition 4.4.1. For any d-light graph G = (V,E) and any vertez v € V, the

expected number of simple paths of length t originating from v is at most d.

We prove a slightly more general claim, from which Proposition 4.4.1 immediately

follows (taking S in the proposition to be the empty set).

Claim 4.4.2. For any d-light graph G = (V, E), any adaptively exposed subset S CV,
and any vertex v € N(S)\ S (or any vertex v if S is empty), the expected number of

simple paths of length t originating from v and not intersecting with S is at most d'.

Proof. The proof is by induction on t. For the base of the induction, t = 0, and there
is a single simple path (the empty path). For the inductive step, let ¢ > 0 and assume
that the claim holds for ¢ — 1. We show that it holds for ¢. Given S, let S’ = S U {v}.
Let a be a random variable representing the number of neighbors of v that are not in
S; that is, a = |[N(v) \ S|. Because G is d-light, E(a) < d. Fixing a, label the neighbors
of v that are not in S by wi,ws,...,w,. By the inductive hypothesis (as S’ is also
adaptively exposed), for all i = 1,.. ., a, the expected number of simple paths of length
t — 1 originating from w; and not intersecting with S’ is at most d'~!. The expected
number of simple paths of length t originating from v and not intersecting with S is

therefore upper bounded by

> Prla=jlj-d =ElaJd" < d".
J
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For any simple path p originating at some vertex v, we would like to determine
whether all the vertices on p are in the relevant vicinity of v. As we cannot make
any assumptions about the original labels of the vertices, we upper bound this by the

probability that the levels of the vertices on the path are non-decreasing.

Definition 4.4.3 (Legal path). We say that a path p = v~ u is legal if it is simple

and the labels of the vertices on p are in non decreasing order.

Definition 4.4.4 (Prefix-legal path). We say that a path p = v ~ w of length t is

prefix-legal if it is simple, and the prefix of p of length t — 1 is legal.

Proposition 4.4.5. Let G = (V,E) be a d-light graph and let the conditions of
Lemma 4.3.5 hold. That is, k,x = O(logn) and L > 24d. For any ¢ > 0 there
exists a value L = O(d) for which the following holds: Let h be an adaptive k-wise
e-almost independent hash function, h : V. — [L]. For any path p of length t' < k — 1

originating at some vertex v, the probability that p is legal is at most d= +e.

Proof. For any simple path p of length ¢’ from v, there are ]L|t' possible values for

the levels of the vertices of p. Let the values be rg,r1,...,7¢_1. We define ¢ + 1 new
variables ag =g, a1 =711 — 70, ..., Q—1 = Ty_1 — Ty—2, @y = L — rp_1. Clearly, the
a;'s uniquely define the r;’s and p is legal if and only if ag, ..., ay are all non-negative.

tl
Note that the Z a; = L; hence computing the number of possible legal values of
i=0
ao, - - -, ay is the same as computing the number of ways of placing L identical balls in
t' + 1 distinct bins,® where each bin represents a vertex and if there are & balls in bin

t'+L

M ) Therefore, assuming the choices of

y, then ry = r,_1 + k. This is known to be (
the levels are all uniform,

, 1 (V4L e(t' + L)\"
Prlp is legal] = LT< v ) < <(Lt’)) .

From the definition of e-almost adaptive k-wise independent hash functions, we

immediately get

¢+ 1)\
€(+)> L

P is legal| <
r[p is ega]_( T

The result follows, by selecting an appropriate value for L (dependent on c). ]

The following corollary is immediate, setting ¢’ =t — 1 in Proposition 4.4.5.

3 Alternatively, one can view this as placing ¢’ + 1 separators between L balls.
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Corollary 4.4.6. Let G = (V,E) be a d-light graph and let the conditions of
Lemma 4.3.5 hold. That is, k,x = O(logn) and L > 24d. For any ¢ > 0 there
exists a value L = O(d) for which the following holds: Let h be an adaptive k-wise
almost e-independent hash function, h : V. — [L]. For any path p of length t < k

originating at some vertez v, the probability that p is prefiz-legal is at most d“1=1 + e.

As a warm-up, we first show that the expected number of edges adjacent to a

relevant vicinity is a constant.

Lemma 4.4.7. Let G = (V,E) be a d-light graph and let the conditions of Proposi-
tion 4.4.5 hold. That is, k,x = O(logn) and L = O(d). Let h be an adaptive k-wise
e-almost independent hash function, h : V. — [L]. Then the expected number of edges

adjacent to the relevant vicinity of a vertexr in G is O(1).

Proof. Let v be any vertex, let Sy, be the relevant vicinity of v, and let Er be the set

of edges with at least one endpoint in Sp. Let (u,w) € E be any edge, and denote by

péku w) the indicator random variable whose value is 1 if there exists a prefix-legal path

of length at most k from v to w whose last edge is (u,w), and 0 otherwise. Similarly,

>k
(v,u,w

denote by p ) the random variable whose value is 1 if there exists a prefix-legal
path of length greater than k from v to w whose last edge is (u,w), and 0 otherwise.
For any (u,w) € E,

Pr{(u,w) € Er] < Pr[pglC )] +Pr[p?® ]

(v’u7w (U7u’w)
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Therefore,
BB < Y Pri(ww) e B

< D0 Prlpghul T D0 Pl )
(u,w)eE (u,w)EE

< Y Prlpgf, )+ 0P PrliSc > k- 1]

< > Pt 1 (4.4)

< Z Pr[path « is prefix-legal | 4+ 1

«: paths of
length <k from v

< Z Z Pr[path « is prefix-legal | | + 1
t<k «a: paths of
length ¢t from v
<Y (@t e +1=0(1) (4.5)
t<k

where Inequality (4.4) is due to Lemma 4.3.5, and Inequality (4.5) is due to Proposition
4.4.1 and Corollary 4.4.6. O

Lemma 4.4.8. Let G = (V, E) be a d-light graph and let the conditions of Proposi-
tion 4.4.5 hold. That is, k,xk = O(logn) and L = O(d). Furthermore let ¢ > 3 be a
constant. Let h be an adaptive k-wise e-almost independent hash function, h : V- — [L].

Denote by Ey, the number of edges that have at least one endpoint in the relevant vicinity

of some vertex v. Then, E[|EL?] = O(1).

Proof. For any edge e = (u,w) € E, let I, be an indicator variable whose value is 1 if
e € B and 0 otherwise. Let I, |~ be an indicator variable whose value is 1if [Sp| > k

and 0 otherwise. Then

Bl = <ZH6)2 =3 L.Y 1

ecE ecE feE
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Let p= and paku ) Pe as in the proof of Lemma 4.4.7.

(vuw)

2 <k >k
[ELl” < ( Z) (p(vuw) +p(v uw)) ( 2): (p(v,x,y) +p(v7w7y))
u,w)eE z,y)EE

<k >k
Z Z vuw)—i_pvuw))(p(vx,y)"f'p( ,y)>
(ww)eE (z,y)€E

Z Z (v,u,w) vzy)+3H|SL|>k 1)

(u w)EFE (z,y)€E

<3TL ]I|S [>k— 1+ Z Z (vuw) (v:cy)) (46)

(uw,w)EE (z,y)€E

For every vertex u € V, let of, denote the number of simple paths from v to u of length
t, and label these paths arbitrarily by ¢ (i),i = 1,2,...0!,. For each path ¢! (i), let

4%,(i) be the random variable whose value is 1 if ¢, (i) is prefix-legal, and 0 otherwise.

Let A! denote the total number of simple paths of length ¢ originating in v.

. &
Z Z vuw) vmy) <ZZZZZZ
(w,w)€EE (z,y)€E weV t<k i=1 yeV s<k j=1

S
Ty

LYY wea0 @)
weV t<k i=1 yeV s<t j=1

S
Ty

AN 1)

weV t<k i=1 yeV s<t j=1
T
T s
<20 0 ) d_Aj
weV t<k =1 s<t

where Inequality (4.7) is because we order the paths by length and either path can be
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longer.

E Z Z (U ww) (U I,y <2 Z Z Pr[a is prefix-legal] - Z Ay

(u,w)EE (z,y)EE t<k o: paths of s<t
length ¢t from v

< QZdH—c—ct .F ZAZ

t<k s<t

<2 Z(dtJrcfct + 6)dt+1
t<k

<23 (@t ) = 0(1). (4.8)
t<k

From Corollary 4.4.6 we know that we can choose an L = O(d) such that Inequality (4.8)
holds. From Inequalities (4.6) and (4.8), Lemma 4.3.5 and the linearity of expectation,

the lemma follows. O

4.5 Bounding Running Time and Transient Memory

Let G = (V,E) be a d-light graph, d > 0. Let F be a search problem on V, and
assume that there exists a neighborhood-dependent online algorithm A for F. We
show how we can use the results of the previous sections to construct an LCA for F'.
Given an inquiry v € V, we would like to generate a permutation II on V, build the
relevant vicinity of v relative to II, and simulate A on these vertices in the order of II .
Because A is neighborhood-dependent, we do not need to look at any vertices outside
the relevant vicinity in order to correctly compute the output of A on v, and so our
LCA will output a reply consistent with the execution of A on the vertices, if they
arrive according to II. In order to simulate A on the correct order, we need to store the
relevant vicinity and label the vertices in a way that defines the ordering. We show two
ways of doing this. The first gives a better time bound, at the expense of a worse space
bound. The second gives a better space bound, at the expense of a worse time bound.
It remains an open problem whether we can achieve “the best of both worlds”- an LCA
requiring O(log n loglog n) time and transient space (or even O(logn)). We note that in
expectation, both our LCAs require O(loglogn) time and O(logn) transient memory.

We define crispness as it applies to online algorithms:

Definition 4.5.1. We say that online algorithm A is crisp if A requires time and space
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linear in its input length (where the input length is measured by the number of words),

and the output of A is O(1) per query.

Theorem 4.5.2. Let G = (V, E) be a d-light graph, where d > 0 is a constant. Let F
be a neighborhood-dependent search problem on V. Assume A is a crisp neighborhood-
dependent online algorithm that correctly computes F' on any order of arrival of the

vertices. Then

1. There is an (O(logn), O(lognloglogn), O(logn), O(log® n), )-LCA for F.

2. There is an (O(logn), O(log®n), O(logn), O(log nloglogn), 1/n)-LCA for F.
Furthermore, both LCAs require, in expectation, O(loglogn) time and O(logn) space.

Proof. We show two methods of constructing an LCA from the online algorithm A. In
both, given a query v € V', we use adjacency lists to store the containing vicinity, ¥(v).
We use a single bit to indicate for each vertex, whether it is in the relevant vicinity,
$(v). This means that for each vertex in §(v), we keep a list of all of its neighbors, but
for vertices that are in U(v) \ $(v), we don’t need to keep such a list. We denote the
number of vertices in the relevant vicinity, |3 (v)|, by t,, and the total number of edges
stored by t.. Note that ¢, > |¥(v)| — 1. This adjacency list representation of W(v) is
generated slightly differently in the two constructions. In both cases we label this data
structure by D(v). For clarity, we abuse the notation, and use the same name, u, for

u € V, and for the vertex which represents u in D(v).

Construction 1. The first time the LCA is invoked, it chooses a random function
h from a family of adaptive k-wise #—dependent hash functions as in Theorem 4.1.8
and Lemma 4.3.5. The LCA receives as an inquiry a vertex v, and computes h(v). It
then discovers the relevant vicinity using DFS. For each vertex u that it encounters, it
relabels the vertex (h(u),w). The LCA simulates A on the vertices arriving in the order

mduced by the new labels.

The size of the new label for any vertex w is |(h(u),u)| = O(logn). In addition,
we need to store A(u) for every vertex u € ¥(v) (which is O(1) because we assume
A is crisp). Overall, because |(h(u),u)| = O(logn), the space required for the LCA
is upper bounded by O((t. + t,)logn + t,). From Corollary 4.3.8, t,,t. = O(logn).
In expectation, by Lemma 4.4.8, E[t. + t,] = O(1). This gives us the required space

bounds. To analyze the running time, we make the following observation.
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Observation 4.5.3. In Construction 1, given u € D(v), we can access u € V in O(1).
We look at each stage of the construction separately:

1. Constructing D(v) is done by DFS, which takes time O(t, + t.), as well as the
time it takes to generate |3(v)| labels, which requires invoking h at most t. times,

and, by Theorem 4.1.8, this requires O(loglogn) time per label.
2. Sorting the labels takes O(t, logt,).

3. Simulating A on &(v) now takes O(t.) (since A is crisp).

Given the high probability upper bounds and expected values of ¢, and t., the first part
of the theorem follows. (Note that if A is not crisp in the sense that computing F'(v)
is more than linear in the number of neighbors of v, this must be taken into account in
the running time.)

In the first construction method, we give each vertex a label of length O(logn). This
seems wasteful, considering we know that the expected size of the relevant vicinity is
O(1), and that its size is O(logn) w.h.p. We therefore give a more space-efficient

method of constructing the induced subgraph.

Construction 2. As in the first method, the first time the LCA is invoked, it chooses
a random function h from a family of adaptive k-wise #—d@pendent hash functions
as in Theorem 4.1.8 and Lemma 4.3.5. Again, we would like to construct the induced
subgraph of the relevant vicinity, but to save memory we will not hold the original
labels of the vertices (which require logn bits to represent), but rather new labels that
require at most loglogn bits to describe (logarithmic in the size of the relevant vicinity).
As before, the LCA receives as an inquiry a vertex v, and computes h(v). We still use
(h(v),v) to determine the ordering, however we do not commit this ranking to memory.
We initialize S = {v}, and give v the label 1. In each round i, we look at N(S), and
choose the vertex u with the highest rank (h(u),w), out of all the vertices in N(S) which
have a lower rank than their neighbor in S. We then add u to S, and give it the label
i+ 1. When we have discovered the entire relevant vicinity, we simulate A on the

vertices in the reverse order of the new labels.

Note on the required data structure: To efficiently build .S, we need to use a
slightly different data structure used for storing the adjacency lists than in Construc-

tion 1; in fact, we have two adjacency list data structures. The first, D;(v), contains
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only the vertices in the relevant vicinity (not vertices in ¥(v) \ S(v)). The second,
D5(v), holds the neighbors of the vertices of S which have not yet been added to S. In
D;(v), each vertex is represented by its new label. In Dy(v), each vertex is represented
only by its level. We need D5 to avoid recalculating h(u) more than once for each vertex
w. In both Dj(v) and D(v), for each edge (4, j) which represents the edge (v;,v;), we
also store the position of this edge among the edges that leave v;, and its direction of

discovery.

Correctness: Note that v is the vertex of highest rank in its relevant vicinity, and
indeed it holds by induction that at step i, the subgraph we expose will contain vertices
v] = v,v9,...v; that have the highest ranking in the relevant vicinity of v (and such
that v; has the ith highest rank). This guarantees the correctness of A - the reverse

order of the labels is exactly the correct ranking of the vertices of the relevant vicinity.

Complexity: The size of the new label for any vertex u is O(logt.). In addition, we
need to store, for each edge, its position relative to the edges, the edge’s direction of
discovery, and A(u) for every vertex u € I(v). Because the graph is d-light, we know
that the degree of each vertex is O(logn) w.h.p., and so keeping the relative position
of each edge will require O(loglogn) bits w.h.p. Overall the space required for D;(v)
is upper bound by O((te + ty)(logte) + t, + te loglogn). The space required for Dy(v)
is O(te - |L|) = O(te). From Corollary 4.3.8, and Lemma 4.4.8, we have the required

space bounds. The expected space bound is due to the length of the seed, O(logn).

Observation 4.5.4. In Construction 2, given u € D1(v)UDa(v), we can accessu € V

in O(ty).

Proof. Given u € Dy (v) (or Da(v)), we find v by DFS from u. As the edges are directed,
and D;(v) and Da(v) are acyclic, this takes O(t,). Note that the space required for
this DFS may be as much as t, loglogn, but we use that amount of space regardless.
We can store the path v ~ u using the relative locations of the edges, and follow this

path on G to find u. O

Similarly to Construction 1, in order to bound the complexity, we look at each stage

of the construction separately:
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1. Before we add a vertex to S, we need find the vertex u with the lowest (h(u),u)
among all vertices in ¥(v) \ &(v). This is done by going over all of these vertices
to find the minimum, using a DFS on G and the subgraph concurrently, which

takes O(te).

2. Once we have chosen which vertex u to add to S, we update D;(v) and Da(v) to
include it. When we look at u’s neighbors, though, we don’t know whether they
are already in D;(v) or Ds(v), as we don’t have pointers to the original vertices
in G. From Observation 4.5.4, though, finding this out takes O(t,) per neighbor,
and updating D;(v) and D2 (v) takes a further O(1) per neighbor.

3. Because of Dy(v), we only need to generate h once for each vertex in ¥(v). This

takes O(te loglogn).
4. Reversing the order of the labels takes O(t,).

5. Simulating A on (v) takes O(te).

Stages 3, 4 and 5 require O(t. loglogn) time in total. Stage 1 accounts for O((t.)?), and
2 for O(t.t,) overall. Lemma 4.4.8 gives the required expected time bound. Note that
we have not discounted the possibility that A requires the original labels (or “names”)
of the vertices, in order to compute F(v). When we encounter a vertex, we can always
give A the name of the vertex by exploring the original representation of the graph
(the additional time needed is bounded by the time already invested).

The worst case running time and space of the LCA are O(log’n) and
O(lognloglogn) respectively (w.h.p.). (Note that if A is not crisp in the sense that

|F'(v)| is not a constant, this must be taken into account in the space bounds.) O

Our results immediately extend to the case that d = O(loglogn):

Theorem 4.5.5. Let G = (V,E) be a d-light graph, where d = O(loglogn). Let F
be a neighborhood-dependent search problem on V. Assume A is a crisp neighborhood-
dependent online algorithm that correctly computes F' on any order of arrival of the ver-
tices. Then there is an (O(polylogn), O(polylogn), O(polylogn), O(polylogn), )-
LCA for F.

Next we show that the techniques of the paper thus far do not hold for graphs where
the expected degree is w(loglogn), and so the results of this section are, in this sense,

tight.
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4.6 Tightness with Respect to d-light Graphs

Our results hold for d-light graphs where d = O(loglogn). We show that at least, using
the technique of simulating an online algorithm on a random ordering of the vertices, we
cannot do better. We do this by showing that the expected relevant vicinity of the root
of a complete binary tree of a d-regular graph is Q(2%2), and hence for d = w(loglog n),

the expected size will be super-polylogarithmic.

Lemma 4.6.1. Let T' be a complete d-regular binary tree rooted at v, and let II be a
uniformly random permutation on the vertices. The expected size of the relevant vicinity

of v relative to II is at least 24/2.

Proof. Let X; be a random variable for the number of vertices on level £ of the tree that
are in the relevant vicinity. There are exactly d vertices on level £. The probability
that each one is in the relevant vicinity is at least %, as this is the probability when

the permutation on the vertices is truly random.

d d\*
> — > | =
BlXd = 5 = <e>

Taking ¢ = d/2 gives that E[X,] > 2¢/2. O



Chapter 5

Approximate Maximum

Matching

In this chapter, we use our results from the previous section to give a local computation
approximation scheme for maximum matching on graphs of bounded degree. That is,
we give an LCA that for any € > 0, computes a maximal matching that is a (1 — €)-
approximation to the maximum matching. This chapter is based mostly on [68]. We
note that the proofs here are considerably shorter than those of [68], as we use the
newer techniques of Chapter 4. We also note that the results of this chapter have been
improved upon: Even et al. [29] give a deterministic LCA that computes a maximal

matching and requires O(log* n) probes.

5.1 Preliminaries

For an undirected graph G = (V| E), a matching is a subset of edges M C E such that
no two edges ej,es € M share a vertex. We denote by M* a matching of maximum
cardinality. An augmenting path with respect to a matching M is a simple path whose
endpoints are free (i.e., not part of any edge in the matching M), and whose edges
alternate between E'\ M and M. A set of augmenting paths P is independent if no two
paths p1,po € P share a vertex.

For sets A and B, we denote A® B =l (AUB)\ (AN B). An important observation

regarding augmenting paths and matchings is the following.

Observation 5.1.1. If M is a matching and P is an independent set of augmenting

paths, then M & P is a matching of size |M|+ |P)|.
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In the distributed setting, Itai and Israeli [48] showed a randomized algorithm that
computes a maximal matching (which is a 1/2-approximation to the maximum match-
ing) and runs in O(logn) time with high probability. This result has been improved
several times since (e.g., [24, 45]); of particular relevance is the approximation scheme
of Lotker et al. [62], which, for every € > 0, computes a (1 — €)-approximation to the
maximum matching in O(logn) time. Kuhn et al. [55] proved that any distributed
algorithm, randomized or deterministic, requires (in expectation) Q(1/logn/loglogn)
time to compute a O(1)-approximation to the maximum matching, even if the message
size is unbounded.

Our algorithm is, in essence, an implementation of the abstract algorithm of Lotker
et al. [62]. Their algorithm, relies on several interesting results due to Hopcroft and
Karp [46]. The algorithm of Even et al. [29] is a similar implementation of Hopcroft

and Karp’s algorithm; it has a probe complexity of O(log*n), and is deterministic.

5.2 Distributed Maximal Matching

While the main result of Hopcroft and Karp [46] is an improved time complexity match-
ing algorithm for bipartite graphs, they show the following useful lemmas for general
graphs. The first lemma shows that if the current matching has augmenting paths of
length at least ¢, then using a maximal set of augmenting paths of length ¢ will result

in a matching for which the shortest augmenting path is strictly longer than £.

Lemma 5.2.1. [}6] Let G = (V, E) be an undirected graph, and let M be some matching
in G. If the shortest augmenting path with respect to M has length £ and ® is a mazimal
set of independent augmenting paths of length £, the shortest augmenting path with
respect to M ® © has length strictly greater than £.

The second lemma shows that if there are no short augmenting paths then the

current matching is approximately optimal.

Lemma 5.2.2. [/6] Let G = (V, E) be an undirected graph. Let M be some matching
i G, and let M™* be a maximum matching in G. If the shortest augmenting path with

respect to M has length 2k — 1 > 1 then |M| > (1 — 1/k)|M*|.

Lotker et al. [62] gave the following abstract approximation scheme for maximal
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matching in the distributed setting.! Start with an empty matching. In stage ¢ =
1,3,...,2k—1, add a maximal independent collection of augmenting paths of length £.
For k = [1/€], by Lemma 5.2.2, we have that the matching My is a (1—¢)-approximation
to the maximum matching.

In order to find such a collection of augmenting paths of length ¢, we need to define

a conflict graph:

Definition 5.2.3. [62] Let G = (V, E) be an undirected graph, let M C E be a match-
ing, and let £ > 0 be an integer. The £-conflict graph with respect to M in G, denoted
Cr(0), is defined as follows. The nodes of Cypr(€) are all augmenting paths of length
¢, with respect to M, and two nodes in Cpr(€) are connected by an edge if and only if

their corresponding augmenting paths intersect at a vertex of G.?

We present the abstract distributed algorithm of [62], ABSTRACTDISTRIBUT-

EDMM.

Algorithm 3: ABSTRACTDISTRIBUTEDMM
Input : G=(V,E)and e >0
Output: A matching M

1 M4« 0; // M_q is the empty matching
2 k< [1/e] ;

g for/=1,3,...,2k—1do

4 Construct the conflict graph Cyy, ,(¢) ;

5 Let Z be an MIS of Cyy, ,(0) ;

6 Let ®(Mjy_5) be the union of augmenting paths corresponding to Z ;

7 My My_o® ®(My_s) ; // M, is matching at the end of phase /
8 Output My; // My is a (1 — %H)—approximate maximum matching

Note that for My, the minimal augmenting path is of length at least £ + 2. This
follows since ®(My_5) is a maximal independent set of augmenting paths of length
¢. When we add ®(M;_3) to My_o, to get My, by Lemma 5.2.1 all the remaining
augmenting paths are of length at least ¢ + 2 (recall that augmenting paths have odd
lengths).

Lines 4 - 7 do the task of computing M, as follows: the conflict graph Cyy,_,(¢) is

constructed and an MIS, ®(M,_s), is found in it. ®(M,_3) is then used to augment

I This approach was first used by Hopcroft and Karp in [46]; however, they only applied it efficiently
in the bipartite setting.

2Notice that the nodes of the conflict graph represent paths in G. Although it should be clear from
the context, in order to minimize confusion, we refer to a vertex in GG by vertex, and to a vertex in the
conflict graph by node.
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My_s, to give My.

We would like to simulate this algorithm locally. Our main challenge is to sim-
ulate Lines 4 - 7 without explicitly constructing the entire conflict graph Ciy, ,(¢).
To do this, we will simulate the online greedy MIS algorithm. When simulating
GREEDYMIS on the conflict graph Cp(¢) = (Vo,,, Ec,,), we only need a subset of
the nodes, V' C V,,. Therefore, there is no need to construct Cy(¢) entirely; only
the relevant subgraph need be constructed. By Theorem 4.5.2, we know there is an

(O(logn), O(log?n), O(logn), O(log”n), 1 /n)-LCA for MIS on the conflict graph.

5.2.1 LCA for Maximal Matching
Our main result for this chapter is the following theorem:

Theorem 5.2.4. Let G = (V, E) be a graph of bounded degree d. Then there exists
an (O(logn), O(log®n), O(logn), O(log®n), 1 /n)-LCA that, for every e > 0, computes

a maximal matching that is a (1 — €)-approximation to the maximum matching.

We present our algorithm for maximal matching - LOCALMM, and analyze it. The
pseudocode for LOCALMM (Algorithm 4) appears in Section 5.4. In contrast to the
distributed algorithm, which runs iteratively, LOCALMM is recursive in nature. In each
iteration of the for in Algorithm ABSTRACTDISTRIBUTEDMM, a maximal matching
My, is computed, where M, has no augmenting path of length less than ¢. We call each
such iteration a phase, and there are a total of k phases: 1,3,...2k — 1. To find out
whether an edge e € F is in M,, we recursively compute whether it is in My_o and
whether it is in ®(M;_5), a maximal set of augmenting paths of length /. We use the
following simple observation to determine whether e € M,. The observation follows

since My < My_o & ®(My_o).

Observation 5.2.5. Edge e € My if and only if it is in either in My_o or in ®(M;_s),
but not in both.

Recall that LOCALMM receives an edge e € F as a query, and outputs “yes/no”. To
determine whether e € My;_1, it therefore suffices to determine, for £ =1,3,...,2k—3,
whether e € M, and whether e € ®(M,).

We will outline our algorithm by tracking a single query. (The initialization
parameters will be explained at the end.) When queried on an edge e, LocALMM

calls the procedure ISINMATCHING with e and the number of phases k. For clarity, we
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sometimes omit some of the parameters from the descriptions of the procedures.

Procedure 6: IsInMatching determines whether an edge e is in the matching M,.
To determine whether e € M,, ISINMATCHING recursively checks whether e € M,_o,
by calling ISINMATCHING (¢ — 2), and whether e is in some path in the MIS ®(M;_5) of
Ch,_,(£). This is done by generating all paths p of length ¢ that include e, and calling
ISPATHINMIS(p) on each. ISPATHINMIS(p) checks whether p is an augmenting path,
and if so, whether it in the independent set of augmenting paths. By Observation

5.2.5, we can compute whether e is in My given the output of the calls.

Procedure 7: IsPathInMIS receives a path p and returns whether the path is in
the MIS of augmenting paths of length £. The procedure first computes all the relevant
augmenting paths (relative to p) using RELEVANTPATHS (the relevant augmenting
paths are all the paths of length ¢ that our LCA needs to consider in order to decide
whether p is in the MIS). Given the set of relevant paths (represented by nodes) and
the intersection between them (represented by edges) we simulate GREEDYMIS on this
subgraph. The resulting independent set is a set of independent augmenting paths.

We then just need to check if the path p is in that set.

Procedure 9: RelevantPaths receives a path p and returns all the relevant aug-
menting paths relative to p. The procedure returns the subgraph of Cy,_,(¢),C =
(Ve, Ec), which includes p and all the relevant nodes. These are exactly the nodes
needed for the simulation of GREEDYMIS, given the order induced by seed sy. The set
of augmenting paths V¢ is constructed iteratively, by adding an augmenting path ¢ if
it intersects some path ¢’ € Vi and arrives before it (i.e., 7(q, s¢) < (¢, s¢)). In order
to determine whether to add path ¢ to Vi, we need first to test if ¢ is indeed a valid

augmenting path, which is done using ISANAUGMENTINGPATH.

Procedure 10: IsAnAugmentingPath tests if a given path p is an augmenting
path. It is based on the observation that p is an augmenting path with respect to a

matching M if and only if all odd numbered edges are not in M, all even numbered
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edges are in M, and both the vertices at the ends of p are free.

Given a path p of length ¢, to determine whether p € Cyy,_,(¢), ISANAUGMENT-
INGPATH(/) determines, for each edge in the path, whether it is in M,_o, by calling
ISINMATCHING (¢ — 2). It also checks whether the end vertices are free, by calling
Procedure ISFREE(?), which checks, for each vertex, if any of its adjacent edges are in
My_5. Thus, ISANAUGMENTINGPATH({) correctly determines whether p is an augment-
ing with respect to M;_s.

We end by describing the initialization procedure INITIALIZE, which is run only once,
during the first query. The procedure sets the number of phases to [1/€]. It is important
to set a different seed sy for each phase ¢, since the conflict graphs are unrelated (and
even the size of the description of each node, a path of length ¢, is different). The

lengths of the k seeds, s1,s3, ..., Sor_1, determine our memory requirement.

5.3 Bounding the Complexity

In this section we prove Theorem 5.2.4. We start with the following observation:

Observation 5.3.1. In any graph G = (V, E) with bounded degree d, each edge e € E

{—1

can be part of at most £(d — 1) paths of length £. Furthermore, given e, it takes at

most O(£(d — 1)1 time to find all such paths.

Remark 5.3.2. This observation does mot hold for d-light graphs. If there are q ver-
tices of degree logn that are close to each other in the graph, their adjacent edges
can be part of log?n paths. It is easy to wverify, though, that the algorithm is a
(O(polylogn), O(polylogn), O(polylogn), O(polylogn), 1 /n)-LCA on d-light graphs.

Proof of Observation 5.3.1. Consider a path p = (e1,es,...,¢e7) of length ¢. If p in-
cludes the edge e, then e can be in one of the ¢ positions. Given that e; = e, there
are at most d — 1 possibilities for e;; and for e;_1, which implies at most (d — 1)Z_1

possibilities to complete the path to be of length ¢. O

Observation 5.3.1 yields the following corollary.

Corollary 5.3.3. The {-conflict graph with respect to any matching M in G = (V, E),
Cr(¥), consists of at most £(d — 1)1 E| = O(|V|) nodes, and has mazimal degree at
most d(£ + 1)0(d — 1)1
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Proof. (For the degree bound.) Each path has length ¢, and therefore has £+ 1 vertices.
Each vertex has degree at most d, which implies d(¢+ 1) edges. Each edge is in at most
¢(d — 1)1 paths. O

Our main task will be to compute a bound on the number of recursive calls. First,
let us summarize a recursive call. The only procedure whose runtime depends on the
order induced by sy is RELEVANTPATHS, which depends on the number of vertices Vo
(which is a random variable depending of the seed s;). To simplify the notation we
let & = d(¢ + 1)¢(d — 1)*~ and define the random variable X, = &|V|. Technically,
GREEDYMIS also depends on V¢, but its running time is dominated by the running

time of RELEVANTPATHS.

Calling procedure Called Procedures
ISINMATCHING (?) 1x ISINMATCHING (¢ — 2) and
{(d — 1)*~1 x ISPATHINMIS(¥)
ISPATHINMIS(?) 1x RELEVANTPATHS(¢) and 1x GREEDYMIS
RELEVANTPATHS(?) X¢x ISANAUGMENTINGPATH({)
ISANAUGMENTINGPATH(¢) | ¢x ISINMATCHING(¢ — 2) and 2x ISFREE(/)
ISFREE(/) (d — 1)x ISINMATCHING (¢ — 2)

Table 5.1: Number of calls from each procedure

From the table, it is easy to deduce the following proposition.

Proposition 5.3.4. ISANAUGMENTINGPATH(?) generates at most £ + 2(d — 1) calls
to ISINMATCHING (¢ — 2), and therefore at most (£ + 2d — 2) - £(d — 1)1 calls to
ISPATHINMIS (¢ — 2).

We would like to bound X/, the number of calls to ISANAUGMENTINGPATH(?)
during a single execution of ISPATHINMIS(G,p,?,S). |Vc| is exactly the size of the
relevant vicinity of p in Ciy,_, (¢).

Denote by fy the number of calls to ISANAUGMENTINGPATH(?) during one execu-
tion of LOCALMM. Let f = Z?i;l fo.2 The base cases of the recursive calls LOCALMM
makes are ISANAUGMENTINGPATH(1) (which always returns TRUE). As the execution

of each procedure of LOCALMM results in at least one call to ISANAUGMENTINGPATH,

3For all even ¢, let f, = 0.
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f (multiplied by some small constant) is an upper bound to the total number of com-
putations made by LOCALMM.

We prove the following:

Proposition 5.3.5. For every 1 < { < 2k —1, there exist a constant cy, which depends

only on d, such that
2k — ¢

Pr(fe> celogn] < -

Proof. The proof is by induction. For the base of the induction, we have, from
Corollary 4.3.6, that there exists an absolute constant cop_1, which depends only on

d, such that

1
Pr[for—1 > cop—1logn] < —.
n

For the inductive step, we use the law of total probability:

Pr(fi > cilogn| =[fi; > cilogn|fit1 < cit1logn|Prfit1 < ¢it1logn]
+ [fi > cilogn|fiy1 > ciy1logn] Pr[fitz1 > cip1logn)

<[fi > ¢ilogn|fit1 < ¢it1logn] + Pr[fit1 > cit1logn]
2k —1—1
_'_ -

1
2k —i
==
where Inequality (5.1) is due to Corollary 4.3.8 and the inductive hypothesis. ]

Taking a union bound over all k levels immediately gives

Lemma 5.3.6. There exists a constant ¢, which depends only on d and €, such that

Pr[f > clogn] <

S
n

Proof of Theorem 5.2.4. Using Lemma 5.3.6, and taking a union bound over all possible
queried edges gives us that with probability at least 1 — 1/n, LocALMM will require
at most O(logn) probes to G. Therefore, for each execution of LOCALMM, we require
at most O(log n)-independence for each conflict graph, and therefore, from Theorem
4.1.8, we require [1/€] seeds of length O(log n), which upper bounds the space required

by the algorithm. The time required is upper bound by the time required to compute
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r(p) for all the required nodes in the conflict graphs, which is O(log?n). O

5.4 Pseudocode

Algorithm 4: LocaLMM
Input : G=(V,E),ec Eande>0
Output: yes/no
Seed S ;
if this is the first execution of LOCALMM then
| (8,k) < INITIALIZE(G, €) ;
Return ISINMATCHING(G, e,2k — 1,S).

Procedure 5: Initialize(G = (V, E), ¢)

// This is run only at the first execution

n«|V];

k< [1/€];

for /< 1,3,...2k—1do

L Generate an almost O(logn)-wise independent seed S; of length O(logn) ;

S:U&;
V4

Return (S, k) ;

Procedure 6: IsInMatching(G, e, ¢, S)
if /= —1 then // The empty matching
L Return false
by < ISINMATCHING(G, e, £ — 2, S) ;
by <+ false ;
P—{peG:ecpnlpl =1};
for allp € P do
if ISPATHINMIS(G, p, ¢, S) then
L L by < true ;

Return b; @ b5 ;
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Procedure 7: IsPathInMIS(G, p, ¢, S)

C < RELEVANTPATHS(G, p, ¢, S) ; // C is a subgraph of Cyy, ,(¢)
I + GREEDY MIS (C,7(C,sp)) ;
Return (v € 1) ;

Procedure 8: IsFree(G, v, ¢, S)
IsFreeVertex < true ;
for all w € N(v) do // All edges touching v
if ISINMATCHING(G, (u,v),f —2,S) then
L IsFreeVertex «+ false ;

Return IsFreeVertex ;

Procedure 9: RelevantPaths(G, p, ¢, S)
Initialize C = (Vg, E¢) < (0,0) ;
if ISANAUGMENTINGPATH(G, p,¢,S) then
| Vo« {p};
else
L Return C' ;

while Jp e Vo : (p,p') € Ec,re(p, s0) < re(p, s¢) do

if ISANAUGMENTINGPATH (G, p/,¢,S) then
Vo <1
for all p” € N(p') do // Edges between p’ and vertices in Vg
L if p” € Vi then

| Ec+ (.p");

Return C ;
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Procedure 10: IsAnAugmentingPath(G, p, ¢, S)
// Checks that p is an augmenting path.

if /=1 then // all edges are augmenting paths of the empty matching
L Return TRUE ;

Let p < (e1,e2,...,e), with end vertices v1, vp11 ;
IsPath < true ;
fori=1to/{ do
if ¢ (mod 2) =0 then // All even numbered edges should be in the
matching
if “ISINMATCHING(G, ¢;,¢ — 2,S) then
L L IsPath < false ;

if ¢ (mod 2) =1 then // No odd numbered edges should be in the
matching

if ISINMATCHING(G, e;,¢ —2,S) then
L L IsPath < false ;

if (-ISFrREe(G,v1,¢,S)V —ISFREE(G,vp41,¢,S)) then
L IsPath < false ; // The vertices at the end should be free

Return IsPath ;




Chapter 6

Constant-Time LCAs

In this chapter we give constant-time, constant-probe LCAs to the following graph

problems, assuming graphs with constant maximal degree.

e Graphic Matroids. Given a weighted graph, the task is to find an acyclic edge
set (forest) of approximately the maximum possible weight. In the corresponding
LCA, a query specifies an edge, and the algorithm says whether the given edge
is in the solution forest. We present a deterministic (1 — €)-approximate LCA for
graphic matroids, whose running time and space are independent of the size of

the matroid (see Section 4.1 for formal definitions).

o Integer Multi-Commodity Flow (IMCF') and Multicut on Trees. Given a tree with
capacitated edges and source-destination pairs, the goal of IMCF is to route the
greatest possible total flow where each pair represents a different commodity,
subject to edge capacity constraints. Multicut is the dual problem where the goal
is to pick an edge set of minimal total capacity so that no source can be connected
to its destination without using a selected edge. We give a deterministic LCA
for IMCF and multicut on trees that runs in constant time and gives a (1/4)-
approximation to the optimal IMCF and a 4-approximation to the minimum
multicut. We also give a randomized LCA to IMCF, with constant running time,
very little enduring memory (less than a word), and expected approximation ratio

% — ¢ for any constant € > 0.

o Weighted Matching. Given a weighted graph, we would like to approximate the
maximum weight matching. We design a deterministic reduction from any (pos-

sibly randomized) LCA A for unweighted matching with approximation ratio «

64
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to weighted matching with approximation ratio «/8. Our reduction invokes A
a constant number of times. Both the running time and approximation ratio
are independent of the magnitude of the edge weights. We also give a constant-
time 1/2 - approximation algorithm to maximum cardinality matching, however
its enduring memory requirement is O(logn). Combining these results gives a
constant-time 1/16 - approximation algorithm to maximum weighted matching.
It is not currently known whether there exists an approximation algorithm to
maximum matching that requires constant time and memory. It is interesting
to compare these results to those of Even et al. [29]. They give a (1 — ¢€) ap-
proximation LCA to weighted matchings on graphs of constant bounded degree;
its probe complexity is O(log* nlog (Wmaz — Wmin)), Where Wy, and wp, are
the weights of the heaviest and lightest edges respectively (or O(log* nlogn) if
Winaz — Wmin > n). Our reduction gives a worse approximation ratio, but removes

the dependence on n of the running time.

This chapter is based on [66].

6.1 Graphic Matroids

Definition 6.1.1. A matroid M = (E,I) is an ordered pair, where E is a finite set

of elements (called the ground set), and T is a family of subsets of E, (called the

independent sets ), which satisfies the following properties:

1. eI,
Af X eZandY C X thenY €1,
3. If X,)Y € T and |Y| < |X| then there is an element e € X such that Y U{e} € L.

For a more comprehensive introduction to matroids, we refer the reader to [84].

In this section we consider the problem of finding the maximum weight basis of a

graphic matroid, defined as follows.

Definition 6.1.2 (Graphic matroid). A graphic matroid is a matroid whose indepen-

dent sets are forests in an undirected graph.

We are given a graphic matroid M = (£,7), and would like to find an independent

set of (approximately) maximal weight. In graph terminology, we are given a graph
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G = (V,E), with non-negative edge weights, w : E — R™*; we would like to find an
acyclic set of edges of (approximately) maximal weight. That is, we seek a forest whose
weight is close to the weight of a maximal spanning tree (MaxST). Without loss of
generality, we assume edge weights are distinct, as it is always possible to break ties by
ID. Recall that when the edge weights are distinct, there is a unique MaxST.

We first describe a parallel algorithm for finding a MaxST in a graph, and then
explain how to adapt it to an LCA. Our parallel algorithm is less efficient than others
(say, the Bortuvka’s algorithm [77]), but adapting it to an LCA is easy, and proving it
correct, or analyzing its local properties, are simple.

We first need a few definitions. Define the distance between a vertex v and an edge

e = (u,w), denoted dist(v, e), to be min{dist(v, ), dist(v,w)}.

Definition 6.1.3 (Connected component, Truncated CC). Let G = (V, E) be a simple
undirected graph. For a vertex v € V, and a subset of edges S C FE, the connected
component of v with respect to S is CCs(v) C S which includes the edges e € S that
have a path from e to v using only edges in S. (Note that CCs(+) induces a partition of
S.) The k-truncated connected component of v is the set of all vertices in the connected

component of v at distance at most k from v (w.r.t. G). We denote it by k TCCg(v).

Algorithm 11 works as follows. We maintain a forest S, initially empty. For any
vertex v, denote T¥ = k TCCg(v). In round k, vertex v considers the cut (I'¥,V \ T'¥)
and adds the heaviest edge of the cut, say e, to S. (Note that k is both the round
number and the radius parameter of the truncated connected component.) In contrast
to many MaxST algorithms, an edge can be considered more than once, and it is
possible that an edge e is considered—and even added—when it is already in S (if we

add e to S when e € S, S remains the same).

6.1.1 Correctness of Algorithm 11
The correctness of Algorithm 11 relies on the so-called “blue rule” [103].

Lemma 6.1.4 ([103]). Let C be any cut of the graph. Then the heaviest edge in C
belongs to MaxST.

Corollary 6.1.5. All edges added to S by algorithm 11 are in MaxST.

Corollary 6.1.5 establishes the correctness of Algorithm 11.
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Algorithm 11: Parallel (CREW) MaxST Approximation Algorithm.
Input : G = (V, E) with weight function w: F — Rt e > 0
Output: a forest S
// assume all edge weights are distinct

ForallveV,S, =0;
for round k =0 to 1/e do
For each vertex v, let I'* = k TCCs(v) ;
for all vertices v € V in parallel do
if e is the heaviest edge of the cut (T%,V \ T'¥) then
L L Sy = Sy U{e};

Return S = {J,cy So-

6.1.2 Approximation Guarantee

We now turn to analyze the approximation ratio of Algorithm 11. To this end, define
Sk, to be the set of edges of MaxST that were added to S in rounds 1,2,. ..,k (implying
that S C Sk11). Let Ry = MaxST \Sg.

Consider the component tree of MaxST, defined as follows: the node set is
{CCs, (v) | v € V}, and the edge set is {(CCs, (v), CCs,(u)) | (v,u) € Ri}. In words,
there is a node in the component tree for each connected component of S, and there
is an edge in the component tree iff there is an edge in Ry connecting nodes in the
corresponding components. We choose an arbitrary component as the root of the com-
ponent tree, and direct all the edges towards it; this way, each edge e € Ry, is outgoing
from exactly one connected component of S;. We denote this component by CC¥.
Note that CC? C CCY for i < J because components only grow. For any set of edges
S, let w(S) = cqwl(e).

The following proposition is the key to the analysis.

Proposition 6.1.6. For any k > 1, Ve € Ry, w(e) < “CC2),

Proof. If Ry is empty, the claim holds trivially. Let e = (v,u) be any edge in Ry
(directed from v to u). Edge e was not chosen by vertex v in rounds 1,...,k. For
i € [k], let e; be the edge chosen by v in round 7. It suffices to show that (1) all edges
e; are heavier than e, i.e. Vi € [k],w(e;) > w(e), and that (2) the edges e; are distinct,
ie,Vi,je[k],i#J = e #ej.

The proof of (1) is straightforward: e was in the cut (I}, V\T?) in all rounds i € [k],

but it was never chosen. This must be because v chose a heavier edge in each round.
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Figure 6.1: The situation considered in the proof of Proposition 6.1.6, for £ = 2. The
edge e = (u,v) is in Ry. Solid edges are in S, dashed edges are in E'\ §. The shaded
area represents CC?, and the dotted arc represents the distance 2 range. Edges marked
by x are considered by v in round 2.

To prove (2), we show by induction that e; is distinct from {ej,ea,...,e;—1}. The
base of the induction is trivial. For the inductive step, consider the two possible cases.
If e; ¢ CC7L, then clearly, e; cannot be any edge that was previously added. And if
e; € CO~' then e; must be at distance exactly ¢ from v, otherwise it would not have
been in the cut (T, V' \ T'!) and could not have been added. But ey,...,e; 1 are all at
distance at most i — 1 (w.r.t. G). O

Corollary 6.1.7. For k >0, w(Ry) < w(}fk)'

Proof.

e€Ry,
k
< w(Cl;Ce) by Prop. 6.1.6
EGRk
< (l‘:’“) e#e = CCF£CCE, and | JOCF C 8,

e€Ry,

O]

This enables us to prove our approximation bound. Denote the weight of MaxST
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by OPT.

Lemma 6.1.8. w(S;) > (1 — %_H)OPT.

Proof. As Ry = MaxST \Sg,

w(Sk) w(Sy) S w(Sy) _ Kk
OPT w(Sk) —|—w(Rk) B w(Sk) +w(8k)/k: k41

where the inequality is due to Corollary 6.1.7. ]

This concludes the analysis of Algorithm 11. We now describe the LCA we derive

from it.

6.1.3 Implementation and Complexity Analysis

Given a graph G = (V,E) and a query e = (u,v) € E, the implementation of Algo-
rithm 11 as an LCA is as follows. Consider iteration k of Algorithm 11. Probe G to
discover N?¥(u) and N?*(v). Simulate Algorithm 11 on all vertices in N*(u) U N¥(v)
for k rounds. In each round 4, for each node s € N*(u)UN¥*(v), the algorithm computes
I\ = iTCCg(v), finds the heaviest edge e in the cut (I',V \ I'}), and adds it to the

solution. This gives the following lemma.

Lemma 6.1.9. The time required to simulate the execution of Algorithm 11 for k

rounds as an LCA is kd®®) | and the probe complexity is d°®).

Proof. The time to discover N?¥(v) U N2*(u) by probing the graph is bounded by
d°®) . Each vertex in z € N¥(v) U N¥(u) executes Algorithm 11 k rounds: in round j,
it constructs S, by exploring N7(z) € N%*(v) U N2¥(u). Overall, the time complexity

is O+ N~ kINF(2)| = kdOW.
2ENF(v)UNk(u)

Combining Lemmas 6.1.8 and 6.1.9 gives the following result.

Theorem 6.1.10. Let G be a graph whose degree is bounded by d. For every ¢ > 0,
there exists a deterministic (do(l/“), %do(l/e), 0, édo(l/(), )-LCA, that computes a forest

whose weight is a (1 — €)-approzimation to the mazximal spanning tree of G.
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6.2 Multicut and Integer Multicommodity Flow in Trees

In this section we consider the integer multicommodity flow (IMCF) and multicut prob-
lems in trees. While simple, our LCAs demonstrate how, under some circumstances,
one can find constant-time LCAs for apparently global problems.

The input is an undirected graph G = (V| E) with a positive integer capacity c(e)
for each e € E, and a set of pairs of vertices {(s1,%1),...,(Sk,tx)}. (The pairs are
distinct, but the vertices are not necessarily distinct.)

In the Integer Muticommdity Flow Problem, the goal is to route commodity ¢ from
s; to t; so as to maximize the sum of the commodities routed, subject to edge capacity
constraints. Note that in a tree, the only question is how much to route: the route
is uniquely determined anyway. In the dual Multicut Problem, the goal is to find a
minimum capacity multicut, where a multicut is an edge set that separates s; from ¢;
forall 1 <i<k.

We make the following assumptions about the input to allow for appropriately
bound the time and space complexity of the algorithms. First, we assume that in the
given tree each node has at most d = O(1) children, and that 7" is rooted in the sense
that the depth of each vertex is known and is part of the properties that are found by
querying the vertex. Second, we assume that the distances from s; to t; are bounded
by some given parameter ¢; i.e., Vi, dist(s;,t;) < £. Our bounds will be a function of
£, so that if 7 is independent of tree size, then so are the time and space complexity of
our algorithms.

As before, we adapt a classical algorithm to an LCA. This time we use the algorithm

of Garg et al. [36] (Algorithm 12) as a subroutine.

Algorithm 12: Multicut and IMCF in trees [36, 107]

Input : A rooted tree T'
Output: a flow f and a cut D

Initialize f = 0, D = 0;
for each vertex v in nonincreasing order of depth do
for each pair (s;,t;) s.t. lowest common ancestor(s;,t;) = v, do
Greedily route flow from s; to t; if possible;
L Add all saturated edges to D in arbitrary order;

Let eq,..., e be the ordered list of edges in D;
for j =k down to 1 do
L If D — {e;} is a multicut, then remove e; from D.;
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Theorem 6.2.1 ([107]). Algorithm 12 achieves approximation factors of 2 for the
multicut problem and 1/2 for the IMCF problem on trees.

Our deterministic LCA is detailed in Algorithm 13. It finds a (4 + ¢)-approximation

to the multicut problem, and in trees with minimum capacity cpi, > 2, the same

[emin/2] >

2Cmin -

algorithm finds an IMCF with approximation factor %.1 We also present a
randomized Algorithm (Algorithm 14), that gives an approximation factor of (% —€)
to IMCF for any desired ¢ > 0 (the running time depends on 1/€). The algorithms
are similar, in that they partition the tree to subtrees and apply Algorithm 12 to each

subtree. The randomized algorithm requires a very small amount of enduring memory,

namely O(log(¢/¢€)) bits.

6.2.1 Deterministic LCA

We first describe the deterministic LCA. An edge is said to be at depth z if it connects
vertices at depths z—1 and z. The deterministic algorithm (Algorithm 13) for multicut
is as follows. We consider two overlapping decompositions of the tree into subtrees of
height 2¢: the first decomposition is obtained by removing all edges at depth k¢ for
even values of k, and the second is by removing all edges at depth k¢ for odd values of
k. Now, given an edge e, we run Algorithm 12 on the subtrees that contain e (there
is at least one such tree and at most two). Let the output of the “even” instance be
D¢, and the output of the “odd” instance be D°. The output is D¢ U D°. Correctness
follows from the fact that each (s;,¢;) pair is completely contained in (at least) one
of the subtrees by the assumption that dist(s;,t;) < ¢. Regarding the approximation
ratio, recall that by Theorem 6.2.1, the capacity of each of D¢ D° is no larger than
twice the minimum multicut capacity, the capacity in the overall output is at most 4
times that of the minimal capacity multicut.

To obtain a feasible flow, we start by splitting the capacity of each edge e € D
between the subtrees it is a member of, such that in each subtree there are at least | % |
capacity units. This is possible because each edge is a member in at most 2 subtrees.
Now, given a query e to the LCA, we run Algorithm 12 on the trees e is a member
of, obtaining flow values fz(e) for the “even” subtree and f_z’(e) for the “odd” subtree.

The LCA outputs fé(e) + fo(e).

'The ratio is % when all capacities are even, and it tends to % aS Cmin — 00. For ¢min = 1 the
approximation ratio is 0.
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Algorithm 13: Deterministic LCA for Multicut in Trees
Input : A graph G = (V,E), withc: E—Z%, and £ >0
Output : A multicut D

Set h = 2¢;

Step 1.

Delete all edges at depth k/, for odd k;

On each remaining subtree T;, run Algorithm 12;
Let D; be the multicut returned on T%;

Let D° = U; Dy;

Step 2.

Delete all edges at depth k/, for even k;

On each remaining subtree T;, run Algorithm 12;
Let D; be the multicut returned on 77;

Let D¢ = U;Dy;

Step 3.
Let D = D° U D¢;
L Return D.

6.2.1.1 Approximation Guarantee

Let us call the subtrees created in Step 1 of Algorithm 13 odd subtrees, and the subtrees

created in Step 2 even subtrees.

Lemma 6.2.2. Algorithm 13 outputs a multicut, whose capacity is at most 4 times the

capacity of the minimum multicut of T.

Proof. Each vertex and edge is contained in two subtrees, and as the subtrees are of
depth 2/, each path (s;,t;) must be fully contained within either an odd subtree or an
even subtree (or both). Therefore, at least one edge in Dy U D5 is on the path between
s; and t;: D is a multicut. From Theorem 6.2.1, D1 and D, are 2-approximations to
the minimal capacity multicut of 7', hence their union is at most a 4-approximation.

O]

Lemma 6.2.3. Algorithm 13 outputs a feasible flow, whose value is at least (i —=)

4Cmin

fraction of the maximal multicommodity flow on T.

Proof. Let f° and f¢ denote the flows computed on odd and even trees, respectively.

Their union is feasible because each of them uses at most half of the capacity of each
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edge. Moreover, f; is a 1/2 approximation to the flow of T;. Denote the value of the
maximal IMCF on T by f*. Let f* be the optimal flow on the subtree 7;. As in

Algorithm 13, we denote indices of odd subtrees by ¢, and even subtrees by j. Then

ARSI AR
( J

SE 2fz’~l-E 2f;
( J

< (2f¢+2/%) 7@:::;2 J
4cmin

(et £

Cmin —

IN

6.2.1.2 Complexity Analysis

The implementation of Algorithm 13 as an LCA is straightforward: when queried on an
edge, determine to which subtrees it belongs, and then run simulate Algorithm 13 on
those two subtrees. The maximal size of a subtree is d*, hence our probe complexity
is O(d?"). We do not attempt to optimize the running time; we note that it is trivial to
implement the algorithm on subtree T in time O(|T}|?), as there can be at most |T}|?

pairs (s;,t;) in T;. This gives

Theorem 6.2.4. Given a tree T with mazimal degree d, integer edge capacities at
least cmin and source-destination pairs with maximal distance at most £ > 0, there is a
deterministic (d°9),d°"),0,d°") 0)-LCA for 4-approzimate multicut and (% — 4cr1nin)-
1

approzimate IMCF'. If all capacities are even, the approzimation ratio to IMCF is

6.2.2 Randomized LCA

We now turn to the randomized setting. Our randomized algorithm ( Algorithm 14) is
very similar: instead of an overlapping decomposition, we use a random one as follows.
Let H = [f] We pick an integer j uniformly at random from [H], and remove all edges
whose depth modulo H is j — 1. The result is a collection of subtrees of depth at most
H — 1 each. Now, given an edge e, we run Algorithm 12 on the subtree that contains e
and output the output of Algorithm 12 (with probability 1/H, the edge queried, e, is

not in any tree; in this case, e carries 0 flow).
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Algorithm 14: Integer Multicommodity Flow in Trees
Input : A graph G = (V,E), withc: E—Z%, and £ >0
Output : A flow f
Let H = [£];
Uniformly sample an integer j from {0, ..., H};
Delete all edges at depth j 4+ kH, for all k € N such that j + kh < depth(T);

On each remaining subtree, run Algorithm 12;
Return the union of the flows on all subtrees.

Theorem 6.2.5. Algorithm 1/ achieves an approzimation ratio of 1/2 — € to the maz-

imum integer multicommodity flow on trees.

Proof. For any i, the probability that the path (s;,¢;) is not fully contained within a
subtree is at most % < e. Fix an optimal solution f* with value |f*|. After deleting
edges, the expected amount of remaining flow is at least (1 —e¢)|f*|. By Theorem 6.2.1,

Algorithm 12 output at least a half of that amount. The result follows. O

The implementation of Algorithm 14 as an LCA is almost identical to that of
Algorithm 13; in order to achieve a 1/2 — € approximation to the IMCF, the enduring
memory has to hold an integer whose value is at most [£], i.e., O(log(¢/€)) bits. We

therefore have

Theorem 6.2.6. Given a tree T with mazimal degree d, integer edge capacities
and wvertex pairs with maximal distance at most £ > 0, there is a randomized
(dOW/) qOU) [0, a9 0)-LCA that achieves an approzimation ratio of (1/2 — ¢€) to
IMCF.

6.3 Weighted Matchings

In this section we present a different kind of an LCA: a reduction. Specifically, we
consider the task of computing a maximum weight matching (MWM), and show how
to locally reduce it to maximum cardinality matching (MCM). Our construction, given
any graph of maximal degree d and a t-time a-approximation LCA for MCM, yields
an O(td)-time, g-approximation LCA for MWM.

Formally, in MWM we are given a graph G = (V, E) with a weight function w :
E — N, and we need to output a set of disjoint edges of (approximately) maximum
total weight. In MCM, the task is to find a set of disjoint edges of (approximately) the

largest possible cardinality.
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The main idea in our reduction is a variant of the well-known technique of scaling
(e.g., [63, 105, 109]): partition the edges into classes of more-or-less uniform weight, run
an MCM instance for each class, and somehow combine the MCM outputs. Motivated
by local computation, however, we use a very crude combining rule that lends itself
naturally to LCAs.

Specifically, the algorithm is as follows (the “global” algorithm is presented as
Algorithm 15). Let v = 4. Partition the edges by weight to sets Ej;, such that
E; = {e : w(e) € [y""1,9%)}. For each i, find a maximum cardinality matching M;
on the graph G; = (V, E;), using any MCM algorithm. Let M = U;M;. Given an edge
e, our LCA for MWM returns “yes” iff e is a local maximum in M, i.e., iff (1) e is in
M, and (2) for any edge €’ in M which shares a node with e, w(e’) < w(e) (no ties can

occur).

Algorithm 15: Reduction of MWM to MCM
Input : A graph G = (V,E), with w: E — N, and v > 2
Output: A matching M

Partition the edges into classes E; = {e : w(e) € [y'~1,4%)} fori=1,2,...
In parallel, compute an unweighted matching M; for each level i;
M = U; Ms;
for each edge e € M do
if e has a neighbor ¢’ € M, with class(e’) < class(e) then
L L Remove e from M;

Return M.

Theorem 6.3.1. Let A be a (p(n),t(n),em(n),tm(n), )-LCA  for unweighted
matching, whose output is an a-approrimation to the maximum matching. Then given
a graph G = (V, E) with mazimal degree d and arbitrary weights on the edges, there is
an (O(d-p(n)),0(d-t(n)),0(d-em(n)),O(d - tm(n)), )-LCA that computes

an a/8-approzimation to the mazimum weighted matching.

6.3.1 Correctness and Approximation Guarantee

No two adjacent edges within a class can be selected to M, as within each class we use
a matching algorithm. Now consider two edges e, ¢’ € M that are not in the same class
(assume w.l.o.g. that class(e’) < class(e)), and are adjacent in M after a matching has

been computed for each class. Edge e is removed from M. Hence no adjacent edges can
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Figure 6.2: A simple example. Here v = 3 and that M = U;M; is the entire graph.
The M-tree of the edge of weight 3 consists of the edge itself and its two neighbors of
weight 1. The M-tree of the edge of weight 10 includes itself and the M-tree of the
edge of weight 3. The M-tree of the edge of weight 9 is the entire graph, except the
edge of weight 10.

be selected to M. The more interesting part is the approximation ratio analysis. For
any edge (u,v) = e € M, recursively define a tree T, as follows. If e is lighter than all
of its neighbors in M, then T, = {e}. Otherwise, let f,, be the heaviest edge in M that
touches v and is lighter than e. Define f, similarly, and let T, = {e} UT}y, UTYy, . (If f,
does not exist, let Ty, = 0; similarly f,.) We call T, the M-tree of e. See Figure 6.2
for an example.

Define a new weight function on G, : w(e) = y°25(€)=1. je. 1i(e) is w(e) rounded
down to the nearest power of . Note that the choices made by Algorithm 15 are identi-
cal under w and . For any set of edges S and weight function w, let w(S) = >~ g w(e).

The main argument in the analysis of the approximation ratio of Algorithm 15 is the

following.
Proposition 6.3.2. Let e = (v,u) be any edge in M, such that w(e) = v* and let T,

k
be the M-tree of e. Then w(T,) < Z ok=iyt,
1=0

Proof. The proof is by induction on k. For the base of the induction, £k = 0,we have

W(T,.) = 2°49. For the inductive step, assume that the proposition holds for all integers
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up to k — 1. Let e = (u, v). The heaviest edge that is lighter than e and touches u
(denoted f,) weighs at most v*~". Similarly for the heaviest edge that is lighter than

e and touches v (f,). Therefore, by the inductive hypothesis,

k—1 k
(T)<’Y +222k112 Zk@z
=0 =0

Corollary 6.3.3. Let e = (v,u) be any edge in M, such that w(e) = v* and let T, be
the M-tree of e. Then w(e) > 1== 2 w(Te).

Proof. As v > 2,

w(Te) < Z ok—ini by Prop. 6.3.2

Lemma 6.3.4. Using any a-approximate MCM algorithm, Algorithm 15 finds a match-
ing of total weight a ~20PT.

Proof. Let M} be a maximum weighted matching on G; = (V, E;), and let M* =
Ui M. Let MZ* be a maximum cardinality matching (MCM) on G;. Clearly, for all i,
w(MZ*) > %w(Mi*), because each edge in M weighs at most 7 times any edge of Mi*,
and M does not contain more edges than Ml* Also note that w(M*) > OPT, because
any restriction of an optimal MWM to edges of class ¢ cannot have more weight than

M. Call a locally heaviest edge in M an output edge. Note that every edge e € M is
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contained in the M-tree of at least one output edge. We can therefore conclude that

-2
Z w(e) > Z Lw(Te) by Corr. 6.3.3
e:e is an output edge Te:e is an output edge v
-2
> Lw(M)
v
-2
— PVT Z w(M;)

O]

It is easy to verify that the optimal value of v is 4, yielding approximation factor

a/8.

6.3.2 Complexity Analysis

The simulation of this algorithm as an LCA is simple, and, unlike the global algorithm,
its complexity is completely independent of the weights on the edges. Suppose we are
queried about edge e. Let N be the set of edges that includes e and all of its neighboring
edges whose weight is greater than w(e). We invoke, for each ¢’ € N, the LCA for MCM
on the edges whose weight class is class(e’). The answer for e is “yes” iff the MCM
LCA replied “yes” for the query on e, and “no” for all other queries. Theorem 6.3.1

follows.

6.3.3 Unweighted Matching

In order to guarantee that Algorithm 15 runs in constant time, we need to supply it
with a constant-time LCA for unweighted matching. Unfortunately, no determinis-
tic constant-time constant approximation algorithm exists for MCM [59]. There are,
however, several constant-time approximation algorithms to MCM that one may use;
for example, the constant-time MCM of Nguyen and Onak [79], or a straightforward

implementation of Itai and Israeli’s parallel MCM algorithm [48] as an LCA. We note,
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however, that in both cases, we need enduring memory of size O(logn), as we need at
least pairwise independence.

For completeness, we give the implementation of Itai and Israeli’s algorithm, with
a simple analysis. It is important to note that their algorithm finds an MCM and
runs in O(logn) rounds. Using the reduction of Parnas and Ron (see Chapter 3)
naively would yield an “LCA” with polynomial running time. We therefore have to
terminate the simulation after a constant number of rounds. We show that we can find
an arbitrarily good approximation to the MCM, in expectation. We note that it is not
known whether there exists a constant-time MCM-approximation LCA that requires a
constant enduring memory.

The algorithm we present is possibly the simplest conceivable randomized algorithm
for maximal matching. Once again, we present it as a parallel algorithm, and then show
how to implement it as an LCA. For ease of analysis, when an edge is added to the
matching, we do not remove it or its neighbors from the graph. It is easy to modify

the algorithm to do so; this can only improve its approximation factor.

Algorithm 16: Parallel (CREW) Maximal Matching Algorithm.
Input : G=(V,E),e>0
Output: a matching M
M = (;
for k=0 to d2ln% do
For each vertex v, select a neighbor u uniformly at random;

for each edge e = (u,v) in parallel do
L if u and v selected each other and M U {e} is a matching then

| M =MuU{e};

Return M.

Theorem 6.3.5. Given a graph G of bounded degree d, for any €, there is a random-
ized (A0 m1/e) qOW@*n1/e) O (lognlog1/e),dO @ M1/ 0)-LCA that gives a (1/2 — €)-

approzimation to the mazimum matching.
We first prove some lemmas.

Lemma 6.3.6. The output of Algorithm 16 is a (1—5) approzimation to some maximal

matching.

Proof. At the conclusion of Algorithm 16, it outputs a legal matching: whenever an edge
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e is considered for addition to M, it is only added if M U {e} is a legal matching. Note
that even though we do the additions in parallel, there is no danger of two neighboring
edges being added concurrently due to the edge selection process, which guarantees no
vertex has more than one neighboring edge selected at any time. Let M* be a maximal
matching obtained by taking the matching output by Algorithm 16 and greedily adding
edges to it until no more edges can be added. Define an edge to be eligible if it is in

The probability that an eligible edge e is not added to M in a round is 1 — d%.
Setting k = d?In2/¢, the probability that e is not added to M in any of the k rounds

1 k 1 In2/e €
_ <[z -
oz <) =

Similarly to Algorithm 11, it is straightforward to implement Algorithm 16 as an

is

O

LCA: given a query e = (u,v), if we wish to simulate Algorithm 16 for k& rounds, we
probe G to obtain N¥(e). To see whether e is added to M in round i, it suffices to
determine whether any of its neighbors ¢’ € N(e) were added to M in any round up to
it — 1. In order to determine this, we need to check whether any of them were added
to M in any round up to ¢ — 2, and so on. Therefore, to determine whether e is added
to M after k rounds, we need to simulate Algorithm 16 on N¢(e) for k — i rounds.

Therefore, we obtain
Lemma 6.3.7. The time to execute Algorithm 11 for k = d*In2 is O(d*).

Proof. Denote by T'(k) the time it takes to execute Algorithm 16 for k rounds. We
show that T'(k) < (d)?*, by induction on the number of rounds, k. Assume we are
given a edge e = (u,v) as our query. For k = 0, we need to check if it is chosen by both
endpoints, O(1). Assume that the lemma holds for j < k — 1. On round k, we need to
check whether e is selected, and whether it can be added to M, for which we need to

check whether any of e’s neighbors were previously added to M. This takes time
T(k) =2dT(k — 1)+ O(1) = 2d - d**72 + O(1) < d**,

for d > 2. O

As the replies to all queries need to be consistent with the same matching, we
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require that the random bits used by each vertex remain the same each time the LCA
is invoked. For this, we need a source of randomness. Each query to the LCA requires
the generation of at most d?* random numbers i € [d]. From Theorem 4.1.8, we have
that a seed of length O(log (n/¢)) suffices, as we only require d?*-wise independence,

for O(log(1/€)) rounds. This, along with Lemmas 6.3.6 and 6.3.7, proves the theorem.
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Chapter 7

Local Computation Mechanisms

In the second part of the thesis, we consider local computation mechanisms. Similarly
to the previous chapters, we are only interested in a small part of the solution at any
given time, but in addition, we need to meet some game theoretic requirements. In
this chapter, we consider a relatively simple problem - the housing allocation problem.
There is a set of houses and a set of agents, and the agents that have some preference
over the houses. We wish to find an allocation of houses to agents that satisfies some
properties. Most importantly, we would like the allocation to be stable (there are no two
agents that would like to switch houses), and truthful (agents have no incentive to lie
about their preferences). We could use one of the matching algorithms that we described
in previous chapters, but that would guarantee neither stability nor truthfulness. In
this and the coming chapters we show how we can accommodate these game-theoretic

requirements. Chapters 7 through 10 are based on [42].

7.1 Notation and Preliminaries

We use the standard notation of game theoretic mechanisms. There is a set I of n
rational agents and a set J of m items. In some settings, e.g., the stable marriage
setting, there are no objects, only rational agents. Each agent ¢ € I has a valuation
function v; that maps subsets S C J of the items to non-negative numbers. The utilities
of the agents are quasi-linear, namely, when agent i receives subset S of items and pays
p, her utility is u;(S,p) = v;(S) — p. Agents are rational in the sense that they select
actions to maximize their utility. We would like to allocate items to agents (or possibly

agents to other agents), in order to meet global goal, e.g., maximize the sum of the
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valuations of allocated objects (see, e.g., [80]).

A mechanism with payments M = (A, P) is composed of an allocation function A,
which allocates items to agents, and a payment scheme P, which assigns each agent
a payment. A mechanism without payments consists only of an allocation function.
Agents report their bids to the mechanism. Given the bids b = (b1, ...,by,), the mech-
anism allocates the item subset A4;(b) C J to agent ¢, and, if the mechanism is with
payments, charges her P;(b); the utility of agent i is u;(b) = v;(A;(b)) — P;(b).

A randomized mechanism is universally truthful if for every agent i, for every random
choice of the mechanism, reporting her true private valuation maximizes her utility. A
randomized mechanism is truthful in expectation, if for every agent ¢, reporting her true
private valuation maximizes her expected utility. That is, for all agents ¢, any bids b_;
and b;, E[u;(vi, b_;)] > Elu;(b;, b_;)].

We say that an allocation function A admits a truthful payment scheme if there
exists a payment scheme P such that the mechanism M = (A, P) is truthful.

A mechanism M = (A, P) fulfills voluntary participation if, when an agent bids
truthfully, her utility is always non-negative, regardless of the other agents’ bids, i.e.,

for all agents i and bids b_;, u;(v;,b—;) > 0.

Definition 7.1.1 (Mechanisms without payments). We say that a mechanism M is a
(p(n),t(n),em(n),tm(n), )-local computation mechanism if its allocation function

is computed by a (p(n),t(n),em(n),tm(n), )-LCA.

Definition 7.1.2 (Mechanisms with payments). We say that a mechanism M = (A, P)
is a (p(n),t(n),em(n),tm(n), )-local computation mechanism if both the allocation

function A and the payment scheme P are computed by (p(n),t(n), em(n), tm(n), )-
LCAs.

In other words, given a query z, A computes an allocation and P computes a
payment, and both are LCAs. Furthermore, the replies of A to all of the queries are
consistent with a single feasible allocation.

A truthful local mechanism M = (A,P) is a local mechanism that is also truthful.
Namely, each agent’s dominant bid is her true valuation, regardless of the fact that

the mechanism is local.
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7.2 Warm Up - Random Serial Dictatorship

We first show a very simple local computation mechanism for the housing problem. We
would like to allocate n houses to n agents. Assume that each agent is interested in
a constant number of houses, d, and that the preferences are drawn from the uniform
distribution. Each agent ¢ has a complete preference relation R; over the d houses.
In the random serial dictatorship (RSD) algorithm, a permutation over the agents is
generated, and then each agent chooses her most preferred house out of the unallocated
houses. This algorithm has some desirable properties: it is truthful, nonbossy! and
neutral?; in fact, no other mechanism has all of these properties [101]. We note that
the algorithm is a crisp, neighborhood-dependent online algorithm, and therefore can
be implemented as an LCA: we can simply use the reduction of Chapter 4.

One other nice property of RSD is that each agent has the same probability of
having the first choice. This is an intuitively necessary property for any algorithm to

be considered “fair”. We define this formally as follows.

Property 7.2.1. Let M be a mechanism for the housing problem. Let X; denote the
event that agent © has the first choice under M. If

Vi,j,Pr[Xi] — Pr[Xj] <€,
we say that the mechanism is e-fair.

Unfortunately, the reduction of Chapter 4 does not guarantee this property: an
agent with a large ID has a much smaller probability of being given the first choice
than one with a small ID. In fact, while the probability of the agent with the smallest
ID being given the first choice is at least % (where L is the range of the hash function),
the agent with the largest ID has a vanishingly small probability of being given the
first choice. In order to satisfy this notion of fairness, we can use a larger range for our
hash function (at the expense of a larger seed). Instead of using the construction of
Theorem 4.1.8, we can use Theorem 4.2.2, which immediately implies Property 7.2.1.

We therefore have

LA mechanism is nonbossy if no agent can change the outcome of the mechanism without changing
her own outcome.

2Informally, a mechanism is neutral if the outcome of the mechanism does not depend on the names
of the goods. See [101] for a formal definition.
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Theorem 7.2.2. Let k be some constant integer k > 0. Consider a house allocation
problem with n agents and n houses, and let each agent preference list length be bounded
by k, where each list is drawn uniformly at random from the set of all possible lists of
length k. Then, for any e > 0 there is an (O(logn), O(log”n), O(log® n), O(log® n), 1/n)
- local computation mechanism that is e-fair and whose output is identical to the random

serial dictatorship allocation algorithm that uses the same randomness.



Chapter 8

Stable Matching

In the stable matching problem, we are given a set of men and a set of women. The men
have preferences over the women and the women over the men. The goal is to compute a
matching H that is stable; that is, there is no man and woman who prefer each other to
their partner in H. Stable matching has been at the center of game-theoretic research
since the seminal paper of Gale and Shapley [34] (see, e.g., [92] for an introduction
and a summary of many important results). Roth and Rothblum [94] examined the
scenario in which the preference lists are of bounded length; in most real-life scenarios,
this is indeed the case. For example, a medical student will not submit a preference
list for internship over all of the hospitals in the United States, but only a short list.
We examine the variant in which each man m € M is interested in at most £ women,
(and prefers to be unmatched than to be matched to anyone not on their list; cf. [93]).
We limit our attention to the setting in which the men’s preferences are assumed to be
uniformly distributed; cf. [47, 53].

The Gale-Shapley algorithm results in a stable matching regardless of the prefer-
ences (see, e.g., [95]); however, its running time is (n?). Indeed this is a lower bound
on any algorithm that finds a stable matching (under full preference lists) [78]. Fur-
thermore, it is known that a linear number of iterations of the Gale-Shapley algorithm
is necessary to attain stability [39]. One direction taken to obtain sub-linear running
time is executing parallel computation on instances with short preference lists. Feder
et al. [31] proposed one such algorithm for stable matching. Unfortunately, it does
not appear possible to convert their algorithm to an LCA, as they require m? proces-
sors, and the running time is O(y/mlog3n), where m is the sum of the preference list

lengths. In some cases, matchings that are “almost” stable may be acceptable (see,
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e.g., [27, 96]). There are several ways of defining what it means for a matching to be
almost stable (see e.g., [27]). One of the better accepted notions (e.g., [33, 83, 96]) is to
count the number of blocking pairs' - the fewer the blocking pairs, the more stable the
matching. Several experimental works on parallel algorithms for the stable matching
problem provide evidence that after a constant number of rounds, the number of block-
ing pairs can be made arbitrarily small. (e.g., [64, 88, 104]). Floréen et al. [33] showed
that in the special case when the lengths of both the men’s and women’s preference
lists are bounded by a constant, there exists a distributed version of the Gale-Shapley
algorithm, which can be run for a constant number of rounds and finds an almost stable
matching.

The Gale-Shapley algorithm is known to be strategy-proof for the men but not for
the women (e.g., [70]). Immorlica and Mahdian [47] showed that in the setting above
(and also for a more general setting), the expected number of people with more than
one stable spouse is vanishingly small, and with probability 1 — o(1), truth-telling is a
dominant strategy if the other players are truthful.

In this chapter, we focus on the setting proposed in [47] - the men’s preference
list is of constant length, and is chosen uniformly at random. We show that we can
implement the truncated Gale-Shapley algorithm (where we simply stop the Gale-
Shapley algorithm after a constant number of rounds) as an LCA, and show that this
results in an almost stable matching. We then use similar techniques to show that, in a
more general (non-local) setting, stopping the Gale-Shapley algorithm after a constant

number of rounds gives an almost stable matching as well.

8.1 Model and Main Result

We use a graph-theoretic characterization of the stable matching problem (see, e.g.,
[32, 33]). An instance of the stable marriage problem is represented by a bipartite
graph G = (M UW, E), where M represents the set of men, and W the set of women.
We make the conventional assumption that |[M| = |WW| = n. Each man has a preference
list over the women that he is connected to, and each woman has a preference list over
the men she is connected to. A matching H C F is a set of vertex-disjoint edges. An

edge e is said to be matched if e € H. A vertex v is matched if there is some u such

YA blocking pair is a man and a woman who both prefer to be paired with each other than with
their current partner.
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that e = (u,v) is matched. An edge (u,v) € E'\ H is unstable if it holds that (1) u is
unmatched or prefers v over its match in H, and (2) v is unmatched or prefers u over
its match in H. (An unstable edge is often referred to as a blocking pair). A matching
H is stable if there are no unstable edges. The stable matching problem where each
man has a degree of k£ and his adjacent edges are chosen uniformly at random is called
k-uniform. Note that in this case, the women’s preference list lengths are binomial
random variables whose value is determined by the random choices of the men, and
can therefore have any length in [n].

The Gale-Shapley algorithm finds a stable matching in the k-uniform setting (e.g.,
[35]). To ensure the locality of our algorithm, we allow our mechanism to find an almost
stable matching. To do this, we allow our mechanism to ”disqualify” men, in which
case they remain unmatched, but are unable to contest the matching (the number of
disqualified men is exactly the number of blocking pairs). We try to keep the number

of disqualified men to a minimum. Our main result is the following.

Theorem 8.1.1. Let A = (M,W,P) be a stable matching problem, |M| =

[W| = mn, in the k-uniform setting. For any € > 0, there is a determinis-

tic (O(logn),O(logn),0,0(logn),0)-local computation mechanism for A that finds a
2n

matching with at most en disqualified men and in which at most T+ + en of the men

remain unmatched.

We begin by describing a non-local algorithm, ABRIDGEDGS, and then show how

to simulate it locally by a local algorithm, LOCALAGS.

8.1.1 AbridgedGS

Let ABRIDGEDGS be the Gale-Shapley men’s courtship algorithm, where the algorithm
is stopped after £ rounds, and the men rejected on that round are left unmatched. That
is, in each round, each unassigned man approaches to the highest ranked woman that
has not (yet) rejected him. Each woman then tentatively accepts the man she prefers
out of the men who approached her, and rejects the rest. This continues until the ¢

¢th round are left unmatched; we say that

round, and the men who were rejected on the
these men are disqualified. Note that the set of disqualified men may be a strict subset
of the set of unmatched men: men who were rejected k times before the ¢/* round are
unmatched as well. We simulate ABRIDGEDGS on k-uniform stable matching problems

to obtain the following LCA.
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8.1.2 LocalAGS - an LCA Implementation of AbridgedGS

Define the distance between two people to be the length of the shortest path between
them in the graph. Define the d-neighborhood of a person v to be everyone at a distance
at most d from v, denoted Ny(v)

Assume that we are queried on a specific man, mq. We simulate ABRIDGEDGS
locally as follows: Choose some constant ¢, whose exact value will be determined later.
For each man in the 2¢-neighborhood of m;, (i.e., for all m; such that m; € Nog(my)), we
simulate round 1 of ABRIDGEDGS. That is, each one approaches his preferred woman,
and is either tentatively accepted or rejected . Then, for each man m; € Noy_o(my),
we simulate round 2. And so on, until for m; € Na(m;y), (that is, m; and his closest
male neighbors), we simulate round ¢. We return the woman to whom m; is paired,
“unassigned” if he was rejected by k women, and “disqualified” if he was rejected by a
woman in round £. We denote this algorithm LOCALAGS.

In order to prove Theorem 8.1.1, we need to prove several things: that LOCALAGS
correctly simulates ABRIDGEDGS and that its running time and space are bounded
by O(logn) (Subsection 8.1.3), and that “not too many” men are left unmatched or
disqualified (Subsection 8.1.4).

8.1.3 Correctness and Complexity

The following claim shows that the steps executed by LOCALAGS are sufficient to

correctly determine the output of ABRIDGEDGS when queried on mj.

Claim 8.1.2. For any two men, m; and m;, whose distance from each other is greater
than 2¢, m;’s actions cannot affect m; if Algorithm ABRIDGEDGS terminates after {

rounds.

Proof. The proof is by induction. For £ = 1, let wy be m;’s first choice. Only men
for whom wy is their first choice can affect m;, and these are a subset of the men at
distance 2 from m; . For the inductive step, assume that the claim holds for ¢ — 1.
Assume by contradiction that there is a man m; whose actions can affect m; within ¢
rounds, who is at a distance of at least 2¢+ 2 from m;. From the inductive claim, none
of m;’s actions can affect any of m;’s neighbors within £ — 1 rounds. As their actions
in round ¢ — 1 (or any previous round) will not be affected by m;, and they are the

only ones who can affect m; in round ¢, it follows that m; cannot affect m; within ¢
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rounds. O

We notice that ABRIDGEDGS is, in fact, a constant-time distributed algorithm
(assuming ¢ is a constant). By Claim 2.3.5, the graph is (n/2)-conditionally 2d-light,

and we can apply Theorem 3.2.2 to obtain the following.

Lemma 8.1.3. The number of probes, running time and transient space requirements

of algorithm LOCALAGS is O(logn) per query with probability at least 1 — #

8.1.4 Bounding the Number of Men Removed

In this section we prove that “not too many” men remain unmatched. There are two
possible reasons for a man to be unmatched by LOCALAGS: (1) he had already been
rejected k times by round ¢ (hence he never reaches round ¢), or (2) he was rejected
(and hence disqualified) on round ¢. We upper the probability of both (Lemma 8.1.5
and Corollary 8.1.9, respectively), and apply a union bound, to obtain the following

result.

Lemma 8.1.4. For any € > 0, setting £ = % in Algorithm LOCALAGS ensures that

at most %" + en men remain unmatched with probability at least 1 — #

8.1.4.1 Removal due to short lists

We bound the number of unassigned women as a result of the fact that the lists are
short, noting that the number of unassigned women equals the number of unassigned

men. This is given by the following lemma.

Lemma 8.1.5. In the k-uniform setting, the Gale-Shapley algorithm results in at most

2?" men being unassigned, with probability at least 1 — #

Before proving Lemma 8.1.5, we will require a few preliminaries. We use the princi-
ple of deferred decisions: instead of “deciding” on the preference lists in advance, each
man chooses the (i + 1) woman on his list only if he is rejected by the i*" - this is
known to be equivalent to the choices being made in advance (e.g., [52]).

Consider the following stochastic process, denoted Z: In each round ¢, the (random-
ized) assignment function f! is given the matching of the previous round, H!~!, and
assigns each man m € M a woman w € W, such that if m was matched in H*~!, he is

assigned the same woman (i.e., if (m,w) € H'™!, then f!(m) = w); if he is unmatched
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in H~!, he is assigned a woman uniformly at random. Let S’(w) be the set of men
assigned woman w by f!, i.e., S'(w) = {m : f{(m) = w}. For every woman w such
that S'(w) # 0, a single m € S*(w) is chosen arbitrarily to be w’s match in H?, i.e.,

(w,m) € H'. The process is intialized with H° = (), and iterates for k rounds.

Remark 8.1.6. Note that a man can choose the same woman more than once. Com-
pare this to the case each man can approach each woman once: If a man approaches
a woman he had already approached, she must be matched, and hence in this case,
the men have a lower probability of approaching an unassigned woman. Therefore the
number women that are unassigned at the end of this process is an upper bound to the
number of unassigned women in the system where men can only approach each woman

once.

Let X; be the indicator variable that is 1 if woman j is unassigned after round ¢,
i.e., there does not exists a man m € M such that (m,w) € H'. Let X' = Py X! be

the number of unassigned women after round t.

Proof of Lemma 8.1.5. The time required by the stochastic process = described above
is at most the time required by the Gale-Shapley algorithm with short lists in the k-
uniform setting (from Remark 8.1.6 and the fact that it may be stopped prematurely).

Hence it suffices to prove that for any constant ¢,

The proof is by induction. The base of the induction, ¢ = 1, is immediate. For the
inductive step, assume that after round ¢, X* = n/u (for some p > 0). In round ¢ + 1,

E[X!T Xt = nl=n1-1/ n)™# because each unassigned man approaches any woman

with probability 1/n; hence, the probability that a specific woman is not approached
by any man is (1 — 1/n)™/H,

For the rest of the proof, assume that X* < 2 and fix X' to be some such value.

We get

2n 2n

E[Xt+1’Xt < 7] S 7 n 2n

<
t/2-e2/t T t42’

(1—1/n)*t <

using e > 1 + .
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It remains to show that X**! is concentrated around its mean. To do so, we will

define a specific martingale and use Azuma’s inequality (Lemma A.1.2).

Order the men arbitrarily, M = {1,2,...n}. Let M; be the set of the first ¢ men in
the ordering: M; = {1,2,...i}. Fix some matching H'. For some realization g of the

assignment function f*!, define the following martingale
YIHUHY, g) = BIX"HH, [ (5) = g(j) for all j € M),

In other words, Y;HI(H t g) is the expected number of unassigned women at round
t + 1, given that the matching at round ¢ was H’, where the expectation is taken over
all realizations of f*! that agree with ¢ on the first i men. Note that YOtJr1 (Ht, g) is
the expected value of X! over all possible realizations of fi*!; that is, the expected
number of unmatched women after ¢ + 1 rounds. Y,!1(H?, g) is simply the number of
unmatched women after ¢ + 1 rounds when the allocation function is g. X' satisfies
the Lipschitz condition, because if two realizations of f*!, say f’ and f”, only differ
on the allocation of a single man, | X" — X*F|f”| <1 (where X"™|f denotes the
realization of X**! given that f is the realization of f'™!). Therefore, (see [5]),

VI (H' g) = YT (H g)| < 1.

We can therefore apply Lemma A.1.2 (Azuma’s inequality):

Pr[| X! — E[X')| > Av/n] < 2¢772,

Setting A = %, we have that
2n 4
Pr|| X" —E[XH| > ———— | < 2¢7 2/,
| | I (t+1)(t+2)
for t > 2.

Therefore, since we assume that X’ < 2% and hence, by Equation (8.1), E[X*™] <

2%, it holds that

2n
t+1

2n

Pr| X! > X' <= < 221 < — (8.2)
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1/4
for t < <106g7"”n> . By the inductive hypothesis

2 t
Pr | X! > il < —.
t n3
Therefore, using Equations (8.2), and (8.3), we have

Pr|xt s 2| py | xttl s 20yt < 20yt < 20
t+1 t+1 t t
2 2 2
4 Pr|xtts 2yt | xt s
t+1 t t
_t 1
=
41
-

8.1.4.2 Removal due to the number of rounds being limited

Because we stop the LOCALAGS algorithm after a constant (¢) number of rounds, it is

possible that some men who “should have been” matched are disqualified because they

were rejected by their i** choice in round ¢ (i < k). We show that this number cannot

be very large.

Let R, denote the number of men rejected in round r > 1.
Observation 8.1.7. R, is monotone decreasing in r.

Lemma 8.1.8. The number of men rejected in round r is at most "Tk

Proof. As each man can be rejected at most k times, the total number of rejections

possible is kn. The number of men who can be rejected in round r is at most

r—1

R, <kn-> R,
j=1

=R, <kn—(r—1)R,

=R, < nﬁ
r

Where Inequality (8.4) is due to monotonicity of R, i.e., Observation 8.1.7.
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Corollary 8.1.9. For any e > 0, setting r = % ensures that the number of men rejected

in round r is at most en.

8.2 Some General Properties of the Gale-Shapley Algo-

rithm

We use the results and ideas of Section 8.1 to prove some interesting features of the
(general) Gale-Shapley stable matching algorithm, when the mens’ lists are of length
at most k. (These results immediately extend to our local version of the algorithm,
LocALAGS.) Note that the proof of Lemma 8.1.8 makes no assumption on how the
men’s selection is made, and therefore, Lemma 8.1.8 implies that as long as each man’s
list is bounded by k, if we run the Gale-Shapley for ¢ rounds, at most "Tk men will be

rejected in that round. This immediately gives us an additive approximation bound for

the algorithm if we stop after ¢ rounds:

Corollary 8.2.1 (to Lemma 8.1.8). Assume that the output of the Gale-Shapley algo-
rithm on a stable matching problem, where the preference lists of the men are of length
at most k, is a matching of size M*. Then, stopping the Gale Shapley algorithm after

£ rounds will result in a matching of size at least M™* — "Tk

We would like to also provide a multiplicative bound. Again, we assume that the
mens’ list length is bounded by k, but make no other assumptions. For each round
1, let M; be the size of the current matching; let D; be the number of men who have
already approached all k¥ women on their list and have been rejected by all of them; let
C; be the number of men who were rejected by women in round ¢, but have approached
fewer than k& women so far; as before, let R; be the number of men rejected in round .
Denote the size of the matching returned by the Gale-Shapley algorithm (if it were to

run to completion) by M*.
Claim 8.2.2. Cy11 < kM*.
Proof. Note that R; = C; + D; — D;_1. For i < k,D; = 0. As M; is monotonically

increasing in ¢, Vi < k,R; > n— M*.

k
> Ri > kn—kM".
=1
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Hence,

k
CkJrl < kn—ZRi < kM*.
i=1

O

Corollary 8.2.3. For every € > 0, there exists a constant £ > 0 such that Cy < eM™.

Proof. Denote the maximum number of total rejections possible from round 7 onwards
by L;. Clearly,
L; < kE(M; +C;) < k(M* + C;).

For all i such that C; > eM™*, we have

Therefore, from Claim 8.2.2,
1 20 r*
L < [1+—-) kM.
Putting everything together, we have,

Lit1 <L;—-C;

1
= Lit1 < L; (1 - 1>
E(1+2)
K3
= L1 <L 1 L
k+i+1 > Lk+1 k’(l + l)
1 1 :
< (1 + > kM (1 — 1)
€ k‘(l + E)
< 2k2M*e FurD,
Taking i = k(1 + %) log % gives Ciiir1 < Lgyip1 < eM*. O
This gives us,

Theorem 8.2.4. Consider a stable matching problem. Let the length of each man’s list
be bounded by k. Denote the size of the stable matching returned by the Gale-Shapley
algorithm by M*. Then, if the process is stopped after O(% log %) rounds, the matching
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returned is at most a (1 + €)-approximation to M*, and has at most eM* unstable

couples.

As a corollary to Theorem 8.2.4, when the men’s and women’s list lengths are both
bounded by a constant, there is an LCA that runs in constant time an provides a
matching with at most € unstable edges that is a (1+¢€) approximation to the matching

returned by the Gale-Shapley algorithm.

Corollary 8.2.5. If both men and women have lists of length at most k, then for any
€ there is an (O(1),0(1),0,0(1),0)-LCA for stable matching that returns a matching
that is at most a (1 + €)-approrimation to the matching returned by the Gale-Shapley

algorithm, and with at most an e-fraction of the edges being unstable.



Chapter 9

Machine Scheduling

Consider the following job scheduling problem: n identical jobs arrive online and need
to be allocated to m identical machines, with the objective of minimizing the makespan
- the maximal load on any machine. Azar et al. [9] proposed the following algorithm:
each job chooses, uniformly at random, d machines, and allocates itself to the least
loaded machine from its d choices. They showed that the maximal load is ©(n/m) +
(14 o0(1))Inlnm/Ind. A large volume of work has been devoted to variations on this
problem, such as having weighted jobs [102]; and variations on the algorithm, such as
the non-uniform job placement strategies of [108]. Of particular relevance to this work
is the case of non-uniform machines: Berenbrink et al. [14] showed that in this case
the maximum load can also be bounded by ©(n/m) 4+ O(Inlnm).

The classical off-line job scheduling problem has two main variations: (1) Related
machines, where each job ¢ takes a certain amount time, ¢;, to complete, regardless of
which machine it is allocated, and (2) Unrelated machines, where each job ¢ takes time
t;,; to complete on machine j. Both problems are known to be N P-hard. Hochbaum
and Shmoys [44] showed a PTAS for scheduling on related machines. Lenstra et al.
[58], presented a 2-approximation algorithm for scheduling on unrelated machines and
showed that the optimal allocation is not approximable to within %—e (unless P = NP).
The problem of finding a truthful mechanism for scheduling (on unrelated machines)
was introduced by Nisan and Ronen [81], who showed an m-approximation to the prob-
lem, and a lower bound of 2. Archer and Tardos [8] were the first to tackle the related
machine case; they showed a randomized 3-approximation polynomial algorithm and
a polynomial pricing scheme to derive a mechanism that is truthful in expectation.

Since then, much work has gone into finding mechanisms with improved approximation

98
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ratios, until Christodoulou and Kovéacs [20] settled the problem by showing a deter-
ministic PTAS, and a corresponding mechanism that is deterministically truthful.

In this chapter, we consider related machines. We show two local mechanisms:
one for the more general setting that is truthful in expectation, and one for the re-
stricted case (i.e., when each job can run on one of at most a constant number of
predetermined machines) that is universally truthful. Both mechanisms provide an

O(loglog n)-approximation to the optimal makespan.

9.1 The Model

We consider the following (off-line) job scheduling setting. There is a set Z of m
machines (or “bins”) and a set J of n uniform jobs (or “balls”). Each machine i €
has an associated capacity ¢; (sometimes referred to as its “speed”). We assume that
the capacities are positive integers. Given that h; jobs are allocated to machine %, its
load is ¢; = h;/c;. (h; is also called the height of machine i.) The wtility of machine i
is quasi-linear, namely, when it has load ¢; and receives payment p; then its utility is
ui(li, pi) = pi — ;.

The makespan of an allocation is max;{{;} = max;{h;/c;}. In our setting, the
players are the machines and their private information is their true capacities. Each
machine ¢ submits a bid b; (which represents its capacity). The mechanism designer
would like to elicit from the machines the true information about their capacities in
order to be able to minimize the makespan of the resulting allocation. We assume that
the capacities of the machines cannot depend on the number of machines or jobs in the
system (i.e., that the bids of the machines are independent of m or n), and hence are
upper bounded by some constant. Although we feel this is a reasonable assumption, in
Remark 9.2.6, we show that in some cases we can relax it.

For any allocation algorithm A, and bid vector b, define A(b) =
(AL(B),..., AI(b),..., A"(b)) to be the allocation vector, which, when given b as an
input, assigns each job j to a machine i = A’/(b). When the bids b_; (the bids of all

machines except for ¢) are fixed, we sometimes omit them from the notation for clarity.

Definition 9.1.1. (Monotonicity) A randomized allocation function A is monotone
in expectation if for any machine i, and any bids b_;, the expected load of machine i,

E[¢;(b;,b_;)], is a non-decreasing function of b;.
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A randomized allocation function A is universally monotone if for any machine i, and
any bids b_;, the load of machine i, ¢;(b;,b_;), is a non-decreasing function of b; for

any realization of the randomization of the allocation function.

Given an allocation function A, we would like to provide a payment scheme P to
ensure that our mechanism M = (A, P) is truthful. It is known that a necessary and

sufficient condition is that the allocation function A is monotone ([74]; see also [8]).

Theorem 9.1.2. [74] The allocation algorithm A admits a payment scheme P such
that the mechanism M = (A, P) is truthful-in-expectation (universally truthful) if and

only if A is monotone in expectation (universally monotone).

We consider two load balancing settings: The standard setting (cf. [14, 110]) is
a slight variation on the basic power-of-d choices setting proposed in [9]. Let d > 2
be some integer. For each job j, the mechanism chooses a subset I; C Z, |[;| = d

of machines that the job can be allocated to. The probability that machine ¢ € I; is

proportional to b; (specifically, it is fi“bl) In the restricted setting (cf. [10]), each job
can be allocated to a subset of at most d machines, where the subsets I; are given as
an input to the allocation algorithm. The restricted setting models the case when the
jobs have different requirements, and there is only a small subset of machines that can
run each job. We restrict our attention to the case when the number jobs n = O(C)
jobs where C' is the total capacity of the machines. This is a standard assumption, as
it is considered to be the worst case scenario (see e.g., [9, 14, 110]), and so a solution
for this case implies that there is an equally good solution for all other cases as well.
In both of these settings our results rely on a reduction to an on-line algorithm for
the problem. This is summarized in the the following theorem, which is an adaptation

of Theorem 4.5.2.

Theorem 9.1.3. Consider a job scheduling problem for n jobs and ©(n) machines. For
each job j, there is a constant-size subset of machines I, chosen uniformly at random,
and j cannot be allocated to any machine i ¢ I;. For any crisp on-line algorithm LB,
there exists an (O(logn),O(log”n), O(logn), O(log?n),1/n)-LCA that, when queried
on a job, allocates it to a machine, such that the resulting allocation is consistent with

that of LB.

Using known crisp online load balancing algorithms, we can get LCAs for many

problems, such as the following.
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Corollary 9.1.4. (Using [18]) Suppose we wish to allocate m balls into n bins
of uniform capacity, m > n, where each ball chooses d bins independently and
uniformly at random. There exists a (O(logn), O(log?n), O(logn), O(log?n), 1 /n)-
LCA that allocates the balls in such a way that the load of the most loaded bin is
m/n + O(loglogn/logd) w.h.p.

Corollary 9.1.5. (Using [108]) Suppose we wish to allocate n balls into n
bins of wuniform capacity, where each ball chooses d bins independently at ran-
dom, one from each of d groups of almost equal size 0(3).  There exists a
(O(logn), O(log®n), O(logn), O(log® n), 1 /n)-LCA that allocates the balls in such a way
that the load of the most loaded bin is Inlnn/(d —1)In2 + O(1) w.h.p.

Corollary 9.1.6. (Using [14]) Suppose we wish to allocate m balls into n < m
bins, where each bin i has a capacity c¢;, and Y .c; = m. FEach ball chooses
d bins at random with probability proportional to their capacities. There exists a
(O(logn), O(log?n), O(logn), O(log?n), 1 /n)-LCA that allocates the balls in such a way
that the load of the most loaded bin is 2loglogn + O(1) w.h.p.

Corollary 9.1.7. (Using [17]) Suppose we have n bins, each represented by one point
on a circle, and n balls are to be allocated to the bins. Assume each ball needs to choose
d > 2 points on the circle, and is associated with the bins closest to these points. There
exists a (O(logn), O(log?n), O(logn), O(log?n), 1/n)-LCA that allocates the balls in
such a way that the load of the most loaded bin is Inlnn/Ind + O(1) w.h.p.

9.2 A Mechanism for the Standard Setting

In the standard setting, each machine ¢ has an integer capacity ¢;. One way of modeling
this is to think of the allocation field as consisting of ) _, ¢; slots of size 1, where machine
i “owns” ¢; slots. Recall that a machine’s height is the number of jobs that are allocated
to it; the load of machine i is its height divided by ¢;. The wvirtual load of machine ¢
is its height divided by its bid b;. Given the bids b of the machines, let B = " | b;.
An allocation algorithm allocates jobs to slots: when a job j is allocated to a specific
slot, the machine that owns the slot receives j. We provide the following simple on-line

allocation algorithm Agyars, which is modeled on the algorithm presented in [14].

In fact, in this setting the tighter bound is ‘lj‘lrll“¢2 + O(1), where ¢4 is the ratio of the d-step

Fibonacci sequence, i.e. ¢q4 = limg_,oo ¥/ Fa(k), where for k < 0, Fy(k) =0, F4y(1) = 1, and for k > 1
Fa(k) = 320, Fa(k — 1)
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1. Choose for job j a subset I; of d slots out of B, where each slot has equal

probability. (I; may include different slots owned by the same machine.)

2. Given Ij, job j is allocated to the lowest slot (i.e., the one containing the fewest
jobs) in I; (breaking ties uniformly at random). Slots are treated as being inde-
pendent of their machines. That is, it is possible that if a job chooses two slots a
and b, which belong to machines A and B, a has fewer jobs than b, but B has a
higher (virtual) load than A.

Note: Although it may not be possible to compute B locally exactly, it has been shown
in that an approximate calculation suffices (e.g., [17, 110]); therefore, for simplicity, we

assume that it is possible to compute B locally.

Lemma 9.2.1. The randomized allocation algorithm Agpnrs is monotone in expecta-

tion.

Proof. Let B = Zj bjand B_; = Z#i b;. Since all the slots are identical, by symmetry
the expected number of jobs allocated to each slot is exactly n/B. The expected height

of machine 7 is therefore

b;
Elh;(b;)] = =———
[ 2( 1)] B—i—i—bz’n’
which is monotone increasing in b; (for b;, B_; > 0). d

From Theorem 9.1.2, we conclude:

Lemma 9.2.2. The randomized allocation function Asrys admits a payment scheme

Psrus such that the mechanism Mgspys = (Aspars, Psoas) is truthful in expectation.

It is interesting to note that the above algorithm does not admit a universally
truthful mechanism. To show this, we prove a slightly stronger claim, which we then
adapt to our setting: the GREEDY algorithm, in which each job chooses d machines at
random, and is allocated to the least loaded among them (post-placement)?, breaking

ties arbitrarily), does not admit a universally truthful mechanism.

Claim 9.2.3. Algorithm GREEDY is not universally monotone.

2That is, the load is computed including the allocation of the arriving job. For example, if machine
A has capacity 4 and height 2 and machine B has capacity 16 and height 9, the job will go to machine
B, as after placing the job, the load on B would 10/16, compared to 3/4 on A.
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Proof. Assume we have 4 machines: A, B, C', and D, with bids 4, 4, 8 and 1 respectively.
The first 2 jobs choose machines A and D (which we abbreviate to AD), the next 2
jobs choose BD, and the next 6 jobs choose C'D. After these 10 jobs, the heights of
the machines are (2,2,6,0) (recall that the Greedy algorithm allocates according to the
post-placement load). The 11*" job chooses AB, and the 12" job chooses AC. As ties
are broken at random, assume machine A receives job 11. Machine C' then receives job
12, making the capacities (3,2,7,0).

Now assume machine C' bids 9, and the choices of the first 10 jobs and the 12" job
remain the same, but because C bid higher, now the 11** job chooses C instead of A

(so job 11 chooses BC). Now machine B receives the 11

job and machine A receives
the 12" job, making the capacities (3,3,6,0). Machine C received less jobs although

it bid more! O

It is easy to adapt the above proof to Algorithm Agyag: instead of choosing
machines, each job chooses 2 slots. So the first job will choose slot 1 of machine A and
the only slot of machine D; the second job will choose slot 2 of machine A and machine

D’s slot; and so on. This gives the following corollary.
Corollary 9.2.4. Algorithm Agrars is not universally monotone.

By Theorem 9.1.3, the allocation function Agryrs can be transformed to an
(O(logn), O(log?n), O(logn), O(log?n), 1 /n)-LCA . For clarity, we overload the nota-
tion, letting Agr s represent both the on-line allocation algorithm and its respective
LCA, as it is easy to distinguish between them from context. We would now like to
show a payment scheme Pgy, s such that the mechanism Mgrars = (Asnars, Psoas)
is a local mechanism. We need to show a payment scheme that can be implemented as
an LCA and guarantees truthfulness. We give a deterministic payment scheme, that is
similar to the payments schemes of [7] and [14]. We also comment on the possibility of
a randomized payment scheme when the bids can depend on the total capacity. The

randomized payment scheme is similar to that of [11].

Lemma 9.2.5. If the bids of the machines are bounded by a constant, there exists
a determanistic local payment scheme Psryrs such that the mechanism Mgpys =

(Asrars, Psoas) is truthful in expectation.

Proof. Archer and Tardos [8] showed that the following payment scheme makes for a
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truthful mechanism fulfilling voluntary participation. For bid b;:

b;
pi(bi, b,i) = blhz(bl, bfi) + Z hi(CC, b,i)dx . (9.1)

=0
As b; is bounded by a constant, we can execute Agrrs with all values of b; € [0, b;], to

compute p;. This takes a constant number of executions of Agyrs. O

Remark 9.2.6. If b; is not necessarily a constant, but the mechanism has access to the
value B_;, there is a randomized payment scheme that we can use. Equation (9.1) is the
expected payment. From symmetry, E(h;(B)) = %, hence we can rewrite Equation (9.1)
as

b2 b T
(b: b ) = ( E .
pilbi, b-:) ”Bff+m7+nx2037r+x

Choose, uniformly at random, k € [1,b;], and take the payment to be

ﬁ—l—b'i
"B B Tk

This gives the correct expected payment, and takes O(1) time.

Berenbrink et al. [14], showed that Agszars provides an O(loglog m) approximation
to the optimal makespan. Therefore, by Theorem 9.1.3, the LCA of Agyys provides
the same approximation ratio. Combining Lemma 9.2.2, and Lemma 9.2.5, we state

our main result for the standard setting:

Theorem 9.2.7. There exists an (O(logn),O(log? n),O(logn),O(log? n), 1/n)-local
mechanism to scheduling on related machines in the standard setting that is truthful

in expectation, and provides an O(loglogn)-approximation to the makespan.

9.3 A Mechanism for the Restricted Setting

In the restricted setting, each job can only be allocated to one of a set I; C 7 of d
machines (i.e., |I;| = d). As opposed to the standard setting, I; is not selected by
the mechanism, but is part of the input. We assume that these sets are selected i.i.d.
from all possible sets, and the probability of machine i to be in I; is proportional to

its capacity ¢;. The first assumption is necessary for bounding the running time, the
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second to guarantee the approximation ratio. The second requirement can be relaxed
slightly, (see e.g. [110]) but for clarity of the proofs, we will assume that it holds exactly.
Similarly to the previous subsection, we assume that the capacity of each machine is
bounded by a constant.

We define the (on-line) algorithm Agrzars for assigning jobs to machines as follows.
Initially, a permutation 7 of the machines is selected arbitrarily, for tie-breaking. Job ¢
) = (A5

is assigned to the machine i € I; for which the post-placement load, lp;‘f+1 (b;

is smallest, breaking ties according to w. The following claim shows why it is necessary
t+1 (b

to take the floor of the load (in other words, why we cannot define Ip; )= %):

7 1 i

t+1

the Greedy algorithm with [p;""(b;) defined this way does not admit a universally

truthful mechanism.

Claim 9.3.1. The (unmodified) GREEDY algorithm is not universally monotone in the

restricted case.

Proof. Assume we have 3 machines A, B, C, with bids (4, 8, 36) respectively, and a tie-
breaking permutation: A < B < C (jobs always prefer machine A to machines B and
C, and machine B to machine C'). The allocation at time ¢ is (1,3,18). The next
job’s restricted set contains machines A and B (which we abbreviate to AB), and the
following two jobs’ sets are BC' and AB respectively. The first job is allocated to A
(since the post-placement loads on A and B are 2/4 and 4/8 respectively, hence we use
the tie-breaking rule). The second job is allocated to B (4/8 < 19/36) and the third
job to B (5/8 > 3/4). The heights of the machines are now (2,5, 18).

Now assume B declares its capacity to be 9, and assume that at time ¢, there is no
difference in the allocation (it is easy to verify that this is indeed possible). The loads
at time ¢ in this case are: 1/4,3/9,18/36. The jobs’ choices are part of the input to
the mechanism, so are unaffected by the bids, and remain AB, BC, AB. The first job
is allocated to B (2/4 > 4/9), the second job to C (19/36 < 20/36 = 5/9), and the
third job to A (2/4 < 5/9). The heights of the machines are now (2,4,19). Thus, B

receives less jobs despite bidding higher. O

Interestingly, although GREEDY is not universally monotone, Arr s is.

Theorem 9.3.2. For any permutation w of the machines and any job arrival order, the

allocation function Arpas is universally monotone increasing in the machines’ bids.
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From the definition of universal monotonicity (Definition 9.1.1), it suffices to prove

the following lemma:

Lemma 9.3.3. For any machine i, fizing b_;, for any b, > b;, we have that

hi(Arrams(;,0-3)) > hi(Agras(bi, b—i)).

To prove Lemma 9.3.3, define D*(k, b;, b;) to be the difference in the number of jobs
allocated to machine k between Agrrars(b;) and Agrars(bi) up to and including the
arrival of job ¢ (which we call time t). We abbreviate this to D'(k) when b, and b,
are clear from the context. (If machine k received less jobs, then D!(k) is negative.)
We say that machine k steals a job from machine [ at time ¢ if AL, «(b;) = | and
Al () = k. We will show that the only machine for which D'(k) can be positive
at some time ¢ is machine 4, therefore, as >°%_, D!(j) = 0, we have that D'(i) can never

be negative.

Proposition 9.3.4. For any machine i, fizing b_;, if b, > b; then at all times t, for
any machine k # i, D'(k) < 0.

Informally, Proposition 9.3.4 says that if bin ¢ claims its capacity is larger than it
actually is, no bin except for ¢ can receive more balls. The following corollary follows

immediately from Proposition 9.3.4, and implies Lemma 9.3.3.

Corollary 9.3.5. For any machine i, fizing b_;, if b, > b; then at all times t, D'(i) > 0.
Before proving Proposition 9.3.4, we first will make the following simple observation

Observation 9.3.6. For any machine k, if D*(k) < 0 then Ip},(b;) < Ipk (b;).

Proof. For k # i, as k’s bid is the same in both allocations, if it received less jobs by
time t in Agpars(b;) then the observation follows. If k = i, the observation follows

since b; > b;. O
We now prove Proposition 9.3.4:

Proof of Proposition 9.3.4. The proof is by induction on t. At time t = 0, D(k) = 0
for every k.

Assume the proposition is true for times ¢t = 0,1,...,7 — 1. We show it holds for
t = 7, by contradiction. Assume that we have a machine k # i such that D7 (k) > 0.
At time 7 — 1, for all k # i, by the induction hypothesis, it holds that D™~1(k) < 0.
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The only way that D7(k) > 0 is if machine k has D™~!(k) = 0 and at time 7 steals a
job. Assume first that machine k steals a job from machine [ # i. This means that in

Aprras(bi), machine [ received job 7, therefore

If machine k steals job 7 from machine [, then Ip],(b;) < Ip](b). This is a contradiction
to Equation (9.2) because there cannot be an equality both here and in Equation
(9.2), as the tie-breaking permutation 7 is fixed. More precisely, if Ip] (b]) = Ip] (b;) =
Ip}(b;) = Ip}(b}), then job 7 will be allocated to the same machine in b; and b}, according

to the permutation .

Therefore, machine k£ must steal job 7 from machine ¢, which gives us

Ip; (bi) < Ipy(bi) = Ipy(b;) < Ipj (b)). (9:3)

The first inequality is due to the fact that machine i receives job 7 in Agrrars(b;). The
equality is due to the fact that D7~!(k) = 0, and the second inequality is because

machine k receives job 7 in Agrars(b). And so,

Ip; (bi) < Ipi (bf), (9-4)

because one of the inequalities in Equation (9.3) must be strict, as the tie-breaking

permutation 7 is fixed.

Assume that the last time before 7 that machine i stole a job is time p, and label

by z the machine that i stole from at that time. We have

Iy (b;) < 1p2(bg) < Ip2(bi) < Ipf (bs).

The first inequality is because machine ¢ received job p in Agpas(b;). The middle

inequality is because D”(z) < 0. The last inequality is because machine z received job
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pin Arrars(bi). Again, at least one inequality must be strict, giving

Iy (b5) < 1pf(bi),
which implies, for all a > 0,

Vf(bg) + o+ 1J - \\h?(bi) + aJ
b; - b; ’
since b, > b; > 1.
Because job p was the last job that machine i stole, it received at least as many jobs
between p and 7 in Arrars(bi) as in Arpars(b)). Label the number of jobs i received

between p and 7 (including p but excluding 7) in Agrras(bi) by 5 and in Agras(b])
by £*.

Observation 9.3.7. g* < 5+ 1.

Proof. Machine i received at least as many jobs in Arpars(bi) as in Arpars (b)) after p.
This must be true because p was the last time machine 7 stole a job. However, machine
i received the job at time p in Agras(b;) but not in Arrars(b;), and so we cannot

claim that §* < 3, but only that * < g + 1. O

Proof of Proposition 9.5./ continued. From the definition of Ip and equation (9.5),

we get:
wi) = | O
_ | P ;6* + 1J (©.6)
< h(b)jﬁ”J (9.7
< _hf(bz‘) ;Z B+ 1J (0.8)
= Ip; (b:)- (9.9)

Equality (9.6) stems from the definition of §*, Inequality (9.7) is due to Observation
9.3.7, Inequality (9.8) is due to Equation (9.5), and Equality (9.9) is from the definition
of 8.
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This is in contradiction to Equation (9.4), and therefore D7 (k) < 0. This concludes

the proof of the proposition. O O

Given that Apgrars is universally monotone, we can once again use the payment

scheme of Archer and Tardos [8] to obtain the following lemma.

Lemma 9.3.8. There exists a local payment scheme Prrams such that the mechanism

PRLMS = (ARLM57PRLMS) 18 um’versally truthful.
It remains to bound the approximation ratio of our algorithm.

Lemma 9.3.9. The allocation algorithm Agpys provides an  O(loglogn)-

approzimation to the optimal allocation.

The proof is similar to the proof for the unmodified Greedy algorithm in the case
of non-uniform bins of [14]. We provide it for completeness. We prove the theorem for
the case d = 2 (each job can be assigned to one of 2 machines). The proof is easily
extendable to d > 2. For the proof (not the algorithm), we regard each machine i of
capacity ¢; as having ¢; slots of capacity 1. Before presenting the proof we need several
definitions:

The load vector of an allocation of jobs to m machines is L = (¢1,...,{,,), where
¢; is the load of machine i. The normalized load vector L consists of the members
of L in non-increasing order (ties are broken arbitrarily). For the case of non-uniform
machines of capacities c1, . .. ¢, and total capacity C = > | ¢;, we define the slot-load
vector S = (h11,...hicish21, .- hocys-. hnd, ... hne,), where if machine i is allocated
r jobs, the first 7 mod ¢ slots will have [r/c] jobs, and the remaining slots will have
|7/c] jobs. If a machine has an uneven allocation of jobs, we call the slots with more
jobs heavy, and the slots with less jobs light. If all of the slots of the machine have an
identical number of jobs assigned to them, we call all the slots light. When we allocate
a job to a machine, we add it to one of the light slots, arbitrarily. The normalized slot
load vector S is S sorted in non-increasing order (slots of the same machine may be
separated in S). We add a subscript ¢ to these vectors, i.e., L;, L;, S; and S; to indicate

the vector after the allocation of the ¢-th job.

Definition 9.3.10 (Majorization, =). We say that a vector P = (p,...,p,) majorizes
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vector Q = (q1,-..,q) (denoted P=Q) if and only if for all 1 < k < min(a,b),

k k
vz G
i=1 i=1
where p; and G; are the i-th entries of the normalized vectors P and Q.

For n € N, let [n]| denote {1,...,n}.

Definition 9.3.11 (System Majorization). Let A and B be two processes allocating
n jobs to machines with total capacity C. Let 7 = (71...72,), 7; € [C] be a vector
representing the (slot) choices of the n jobs (T2;—1 and T9; are the choices of the i-th
job). Let SA(7) and SB(T) be the slot load vectors using A and B respectively with the

random choices specified by 7. Then we say

1. A majorizes B (denoted by the overloaded notation A=B) if there is a bijection

I [C]?™ — [C)?™ such that for all possible random choices T € [C]*",we have

LA()=LP (f(7)).

2. The maximum load of A majorizes the mazimum load of B (denoted by A>,B)
if there is a bijection f : [C]*™ — [C]*™ such that for all possible random choices

7 € [C)*", it holds that
() 2 7 (f(7),

where ¢44(1) and (P(f(7)) are the loads of the most loaded bins in A and B

respectively with the random choices specified by T and f(T) respectively.
It is immediate that the following holds.
Observation 9.3.12. A>-B = A-,B.

We now turn to the proof of Lemma 9.3.9.

First, notice that if we have an system of m identical machines, each of capacity 1,
both the unmodified Greedy algorithm and the allocation algorithm Agy s will behave
in exactly the same way - the load and the |load| are the same if the capacity is 1.
From [9], we know that the maximal load on any machine when allocating n = m jobs
(to m machines with capacity 1) with the Greedy algorithm, is ©(loglogn). Therefore,

the maximal load when allocating n = m jobs with Arrass is also ©(loglogn) in this
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setting. We would like to show that the maximal load of a system with non-uniform
machines of total capacity C is majorized by the maximal load of a system with C
machines of capacity 1, when the allocating algorithm is Arparg. We will show that
the first system majorizes the second, and deduce the required result from Observation
9.3.12.

We restate Claim 2.4 of [110]:

Claim 9.3.13 ([110]). Let P and Q be two normalized integer vectors such that P=(Q).
If i < j then P+ e;=Q) + ej where e; is the i-th unit vector and P +e; and Q + ¢; are

normalized.

Lemma 9.3.14. For allocation algorithm Arrpus, let A be a system with non-uniform
machines of total capacity C, and B be a system with C uniform machines of capacity

1 each. Then B-A.

Proof. We use the slot load vectors of systems A and B (in B the load vector and slot
load vector are identical), and show that SB(f(7))=S4(7). The bijection is such that
the jobs in both processes choose the same ki < ky € {1,...,C} in the normalized
slot load vectors, and the choice corresponds to machines k1, k2 in B and the machines
associated with those specific slots in system A. We use induction: for ¢ = 0, the claim
is trivially true.

From the inductive hypothesis, before the allocation of the ¢-th job,
SB(f(1)=S#,(7). In system B, the ¢-th job goes to machine ky. In system A,
if the |load| of the machine of k; is greater than that of the machine of ko, the job
goes to kg if ko is a light slot, or to a slot to the right of ks (a lighter slot of the same
machine), if k2 is a heavy slot. If the |loads| of the machines of k; and k2 are the same,
again, the job goes to kg if kg is a light slot, or to a slot to the right of ks (again, a
lighter slot of the same machine), if k9 is a heavy slot. In all cases, by Claim 9.3.13, it
follows that SB(f(7))=S4(r). O

Putting everything together gives our main result for this subsection.

Theorem 9.3.15. There exists an (O(logn),O(log®n),O(logn), O(log? n), 1/n)-local
mechanism for scheduling on related machines in the restricted setting that is universally

truthful and gives an O(loglogn)-approximation to the makespan.
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Combinatorial Auctions

Combinatorial auctions are an extremely well-studied problem in algorithmic game
theory, see e.g., [25] for a survey. The general premise is the following: we wish to
allocate m (possibly different) goods to n players, who have valuations for subsets of
goods, with the goal of maximizing the social welfare (sometimes we may have other
goals, but we focus on social welfare maximization in this work). The general problem,
where each player may have an an arbitrary valuation for each subset of the goods
is known to be IV P-hard; indeed, even approximating the optimal solution for single-
minded bidders to within m!/?=¢ is N P-hard [57]. Therefore, in order to obtain useful
approximation algorithms, we must relax some of our demands. There are hundreds, if
not thousands of papers devoted to various relaxations; the one we focus on is single-
minded bidders: There are m indivisible goods, and n buyers. Each buyer 7 is interested
in a specific subset of the items, S, and has a utility v; if she receives all of the items
in her subset and 0 otherwise. We would like find an allocation that maximizes the
social welfare. Unfortunately, this problem is also N P-hard, as is approximating the
social welfare to within m!/2=¢ [80]. When all buyers are interested in at most k items
(which we call the k-single minded case), we can find a @ approximation to the
optimal welfare by a reduction to weighted set packing and the algorithm of Chandra
and Halldérsson [19]. We can convert this approximation algorithm into a truthful
mechanism by computing VCG-like payments, in the same fashion that we show in
Sections 10.1.2 and 10.2, by running the allocation algorithm once again without each
agent. Before tackling the k-single minded case (Section 10.2), we find local mechanisms

for two simpler problems involving unit-demand buyers.
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10.1 Unit-Demand Buyers

We propose local truthful mechanisms for auctions with unit-demand buyers, in which
each buyer is interested in at most k items, chosen uniformly at random. First, we
tackle the case where all buyers have the same valuation for the items in their sets, and
the buyers’ private information is their sets. Then we examine the case in which the
buyers’ sets are public knowledge and the buyers’ private information is their valuations
for their items, with the restriction that buyers have the same valuation for all items
in their set.

In both cases, we use LCAs for maximal matching to obtain a %—approximation
to the optimal solution, as any maximal matching is a %—approximation to the maxi-
mum matching. We could use a (1 — €)-approximation algorithm (such as the one of
Chapter 5) to obtain a better approximation ratio, but it is not clear how to guarantee

truthfulness in that case. Designing a local computation mechanism that obtains an

approximation ratio better than % is an open problem.

10.1.1 Unit-Demand Buyers with Uniform Value

Consider the following scenario. There is a set Z of n unit-demand buyers, and a
set J of m indivisible items. There is a fixed, identical value for all items, which we
normalize to 1. Each buyer 7 is interested in a set J; of at most k items (where k is a
constant). We can treat this auction as a graph G = (V, E), in which V = J UZ, and
E ={(i,j):1€Z,j € J;}. The value of a subset S to buyer i (v;(S)) is 1if SN.J; # 0
and 0 otherwise. Namely, the buyers are indifferent between the items in their set (they
all have the same valuation for the items in their set, and a zero valuation for all other
items). The utility of buyer i is quasi-linear, that is, when she receives items S and
pays p her utility is u;(S,p) = v;(S) — p. We assume that the subsets J; are selected
uniformly at random and that kn/m = O(1). !

Our goal is to design a local mechanism that maximizes the social welfare. In order
to do this, we would like to satisfy as many buyers as possible, allocating each buyer
a single item from her set. We call this type of auction an k—UDUYV (unit demand,

uniform value) auction.

Ideally, we would like to find a maximum matching between the buyers and items,

'Hence, as in Claim 2.3.5, the graph is (n/2)-conditionally d-light, for some constant d.
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as this will maximize the social welfare. However, Corollary 2.5.2 shows that it not
possible to solve the maximum matching problem locally, even on bipartite graphs.
We will therefore content ourselves with finding an approzimation to the maximum

matching.

10.1.1.1 A %—approximation to the maximum matching

To obtain a 3-approximation, we use the (O(log n), O(log® n), O(log n), O(log” n), 1 /1)-
LCA for finding maximal matchings in undirected graphs of Chapter 4. We denote this
algorithm by Aypyv.

Our mechanism Mypyv = (Aupuv, Pupuv) works as follows. The mechanism
receives from each buyer ¢ a subset J! C J. As discussed previously, Aypyy generates
a random order in which it considers the items; clearly the buyers cannot influence the
order in which the items as considered.

As the values of all items are identical, any payment scheme Pypyy that fulfills
voluntary participation is adequate, i.e., the payment can be any value in the range
[0,1]. For example, charge p = 1/2 from any buyer that receives an item and p = 0
from any buyer that does not receive an item.

In order to show that our mechanism is truthful, we need only to show that buyers

cannot profit by bidding J] # J;.

Theorem 10.1.1. In the k-UDUV auction, the mechanism Mypyy =
(Auvpuv, Pupuv) is universally truthful and provides a %—approximation to the optimal

allocation.

Proof. The proof will be done in two steps. First, we show that for any .J/, bidding
JiNJ! weakly dominates bidding J/. Second, we show that bidding .J; weakly dominates
bidding any J C J;.

To show that J; N J! weakly dominates bidding J/, label the items in J;NJ! as good,
and those in J! \ J; by bad. If a good item is allocated to buyer ¢ when she bids J,
it will also be allocated to her when bidding J; N J;. Therefore the value of buyer i
cannot decrease by bidding J; N J/, and hence J; N J! weakly dominates bidding J.

To show that bidding J; weakly dominates bidding any J® C J;, consider the
following. If buyer ¢ does not receive any items when bidding J;, the claim trivially

holds. Assume buyer ¢ receives item j when bidding J;". Then, when bidding J;, if she
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has not received any item from J; \ J before considering item j, then she will receive
item j. Therefore, if she receives an item when bidding J, she will also receive an item
when bidding J;, and have the same valuation and utility. This proves that bidding J;
weakly dominates bidding J C J;.

The reasoning that the allocation is a %—approximation is similar to the proof of
maximal versus maximum matching. Consider a buyer that is not allocated an item in
Aupuy and is allocated an item in the optimal allocation. Her item is allocated to a
unique different buyer in Aypyy. This bounds the number of buyers allocated items
in the optimal allocation and not in Ay pyy by the number of buyers that are allocated

items in Aypyy, giving the factor of % approximation, and completing the proof of the

theorem. O

Theorem 10.1.2. The k-UDUV auction has an (O(logn),O(log?n),O(logn),
O(log?n), )-local mechanism that is universally truthful and provides a %—

approzimation to the optimal social welfare.

10.1.2 Unit Demand Buyers, Uniform-Buyer-Value

There is a set Z of n buyers, and a set J of m items. Each buyer ¢ is interested in a set
of at most k items, J; C 7, which is chosen uniformly at random from all possible sets,
is public knowledge, and has a private valuation, ¢; (which represents the value of any
item from J; to buyer 7). Buyer i’s valuation for subset S is v;(S) = ¢; if SN J; # 0,
and 0 otherwise. The utility of buyer ¢ is quasi-linear, namely her utility of receiving
subset S and paying p is u;(S,p) = v;(S) — p.

Similarly to Claim 2.3.5, we can treat this auction as a ((polylogn)-conditionally
d-light) weighted graph G = (V,E), in which V. = J UZ, and E = U;FE; where
E; ={(i,7) : j € J;}. Every edge e € E; has weight w(e) = t;.

In addition, we make the simplifying assumption that the buyers are Bayesian - the
valuations t; are randomly drawn from some prior (not necessarily known) distribution,
that is identical to all buyers. We call this type of auction an k—UDUBYV (unit demand,
uniform buyer value) auction.

We require that if buyer ¢ does not receive an item, she pays nothing. If buyer
i receives an item, the mechanism charges her p;(b), where b is the bid vector. Any

buyer will receive at most one item in the allocation of the mechanism. We would like
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to ensure that bidding truthfully is a dominant strategy for all buyers. Hence, we need
to show that, for all b; and b_;, we have u;(t;,b—;) > w;(b;, b_;).

The allocation algorithm, Aypypy, is as follows. First, Aypypy orders the buyers
by their bids. Starting with the buyer with the highest bid, each buyer i is allocated
an item j; € J; such that j; has not yet been allocated. If more than one such item
exists, we allocate the (lexicographically) first j; € J;. (We assume the items have
lexicographic order.) If there is no such item, then buyer ¢ is not allocated any item.
We continue until we cannot allocate any more items.

1

First, we claim that the resulting allocation is a j-approximation.

Claim 10.1.3. The allocation algorithm Aypypy provides a %—appmm’mation to the

optimal allocation, with respect to the bids b.

Proof. The proof is similar to the proof that any maximal matching is a %—
approximation to a maximum matching. Regard the auction as a bipartite graph
G = (U,W, E), with U representing the buyers and W representing the items. There
is a weighted edge between each buyer ¢ and every item j; € J;. The weight of each
edge e = (i, j;) is the bid of buyer 4, b;. The optimal allocation is a maximum weighted
matching, while Aypypy considers the buyers in the order of their b;’s and finds a
maximal matching.

If an edge e = (i, j;) is added in Aypypy but not in the optimal matching, then it
is allocated instead of at most 2 edges in the optimal matching (an edge €’ containing
i and an edge ¢’ containing j;). Because Aypypy considers edges according to their
weights, we know that w(e) > w(e’) and w(e) > w(e”). Therefore 2w(e) > w(e’)+w(e”)
and so the ratio between the allocation of Aypypy and the optimal allocation is at

1
least 5 O

We now need to specify the payment mechanism. To calculate buyer ¢’s payment
when she receives an item, we run Ay pypy without buyer ¢. Buyer ¢ pays the smallest
value for which any of her items is sold when the auction is run without her. (This is
exactly the minimal value of b; which would still gain her an item). We label buyer i’s

payment by p;, hence, the payments are Pypupy = {p1,...0n}-

Claim 10.1.4. In mechanism Mypupy = (Aupusv, Pupusv), for all buyers i and

all b;, bidding t; weakly dominates bidding b;.
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Proof. We will show that, fixing the bids of all other buyers at b_;,

1. Buyer ¢ has no incentive to over-bid, i.e., bid b; > ¢; .

2. Buyer ¢ has no incentive to under-bid i.e., bid b; < ¢; .

To prove (1), we notice that if buyer i receives an item, then she has no incentive
to bid higher, as she has no preference between items. Furthermore, bidding higher
cannot change her payment, as her payment is independent of her bid. If she does not
receive an item, then p; > b;(= t;)?, and so if she bids more, she might receive an item,
but will have to pay at least t; if she does, which will result in a non-positive utility.

To prove (2), we notice that if buyer ¢ does not receive an item, she cannot obtain
an item by bidding lower, because the algorithm allocates first to higher bids. If she is
allocated an item, then bidding lower will not make a difference, unless she bids under

pi, in which case she will not receive any item, and hence have zero utility. O
Claims 10.1.3 and 10.1.4 imply the following.

Theorem 10.1.5. The mechanism Mypypy ts universally truthful and provides a

%—approximation to the optimal social welfare.

Algorithm Aypypy is a (O(logn), O(log®n), O(logn), O(log”n), 1/n)-LCA for
maximal matching on (polylogn)-conditionally d-light graphs. Notice, however, that
we need to run Aypypy once for calculating the allocation, and k more times for

calculating the payment. Hence, we have the following.

Theorem 10.1.6. There is an (O(logn),O(log?n),O(logn),O(log?n), 1/n)-local

[Nl

mechanism for k—UDUBYV auction that is universally truthful and provides a

approzimation to the optimal social welfare.

10.2 k- Single Minded Bidders

We extend the results of Section 10.1.2 to the case of combinatorial auctions with k-
single-minded bidders: There is a set Z of n buyers, and a set J of m items. Each
buyer 7 is interested in a set of at most k items, J; C J, which is public knowledge,

and has a private valuation, t;, which represents the value of the entire subset J; to

2 As specified, if buyer i does not receive an item, she pays 0. However, if the mechanism were to
compute the payment, i.e., run the mechanism without her, the payment would be p; > b;(=t;).
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buyer i. Buyer i’s valuation for subset S is v;(S) = ¢; if J; C S, and 0 otherwise. The
utility of buyer ¢ is quasi-linear, namely her utility of receiving subset S and paying p
is u; (S, p) = vi(S) — p.

As in Subsection 10.1.2, we assume that J; has a uniform or binomial distribution,
and that the valuations t; are randomly drawn from some prior (not necessarily known)
distribution, and kn/m = O(1).

The allocation algorithm, Agsap, is as follows. First, Argpyp orders the buyers
by their bids. Starting with the buyer with the highest bid, each buyer ¢ is allocated
subset J; such that no item j; € J; has been allocated yet. We continue until we cannot

allocate any more subsets.

Claim 10.2.1. The allocation algorithm Arsyp provides a %-appmxz’mation to the

optimal allocation, with respect to the values b.

Proof. Compare the allocation of Algorithm Agsarg, J*, to the optimal allocation,
OPT. Each set J € J* is chosen by Argap instead of at most k sets in OPT, but its

weight is greater than each of their weights, because Axgysp is a greedy algorithm. [

The payment scheme is as follows. To calculate buyer ¢’s payment when she receives
an item, we run Ayggysg without buyer i. Buyer ¢ pays the highest value of the allocated
sets J,, for which J; N J, # 0. (This is exactly the minimal value of b; which would still

gain her an item). We label buyer i’s payment by p;, and let Prsyrp = {p1,...0n}-

Claim 10.2.2. In mechanism Mysyp = (AksmB, PrsyB), for all buyers i and all by,

bidding t; weakly dominates bidding b;.

The proof is similar to the proof of Claim 10.1.4 and is omitted.
Combining Claims 10.2.1 and 10.2.2, we get

Theorem 10.2.3. There exists an (O(logn),O(log”n), O(logn), O(log®n), 1/n)-local
mechanism for combinatorial auctions with known k—single minded bidders (where the
sets are sampled uniformly at random) that is universally truthful and provides a %-

approzimation to the optimal social welfare.
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Discussion and Future Directions

In the first part of the thesis we described several techniques for designing local compu-
tation algorithms; the two main ones being (1) reductions to distributed (and parallel)
algorithms and (2) reductions to online algorithms. The reduction to distributed al-
gorithms is due of Parnas and Ron; our main result was proving a tighter bound for
the running time of the simulation of the distributed algorithm on d-light graphs. For
the reduction to online algorithms, we showed that we can use a random seed of length
O(logn) to generate a random ranking the vertices (or edges) of the graph, and that
we can simulate an online algorithm on the vertices (edges) in the order defined by
this ranking. This allows us to obtain LCAs that require time O(log?n) and transient
space O(lognloglogn) or vice versa. Given a truly random ordering on the vertices of

a line graph, with probability at least %, there will be a monotone increasing segment

of length Q(lolgf)gn). This gives an immediate lower bound on the time and transient
space requirements of our LCAs, when we apply this reduction. It would be interesting
to obtain tighter bounds. Furthermore, it would be interesting to extend the techniques
of the thesis (and others), to obtain better bounds for similar LCAs on a wider family
of graphs.

In some cases (for example in our reduction to the online greedy MIS algorithm), we
can use a known distributed or online algorithm as a black box; in other cases, we may
benefit from designing new (or variations on known) distributed, parallel and online
algorithms. An interesting example of a new parallel algorithm that was designed espe-
cially for the purpose of reduction from LCAs is the maximum weight forest algorithm

of Chapter 6. There are many known parallel algorithms for maximum weight forests,

and they all outperform our new algorithm, because it (the new one) performs many
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redundant operations. However, this “flaw” is exactly what makes it simple to adapt it
to an LCA. A research direction for future work is to develop new parallel and online
algorithms to tackle problems that the current reductions do not hold for.

Most of the work on LCAs thus far has focused on proving upper bounds for specific
(families of ) algorithms on specific (families of) graphs. Other than result presented in
Chapter 2, we are not aware of any impossibility results. One of the more important
directions in the study of local computation algorithms seems to be the lower bounds
and more impossibility results, in order to better characterize the possibilities and limits
of LCAs.

In the second part of the thesis we designed local computation mechanisms for
several game theoretic problems. We showed how we can adapt our maximal matching
LCA to obtain a local mechanism for the housing allocation problem. We then tackled
the more complex problem of stable matching, and described an LCA for it based on the
Gale-Shapley algorithm. We showed that, when the men’s preference lists are random
and have bounded length, there is an LCA that finds an “almost stable” matching.
Interestingly, we were able to use our techniques to obtain a non-local result: we
showed that in the general case when the men’s list are bounded, stopping the Gale-
Shapley algorithm after a constant number of rounds can guarantee an arbitrarily
stable matching. To our knowledge, this was the first time techniques from LCAs
were used to obtain results in other fields. Others have also used LCAs to design and
analyze algorithms that are not LCAs; for example, Even et al. [30] used LCAs to
design better distributed algorithms for maximum matching. It would be interesting to
continue finding links between LCAs and other fields, and to see whether the techniques
developed for LCAs will be useful in other disciplines as well.

Finally, we showed local computation mechanisms for two load balancing problems,
two combinatorial auctions with unit-demand bidders and combinatorial auctions with
k-minded bidders. We feel that this is the first step in the field or local computation
mechanism design, which may become a more practical field as markets continue to

grow.
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Appendix A

Auxiliary Results

A.1 Chernoff Bounds

Theorem A.1.1 (Chernoff bound). Let X be a binomially distributed random variable,
X ~ B(n,p), such that = np. Then, for A > 2e — 1 it holds that

Pr[X > (14 \pu] <27+

Proof. Substituting A > 2e — 1 into the standard Chernoff bound gives

6)\ a
PrX > (1+ My < <(1+>\)1“>

(i)
<27

IA

O

Lemma A.1.2 (Azuma’s Inequality [5]). Let ¢ = Yy,...,Y, be a martingale with
|Yie1 = Y| <1 forall0 <i<mn. Then

Pr[|Y, — ¢| > A\n] < 2¢V/2.

A.2 Stochastic Dominance

We recall the following facts about stochastic dominance (see, e.g., [82]).

1. X <gYandY <y Z then X <4 Z.

2. For any integer n, let {X1, Xo,... X,,} and {Y37,Y3,...Y,} be two sequences of
independent random variables. If Vi, X; <4 Y;, then 2?21 X <st Z;‘Zl Y;.

We need the following observation and lemmas.
Observation A.2.1. For any z < «, B(z, g) <« Bla, g)

Lemma A.2.2. Let Y7,Y, be independent discrete random variables. Let X1, Xo be
(possibly) dependent discrete random variables, such that Xy is independent of Ya. If
X1 <g Y1, and conditioned on any realization of X1, it holds that Xo <4 Ys, then

X1+ Xo <g Y1+ Yo
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Proof. For every realization x of X, define a different random variable for Xs. That
is Xo(z) = X2|X1 = z. Note Va, Xo(x) <4 Yo. Further note that X; and Y5 are
independent. From the law of total probability,

Pr(X; + Xy > k] :ZPT$+X2(:E) > k] - Pr[X; = 1]
_ZPrX2 ) >k — x| Pr(X; = z]
gZPrY2>k—x}-Pr[X1:aj]
=> Prlz+Yy > k|- Pr(X; = 1

= PT‘[Xl +Y > k]
< PT[Y1+)/VQ >k‘]

This implies

Lemma A.2.3. Let {Y1,Ys,..., YN} be a sequence of independent random variables.
Let {X1,Xo, ..., XN} be a series of (possibly) dependent random variables. If it holds
that X1 <& Y1, and for any 1 < i < N, conditioned on any realization of X1,...X;_1,

it holds that X; <4 Y;, then
N N

ZXj <st ZY]

j=1 j=1

Proof. We prove by induction on ¢ that E; 1X <st ZZ Y;. For ¢« = 1 we have that
X; <4 Y. Assume that Z 1 X <a Z] 1 Y, we prove that ZHI X; <« ZIH

Let Z; = ijl s X1, Wi = Z] 1Y, and Wo = Yj1. Applying Lemma A.2. 2
with Zq, Zy, W, Wg we get that Z7 + Z5 <4 Wi + Ws as required. O

For the second lemma we prove, we require the following well-known inequalities:

Fact A.2.4. For every 0 < x <1 and every y > 0,

Y
<1—x> <eT<l-2.
Y 2

< n. Let X and Y be random wvariables such that X ~

Claim A.2.5. Let 2d < «
221, 24) Then X <q Y.

B(1,%) and Y ~ B([

Proof. X is in fact a random variable with the Bernoulli distribution. As X can only
take the values 0 or 1, to show stochastic dominance, it suffices to show that Pr[Y =
0] < Pr[X =0].
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Claim A.2.6. Let X be a random wvariable such that X ~ B(a,g), and let
X1, Xo,..., Xo_1 be random wvariables duch that Vi, X; ~ B(l,g). Then X <g4

a—1

ZXH—L

i=1
The proof is immediate from the definition of the binomial distribution.

Claim A.2.7. Let Y be a random wvariable such that Y ~ B(n? 2%) and let

"2
a—1
Y1,Ys, ..., Y, 1 be random variables such that Vi, Y; ~ B([%L 127‘21) Then Z Y <4Y.

=1

Proof. Tt suffices to show that (o — 1) [%2} <nZ

n? n?

(a—1) [—‘ <la—1)(—+1D<n?—n+a—1<n?

@ o

because a < n. O
Combining Claims A.2.5, A.2.6 and A.2.7, we get

Lemma A.2.8. Let Z and X be random variables such that Z ~ 2d + B(n?, i—g) and
X ~ B(a, g), where d < oo <n. Then X <4 Z.

Proof. If a < 2d, the lemma holds immediately. Assume « > 2d. Then, using the
notation of Claims A.2.6 and A.2.7

a—1 a—1
2d
ngtg Xz+1Sst§ Y;"i_lgstB(nQyﬁ)"i‘lSstY"”lSstZ-
i=1 =1
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