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Abstract

Local computation algorithms (LCAs) produce small parts of a single solution to a

given search problem using time and space polylogarithmic in the size of the input.

Consider, for example, a massive graph on which we would like to compute a maximal

independent set (MIS). The graph is so big that computing the entire solution would

simply take too long, and we do not have enough space to store the solution. Assume,

though, that we never need the entire solution at any given time. Instead, we are

occasionally queried about whether certain vertices are in the MIS. An LCA would

allow us to reply to these queries consistently (i.e., if the LCA is queried on all of the

vertices the replies would conform to a coherent solution), using polylogarithmic time

and space. In this work we study several techniques for designing LCAs, and provide

some useful tools for future research.

We introduce a new graph family, d-light graphs, that includes graphs of constant

bounded degree and several interesting randomly generated graphs, such as Erdős-

Rényi graphs, and bipartite graphs where vertices on one side are linked to d vertices

on the other, chosen uniformly at random. We show how to reduce LCAs for certain

problems on this graph family to distributed and online algorithms.

The reduction to distributed algorithms is due to Parnas and Ron [86]; its analysis

on d-light graphs is new. We derive a reduction to online algorithms that is based

on an idea by Onak and Nguyen [79]: generate a random order on the vertices and

simulate the online algorithm on this order. We show a small seed of length O(log n) is

sufficient to generate the randomness we need, and that with high probability, we do

not require more than O(log2 n) time or space to reply to each query. These reductions

allow us to obtain LCAs for problems such as MIS, maximal matching, load balancing

and vertex coloring on d-light graphs. We also extend these techniques to obtain a

(1 − ε)-approximation LCA to maximum matching on graphs of constant bounded

degree.

We further show that in some cases, we can design LCAs whose running time (and



space) is independent of the size of the graph, and depends only on the maximal degree.

Specifically, we give a (1 − ε)-approximation LCA to the maximal weighted base of a

graphic matroid (i.e., maximal acyclic edge set); LCAs for approximating multicut and

integer multicommodity flow on trees; and a local reduction of weighted matching to

any unweighted matching LCA, such that the running time of the weighted matching

LCA is independent of the edge weight function.

The field of mechanism design involves designing algorithms for strategic environ-

ments - ones in which input to the algorithm consists of (or includes) private information

divulged by agents who have a stake in the outcome. We introduce local computation

mechanism design - designing mechanisms that are queried on a single agent, and are

required to return the part of the solution that is relevant to her (the agent), while

preserving the required global game theoretic properties. As an example, consider an

auction of millions of items to millions of agents. When queried on an agent, we would

like our mechanism to tell us which items she gets and how much she has to pay, and at

the same time incentivize all agents to be truthful about their valuations for the items.

Similarly to LCAs, local computation mechanisms reply to each query in polylogarith-

mic time and space, and the replies to different queries are consistent with the same

global feasible solution. When the mechanism employs payments, the computation of

the payments is also done in polylogarithmic time and space.

We present local computation mechanisms for a variety of classical game-theoretical

problems: (1) stable matching, (2) job scheduling, (3) combinatorial auctions for unit-

demand and k-minded bidders, and (4) the housing allocation problem.

For stable matching, some of our techniques have implications to the global (non-

LCA) setting. Specifically, we show that when the men’s preference lists are bounded,

we can achieve an arbitrarily good approximation to the stable matching within a fixed

number of iterations of the Gale-Shapley algorithm.
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Chapter 1

Introduction

Solving combinatorial problems on graphs, such as maximal matching and vertex col-

oring, has been at the heart of computer science research since the first half of the

previous century (e.g., [16, 40]), well before computers became household objects. Al-

though we would generally like to solve any problem as fast as possible, we would also

like a notion of what it means for a problem to be solvable “quickly”. The most widely

accepted definition of “quickly” in this context is polynomial time (see, e.g., [22, 50]).

In the 1970s, it was shown that many combinatorial problems cannot be solved in poly-

nomial time, unless P = NP [50]. This inspired research devoted to what can be done

in polynomial time, which includes finding polynomial-time approximation algorithms

to some of these NP -hard problems (for a survey of approximation algorithms, see

[107]). For many years, research in algorithms focused on what can and cannot be

done in polynomial time, but in the past two decades, many computer systems have

become so big that polynomial-time tractability is not enough. An algorithm that runs

in O(n3) will simply not be practical on a graph with 1 billion nodes. A few decades

ago, such graphs were rare, but today, they are ubiquitous: the Internet has over 4

billion indexed pages, and an estimated 45+ billion pages overall [1]; social networks

have become huge: Facebook has over 1 billion users [111]; astronomical, biological,

environmental, finance and sensor network data is often measured in petabytes (1015

bytes) [43].

The rapid growth in the size of networks and databases over the past decade or so

has inspired a large volume of work on handling the challenges posed by these massive

systems - systems so large, in fact, that algorithms cannot even be required to run in

linear time. Much of the research on these problems therefore focuses on what can

1
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be done in sublinear time. Despite this common denominator, the approaches have

been diverse. The field of property testing [37, 91] asks whether some mathematical

object, such as a graph, has a certain property, or is “far” from having that property;

streaming algorithms [73, 113] are required to use limited memory and quickly process

data streams that are presented as a sequence of items; sublinear approximation algo-

rithms (e.g., [79, 86, 97]) give approximate solutions to optimization problems. All of

the above examples compute some approximation to a solution: property testing al-

gorithms usually reply ”yes/no”; streaming algorithms usually compute some statistic

on the input; sublinear approximation algorithms usually return an integer that is an

estimate of the size of a solution. Local computation algorithms (LCAs) offer a differ-

ent approach: instead of computing a value (or values) that give information about a

feasible solution, we would like to actually compute some small part of the solution.

The need for LCAs arises in situations when we require fast and space-efficient

access to part of a solution of a computational problem, but we never need the entire

solution at once. Consider, for instance, a wireless network with millions of nodes. If

two neighbors broadcast at the same time, this will cause interference; therefore we

would like to schedule broadcasts such that neighboring nodes do not broadcast at

the same time. A customary solution to this problem is to compute a coloring of the

graph - each node is allocated a color, so that no two adjacent nodes have the same

color, and all nodes of the same color broadcast at the same time. Assume now that

each node may query when to broadcast (i.e., what its color is), but we are never

required to compute the entire solution at once; in fact, as accessing shared memory

is expensive, we do not even want to store any part of the solution that we may have

already computed. Instead, we are allocated space polylogarithmic in the number of

nodes, and are required to reply to each query in polylogarithmic time. Although at

any single point in time, we can be queried the color of a single node, over a longer

time period, we may be queried about all of the nodes. We therefore want all of our

replies to be consistent with a feasible coloring.

LCAs are also useful in other scenarios: if uncoordinated processors are required to

compute consistent results on a very large data set, LCAs immediately offer a solution in

which the processors need access to a very small amount of shared memory (or in some

cases, none at all), and they can reply to queries quickly and consistently. Another

interesting non-trivial application of LCAs is the following. Assume that we have a
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linear program with an exponential number of variables and constraints. However, we

are only interested in the value of a polynomial number of variables in some “good”1

solution. LCAs can allow us to obtain our required solution in polynomial time.

1.1 Local Computation Algorithms

Local computation algorithms were formally introduced by Rubinfeld et al. [98], al-

though by then quite a large volume of work had been devoted to LCAs and very closely

related topics. A well-known example is the computation of the relative importance of

web pages (often simply called PageRank) (e.g., [6, 15, 49]). We can view the Internet

as a directed graph, in which the websites are represented by vertices, and an edge

(u, v) exists if there is a hyperlink on u that directs to v. The idea of PageRank is that

important pages have many pages (including other important pages) linking to them,

and unimportant pages have few, mostly unimportant pages linking to them. The im-

portance of every vertex is a function of every other vertex. Because the Internet is

huge, computing the exact PageRank of each vertex would take a very long time, and in

addition, the Internet is constantly changing; we would like to be able to compute the

approximate value of a website’s PageRank by looking only at only a small number of

other websites. Many of the PageRank algorithms developed (including the ones cited

above) are in fact LCAs. Other examples of algorithms that are LCAs are locally de-

codable codes [51]: Suppose m is a string with encoding y = E(m). On input x, which

is close in Hamming distance to y, the goal of locally decodable coding algorithms is

to provide quick access to the requested bits of m, by looking at a limited (sublinear)

number of bits of x. More generally, the reconstruction models described in [2, 99]

describe scenarios where a string that has a certain property, such as monotonicity, is

assumed to be corrupted at a relatively small number of locations. Let P be the set

of strings that have the property. The reconstruction algorithm gets as input a string

x that is close (in Hamming distance) to some string y in P . For various types of

properties of P , the above works construct algorithms that give fast query access to

locations in y.

Part of what makes LCAs exciting is that they share the motivation and concepts

of several major topics in theoretical computer science. This allows us to build upon

1What constitutes a “good” solution will vary from problem to problem, depending on our specific
needs. For example, it is often enough to find an approximate solution.
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well-known results and techniques and make new connections. Interestingly, as the

connection is bidirectional, results that are discovered in research on LCAs are often

immediately useful in other settings (for example, Even et al. [29] used LCAs to design

distributed approximation algorithms to maximum matching). In the next subsections

we give a history of LCAs along with the relationship to other work. We also highlight

the contributions of this thesis.

1.1.1 Sublinear Approximation Algorithms

There has been much recent interest in devising local algorithms for problems on con-

stant degree graphs and other sparse optimization problems. The goals of these al-

gorithms have been to approximate quantities such as minimal vertex cover, maxi-

mal/maximum matching, and sparse packing and covering problems [55, 69, 79, 86, 89,

112]. See [23, 97] for surveys. One feature of these algorithms is that they show how

to construct an oracle that, for each vertex (or edge), returns whether it is part of the

solution whose size is being approximated - for example, whether it is in the vertex

cover or maximal matching. Their results show that this oracle can be implemented

in time independent of the size of the graph (depending only on the maximal degree

and the approximation parameter). However, because their goal is only to compute

an approximation of some quantity, they can afford to err on a small fraction of their

local computations. Thus, their oracle implementations give LCAs for finding relaxed

solutions to the the optimization problems that they are designed for.

Parnas and Ron [86] (see Chapter 3) gave a simple reduction from constant-time

distributed labeling algorithms to sublinear approximation algorithms (a labeling al-

gorithm is simply an algorithm that assigns vertices (or edges) labels that meet some

set of constraints: a maximal independent set algorithm assigns each vertex a boolean

label indicating whether or not it is in the independent set; a vertex coloring algorithm

assigns each vertex a color).

Theorem 1.1.1. [86] Let G = (V,E) be a distributed network with degree at most

d. Let D be a deterministic distributed algorithm that computes a labeling D(G) in k

rounds. Then it is possible, for any node v ∈ V to compute D(v) in time and space

complexity O(dk) using a single processor, where the algorithm uses only neighbor and

degree queries.

Using this reduction, the approximation algorithm queries a constant number of
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vertices, and based on the replies, computes an approximate size of the labeling prob-

lem. We can use the same reduction to obtain an LCA for labeling problems, on graphs

of bounded degree, as the reply to every query will be consistent with the output of

the distributed algorithm.

Rubinfeld et al. [98] designed LCAs for several problems such as hypergraph 2-

coloring and MIS on graphs of bounded degree.2 Their LCA for MIS is based on the

Parnas-Ron reduction of Luby’s distributed algorithm [65], only instead of running

Luby’s algorithm for O(log n) rounds (which would imply a dO(logn) running time), it

is stopped after a constant number of rounds. This guarantees that most of the vertices

are accounted for (either in the independent set or neighbors of vertices that are in the

independent set). They then used the Lovász Local Lemma to show that after the

above vertices3 are removed from the graph, any remaining connected component must

be of size O(log n) with high probability (w.h.p.), and so the greedy algorithm can be

used. Their focus was on the time bounds of these algorithms.

1.1.2 Simulating Online Algorithms

Nguyen and Onak [79] showed how to simulate certain online algorithms to obtain sub-

linear approximation algorithms for problems like vertex cover and maximum matching

on graphs whose degree is bounded by a constant, by generating a random order on

the vertices, and simulating some online algorithm A using this order. Their key ob-

servation is that in expectation, we only need to make a constant number of probes to

the graph in order to determine the output of A on any vertex. Then, we can query a

constant number of vertices to determine whether they are in, say, the vertex cover, to

get an approximation to the size of the vertex cover. (If we find that we need too many

probes for determining the reply to a specific vertex, we abort and query another vertex

instead.) The idea behind the complexity analysis is the following: give each vertex,

uniformly at random, a real number between 0 and 1, called its rank. Simulate the

online algorithm on the order implied by these ranks (where the rank represents arrival

time). Say we want to evaluate A on some vertex v. Create a tree rooted at v, and add

all the neighbors of v that arrived before v. Continue to iteratively add neighbors of

vertices in the tree until no more can be added. This query tree is an upper bound to

2The graphs need to obey certain other combinatorial properties, specifically, to meet the require-
ments of the Lovász Local Lemma.

3i.e., the vertices that are accounted for
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the number of probes to the graph that we need to make in order to evaluate A on v.

For intuition to why a query tree has constant size in expectation, assume that v has

rank 0.5. In expectation, half of its neighbors arrive before it. Half of them will have

a rank of at most 0.25, and most of their neighbors will arrive after them. Thus, the

degrees of the vertices of the tree quickly drop. We would like to use the same reduction

(generating a random order and simulating an online algorithm on this order) be used

to obtain LCAs and not just approximation algorithms; the main difference between

the two is that sublinear approximation algorithms are content with having a reply to

a constant fraction of the queries, while LCAs require an answer for every query. Thus,

an LCA cannot just abort if a computation takes too long. Fortunately, it turns out

that w.h.p., the query tree will not be too big.

Our contributions. In [4], we bounded the size of the query tree to show that every

query requires a polylogarithmic4 number of probes with high probability (w.h.p.). The

idea behind the proof is the following: assume that the maximal degree of the graph

is d. Consider a partition of [0, 1] into d + 1 equal intervals. We say that the vertices

whose rank is in the interval
[

i
d+1 ,

i+1
d+1

)
are on level i. In the query tree, if there are k

vertices on level i, it is unlikely that there will be much more than O(k log n) vertices

on level i + 1, as each vertex on level i has, in expectation, less than 1 neighbor on

level i + 1. In [67], we used a more subtle bounding of the query tree to show that

the number of probes per query is logarithmic in the number of vertices w.h.p. In [90],

we used a different technique to logarithmically bound the number of probes required

by this simulation; the result holds for a larger family of graphs, which we discuss in

Subsection 1.1.4. As the result [90] subsumes the results of [4] and [67], it is the one

that we present in this dissertation, in Chapter 4.

1.1.3 Pseudorandom Orderings

Bounding the size of the query tree allows us to bound the number of probes to the

graph, and hence the running time of the LCA (the running time is not exactly the

number of probes, but they are usually closely related - see Chapter 4 for a more

detailed discussion). These bounds depend on the fact that we use some randomness

to determine the order; as we want the replies of the LCA to be consistent with the

4Specifically O(logd+1 n), where n is the number of vertices and d is the maximal degree of the
graph.
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same solution, we must use the same randomness every time. Therefore, we need to

store this randomness, which affects our space requirements. If we wanted to store a

permutation of the vertices, this would require Ω(n log n) bits, assuming there are n

vertices. Consider the most intuitive way to store a permutation: map each vertex v

to a unique value in {1, 2, . . . , n}; denote this mapping by π. Vertex v appears before

vertex u in the permutation iff π(v) < π(u). In order to store this mapping, we need

to store log n bits for each vertex, for a total of n log n bits. Unfortunately, this is

the best we can do asymptotically (see, e.g., [12]). We therefore use pseudorandom

generators. A pseudorandom generator is an algorithm that takes as input a short,

perfectly random seed and then returns a (much longer) sequence of bits that “looks”

random. We clearly sacrifice some randomness when we do this: the permutation we

get is defined by the random seed, and if the seed is of length k, there are only 2k

possible distinct values of the seed. However, in certain cases, this randomness can be

good enough for our purposes. Consider the case that we want N random variables,

but we don’t need them to be completely independent; it suffices that every two of

them are independent. This is known as pairwise independence and is quite common in

randomized algorithms; possibly the best known example is Luby’s MIS algorithm [65].

In Luby’s algorithm, each vertex chooses itself with some (small) probability, and

if none of its neighbors is chosen, it adds itself to the independent set (IS). The choices

of any vertex that is not v’s neighbor are irrelevant to whether or not v is added to

the IS. In fact, all we require is that the choices of every two neighboring vertices

are independent - we require pairwise independence. Although we need to generate n

random variables, we do not need n random bits, in fact we only need O(log n) random

bits. A very simple example of a construction of pairwise independent random variables

is the following [56].

Assume for simplicity that n is a prime number, and that every vertex v has a

unique ID between 1 and n (we represent this ID by v as well). Further assume that we

want to generate for each vertex a (not necessarily unique) random label between 1 and

n, such that the labels are pairwise independent. We can sample uniformly at random

two integers, a and b, from {1, 2, . . . n}, and consider the hash function h(v) = av + b.

We claim that h(v) is uniformly distributed, and every two labels are independent. It

is easy to see why this is true: if we know h(v) for some vertex v, h(u) is uniformly

distributed for any u. Notice however, that if we know h(u) and h(v), we can determine



8 CHAPTER 1. INTRODUCTION

a and b, and hence completely know h (and therefore the evaluation of h on any other

w ∈ {1, 2, . . . n}). Therefore h is pairwise independent, but not k-wise independent for

any k > 2. This notion of k-wise independent hash functions was introduced by Carter

and Wegman [18]. They also introduced almost k-wise independent hash functions,

which we will touch upon shortly. The notion of limited independence has been used in

many aspects of computer science; for an excellent introduction to pseudorandomness

and k-wise independence, see [106].

Back to our scenario, we know (from bounding the query tree) that we will

not require more than O(log n) probes per query, and so we only require O(log n)-

independence for our bounds to hold. In fact, we don’t need log n-wise independence -

almost log n-wise independence is sufficient for our purposes. Informally, a hash func-

tion h is almost k-wise independent if the evaluation of h on a set of at most k variables

“looks” like the uniform distribution. In other words, it is difficult to distinguish be-

tween k truly random bits and the evaluation of the hash function on any k variables.

We provide a more formal discussion in Chapter 4. Naor and Naor [75] showed that

using almost k-wise independence allows us to further reduce the seed length; Alon et

al. [3] showed simpler constructions of almost k-wise independent hash functions.

Our contributions. In [4], we showed that to generate the randomness necessary for

the LCAs that we obtain using the reduction to online algorithms, we can use a random

seed of length O(log3 n), using an implementation of the constructions of [3]. The idea

is the following: generate for each vertex an (O(log n)-wise independent) integer in

[1, n4]. The probability that there is any collision is at most 1
n2 . If there is a collision,

we cannot guarantee the number of probes or running time, but the probability of this

happening is negligible. In [90], we showed that, for the same reduction, it is sufficient

to give each vertex a number in [1, L], where L is some constant. There will (w.h.p.)

be collisions, but even using an arbitrary tie-breaking rule, the number of probes to the

graph can be shown to still be O(log n) w.h.p., and hence, using a new construction of

almost k-wise independent random variables of [72], they showed that a seed of length

O(log n) suffices. The latter result is presented in Chapter 4.
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1.1.4 d-light Graphs

Most of the research on LCAs (e.g., [4, 28, 60, 68, 98, 98]) focuses on graphs of bounded

constant degree. A natural question to ask is “(Other than graphs of bounded degree),

which graphs admit LCAs?” We take an important step forward in characterizing these

graphs.

Our contributions. In [67] (and later in [42]), we considered graphs where the degree

is distributed binomially (and its expectation is constant). We showed that the size of

the query tree is bounded by O(log n) w.h.p. in this case as well. In [90], we expanded

the family for graphs for which the online reduction holds to a family of graphs called

d-light graphs. The high-level idea behind d-light graphs is the following: given that

some subgraph has already been exposed, we would like the degree of the next exposed

vertex to be bounded by a distribution that has expected value d and whose tail is light.

A formal definition is given in Section 2.3. We will see that this definition encompasses

a broad range of graphs, for example:

• Graphs with degree bounded by d, where d = O(log log n),

• The random graphs G(n, p), where p = d/n, for any d = O(log log n),

• Bipartite graphs on n consumers and m producers, where each consumer is con-

nected to d producers at random.

In Chapter 3, we show that the Parnas-Ron reduction can be used on d-light graphs

to obtain an LCA whose number of probes and running time is O(log n) w.h.p.

1.1.5 Graphs of Constant Bounded Degree

The family of graphs of constant bounded degree has been extremely well studied in

the context of distributed algorithms (in particular, the LOCAL model [87]). Naor and

Stockmeyer [76] investigate the question of what can be computed on these networks

in constant time, and show that there are nontrivial problems under these constraints.

They investigate locally checkable labeling (LCL) problems, where the legality of a

labeling can be checked in constant time (e.g., coloring). They describe constant-time

algorithms for several problems, notably for c-weak coloring,5 for some constant c, on

5c-weak coloring means coloring the vertices with at most c colors such that every vertex has at
least one neighbor colored differently from itself
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graphs of odd degree. Cole and Vishkin [21] showed that it is possible to obtain a

3-coloring of an n-cycle in O(log∗ n) communication rounds (assuming that there are

unique node identifiers). This was shown to be tight by Linial [61]. This field has

received considerable interest over the past three decades, e.g., [38, 54, 55, 85]; see [87]

for an introductory book and [100] for a recent (2013) survey.

Even et al. [28] investigate the connection between local distributed algorithms

and LCAs. They show how to color the vertices in a small neighborhood of a graph

to obtain an acyclic orientation of the neighborhood. Their coloring algorithm is an

adaptation of the techniques of Panconesi and Rizzi [85] and Linial [61], and produces

a coloring in O(log∗ n) rounds. This orientation defines an order on the vertices, and an

online algorithm can be simulated on this order, similarly to the technique presented

in Subsection 1.1.2. This generates a deterministic LCA for MIS on constant degree

graphs that requires O(log∗ n) probes.

Our contributions. In [66], we showed that there are some non-trivial LCAs that

only require a constant number of probes (and running time), removing the dependency

on n completely. Specifically, they give an LCA that computes an approximately op-

timal maximal weight forest; LCAs for multicommodity flow and multicut on trees;

and give a constant-time reduction from weighted matchings to unweighted matchings.

These results are presented in Chapter 6.

1.2 Algorithmic Game Theory

Algorithmic game theory (AGT) is an area in the intersection of game theory and

algorithm design, whose objective is to design algorithms in strategic environments:

the input, or some part of it, is given to the algorithm by selfish agents that have

a stake in the outcome. Therefore, unlike in classical algorithm design, we cannot

assume that the input given to us is correct, and so we need to incentivize the agents

to truthfully report their part of the input. The field was started by Nisan and Ronen

in their seminal 1999 paper [81]. Since then, it has flourished, with thousands of

papers being written on it. We cannot hope to provide even a brief summary of the

many interesting results of AGT - we refer the reader to [80] as a good starting point.

In this work we tackle three very different game-theoretic scenarios: stable matching

(Chapter 8), machine scheduling (Chapter 9) and combinatorial auctions (Chapter 10).
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In the stable matching problem, there is a set of men and a set of women, where each

man has a preference list over the women and each woman has a preference list over

the men. We want to find a matching that is stable; i.e., that there is no pair of a man

and a woman who prefer each other over their given partner (and hence would prefer to

defect from the suggested matching). In machine scheduling problems, we would like

to assign jobs to machines so that the last job terminates as quickly as possible, and in

combinatorial auctions, we would like to assign items to buyers so that the social welfare

(or “total happiness”) is maximized. In the last two settings, we use payments in order

to ensure that the agents (the machines and buyers respectively), report truthfully

(their computational power and how much they value the items respectively). Because

the three settings are very different, we provide a brief introduction to each of them

(along with a discussion of related work) in their respective chapters.

1.3 Overview of the Thesis

1.3.1 Part I - Designing Local Computation Algorithms

In the first part of the thesis, we introduce the model of local computation algorithms

and describe some techniques for designing LCAs. In Chapter 2, we introduce the

model and define the performance criteria for LCAs on graphs. The five criteria are:

the number of probes the LCA makes to the graph per query; the memory required to

store the source of randomness, if our LCA is randomized; the running time per query;

the space requirement for computing the reply to a query; and the probability that the

LCA deviates from the specified number of probes, time or space.

We then introduce a family of graphs, which we call d-light graphs: A d-light graph

is a graph that is sampled from some distribution of graphs, such that whenever some

subgraph has already been exposed, the degree of the next exposed vertex is bounded

by a light-tailed distribution that has expected value d. Many natural graphs fall within

this family, including graphs of bounded degree and random (Erdős-Rényi) graphs. We

show that given that some sufficiently large subgraph has been exposed, then w.h.p.

the neighborhood of the subgraph is not much bigger than the subgraph itself.

We end Chapter 2 by showing that some problems, even ones that are solvable in

polynomial time, may not have LCAs. Specifically, we show that there can be no LCA

for maximum matching.
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In Chapters 3 and 4 we show how to we can transform certain distributed and

online algorithms, respectively, to LCAs. The idea behind the reduction to distributed

algorithms is as follows: If we are queried on a vertex v and there is a distributed

algorithm D for the problem terminates after a constant number of rounds k, then we

can simulate D on all vertices at distance at most k from v. If the graph is d-light, we

show that the total number of these vertices is at most logarithmic in the size of the

graph, w.h.p. The reduction to online algorithms is conceptually (almost) as simple: we

generate some random order on the vertices and simulate an online algorithm A on this

order. Because we want the replies to all queries to be consistent with a single feasible

solution, we have to simulate A on the same order for every query. We therefore have to

remember this ordering. Unfortunately, our results depend on this order being random,

and so we cannot use some arbitrary ordering (for example, ordering the vertices by

ID). Although we require that the ordering is random, we do not require complete

randomness. It turns out that a logarithmic number of truly random bits suffices for

our purposes. Using this small seed, we can generate an “almost” random order on

the vertices that still guarantees that we only probe the graph a logarithmic number

of times per query in the worst case, w.h.p. We also show that in expectation, we only

require a constant number of probes. In Chapter 5, we show an LCA for approximating

the maximum matching on graphs of constant degree.

We end the first part of the thesis by showing that we can sometimes design LCAs

whose running time is independent of the size of the graph, and depends only on the

maximal degree (Chapter 6). We design and LCA for finding a forest whose weight is

a (1 − ε) approximation to the weight of the maximal spanning forest, and LCAs for

computing integer multicommodity flow and multicuts on trees that are a 4- and 1
4 -

approximation to the maximal flow and minimal cut respectively. Finally, we show that,

given a constant-time α-approximation algorithm (α < 1) for unweighted matching, we

can design a constant-time α
8 -approximation algorithm for weighted matching. The

running time of our weighted matching LCA is independent of the weight function as

well as the size of the graph.

1.3.2 Part II - Local Computation Mechanism Design

In the second part of the thesis, we design local computation mechanisms (LCMs) -

game-theoretic mechanisms that run in polylogarithmic time and space. In Chapter 7
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we formally define our model and give a simple example - an implementation of the

random serial dictatorship algorithm. In the housing allocation problem, there is a list

of houses and a list of buyers, and the buyers have a preference list over the houses.

We would like to find a “good” allocation of houses to buyers. The random serial

dictatorship algorithm has some nice game-theoretic properties, such as the buyers

having no incentive to lie about their preference list. The local mechanism requires

that the input obey some restrictions (specifically that each buyer’s preference list

includes a constant number of houses, chosen uniformly at random), and, when queried

about a buyer, returns which house she is allocated, while still guaranteeing all the nice

properties that the non-local mechanism has.

In Chapter 8, we show how to implement the Gale-Shapley stable matching algo-

rithm [34] as an LCA in the setting where each man’s preference list has a constant

number of women, selected uniformly at random. In the Gale-Shapley algorithm, each

man approaches his most preferred woman. The woman tentatively accepts the man

she prefers out of all of the men that approached her, and rejects the rest. In the next

round, every man that was just rejected approaches the next woman on his list. Each

woman once again tentatively accepts the man whom she prefers (out of all the men

standing in front of her, including the man she tentatively accepted in the previous

round, if there was one). This continues until each man is standing in front of a single

woman, at which point the algorithm terminates. Gale and Shapley showed that this

matching is stable. Our local implementation is straightforward: we simulate this al-

gorithm for a constant number of rounds, k, and disqualify any man that is rejected

on round k. We show that by appropriately selecting the number of rounds, we can

guarantee that at most an ε fraction of the men is disqualified, for any ε. This assures

that our matching is ε-almost stable (at most an ε fraction of the men (and women)

would prefer each other to their matched partner). We use our techniques to show

that in the general case when the men’s lists have bounded length (even in cases that

do not admit an LCA), we can find arbitrarily good matchings6 (up to both additive

and multiplicative constants) by truncating the Gale-Shapley algorithm to a constant

number of rounds.

In Chapter 9, we consider the problem of scheduling jobs on machines. In the

makespan minimization problem, we want to schedule n jobs on m machines so as

6See Section 8.1 for a formal discussion.



14 CHAPTER 1. INTRODUCTION

to minimize the maximal running time (makespan) of the machines. This problem

has many variations; we consider the scenario in which m identical jobs need to be

allocated among n related machines. The machines are strategic agents, whose private

information is their speed. We show:

1. A local mechanism that is truthful in expectation7 for scheduling on related ma-

chines, that provides an O(log log n)-approximation to the optimal makespan.

2. A local mechanism that is universally truthful8 for the restricted case (i.e., when

each job can run on one of at most a constant number of predetermined machines),

that provides an O(log log n)-approximation to the optimal makespan.

We also show some subtle and surprising results on the truthfulness of our algo-

rithms.

In Chapter 10, we consider matching combinatorial auctions. Combinatorial auc-

tions (CAs) are auctions in which buyers can bid on bundles of items. We consider the

following scenario: m items are to be auctioned off to n unit-demand buyers, where

each buyer is interested in a set of at most k items, sampled uniformly at random. We

show universally truthful local mechanisms for the following variations, both of which

give a 1
2 -approximation to the optimal solution:

1. When all buyers have an identical valuation for the items in their sets, and the

buyers’ private information is the sets of items they are interested in.

2. When the sets are public knowledge, and the buyers’ private information is their

valuation.

If each buyer is interested in a set of at most k items, and has private valuation for this

set, we show a universally truthful local mechanism that admits a 1
k -approximation to

the optimal social welfare.

1.4 Published and Submitted Papers

• Chapter 4 is based on

7For formal definitions of truthfulness in expectation and universal truthfulness, see Section 9.1.
8See Footnote 7.



1.4. PUBLISHED AND SUBMITTED PAPERS 15

– [4]: Space-Efficient Local Computation Algorithms. Noga Alon, Ronitt Ru-

binfeld, Shai Vardi and Ning Xie. In Proc. 22nd ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 1132–1139, 2012,
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Chapter 2

The Local Computation Model

In this chapter we formally define the model of local computation algorithms. We first

introduce some notation.

2.1 Notational Conventions

We denote the set of integers {1, 2, . . . , n} by [n]. We write N for the set of nonnegative

integers, and R for the set of reals.

Let X be a random variable, distributed according to the Binomial distribution

with parameters n and p; we denote this by X ∼ B(n, p).

Let G = (V,E) be a simple undirected graph. The neighborhood of a vertex v,

denoted N(v), is the set of vertices that share an edge with v: N(v) = {u : (u, v) ∈ E}.

The degree of a vertex v, is |N(v)|. The neighborhood of a set of vertices S ⊆ V ,

denoted N(S), is the set of all vertices {u : v ∈ S, u ∈ N(v)\S}. The distance between

two vertices u and v, denoted dist(u, v), is the minimal number of edges required to

reach v from u (or vice-versa). For any vertex v, its k-neighborhood (for k ≥ 0),

denoted Nk(v), is the set of all vertices at distance at most k from v. For any edge

e = (u, v), its k-neighborhood is defined as Nk(e) = Nk(u) ∪Nk(v).

We assume that each vertex v ∈ V has a unique label between 1 and some n =

poly(|V |). For simplicity, assume n = |V | (or in other words V = [n]).

We use “with high probability” (w.h.p.) to mean with probability at least 1− 1
poly(n) ,

where poly n is some polynomial in n. Although we state our results with a specific

(asymptotic) failure probability, such as 1
n2 , they can all easily be extended to have a

failure probability of 1
nc , for any constant c.

17
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2.2 The Model

We assume the standard uniform-cost RAM model, in which the word size is O(log n)

bits, where n is the input size, and it takes O(1) to read and perform simple words

operations.

Before formally defining LCAs, we define the measures by which the complexity of

LCAs is quantified.

• Number of probes. An LCA can access a vertex in the input graph and ask for a

list of its neighbors, or the ID of a neighbor. This is called a “probe”.

• Running time. The running time of an LCA, per query, is the number of word

operations that the LCA is required to perform in order to output a reply to the

query. In the running time calculation, a probe to the graph is assumed to take

O(1). Note, however, that if we wish to perform an operation on a the entire list

of neighbors and the list is of size `, (such as committing the list to memory or

finding the maximal ID), this will take O(`) operations.

• Enduring memory . As a preprocessing step, before it is given its first query, the

LCA can be allocated some memory to which it is allowed to write. Once the

first query is given to the algorithm, it can only read from this memory and can

never modify it. This can be viewed as the LCA being allowed to augment the

input with some small number of bits.

• Transient memory . This is simply the amount of memory (measured in the

number of words) that an LCA requires in order to reply to a query. It does not

include the enduring memory.

• Failure probability . The LCA is allowed to deviate from the number of probes,

running time or transient memory that it requires per query. In this case, we say

that the algorithm “fails”. We require that, even if the LCA is queried on all

vertices, the probability that it will fail on any of them is still very low. Note

that the algorithm is never allowed to reply incorrectly - the failure is only a

function of its complexity. Note further that the LCA is never allowed to use

more enduring memory than it requested.

We define LCAs as follows.
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Definition 2.2.1 (Local computation algorithm). A (p(n), t(n), em(n), tm(n), δ(n))-

local computation algorithm A for a computational problem is a (possibly randomized)

algorithm that receives an input of size n, and a query x. Before the first query, A

is allowed to write em(n) bits to the enduring memory, and may only read from it

thereafter. Algorithm A makes at most p(n) probes to the input in order to reply to any

query x, and does so in time t(n) using tm(n) transient memory (in addition to the

enduring memory). The probability that A deviates from the probe, time or transient

memory bounds is at most δ(n), which is called A’s failure probability. Algorithm A

must be consistent, that is, the algorithm’s replies to all of the possible queries combine

to a single feasible solution to the problem.

2.3 d-light Graphs

In this section we introduce the family of graphs for which our reductions to distributed

and online algorithms apply. We then prove a probabilistic bound on the size of the

neighborhood of any set of adaptively exposed vertices of such a graph. We only

discuss undirected graphs, but both the definitions and algorithms easily extend to the

directed case. We call these graphs d-light ; they generalize a large family of graphs

(see below). Before defining d-light graphs, we need to define certain processes that

adaptively expose vertices of a graph. A vertex exposure procedure is a procedure P

that is allowed to probe vertices in the graph (usually according to some predetermined

set of rules), to obtain their list of neighbors. Such procedures can be used, for example,

to adaptively learn the structures of neighborhoods of graphs. Once a vertex has been

probed by P, it is said to be exposed.

Definition 2.3.1 (Adaptive vertex exposure). An adaptive vertex exposure process P

is a process that receives a limited oracle access to a graph G = (V,E) in the following

sense: P maintains a set of vertices S ⊆ V , (initially S = ∅), and updates S iteratively.

In the first iteration, P exposes an arbitrary vertex v ∈ V , learns the IDs of all of the

neighbors of v, and adds v to S. In each subsequent iteration, P can choose to expose

any u ∈ N(S): u is added to S, and P learns the IDs of u’s neighbors. If a subset

S ⊆ V was exposed by such a process, we say that S was adaptively exposed.

Before defining d-light graphs, we need one more definition.
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Definition 2.3.2 (Stochastic dominance). For any two distributions over the reals, X

and Y , we say that X is stochastically dominated by1 Y if for every real number x it

holds that Pr[X > x] ≤ Pr[Y > x]. We denote this by X ≤st Y.

For a more in-depth discussion of the properties of (and some new results on)

stochastic dominance that we will require, see Appendix A.2.

Definition 2.3.3 (s-conditional d-light distribution). Let d, s > 0, G = (V,E) be a

graph sampled from some distribution, and P be an adaptive vertex exposure process.

If, for every S ⊂ V , |S| ≤ s, that is adaptively exposed by P, conditioned on any

instantiation of S ∪ N(S) and set of edges ES = {(u, v) ∈ E | u ∈ S}, we have that

for every v ∈ N(S) \ S (or any v in the case that S is empty), there is a value d ≤

α(v, S) ≤ |V |, such that |N(v) \ S| is stochastically dominated by B
(
α(v, S), d

α(v,S)

)
,

we say that the degree distribution of G is s-conditionally d-light (or, for simplicity,

that G is s-conditionally d-light). If this property holds for s = |V | − 1, we say that G

is d-light.

Remark 2.3.4. We shall see that, because we are interested in LCAs whose complex-

ity measures are polylogarithmic, it suffices to consider polylog n-conditionally d-light

graphs. For simplicity, we state most of our results in terms of d-light graphs. All of

these results also hold for polylog n-conditionally d-light graphs; the proofs may need

to be slightly modified, and we remark on these differences when they arise. We espe-

cially note that the results of Chapter 4 hold for (polylog n)-conditionally d-light graphs

without modification.

The family of d-light and conditionally d-light graphs includes many well-studied

graphs in the literature; for example,

• d-regular graphs, or more generally, graphs with degree bounded by d (taking

α = d),

• The random graphs G(n, p), where p = d
n−1 . Each one of the

(
n
2

)
edges is selected

independently with probability p; therefore the degree of each vertex is distributed

according to the binomial distribution B(n − 1, d
n−1). Note that in general, the

degrees are not independent (for example, if one vertex has degree n− 1 then all

1This is usually called first-order stochastic dominance. As this is the only measure of stochastic
dominance we use, we omit the term “first-order” for brevity.
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other vertices are connected to this vertex). However, once a subset W ⊂ V has

been exposed (as well as the edges in the cut (W,G \W ), for any v /∈W , |N(v) \

W | ∼ B(n− |W | − 1, d
n−1), which is stochastically dominated by B(n− 1, d

n−1).

• Bipartite graphs on n consumers and n producers, where each consumer is con-

nected to d random producers are (n/2)-conditionally 2d-light. See Claim 2.3.5.

Claim 2.3.5. The family of bipartite graphs on n consumers and n producers, where

each consumer is connected to d � n producers uniformly at random is (n/2)-

conditionally 2d-light.

Proof. Let S be any adaptively exposed set of size at most n/2. We prove that the de-

gree of any producer/consumer i /∈ S is stochastically dominated by B
(
α(i, S), 2d

α(i,S)

)
.

(This is stronger than the requirements of Definition 2.3.3 in that (1) we prove it for

every vertex in V \ S which is a superset of N(S) \ S, and (2) we bound |N(v)|, and

|N(v)| ≥ |N(v) \ S.)

The degree of any consumer i (in S or not) is at most d - which is trivially stochas-

tically dominated by B(2d, 1) (taking α(i, S) = 2d). The degree of any producer i not

in S is stochastically dominated by B
(
n, d

n/2

)
= B(n, 2d/n): Let P ⊆ S denote the

set of producers in S. Set |P | = q ≤ n/2. Consider a consumer j, and let r be the

number of neighbors it has in P . j chooses i w.p. d−r
n−q ≤

2d
n . As there are at most n

consumers, each choosing i w.p. at most 2d/n, taking α(i, S) = n completes the proof

of the claim.

Assumption 2.3.6. When considering d-light graphs (or conditionally d-light graphs)

in this work, we assume that d is a constant.

In fact, as we show in Section 4.5, we can allow d to be as large as Θ(loglog n).

However, we only explicitly compute the complexity of the LCAs on d-light graphs for

constant d. If d is super-constant, the complexity parameters deteriorate. We discuss

this further in Section 4.5, but for now we state that for the LCAs on d-light graphs in

this work, the number of probes, running time, enduring memory and transient memory

all remain polylogarithmic for d = O(log log n).

2.3.1 Bounding the Neighborhood of Exposed Sets

Many of the results on d-light graphs of this thesis depend on a crucial property:

any exposed subgraph of a d-light graph does not have “too many” neighbors. For
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motivation, consider the following strong property:

Property 2.3.7. Every connected subgraph with s vertices has at most O(d · s) neigh-

bors.

Property 2.3.7 holds trivially for graphs of degree bounded by d, but it does not

necessarily hold for d-light graphs. We could ask for a weaker property:

Property 2.3.8. Every connected subgraph with s vertices has at most O(d·s) neighbors

w.h.p.

Unfortunately, Property 2.3.8 does not hold for d-light graphs either. It applies to

large subgraphs, but not small ones. Consider the subgraph that is a single vertex,

whose degree is distributed binomially deg(v) ∼ B(n, d/n). With probability Ω(1/n),

deg(v) = Ω( logn
log logn). We therefore ask for two weaker properties, given by Proper-

ties 2.3.10 and 2.3.11. The first property is that when we adaptively expose a large

enough connected subgraph, the number of neighbors it has is unlikely to be much

larger than the subgraph itself. The second property is that if we adaptively expose

a small enough connected subgraph, the number of neighbors it has is unlikely to be

more than c log n, for some constant c. The proofs of both properties depend on the

following proposition. Note that in the following, we are counting the number of edges,

one of whose endpoints (at least) is in S. The other endpoint may or may not be in S.

Proposition 2.3.9. Let {Xi,j}i∈[m],j∈[n2] be n2 ·m independent Bernoulli random vari-

ables such that Pr[Xi,j = 1] = 2d/n2 for every i ∈ [m] and j ∈ [n2]. For every

(s-conditionally) d-light graph G = (V,E) with |V | = n and every adaptively exposed

subset of the vertices S ⊆ V of size m (where m ≤ s),

|{(u, v) ∈ E | u ∈ S}| ≤st 2dm+

m∑
i=1

n2∑
j=1

Xi,j .

Proof. Denote |S| = m. Label the vertices of S: 1, 2, . . .m, according to the order of

exposure. That is, vertex 1 is the first vertex that was exposed, and so on. Denote

by Si the set of vertices {1, 2, . . . , i}, and by Yi the random variable representing the

number of neighbors of vertex i that are not in Si−1. That is, Yi = |N(Si) \Si−1|. The

quantity we would like to bound, |{(u, v) ∈ E | u ∈ S}|, is at most
∑m

i=1 Yi.

From the definition of s-conditional d-light distributions, conditioned on every pos-

sible realization of Si−1, N(Si−1) and the edges adjacent to Si−1, there exists some
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d ≤ αi ≤ n such that Yi ≤st B(αi, d/αi). By Lemma A.2.8, under the same condi-

tioning, Yi ≤st Z ∼ 2d + B(n2, 2d
n2 ). This implies that conditioned on any realization

of Y1, . . . , Yi−1 we have that Yi ≤st Z. By Lemma A.2.3 we now have that
∑m

i=1 Yi is

stochastically dominated by the sum of m independent copies of Z.

Note that for every i we have that

n2∑
j=1

Xi,j ∼ B(n2, 2d/n2). By the definition of Z

we now have that
m∑
i=1

Yi ≤st 2dm+
m∑
i=1

n2∑
j=1

Xi,j .

Property 2.3.10. There exists some constant c > 0, such that for every (s-

conditionally) d-light graph G = (V,E) with |V | = n and every adaptively exposed

subset of the vertices S ⊆ V of size at least c log n (and at most s), we have that

Pr[|{(u, v) ∈ E | u ∈ S}| > 6d|S|] ≤ 1/n5. In particular, Pr[|N(S)| > (6d − 1)|S|] ≤

1/n5.

Proof. Letting |S| = m, from Proposition 2.3.9,

|{(u, v) ∈ E | u ∈ S}| ≤st 2dm+
m∑
i=1

n2∑
j=1

Xi,j .

By the linearity of expectation, E[

m∑
i=1

n2∑
j=1

Xi,j ] = 2dm. By the Chernoff bound, there

exists a constant c such that when m ≥ c log n it holds that Pr[
m∑
i=1

n2∑
j=1

Xi,j > 4dm] ≤

1/n5.

Property 2.3.11. There exist constants c′′ > c′ > 0, such that for every d-light graph

G = (V,E) with |V | = n and every adaptively exposed subset of the vertices S ⊆ V

of size at most c′ log n, we have that Pr[|{(u, v) ∈ E | u ∈ S}| > c′′ log n] ≤ 1/n5. In

particular, Pr[|N(S)| > c′′ log n] ≤ 1/n5.

Proof. Similarly to the proof of Corollary 2.3.10, let|S| = m. From Proposition 2.3.9,

|{(u, v) ∈ E | u ∈ S, v /∈ S}| ≤st 2dm +

m∑
i=1

n2∑
j=1

Xi,j . By the linearity of expectation,

E[
m∑
i=1

n2∑
j=1

Xi,j ] ≤ 2dc′ log n. By the Chernoff bound of Theorem A.1.1, taking c′′ > 4edc′,
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it holds that Pr[
m∑
i=1

n2∑
j=1

Xi,j > c′′ log n] ≤ 1/n5.

2.4 Crisp Algorithms

We provide general reductions of LCAs to distributed and online algorithms, and we

wish to bound the complexity measures of our LCAs. The number of probes is inde-

pendent of the implementation of the online algorithm, and as we shall see later on,

the amount of enduring memory required will usually not be affected, as long as the

implementation is “reasonable”. However the running time and space requirements

clearly depend on the running time and space requirements of the simulated algorithm:

If we probe one vertex, but the simulated algorithm performs some computation that

requires time proportional to the number of bits used to represent the vertex’s ID, the

running time of the LCA will be O(log n), and not O(1). However, this is not usu-

ally the case with online algorithms for combinatorial problems, and many algorithms

“behave well”. To quantify what we mean by this, we introduce the following definition.

Definition 2.4.1. We say that an algorithm A is crisp if A requires time and space

linear in its input length (where the input length is measured by the number of words),

and the output of A is O(1) per query.

Most of the algorithms that we wish to convert to LCAs using the techniques of this

paper are indeed crisp; for example the greedy algorithm for maximal independent set

requires computation time and space linear in the number of neighbors of each vertex,

and the output per vertex is a single bit. Not all the algorithms we wish to handle

are necessarily crisp; in the case of vertex coloring, the output of the greedy algorithm

can be log ∆, where ∆ is the maximal degree of the graph. Nevertheless, as to avoid

a cumbersome statement of our results, we restrict ourselves to crisp algorithms; it is

straightforward to extend our results to non-crisp algorithms.

We note that the analysis of distributed algorithms often assumes that the “expen-

sive” part of the computation is the message passing, while the processors themselves

have unrestricted computational power. Nevertheless, many distributed algorithms are

actually very efficient.
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2.5 An Impossibility Result for Maximum Matching

In the rest of the thesis, we will focus on designing LCAs for problems. We remark

that not all problems that are polynomial-time tractable admit LCAs. An example

of one such problem is maximum matching (either weighted or unweighted). Efficient

polynomial algorithms exist, such as Edmonds’ celebrated blossom algorithm [26] but

unfortunately, no LCA can exist. In fact, no LCA can exist for the simpler problem of

finding a maximum matching on bipartite graphs. This is shown by the theorem and

corollary below.

Theorem 2.5.1. There does not exist an LCA for the maximum matching problem.

Proof. To see why it is not always possible to solve the maximum matching locally,

consider the following family of homomorphic graphs: G = {Gi}. All Gi ∈ G have 2n

vertices: {v1, v2, . . . , v2n}. In each Gi = (Vi, Ei), vertices Vi \ {vi} comprise an (odd)

cycle, and vertex vi is connected to vertex vi−1 (modulo 2n). Each Gi has a unique

maximum matching. We are given as input a graph G ∈ G, (i.e., we know it is Gi for

some i, but we don’t know the value of i). We would like to know whether the edge

e = (v1, v2) is in the maximum matching. Note that the edge e will be in exactly half

of the maximum matchings.

Assume w.l.o.g. that the graph is either Gn or Gn+1. In the distributed model, this

implies that the distance between the edge e = (v1, v2) and the vertices that distinguish

between of Gn and Gn+1 (vertex vn−1 and vertex vn) is n − 2 edges, which will be a

lower bound on the time to detect the correct graph.

In the local computation model, we can write the edges in a random order. This

implies that one needs to query, on average, n− 2 edges to distinguish between Gn and

Gn+1.

Therefore there cannot exist an LCA for maximum matching.

Corollary 2.5.2. There does not exist an LCA for the maximum matching problem in

bipartite graphs.

Proof. The proof is similar to the general case. In the bipartite case, though, in each Gi,

the vertices v1, v2, . . . , vi−1, vi+2, . . . , v2n comprise an even cycle. Vertex vi is connected

to vertex vi−1 and vertex vi+1 is connected to vertex vi+2 (modulo 2n). Note that

the edges (vi−1, vi) and (vi+1, vi+2) must be in the maximum matching, because the
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maximum matching in this case is of size n, meaning all vertices must be matched,

including vi and vi+1.



Chapter 3

Reducing LCAs to Distributed

Algorithms

The next few chapters describe general techniques for designing LCAs. We build upon

the vast literature on distributed and online algorithms, and give black-box reduc-

tions of LCAs to distributed and online algorithms for certain families of problems and

graphs. In this chapter, we describe a simple method for converting any distributed

algorithm that requires a constant number of rounds to an LCA. This reduction was

proposed by Parnas and Ron [86]. After describing the reduction, we show how to

improve the trivial bounds on the number of probes, running time and memory re-

quirements when the resulting LCA is executed on d-light graphs.

3.1 The Parnas-Ron Reduction

Let G = (V,E) be a graph, and let O be some arbitrary finite set. Parnas and Ron

[86] noticed the following: Assume that there is a (crisp) distributed algorithm A that

computes some function F : V → O. If A terminates after a constant number of rounds,

`, then it is suffices to simulate A on the `-neighborhood of any vertex v to obtain the

value of F (v) (Theorem 1.1.1). It is easy to see why this is true: if A terminates after

` rounds, no information from a vertex whose distance from v is greater than ` can

reach v. In fact, this reasoning shows that it suffices to simulate the first round of A

on the N`(v), the second round on N`−1(v), and so on. For simplicity, we assume that

the distributed algorithm is simulated on the entire neighborhood for ` rounds, as this

27
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Algorithm 1: Distributed Maximal Matching Algorithm for Bipartite Graphs

Input : G = (U ∪W,E) with degree bounded by d
Output: A matching M
// All ties are broken by ID/port number

M ← ∅;
for i← 1 to d do

All unmatched u ∈ U send a proposal to the first available neighbor;
Each w ∈W accepts the first proposal it receives;

does not asymptotically affect the running time.1 This reduction immediately allows

us to convert any `-time distributed algorithm to an (O(d`), O(`d`), 0, O(`d`), 0)-LCA

for graphs of degree bounded by d.

As an example, let us consider the simple distributed maximal matching algorithm

for bipartite graphs of Hanckowiak et al. [41], Algorithm 1. Let G = (U ∪W,E) be

a bipartite graph. In each round, each vertex u ∈ U sends a proposal to one of its

unmatched neighbors, and each vertex w ∈W that was proposed to, accepts one of the

proposals. If the maximal degree is d, it is easy to see that after d rounds, we have a

maximal matching: Denote the matching found by the algorithm after d rounds byM.

Consider any edge e = (u,w). If e was considered at some round by u, then w must be

matched, either to u or to another vertex, and hence M∪ {e} is not a matching. If e

was not considered, this is because either u or w was already matched. (Note that u will

never propose to any neighbor more than once.) Using Theorem 1.1.1, we immediately

get a (O(dd), O(dd), 0, O(dd), 0)-LCA for this problem, on graphs of degree bounded by

d.

Consider now the following scenario: there is a set M of n men and a set W

of n women, and each man chooses d women uniformly at random. This scenario

is quite common - it can be found in the context of, e.g., stable matchings [47, 53],

see also Chapter 8; and load balancing [9, 14, 108], see also Chapter 9. (In the case

of load balancing, M would be a set of balls/jobs and W the set of bins/machines).

By Claim 2.3.5, this graph is (n/2)-conditionally 2d-light; applying the Parnas-Ron

reduction to s-conditionally d-light graphs guarantees that the number of probes, run-

ning time and transient memory are O(log` n) (if the distributed algorithm requires

1There is a small nuance: to simulate the second round of A on u, a vertex at distance ` from v,
we might need to simulate the first round of A on u’s neighbors, which may be at distance `+ 1 from
v. But for the purpose of the simulation, we can assume that u has no neighbors that are at distance
` + 1 from v, as anything that happens to u after the first round cannot affect v. Therefore, once we
have uncovered the `-neighborhood of v, we can ignore the rest of the graph.
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` rounds). We show that this analysis is far from tight, in fact these complexity

measures are all O(log n).2 In other words, Algorithm 1 can be implemented as an

(O(log n), O(log n), 0, O(log n), 1
n4 )-LCA. We note that in order to guarantee that the

correctness proof still holds, the men need to propose to the women. The more general

result is formally stated below as Theorem 3.2.2; we prove it by bounding the size of

the `-neighborhood of v, for any v ∈ V .

The results of the following subsection are stated for d-light graphs; they also hold

(without modification of the proofs) for (polylog n)-conditionally d-light graphs.

3.2 Bounding the Neighborhood Size

Recall that Ni(v) is the set of vertices at distance at most i from v.

Claim 3.2.1. For any integer i > 0, there exists a constant ci such that for any d-light

graph G = (V,E) and vertex v ∈ V , it holds that Pr[|Ni(v)| ≤ ci log n] ≥ 1− 1
n4 .

Proof. Let N i be the random variable representing the number of vertices in the i-

neighborhood of vertex v. We prove by induction that Pr[N i ≤ ci log n] ≥ 1 − i
n5 ,

where ci = (4ed)i−1c1.

For the base, from Property 2.3.11, taking S = {v}, it holds that there exists a

constant c1 such that , Pr[N 1 > c1 log n] ≤ 1/n5

Assuming that the claim holds for all integers smaller than i, we show that it holds

for i. We use the law of total probability.

Pr[N i > ci log n] = Pr[N i > ci log n|N i−1 ≤ ci−1 log n] Pr[N i−1 ≤ ci−1 log n]

+ Pr[N i > ci log n|N i−1 > ci−1 log n] Pr[N i−1 > ci−1 log n]

≤Pr[N i > ci log n|N i−1 ≤ ci−1 log n] + Pr[N i−1 > ci−1 log n]

≤ 1

n5
+
i− 1

n5
.

where the last inequality uses Property 2.3.11 and the inductive hypothesis.

We conclude the following.

Theorem 3.2.2. Let G = (V,E) be a d-light graph, where d > 0 is a constant, let

O be some finite set and let F : V → O be some function on the vertices. As-

2` appears exponentially in the constant.
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sume that A is a crisp constant-time distributed algorithm for F . Then there is an

(O(log n), O(log n), 0, O(log n), 1
n4 )-LCA for F .

Proof. From Claim 3.2.1, the `-neighborhood of any vertex is number of probes re-

quired to simulate the distributed algorithm is O(log n), for some constant c > 0, with

probability at least 1
n5 . Assume that the distributed algorithm A runs for ` rounds. As

A is crisp, simulating it on this neighborhood requires time ` ·O(1) ·O(log n), and this

is clearly also an upper bound on the required transient memory. A union bound gives

the required failure probability.



Chapter 4

Reducing LCAs to Online

Algorithms

In the previous chapter we showed a reduction of LCAs to distributed algorithms. In

this chapter, we show a similar reduction to online algorithms. This reduction, however,

is much more involved, and requires a more sophisticated set of tools for analysis. The

idea is simple - we generate a random order on the vertices, and simulate an online

algorithm on this order. Two major problems arise: how do we bound the number

of probes the algorithm makes to the graph, and how do we store this randomness in

polylogarithmic space?

This chapter is based mainly on [90], but also in part on [4] and [67].

4.1 Preliminaries

For simplicity, we only consider online graph algorithms on vertices; an analogous defi-

nition holds for algorithms on edges, and our results hold for them as well. Intuitively,

such an algorithm is presented with the vertices of a graph G = (V,E) in some arbi-

trary order. Once the algorithm is presented with a vertex v (as well as the edges to

the neighbors of v that arrived before v), it must irrevocably output a value which we

denote f(v). The output of the algorithm is the combination of all of these interme-

diate outputs, namely the function f : V → O (where O is some arbitrary finite set).

The correctness of our LCAs is immediate (from the correctness of the global (online)

algorithm); the focus of this chapter is therefore proving the probe, memory (enduring

and transient) and time complexity.

31
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Algorithm 2: Online (Greedy) MIS Algorithm

Input : G = (V,E) and vertex permutation π
Output: An independent set S

I ← ∅;
Assume the vertices are ordered v1, v2, . . . , vn in π;
for i← 1 to n do

if ∀u ∈ N(vi), u 6∈ I then
I ← I ∪ {vi};

We require that the online algorithm will be neighborhood dependent in the sense

that the value f(v) is only a function of the values {f(u)} for the neighbors u of v that

the algorithm has already seen. Formally,

Definition 4.1.1 (Neighborhood-dependent online graph algorithm). Let G = (V,E)

be a graph, and let O be some arbitrary finite set. A neighborhood-dependent on-

line graph algorithm A takes as input a vertex v ∈ V and a sequence of pairs

{(u1, o1), . . . (u`, o`)} where ∀i, ui ∈ V, oi ∈ O, and outputs a value o ∈ O. For ev-

ery permutation Π of the vertices in V , define the output of A on G with respect to

Π as follows. Denote by vΠ
i the vertex at location i under Π. Define f(vΠ

i ) recur-

sively by invoking A on vΠ
i and the sequence of values (vΠ

j , f(vΠ
j )), such that j < i and

(vΠ
j , v

Π
i ) ∈ E.1

Let R be a search problem on graphs. We say that A is a neighborhood-dependent

online graph algorithm for R if for every graph G and every permutation Π, the output

of A on G with respect to Π satisfies the relation defining R.

For example, consider the following online algorithm for computing an MIS, Algo-

rithm 2. The algorithm is essentially the following: Initialize the set I = ∅. When a

vertex v arrives, the algorithm checks whether any of v’s neighbors is in I. If none of

them is, v is added to I. Otherwise, v is not in I. Algorithm 2 is clearly neighborhood-

dependent; furthermore, it is crisp. The reader might find it useful to refer to this

algorithm while reading this chapter, as it is simple yet illustrative. It is easy to see

that many other online algorithms on graphs, such as the greedy algorithms for vertex

coloring and maximal matching, and many load balancing algorithms (see Chapter 9),

are also neighborhood-dependent.

We wish obtain an LCA A for MIS. The high-level idea of the reduction is the

1Note that in a general online algorithm, we only require that j < i and (vΠ
j , f(vΠ

j )).
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following. A receives as input a graph G = (V,E). The first time it is invoked, it

samples a hash function h : V → Q, where Q is some finite set, and writes h to the

enduring memory. The function h is used to define some ordering π on the vertices

(we will elaborate extensively on how this is done). When A is queried on a vertex v,

it simulates Algorithm 2 on G, where the vertices arrive in the order of π. It replies

“yes” if and only if Algorithm 2 determines that v is in the MIS.

4.1.1 Static and Adaptive k-wise Independence

Our probe and time bounds rely on the fact that we can generate a random order on

the vertices. Storing a random order over all of the vertices would require Ω(n log n)

enduring memory; in order to only use polylogarithmic memory, we use a hash function

that guarantees that our ordering is “sufficiently random”.

Definition 4.1.2 (k-wise independent hash functions). For n,L, k ∈ N such that k ≤ n,

a family of functions H = {h : [n] → [L]} is k-wise independent if for all distinct

x1, x2, . . . , xk ∈ [n], when H is sampled uniformly from H we have that the random

variables H(x1), H(x2), . . . ,H(xk) are independent and uniformly distributed in [L].

To quantify what we mean by “almost” k-wise independence, we use the notion of

statistical distance.

Definition 4.1.3 (Statistical distance). For random variables X and Y taking values

in U , their statistical distance is

∆(X,Y ) = maxD⊆U |Pr[X ∈ D]− Pr[Y ∈ D]|.

For ε ≥ 0, we say that X and Y are ε-close if ∆(X,Y ) ≤ ε.

Definition 4.1.4 (ε-almost k-wise independent hash functions). For n,L, k ∈ N such

that k ≤ n, let Y be a random variable sampled uniformly at random from [L]k. For

ε ≥ 0, a family of functions H = {h : [n] → [L]} is ε-almost k-wise independent if for

all distinct x1, x2, . . . , xk ∈ [n], we have that 〈H(x1), H(x2), . . . ,H(xk)〉 and Y are ε-

close, when H is sampled uniformly from H. We sometimes use the term “ε-dependent”

instead of “ε-almost independent”.

Another interpretation of ε-almost k-wise independent hash functions is as functions

that are indistinguishable from uniform for a static distinguisher that is allowed to query
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the function in at most k places. In other words, we can imagine the following game:

the (computationally unbounded) distinguisher D selects k inputs x1, x2, . . . , xk ∈ [n],

and gets in return values F (x1), F (x2), . . . , F (xk), where F : [n]→ [L] is either chosen

from H (which we denote by DF←H), or is selected uniformly at random. H is ε-almost

k-wise independent if no such D can differentiate the two cases with advantage larger

than ε. In this paper we will need to consider adaptive distinguishers that can select

each xi based on the values F (x1), F (x2), . . . , F (xi−1).

Definition 4.1.5 (ε-almost adaptive k-wise independent hash functions). For n,L, k ∈

N such that k ≤ n and for ε ≥ 0, a family of functions H = {h : [n]→ [L]} is ε-almost

adaptive k-wise independent if for every (computationally unbounded) distinguisher D

that makes at most k queries to an oracle F it holds that

|Pr[DF←H = 1]− Pr[DF←G = 1]| ≤ ε,

where G is the set of all functions F : [n]→ [L].

We say that H is adaptive k-wise independent if it is 0-almost adaptive k-wise

independent.

Maurer and Pietrzak [71] showed a very efficient way to transform a family of

(static) almost k-wise independent functions into a family of adaptive almost k-wise

independent functions with similar parameters. For our purposes, it is enough to note

that every family of (static) almost k-wise independent function is in itself also adaptive

almost k-wise independent. While the parameters deteriorate under this reduction, they

are still good enough for our purposes. We provide the reduction here for completeness.

Lemma 4.1.6. [71] For n,L, k ∈ N such that k ≤ n and for ε ≥ 0, every family of

functions H = {h : [n] → [L]} that is ε-almost k-wise independent is also adaptive

εLk-almost k-wise independent.

Proof. The proof is by a simulation argument. Consider an adaptive distinguisher D

that makes at most k queries; assume without loss of generality that D always makes

exactly k distinct queries. We can define the following static distinguisher D′ with oracle

access to some function F as follows: D′ samples k distinct outputs y1, y2, . . . , yk ∈ [L]

uniformly at random. D′ then simulates D by answering the ith query xi of D with

yi. Let σ be the bit D would have output in this simulation. Now D′ queries F
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for x1, x2, . . . xk (note that D′ makes all of its queries simultaneously and is therefore

static). If the replies obtained are consistent with the simulation (i.e. yi = F (xi) for

every i) then D′ outputs σ. Otherwise, it outputs 0. By definition,

Pr[D′F←H = 1] = L−k Pr[DF←H = 1].

This implies that for every H and G

|Pr[D′F←H = 1]− Pr[D′F←G = 1]| = L−k|Pr[DF←H = 1]− Pr[DF←G = 1]|.

The proof follows.

In particular, Lemma 4.1.6 implies that k-wise independent functions are also adap-

tive k-wise independent, and we get the following theorem:

Theorem 4.1.7 (cf. [106] Proposition 3.33 and Lemma 4.1.6). For n, k ∈ N such that

k ≤ n and n is a power of 2, there exists a family of functions H = {h : [n] → [n]}

that is adaptive k-wise independent, whose seed length is k log n. The time required

to evaluate each h is O(k) word operations and the memory required per evaluation is

O(log n) bits (in addition to the memory for the seed).

Naor and Naor [75] showed that relaxing from k-wise to almost k-wise independence

can imply significant savings in the family size. As we we also care about the evaluation

time of the functions, we will employ a recent result of Meka et al., [72] (which, using

Lemma 4.1.6, also applies to adaptive almost k-wise independence). The following is

specialized from their work to the parameters we mostly care about in this work.

Theorem 4.1.8 ([72] and Lemma 4.1.6). For every n,L, k ∈ N and ε > 0 such that

n and L are powers of 2, and such that k · L = O(log n) and 1/ε = poly(n), there is

a family of adaptive ε-almost k-wise independent functions H = {h : [n] → [L]} such

that choosing a random function from H takes O(log n) random bits. The time required

to evaluate each h is O(log k) word operations and the (enduring) memory is O(log n)

bits.

The property of almost k-wise independent hash functions H that we will need is

that an algorithm querying H will not query “too many” preimages of any particular

output of H. Specifically, if the algorithm queries H more than cL log n times, none of

the values will appear more than twice their expected number. More formally:
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Proposition 4.1.9. There exists a constant c such that following holds. Let n,L, k ∈ N

be such that k ≤ n and let ε ≥ 0. Let H = {h : [n]→ [L]} be a family of functions that

is ε-almost adaptive k-wise independent. Let A be any procedure with oracle access to

H sampled uniformly from H and let ` be any value in [L]. Define the random variable

m to be the number of queries A makes and the random variables x1, x2, . . . , xm to be

those queries. Then conditioned on cL log n ≤ m ≤ k, it holds that:

Pr[|{xi|H(xi) = `}| > 2m/L] ≤ 1

2n5
+ ε.

Proof. Consider any A as in the theorem and assume for the sake of contradiction that

Pr[|{xi|H(xi) = `}| > 2m/L | cL log n ≤ m ≤ k] >
1

2n5
+ ε.

Consider A with access to a uniformly selected G : [n] → [L]. Define m′ to be the

number of queries A makes in such a case and let x′1, . . . , x
′
m′ be the set of queries.

By the Chernoff bound, conditioned on any fixing of m′, we have that Pr[|{x′i|H(x′i) =

`}| > 2m′/L] is exponentially small in m′/L. Therefore, by a union bound, for a

sufficiently large c we have that Pr[|{xi|H(xi) = `}| > 2m′/L | cL log n ≤ m′ ≤ k] ≤ 1
2n5

(note that L < n, otherwise the theorem is trivially true). We thus have that A

distinguishes the distribution H from the distribution G with k queries, with advantage

ε, in contradiction to H being ε-almost adaptive k-wise independent.

We study the application of adaptive ε-almost k-wise independent functions to d-

light graphs extensively in this chapter. We do not explicitly give the dependence of ε

on n, d and k, although we assume that ε = 1
polyn and (in Subsection 4.4), that ε < 1

d2k .

4.2 Almost k-wise Random Orderings

Our LCAs will emulate the execution of online algorithms (that are neighborhood de-

pendent as in Definition 4.1.1). One obstacle is that the output of an online algorithm

may depend on the order in which it sees the vertices of its input graph (or the edges,

in case we are considering an algorithm on edges). As the combined output of an

LCA on all vertices has to be consistent, it is important that in all of these execu-

tions the algorithm uses the same permutation. Choosing a random permutation on n

vertices requires Ω(n log n) bits which is disallowed (as it will imply enduring memory
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Ω(n log n)). Instead, we would like to have a derandomized choice of a permutation

that will be “good enough” for the sake of our LCAs and can be sampled using as few

as O(log n) bits.

Past works on LCAs (e.g., [4, 42, 67, 68]) have used k-wise and almost k-wise

independent orderings to handle the derandomized ordering of vertices. A family of

ordering Π = {Πr}r∈R, indexed by R is k-wise independent if for every subset S ⊆ [n]

of size k, the projection of Π onto S (denoted by Π(S)) is uniformly distributed over

all k! possible permutations of S. Denote this uniform distribution by U(S). We have

that Π is ε-almost k-wise independent if for every k-element subset S we have that

∆(Π(S), U(S)) ≤ ε (where ∆ is the statistical distance, see Definition 4.1.3). One

can give adaptive versions of these definitions (in the spirit of Definition 4.1.5). The

following “warm up” theorem shows that if L = poly(n) and H = {h : [n] → [L]}

is k-wise independent, then Π = {Πh}h∈H is a family of 1/ poly(n)-almost k-wise

independent orderings, and that this requires a seed of length O(k log n). It is easy to

show that k-wise independent functions (or even almost k-wise independent functions),

directly give ε-almost k-wise independent orderings.

Lemma 4.2.1. For every n,L, k ∈ N, ε > 0, such that k ≤ n and L ≥ k2/ε, if

H = {h : [n] → [L]} is k-wise independent then Π = {Πh}h∈H is a family of ε-almost

k-wise independent ordering.

Proof. Fix the set S. There is probability smaller than ε on the choice of h ∈ H that

there exist two distinct values i and j in S such that h(i) = h(j). Conditioned on such

collision not occurring the order is uniform by the definition of k-wise independent

hashing.

Lemma 4.2.1 and Theorem 4.1.7 imply Theorem 4.2.2.

Theorem 4.2.2. For every n, k ∈ N, ε > 0, such that k ≤ n, there exists a construction

of ε-almost k-wise independent random ordering of [n] whose seed length is O(k log n).

This could potentially be further improved, but one can observe that a lower bound

on the seed length of almost log n-wise independent ordering is Ω(log n log log n). We

now show how to define derandomized orderings that require seed O(log n) and, while

not being almost log n-wise independent, are still sufficiently good for our application.
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4.3 Upper Bounding the Number of Probes

Let us now consider what happens if we let L be much smaller, namely a constant.

This will reduce the seed length to O(k + log n) (when we let H be almost k-wise

independent). However, we will lose the k-wise almost independence (for sub-constant

error) of the ordering: Consider two variables i < j. Conditioned on h(i) 6= h(j),

the order of i and j under Πh is uniform. But with constant probability h(i) = h(j)

and then, according to Definition 4.3.2, i will come before j under Πh (recall that the

ordering is based on the labels (h(i), i)). Nevertheless, even though Π is no longer 1/n-

almost k-wise independent, we will show that a constant L suffices for our purposes.

To formally define what this means we introduce some definitions.

Definition 4.3.1 (Level, Levelhood). Let G = (V,E) be a graph. Let h : V → N be a

function that assigns each vertex an integer. For each v ∈ V , we call h(v) the level of

v. Denote the restriction of a set of vertices S ⊆ V to only vertices of a certain level

`, {x ∈ S : h(x) = `}, by S‖`.

Let S ⊆ V , and let N`(S) be the neighbors of S that are in level `. That is N`(S) =

{u ∈ V : u ∈ N(S), h(u) = `}. The `th levelhood of S (denoted Ψ`(S)), is defined

recursively as follows. Ψ`(∅) = ∅. Ψ`(S) = {S ∪ Ψ`(N`(S))}. In other words, we

initialize Ψ`(S) = S, and add to Ψ`(S) neighbors of level `, until we cannot add any

more vertices.

We define the rank of a vertex to be the concatenation of its level and ID. Formally,

Definition 4.3.2 (Ranking). Let L be some positive integer. A function r : [n]→ [L] is

a ranking of [n], where r(i) is called the level of i. The ordering Πr which corresponds

to r is a permutation on [n] obtained by defining Πr(i) for every i ∈ [n] to be its

position according to the monotone increasing order of the relabeling i 7→ (r(i), i). In

other words, for every i, j ∈ [n] we have that Πr(i) < Πr(j) if and only if r(i) < r(j)

or r(i) = r(j) and i < j. The pair (r(i), i) is called the rank of i.

Informally, vertices of higher rank “arrive earlier”.

Definition 4.3.3 (Relevant vicinity). The relevant vicinity of a vertex v, denoted

=h(v) (relative to a hash function h : V → [L]), is defined constructively as follows.

Let Πh be the permutation defined by h, as in Definition 4.3.2. Initialize =h(v) = {v}.

For each u ∈ =h(v), add to =h(v) all vertices w ∈ N(u) : Πh(w) < Πh(u). Continue



4.3. UPPER BOUNDING THE NUMBER OF PROBES 39

adding vertices until no more can be added. The relevant vicinity of a set of vertices U

is the union of the relevant vicinities of the vertices in U .

The relevant vicinity of a vertex v is exactly the vertices that our LCA will sim-

ulate the online algorithms on when queried about v.2 Because we cannot make any

assumptions about the original labeling of the vertices, we upper bound the size of the

relevant vicinity by defining the containing vicinity, where we assume that the worst

case always holds. That is, if two neighbors have the same level, the one that is queried

first appears before the other in the permutation. The size of the containing vicinity is

clearly an upper bound on the size of a relevant vicinity, for the same hash function.

Definition 4.3.4 (Containing vicinity). The containing vicinity of a vertex v (relative

to a hash function h : V → [L]), given that h(v) = `, is ΨL(ΨL−1(. . .Ψ`+1(Ψ`(v)) . . .)).

In other words, let S` be the `th levelhood of v, and for i ∈ {`+1, . . . , L}, Si = Ψi(Si−1).

The containing vicinity is then SL. The containing vicinity of a set of vertices U is the

union of the containing vicinities of the vertices in U .

4.3.1 Upper Bounding the Size of the Relevant Vicinity

Lemma 4.3.5. Let G = (V,E) be a d-light graph, |V | = n, and let L be a (constant)

integer such that L > 24d. Let c be such that Proposition 4.1.9 and Property 2.3.10

hold, and let κ = 2Lc log n. Let k = 6dκ, and let h be an adaptive ε-almost k-wise

independent hash function, h : V → [L]. For any adaptively exposed set of vertices

U ⊆ V , whose size is at most c log n, the relevant vicinity of U has size at most κ with

probability at least 1− 1
n4 + 1

n5 .

Corollary 4.3.6. Let the conditions of Lemma 4.3.5 hold. For any vertex v ∈ G, the

relevant vicinity of v has size at most κ with probability at least 1− 1
n4 + 1

n5 .

The following claim will help prove Lemma 4.3.5.

Claim 4.3.7. Let the conditions of Lemma 4.3.5 hold; assume without loss of gen-

erality that for all v ∈ U , h(v) = 1, and let S0 = U, S1 = Ψ1(S0), . . . , S`+1 =

2In specific cases, better implementations exist that do not need to explore the entire relevant
vicinity. For example, once an LCA for maximal independent set sees that a neighbor of the inquired
vertex is in the independent set, it knows that the inquired vertex is not (and can halt the exploration).
Nevertheless, in order not to make any assumptions on the online algorithm, we assume that the
algorithm explores the entire relevant vicinity.
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Ψ`+1(S`), . . . , SL = ΨL(SL−1). Then for all 0 ≤ i ≤ L,

Pr[|Si| ≤ 2ic log n ∧ |Si+1| ≥ 2i+1c log n] ≤ 2

n5
.

Proof. Fix i and denote the bad event for i asBi. That is, Bi ≡ |Si| ≤ 2ic log n∧|Si+1| ≥

2i+1c log n. We make the following observation:

Bi ⇒ |Si+1| > 2i+1c log n ∧ |Si+1‖i+1| >
|Si+1|

2
, (4.1)

because Si+1‖i+1 = SiF+1 \ Si. In other words, this means that if Bi occurs then the

majority of elements in Si+1 must have come from the (i+ 1)th-levelhood of Si.

For all 0 < i ≤ L let Ti = Si ∪N(Si). Define two bad events:

B1
i ≡ |Si+1| > 2i+1c log n ∧ |Ti+1| > 6d|Si+1|

B2
i ≡ |Si+1| > 2i+1c log n ∧ |Ti+1‖i+1| >

12d

L
|Si+1|

From Equation (4.1), the definition of L, and the fact that Ti+1‖i+1 = Si+1‖i+1, we get

Bi ⇒ B2
i .

By Property 2.3.10,

Pr[B1
i ] ≤ 1

n5
, (4.2)

because Si+1 is an adaptively exposed subset, Ti+1 = Si+1 ∪ N(Si+1) and the size of

Si+1 satisfies the conditions of the proposition. Given |Si+1| > 2i+1c log n, it holds that

|Ti+1| > 2i+1c log n because Si+1 ⊆ Ti+1. Also note that Ti+1 was defined based on the

value of h on elements in Ti+1 only. Therefore, the conditions of Proposition 4.1.9 hold

for |Ti+1|.

Pr[B2
i : ¬B1

i ] ≤ Pr[|Ti+1‖i+1| >
12d

L
|Si+1| : |Ti+1| ≤ 6d|Si+1|]

≤ Pr[|Ti+1‖i+1| >
2|Ti+1|
L

]

≤ 1

n5
, (4.3)

where the last inequality is due to Proposition 4.1.9,
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Because

Pr[B2
i ] = Pr[B2

i : B1
i ] Pr[B1

i ] + Pr[B2
i : ¬B1

i ] Pr[¬B1
i ],

from Equations (4.2) and (4.3), the claim follows.

Proof of Lemma 4.3.5. To prove Lemma 4.3.5, we need to show that

Pr[|SL| > 2Lc log n] <
1

n4
− 1

n5
,

We show that for 0 ≤ i ≤ L,Pr[|Si| > 2ic log n] < 2i
n5 , by induction. For the base

of the induction, |S0| = 1, and the claim holds. For the inductive step, assume that

Pr[|Si| > 2ic log n] < 2i
n5 . Then

Pr[|Si+1| > 2i+1c log n] = Pr[|Si+1| > 2i+1c log n : |Si| > 2ic log n] Pr[|Si| > 2ic log n]

+ Pr[|Si+1| > 2i+1c log n : |Si| ≤ 2ic log n] Pr[|Si| ≤ 2ic log n].

From the inductive step and Claim 4.3.7, using the union bound, the lemma follows.

From Lemma 4.3.5 and Property 2.3.10, we immediately get

Corollary 4.3.8. Let G = (V,E) be a d-light graph, where |V | = n, and let L be an

integer such that L > 24d. Let c be such that Proposition 4.1.9 and Property 2.3.10

hold, and let κ = 2Lc log n. Let k = 6dκ, and let h be an adaptive k-wise ε-almost

independent hash function. For any vertex v ∈ G, let SL be the relevant vicinity of v.

Then

Pr[|{(u,w) ∈ E | u ∈ SL}| > k] < 1/n4.

Corollary 4.3.8 essentially shows the following: Assume that G = (V,E) is a d-light

graph, and there is some function F : V → R that is computable by a neighborhood-

dependent online algorithmA. Then, in order to compute F (v) for any vertex v ∈ V , we

only need to look at a logarithmic number of vertices and edges with high probability.

Note that in order to calculate the relevant vicinity, we need to look at all the vertices

in the relevant vicinity and all of their neighbors (to make sure that we have not

overlooked any vertex). This is upper bound by the number of edges which have an

endpoint in the relevant vicinity, as the relevant vicinity is connected. Furthermore, as

we will see in Section 4.5, we would like to store the subgraph induced by the relevant

vicinity, and for this, we need to store all of the edges.



42 CHAPTER 4. REDUCING LCAS TO ONLINE ALGORITHMS

Applying a union bound over all the vertices gives that the number of probes we

need to make per query (i.e., each time the LCA is queried about a vertex) is O(log n)

with probability at least 1− 1/n3 even if we are queried about all the vertices.

4.4 Expected Size of the Relevant Vicinity

In Section 4.5, we show constructions of the subgraph induced by the relevant vicinity

whose running times and transient memory requirements are dependent on tv and

te, the size of the relevant vicinity and the number of edges adjacent to the relevant

vicinity, respectively. All the dependencies can be upper bound by O(t2e). In this

section, we prove that the expected value of t2e in a d-light graph is a constant (when

d is a constant).

Proposition 4.4.1. For any d-light graph G = (V,E) and any vertex v ∈ V , the

expected number of simple paths of length t originating from v is at most dt.

We prove a slightly more general claim, from which Proposition 4.4.1 immediately

follows (taking S in the proposition to be the empty set).

Claim 4.4.2. For any d-light graph G = (V,E), any adaptively exposed subset S ⊆ V ,

and any vertex v ∈ N(S) \ S (or any vertex v if S is empty), the expected number of

simple paths of length t originating from v and not intersecting with S is at most dt.

Proof. The proof is by induction on t. For the base of the induction, t = 0, and there

is a single simple path (the empty path). For the inductive step, let t > 0 and assume

that the claim holds for t− 1. We show that it holds for t. Given S, let S′ = S ∪ {v}.

Let a be a random variable representing the number of neighbors of v that are not in

S; that is, a = |N(v)\S|. Because G is d-light, E(a) ≤ d. Fixing a, label the neighbors

of v that are not in S by w1, w2, . . . , wa. By the inductive hypothesis (as S′ is also

adaptively exposed), for all i = 1, . . . , a, the expected number of simple paths of length

t − 1 originating from wi and not intersecting with S′ is at most dt−1. The expected

number of simple paths of length t originating from v and not intersecting with S is

therefore upper bounded by

∑
j

Pr[a = j]j · dt−1 = E[a]dt−1 ≤ dt.
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For any simple path p originating at some vertex v, we would like to determine

whether all the vertices on p are in the relevant vicinity of v. As we cannot make

any assumptions about the original labels of the vertices, we upper bound this by the

probability that the levels of the vertices on the path are non-decreasing.

Definition 4.4.3 (Legal path). We say that a path p = v ; u is legal if it is simple

and the labels of the vertices on p are in non decreasing order.

Definition 4.4.4 (Prefix-legal path). We say that a path p = v ; u of length t is

prefix-legal if it is simple, and the prefix of p of length t− 1 is legal.

Proposition 4.4.5. Let G = (V,E) be a d-light graph and let the conditions of

Lemma 4.3.5 hold. That is, k, κ = O(log n) and L > 24d. For any c > 0 there

exists a value L = O(d) for which the following holds: Let h be an adaptive k-wise

ε-almost independent hash function, h : V → [L]. For any path p of length t′ < k − 1

originating at some vertex v, the probability that p is legal is at most d−ct
′
+ ε.

Proof. For any simple path p of length t′ from v, there are |L|t′ possible values for

the levels of the vertices of p. Let the values be r0, r1, . . . , rt′−1. We define t′ + 1 new

variables a0 = r0, a1 = r1 − r0, . . . , at′−1 = rt′−1 − rt′−2, at′ = L − rt′−1. Clearly, the

ai’s uniquely define the ri’s and p is legal if and only if a0, . . . , at′ are all non-negative.

Note that the

t′∑
i=0

ai = L; hence computing the number of possible legal values of

a0, . . . , at′ is the same as computing the number of ways of placing L identical balls in

t′ + 1 distinct bins,3 where each bin represents a vertex and if there are k balls in bin

y, then ry = ry−1 + k. This is known to be
(
t′+L
t′

)
. Therefore, assuming the choices of

the levels are all uniform,

Pr[p is legal] =
1

LT

(
t′ + L

t′

)
≤
(
e(t′ + L)

Lt′

)t′
.

From the definition of ε-almost adaptive k-wise independent hash functions, we

immediately get

Pr[p is legal] ≤
(
e(t′ + L)

Lt′

)t′
+ ε.

The result follows, by selecting an appropriate value for L (dependent on c).

The following corollary is immediate, setting t′ = t− 1 in Proposition 4.4.5.

3Alternatively, one can view this as placing t′ + 1 separators between L balls.
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Corollary 4.4.6. Let G = (V,E) be a d-light graph and let the conditions of

Lemma 4.3.5 hold. That is, k, κ = O(log n) and L > 24d. For any c > 0 there

exists a value L = O(d) for which the following holds: Let h be an adaptive k-wise

almost ε-independent hash function, h : V → [L]. For any path p of length t < k

originating at some vertex v, the probability that p is prefix-legal is at most dc(1−t) + ε.

As a warm-up, we first show that the expected number of edges adjacent to a

relevant vicinity is a constant.

Lemma 4.4.7. Let G = (V,E) be a d-light graph and let the conditions of Proposi-

tion 4.4.5 hold. That is, k, κ = O(log n) and L = O(d). Let h be an adaptive k-wise

ε-almost independent hash function, h : V → [L]. Then the expected number of edges

adjacent to the relevant vicinity of a vertex in G is O(1).

Proof. Let v be any vertex, let SL be the relevant vicinity of v, and let EL be the set

of edges with at least one endpoint in SL. Let (u,w) ∈ E be any edge, and denote by

p≤k(v,u,w) the indicator random variable whose value is 1 if there exists a prefix-legal path

of length at most k from v to w whose last edge is (u,w), and 0 otherwise. Similarly,

denote by p>k(v,u,w) the random variable whose value is 1 if there exists a prefix-legal

path of length greater than k from v to w whose last edge is (u,w), and 0 otherwise.

For any (u,w) ∈ E,

Pr[(u,w) ∈ EL] ≤ Pr[p≤k(v,u,w)] + Pr[p>k(v,u,w)].
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Therefore,

E[|EL|] ≤
∑

(u,w)∈E

Pr[(u,w) ∈ EL]

≤
∑

(u,w)∈E

Pr[p≤k(v,u,w)] +
∑

(u,w)∈E

Pr[p>k(v,u,w)]

≤
∑

(u,w)∈E

Pr[p≤k(v,u,w)] + n2 Pr[|SL| > k − 1]

≤
∑

(u,w)∈E

Pr[p≤k(v,u,w)] + 1 (4.4)

≤
∑

α: paths of
length ≤k from v

Pr[path α is prefix-legal ] + 1

≤
∑
t≤k

 ∑
α: paths of

length t from v

Pr[path α is prefix-legal ]

+ 1

≤
∑
t≤k

(dt+c−ct + ε) + 1 = O(1) (4.5)

where Inequality (4.4) is due to Lemma 4.3.5, and Inequality (4.5) is due to Proposition

4.4.1 and Corollary 4.4.6.

Lemma 4.4.8. Let G = (V,E) be a d-light graph and let the conditions of Proposi-

tion 4.4.5 hold. That is, k, κ = O(log n) and L = O(d). Furthermore let c > 3 be a

constant. Let h be an adaptive k-wise ε-almost independent hash function, h : V → [L].

Denote by EL the number of edges that have at least one endpoint in the relevant vicinity

of some vertex v. Then, E[|EL|2] = O(1).

Proof. For any edge e = (u,w) ∈ E, let Ie be an indicator variable whose value is 1 if

e ∈ EL and 0 otherwise. Let I|SL|>k be an indicator variable whose value is 1 if |SL| > k

and 0 otherwise. Then

|EL|2 =

(∑
e∈E

Ie

)2

=
∑
e∈E

Ie
∑
f∈E

If
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Let p≤k(v,u,w) and p>k(v,u,w) be as in the proof of Lemma 4.4.7.

|EL|2 ≤
∑

(u,w)∈E

(p≤k(v,u,w) + p>k(v,u,w))
∑

(x,y)∈E

(p≤k(v,x,y) + p>k(v,x,y))

=
∑

(u,w)∈E

∑
(x,y)∈E

(p≤k(v,u,w) + p>k(v,u,w))(p
≤k
(v,x,y) + p>k(v,x,y))

≤
∑

(u,w)∈E

∑
(x,y)∈E

(p≤k(v,u,w)p
≤k
(v,x,y) + 3I|SL|>k−1)

≤ 3n4I|SL|>k−1 +
∑

(u,w)∈E

∑
(x,y)∈E

(p≤k(v,u,w)p
≤k
(v,x,y)). (4.6)

For every vertex u ∈ V , let σtu denote the number of simple paths from v to u of length

t, and label these paths arbitrarily by qtu(i), i = 1, 2, . . . σtu. For each path qtu(i), let

q̂tu(i) be the random variable whose value is 1 if qtu(i) is prefix-legal, and 0 otherwise.

Let Λtv denote the total number of simple paths of length t originating in v.

∑
(u,w)∈E

∑
(x,y)∈E

(p≤k(v,u,w)p
≤k
(v,x,y)) ≤

∑
w∈V

∑
t≤k

σtw∑
i=1

∑
y∈V

∑
s≤k

σsy∑
j=1

q̂tw(i)q̂sy(j)

≤ 2
∑
w∈V

∑
t≤k

σtw∑
i=1

∑
y∈V

∑
s≤t

σsy∑
j=1

q̂tw(i)q̂sy(j) (4.7)

= 2
∑
w∈V

∑
t≤k

σtw∑
i=1

q̂tw(i)
∑
y∈V

∑
s≤t

σsy∑
j=1

q̂sy(j)

≤ 2
∑
w∈V

∑
t≤k

σtw∑
i=1

q̂tw(i)
∑
s≤t

Λsy,

where Inequality (4.7) is because we order the paths by length and either path can be
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longer.

E

 ∑
(u,w)∈E

∑
(x,y)∈E

(p≤k(v,u,w)p
≤k
(v,x,y))

 ≤ 2
∑
t≤k

∑
α: paths of

length t from v

Pr[α is prefix-legal] · E

∑
s≤t

Λsy



≤ 2
∑
t≤k

dt+c−ct · E

∑
s≤t

Λsy


≤ 2

∑
t≤k

(dt+c−ct + ε)dt+1

≤ 2
∑
t≤k

(d3t+c−ct + ε′) = O(1). (4.8)

From Corollary 4.4.6 we know that we can choose an L = O(d) such that Inequality (4.8)

holds. From Inequalities (4.6) and (4.8), Lemma 4.3.5 and the linearity of expectation,

the lemma follows.

4.5 Bounding Running Time and Transient Memory

Let G = (V,E) be a d-light graph, d > 0. Let F be a search problem on V , and

assume that there exists a neighborhood-dependent online algorithm A for F . We

show how we can use the results of the previous sections to construct an LCA for F .

Given an inquiry v ∈ V , we would like to generate a permutation Π on V , build the

relevant vicinity of v relative to Π, and simulate A on these vertices in the order of Π .

Because A is neighborhood-dependent, we do not need to look at any vertices outside

the relevant vicinity in order to correctly compute the output of A on v, and so our

LCA will output a reply consistent with the execution of A on the vertices, if they

arrive according to Π. In order to simulate A on the correct order, we need to store the

relevant vicinity and label the vertices in a way that defines the ordering. We show two

ways of doing this. The first gives a better time bound, at the expense of a worse space

bound. The second gives a better space bound, at the expense of a worse time bound.

It remains an open problem whether we can achieve “the best of both worlds”- an LCA

requiring O(log n loglog n) time and transient space (or even O(log n)). We note that in

expectation, both our LCAs require O(loglog n) time and O(log n) transient memory.

We define crispness as it applies to online algorithms:

Definition 4.5.1. We say that online algorithm A is crisp if A requires time and space
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linear in its input length (where the input length is measured by the number of words),

and the output of A is O(1) per query.

Theorem 4.5.2. Let G = (V,E) be a d-light graph, where d > 0 is a constant. Let F

be a neighborhood-dependent search problem on V . Assume A is a crisp neighborhood-

dependent online algorithm that correctly computes F on any order of arrival of the

vertices. Then

1. There is an (O(log n), O(log n loglog n), O(log n), O(log2 n), 1/n)-LCA for F .

2. There is an (O(log n), O(log2 n), O(log n), O(log n loglog n), 1/n)-LCA for F .

Furthermore, both LCAs require, in expectation, O(loglog n) time and O(log n) space.

Proof. We show two methods of constructing an LCA from the online algorithm A. In

both, given a query v ∈ V , we use adjacency lists to store the containing vicinity, Ψ(v).

We use a single bit to indicate for each vertex, whether it is in the relevant vicinity,

=(v). This means that for each vertex in =(v), we keep a list of all of its neighbors, but

for vertices that are in Ψ(v) \ =(v), we don’t need to keep such a list. We denote the

number of vertices in the relevant vicinity, |=(v)|, by tv, and the total number of edges

stored by te. Note that te ≥ |Ψ(v)| − 1. This adjacency list representation of Ψ(v) is

generated slightly differently in the two constructions. In both cases we label this data

structure by D(v). For clarity, we abuse the notation, and use the same name, u, for

u ∈ V , and for the vertex which represents u in D(v).

Construction 1. The first time the LCA is invoked, it chooses a random function

h from a family of adaptive k-wise 1
2n5 -dependent hash functions as in Theorem 4.1.8

and Lemma 4.3.5. The LCA receives as an inquiry a vertex v, and computes h(v). It

then discovers the relevant vicinity using DFS. For each vertex u that it encounters, it

relabels the vertex (h(u), u). The LCA simulates A on the vertices arriving in the order

induced by the new labels.

The size of the new label for any vertex u is |(h(u), u)| = O(log n). In addition,

we need to store A(u) for every vertex u ∈ =(v) (which is O(1) because we assume

A is crisp). Overall, because |(h(u), u)| = O(log n), the space required for the LCA

is upper bounded by O((te + tv) log n + tv). From Corollary 4.3.8, tv, te = O(log n).

In expectation, by Lemma 4.4.8, E[te + tv] = O(1). This gives us the required space

bounds. To analyze the running time, we make the following observation.
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Observation 4.5.3. In Construction 1, given u ∈ D(v), we can access u ∈ V in O(1).

We look at each stage of the construction separately:

1. Constructing D(v) is done by DFS, which takes time O(tv + te), as well as the

time it takes to generate |=(v)| labels, which requires invoking h at most te times,

and, by Theorem 4.1.8, this requires O(loglog n) time per label.

2. Sorting the labels takes O(tv log tv).

3. Simulating A on =(v) now takes O(te) (since A is crisp).

Given the high probability upper bounds and expected values of tv and te, the first part

of the theorem follows. (Note that if A is not crisp in the sense that computing F (v)

is more than linear in the number of neighbors of v, this must be taken into account in

the running time.)

In the first construction method, we give each vertex a label of length O(log n). This

seems wasteful, considering we know that the expected size of the relevant vicinity is

O(1), and that its size is O(log n) w.h.p. We therefore give a more space-efficient

method of constructing the induced subgraph.

Construction 2. As in the first method, the first time the LCA is invoked, it chooses

a random function h from a family of adaptive k-wise 1
2n5 -dependent hash functions

as in Theorem 4.1.8 and Lemma 4.3.5. Again, we would like to construct the induced

subgraph of the relevant vicinity, but to save memory we will not hold the original

labels of the vertices (which require log n bits to represent), but rather new labels that

require at most loglog n bits to describe (logarithmic in the size of the relevant vicinity).

As before, the LCA receives as an inquiry a vertex v, and computes h(v). We still use

(h(v), v) to determine the ordering, however we do not commit this ranking to memory.

We initialize S = {v}, and give v the label 1. In each round i, we look at N(S), and

choose the vertex u with the highest rank (h(u), u), out of all the vertices in N(S) which

have a lower rank than their neighbor in S. We then add u to S, and give it the label

i + 1. When we have discovered the entire relevant vicinity, we simulate A on the

vertices in the reverse order of the new labels.

Note on the required data structure: To efficiently build S, we need to use a

slightly different data structure used for storing the adjacency lists than in Construc-

tion 1; in fact, we have two adjacency list data structures. The first, D1(v), contains
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only the vertices in the relevant vicinity (not vertices in Ψ(v) \ =(v)). The second,

D2(v), holds the neighbors of the vertices of S which have not yet been added to S. In

D1(v), each vertex is represented by its new label. In D2(v), each vertex is represented

only by its level. We need D2 to avoid recalculating h(u) more than once for each vertex

u. In both D1(v) and D2(v), for each edge (i, j) which represents the edge (vi, vj), we

also store the position of this edge among the edges that leave vi, and its direction of

discovery.

Correctness: Note that v is the vertex of highest rank in its relevant vicinity, and

indeed it holds by induction that at step i, the subgraph we expose will contain vertices

v1 = v, v2, . . . vi that have the highest ranking in the relevant vicinity of v (and such

that vi has the ith highest rank). This guarantees the correctness of A - the reverse

order of the labels is exactly the correct ranking of the vertices of the relevant vicinity.

Complexity: The size of the new label for any vertex u is O(log te). In addition, we

need to store, for each edge, its position relative to the edges, the edge’s direction of

discovery, and A(u) for every vertex u ∈ =(v). Because the graph is d-light, we know

that the degree of each vertex is O(log n) w.h.p., and so keeping the relative position

of each edge will require O(loglog n) bits w.h.p. Overall the space required for D1(v)

is upper bound by O((te + tv)(log te) + tv + te loglog n). The space required for D2(v)

is O(te · |L|) = O(te). From Corollary 4.3.8, and Lemma 4.4.8, we have the required

space bounds. The expected space bound is due to the length of the seed, O(log n).

Observation 4.5.4. In Construction 2, given u ∈ D1(v)∪D2(v), we can access u ∈ V

in O(tv).

Proof. Given u ∈ D1(v) (or D2(v)), we find v by DFS from u. As the edges are directed,

and D1(v) and D2(v) are acyclic, this takes O(tv). Note that the space required for

this DFS may be as much as tv loglog n, but we use that amount of space regardless.

We can store the path v ; u using the relative locations of the edges, and follow this

path on G to find u.

Similarly to Construction 1, in order to bound the complexity, we look at each stage

of the construction separately:
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1. Before we add a vertex to S, we need find the vertex u with the lowest (h(u), u)

among all vertices in Ψ(v) \ =(v). This is done by going over all of these vertices

to find the minimum, using a DFS on G and the subgraph concurrently, which

takes O(te).

2. Once we have chosen which vertex u to add to S, we update D1(v) and D2(v) to

include it. When we look at u’s neighbors, though, we don’t know whether they

are already in D1(v) or D2(v), as we don’t have pointers to the original vertices

in G. From Observation 4.5.4, though, finding this out takes O(tv) per neighbor,

and updating D1(v) and D2(v) takes a further O(1) per neighbor.

3. Because of D2(v), we only need to generate h once for each vertex in Ψ(v). This

takes O(te loglog n).

4. Reversing the order of the labels takes O(tv).

5. Simulating A on =(v) takes O(te).

Stages 3, 4 and 5 require O(te loglog n) time in total. Stage 1 accounts for O((te)
2), and

2 for O(tetv) overall. Lemma 4.4.8 gives the required expected time bound. Note that

we have not discounted the possibility that A requires the original labels (or “names”)

of the vertices, in order to compute F (v). When we encounter a vertex, we can always

give A the name of the vertex by exploring the original representation of the graph

(the additional time needed is bounded by the time already invested).

The worst case running time and space of the LCA are O(log2 n) and

O(log n loglog n) respectively (w.h.p.). (Note that if A is not crisp in the sense that

|F (v)| is not a constant, this must be taken into account in the space bounds.)

Our results immediately extend to the case that d = O(loglog n):

Theorem 4.5.5. Let G = (V,E) be a d-light graph, where d = O(loglog n). Let F

be a neighborhood-dependent search problem on V . Assume A is a crisp neighborhood-

dependent online algorithm that correctly computes F on any order of arrival of the ver-

tices. Then there is an (O(polylog n), O(polylog n), O(polylog n), O(polylog n), 1/n)-

LCA for F .

Next we show that the techniques of the paper thus far do not hold for graphs where

the expected degree is ω(loglog n), and so the results of this section are, in this sense,

tight.
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4.6 Tightness with Respect to d-light Graphs

Our results hold for d-light graphs where d = O(loglog n). We show that at least, using

the technique of simulating an online algorithm on a random ordering of the vertices, we

cannot do better. We do this by showing that the expected relevant vicinity of the root

of a complete binary tree of a d-regular graph is Ω(2d/2), and hence for d = ω(loglog n),

the expected size will be super-polylogarithmic.

Lemma 4.6.1. Let T be a complete d-regular binary tree rooted at v, and let Π be a

uniformly random permutation on the vertices. The expected size of the relevant vicinity

of v relative to Π is at least 2d/2.

Proof. Let X` be a random variable for the number of vertices on level ` of the tree that

are in the relevant vicinity. There are exactly d` vertices on level `. The probability

that each one is in the relevant vicinity is at least 1
`! , as this is the probability when

the permutation on the vertices is truly random.

E[X`] ≥
d`

`!
≥
(
d

`

)`
Taking ` = d/2 gives that E[X`] ≥ 2d/2.



Chapter 5

Approximate Maximum

Matching

In this chapter, we use our results from the previous section to give a local computation

approximation scheme for maximum matching on graphs of bounded degree. That is,

we give an LCA that for any ε > 0, computes a maximal matching that is a (1 − ε)-

approximation to the maximum matching. This chapter is based mostly on [68]. We

note that the proofs here are considerably shorter than those of [68], as we use the

newer techniques of Chapter 4. We also note that the results of this chapter have been

improved upon: Even et al. [29] give a deterministic LCA that computes a maximal

matching and requires O(log∗ n) probes.

5.1 Preliminaries

For an undirected graph G = (V,E), a matching is a subset of edges M ⊆ E such that

no two edges e1, e2 ∈ M share a vertex. We denote by M∗ a matching of maximum

cardinality. An augmenting path with respect to a matching M is a simple path whose

endpoints are free (i.e., not part of any edge in the matching M), and whose edges

alternate between E \M and M . A set of augmenting paths P is independent if no two

paths p1, p2 ∈ P share a vertex.

For sets A and B, we denote A⊕B def
= (A∪B)\ (A∩B). An important observation

regarding augmenting paths and matchings is the following.

Observation 5.1.1. If M is a matching and P is an independent set of augmenting

paths, then M ⊕ P is a matching of size |M |+ |P |.

53
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In the distributed setting, Itai and Israeli [48] showed a randomized algorithm that

computes a maximal matching (which is a 1/2-approximation to the maximum match-

ing) and runs in O(log n) time with high probability. This result has been improved

several times since (e.g., [24, 45]); of particular relevance is the approximation scheme

of Lotker et al. [62], which, for every ε > 0, computes a (1 − ε)-approximation to the

maximum matching in O(log n) time. Kuhn et al. [55] proved that any distributed

algorithm, randomized or deterministic, requires (in expectation) Ω(
√

log n/ log log n)

time to compute a Θ(1)-approximation to the maximum matching, even if the message

size is unbounded.

Our algorithm is, in essence, an implementation of the abstract algorithm of Lotker

et al. [62]. Their algorithm, relies on several interesting results due to Hopcroft and

Karp [46]. The algorithm of Even et al. [29] is a similar implementation of Hopcroft

and Karp’s algorithm; it has a probe complexity of O(log∗ n), and is deterministic.

5.2 Distributed Maximal Matching

While the main result of Hopcroft and Karp [46] is an improved time complexity match-

ing algorithm for bipartite graphs, they show the following useful lemmas for general

graphs. The first lemma shows that if the current matching has augmenting paths of

length at least `, then using a maximal set of augmenting paths of length ` will result

in a matching for which the shortest augmenting path is strictly longer than `.

Lemma 5.2.1. [46] Let G = (V,E) be an undirected graph, and let M be some matching

in G. If the shortest augmenting path with respect to M has length ` and Φ is a maximal

set of independent augmenting paths of length `, the shortest augmenting path with

respect to M ⊕ Φ has length strictly greater than `.

The second lemma shows that if there are no short augmenting paths then the

current matching is approximately optimal.

Lemma 5.2.2. [46] Let G = (V,E) be an undirected graph. Let M be some matching

in G, and let M∗ be a maximum matching in G. If the shortest augmenting path with

respect to M has length 2k − 1 > 1 then |M | ≥ (1− 1/k)|M∗|.

Lotker et al. [62] gave the following abstract approximation scheme for maximal
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matching in the distributed setting.1 Start with an empty matching. In stage ` =

1, 3, . . . , 2k− 1, add a maximal independent collection of augmenting paths of length `.

For k = d1/εe, by Lemma 5.2.2, we have that the matching M` is a (1−ε)-approximation

to the maximum matching.

In order to find such a collection of augmenting paths of length `, we need to define

a conflict graph:

Definition 5.2.3. [62] Let G = (V,E) be an undirected graph, let M ⊆ E be a match-

ing, and let ` > 0 be an integer. The `-conflict graph with respect to M in G, denoted

CM (`), is defined as follows. The nodes of CM (`) are all augmenting paths of length

`, with respect to M , and two nodes in CM (`) are connected by an edge if and only if

their corresponding augmenting paths intersect at a vertex of G.2

We present the abstract distributed algorithm of [62], AbstractDistribut-

edMM.

Algorithm 3: AbstractDistributedMM

Input : G = (V,E) and ε > 0
Output: A matching M

1 M−1 ← ∅ ; // M−1 is the empty matching

2 k ← d1/εe ;
3 for ` = 1, 3, . . . , 2k − 1 do
4 Construct the conflict graph CM`−2

(`) ;
5 Let I be an MIS of CM`−2

(`) ;
6 Let Φ(M`−2) be the union of augmenting paths corresponding to I ;
7 M` ←M`−2 ⊕ Φ(M`−2) ; // M` is matching at the end of phase `

8 Output M`; // M` is a (1− 1
k+1)-approximate maximum matching

Note that for M`, the minimal augmenting path is of length at least ` + 2. This

follows since Φ(M`−2) is a maximal independent set of augmenting paths of length

`. When we add Φ(M`−2) to M`−2, to get M`, by Lemma 5.2.1 all the remaining

augmenting paths are of length at least ` + 2 (recall that augmenting paths have odd

lengths).

Lines 4 - 7 do the task of computing M` as follows: the conflict graph CM`−2
(`) is

constructed and an MIS, Φ(M`−2), is found in it. Φ(M`−2) is then used to augment

1This approach was first used by Hopcroft and Karp in [46]; however, they only applied it efficiently
in the bipartite setting.

2Notice that the nodes of the conflict graph represent paths in G. Although it should be clear from
the context, in order to minimize confusion, we refer to a vertex in G by vertex, and to a vertex in the
conflict graph by node.
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M`−2, to give M`.

We would like to simulate this algorithm locally. Our main challenge is to sim-

ulate Lines 4 - 7 without explicitly constructing the entire conflict graph CM`−2
(`).

To do this, we will simulate the online greedy MIS algorithm. When simulating

GreedyMIS on the conflict graph CM (`) = (VCM , ECM ), we only need a subset of

the nodes, V ′ ⊆ VCM . Therefore, there is no need to construct CM (`) entirely; only

the relevant subgraph need be constructed. By Theorem 4.5.2, we know there is an

(O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-LCA for MIS on the conflict graph.

5.2.1 LCA for Maximal Matching

Our main result for this chapter is the following theorem:

Theorem 5.2.4. Let G = (V,E) be a graph of bounded degree d. Then there exists

an (O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-LCA that, for every ε > 0, computes

a maximal matching that is a (1− ε)-approximation to the maximum matching.

We present our algorithm for maximal matching - LocalMM, and analyze it. The

pseudocode for LocalMM (Algorithm 4) appears in Section 5.4. In contrast to the

distributed algorithm, which runs iteratively, LocalMM is recursive in nature. In each

iteration of the for in Algorithm AbstractDistributedMM, a maximal matching

M`, is computed, where M` has no augmenting path of length less than `. We call each

such iteration a phase, and there are a total of k phases: 1, 3, . . . 2k − 1. To find out

whether an edge e ∈ E is in M`, we recursively compute whether it is in M`−2 and

whether it is in Φ(M`−2), a maximal set of augmenting paths of length `. We use the

following simple observation to determine whether e ∈ M`. The observation follows

since M` ←M`−2 ⊕ Φ(M`−2).

Observation 5.2.5. Edge e ∈M` if and only if it is in either in M`−2 or in Φ(M`−2),

but not in both.

Recall that LocalMM receives an edge e ∈ E as a query, and outputs “yes/no”. To

determine whether e ∈M2k−1, it therefore suffices to determine, for ` = 1, 3, . . . , 2k−3,

whether e ∈M` and whether e ∈ Φ(M`).

We will outline our algorithm by tracking a single query. (The initialization

parameters will be explained at the end.) When queried on an edge e, LocalMM

calls the procedure IsInMatching with e and the number of phases k. For clarity, we
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sometimes omit some of the parameters from the descriptions of the procedures.

Procedure 6: IsInMatching determines whether an edge e is in the matching M`.

To determine whether e ∈ M`, IsInMatching recursively checks whether e ∈ M`−2,

by calling IsInMatching(`−2), and whether e is in some path in the MIS Φ(M`−2) of

CM`−2
(`). This is done by generating all paths p of length ` that include e, and calling

IsPathInMIS(p) on each. IsPathInMIS(p) checks whether p is an augmenting path,

and if so, whether it in the independent set of augmenting paths. By Observation

5.2.5, we can compute whether e is in M` given the output of the calls.

Procedure 7: IsPathInMIS receives a path p and returns whether the path is in

the MIS of augmenting paths of length `. The procedure first computes all the relevant

augmenting paths (relative to p) using RelevantPaths (the relevant augmenting

paths are all the paths of length ` that our LCA needs to consider in order to decide

whether p is in the MIS). Given the set of relevant paths (represented by nodes) and

the intersection between them (represented by edges) we simulate GreedyMIS on this

subgraph. The resulting independent set is a set of independent augmenting paths.

We then just need to check if the path p is in that set.

Procedure 9: RelevantPaths receives a path p and returns all the relevant aug-

menting paths relative to p. The procedure returns the subgraph of CM`−2
(`), C =

(VC , EC), which includes p and all the relevant nodes. These are exactly the nodes

needed for the simulation of GreedyMIS, given the order induced by seed s`. The set

of augmenting paths VC is constructed iteratively, by adding an augmenting path q if

it intersects some path q′ ∈ VC and arrives before it (i.e., r(q, s`) < r(q′, s`)). In order

to determine whether to add path q to VC , we need first to test if q is indeed a valid

augmenting path, which is done using IsAnAugmentingPath.

Procedure 10: IsAnAugmentingPath tests if a given path p is an augmenting

path. It is based on the observation that p is an augmenting path with respect to a

matching M if and only if all odd numbered edges are not in M , all even numbered
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edges are in M , and both the vertices at the ends of p are free.

Given a path p of length `, to determine whether p ∈ CM`−2
(`), IsAnAugment-

ingPath(`) determines, for each edge in the path, whether it is in M`−2, by calling

IsInMatching(` − 2). It also checks whether the end vertices are free, by calling

Procedure IsFree(`), which checks, for each vertex, if any of its adjacent edges are in

M`−2.Thus, IsAnAugmentingPath(`) correctly determines whether p is an augment-

ing with respect to M`−2.

We end by describing the initialization procedure Initialize, which is run only once,

during the first query. The procedure sets the number of phases to d1/εe. It is important

to set a different seed s` for each phase `, since the conflict graphs are unrelated (and

even the size of the description of each node, a path of length `, is different). The

lengths of the k seeds, s1, s3, . . . , s2k−1, determine our memory requirement.

5.3 Bounding the Complexity

In this section we prove Theorem 5.2.4. We start with the following observation:

Observation 5.3.1. In any graph G = (V,E) with bounded degree d, each edge e ∈ E

can be part of at most `(d − 1)`−1 paths of length `. Furthermore, given e, it takes at

most O(`(d− 1)`−1) time to find all such paths.

Remark 5.3.2. This observation does not hold for d-light graphs. If there are q ver-

tices of degree log n that are close to each other in the graph, their adjacent edges

can be part of logq n paths. It is easy to verify, though, that the algorithm is a

(O(polylog n), O(polylog n), O(polylog n), O(polylog n), 1/n)-LCA on d-light graphs.

Proof of Observation 5.3.1. Consider a path p = (e1, e2, . . . , e`) of length `. If p in-

cludes the edge e, then e can be in one of the ` positions. Given that ei = e, there

are at most d − 1 possibilities for ei+1 and for ei−1, which implies at most (d − 1)`−1

possibilities to complete the path to be of length `.

Observation 5.3.1 yields the following corollary.

Corollary 5.3.3. The `-conflict graph with respect to any matching M in G = (V,E),

CM (`), consists of at most `(d − 1)`−1|E| = O(|V |) nodes, and has maximal degree at

most d(`+ 1)`(d− 1)`−1.
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Proof. (For the degree bound.) Each path has length `, and therefore has `+1 vertices.

Each vertex has degree at most d, which implies d(`+1) edges. Each edge is in at most

`(d− 1)`−1 paths.

Our main task will be to compute a bound on the number of recursive calls. First,

let us summarize a recursive call. The only procedure whose runtime depends on the

order induced by s` is RelevantPaths, which depends on the number of vertices VC

(which is a random variable depending of the seed s`). To simplify the notation we

let ξ` = d(` + 1)`(d − 1)`−1 and define the random variable X` = ξ`|VC |. Technically,

GreedyMIS also depends on VC , but its running time is dominated by the running

time of RelevantPaths.

Calling procedure Called Procedures

IsInMatching(`) 1× IsInMatching(`− 2) and

`(d− 1)`−1× IsPathInMIS(`)

IsPathInMIS(`) 1× RelevantPaths(`) and 1× GreedyMIS

RelevantPaths(`) X`× IsAnAugmentingPath(`)

IsAnAugmentingPath(`) `× IsInMatching(`− 2) and 2× IsFree(`)

IsFree(`) (d− 1)× IsInMatching(`− 2)

Table 5.1: Number of calls from each procedure

From the table, it is easy to deduce the following proposition.

Proposition 5.3.4. IsAnAugmentingPath(`) generates at most ` + 2(d − 1) calls

to IsInMatching(` − 2), and therefore at most (` + 2d − 2) · `(d − 1)`−1 calls to

IsPathInMIS(`− 2).

We would like to bound X`, the number of calls to IsAnAugmentingPath(`)

during a single execution of IsPathInMIS(G, p, `, S). |VC | is exactly the size of the

relevant vicinity of p in CM`−2
(`).

Denote by f` the number of calls to IsAnAugmentingPath(`) during one execu-

tion of LocalMM. Let f =
∑2k−1

`=1 f`.
3 The base cases of the recursive calls LocalMM

makes are IsAnAugmentingPath(1) (which always returns TRUE). As the execution

of each procedure of LocalMM results in at least one call to IsAnAugmentingPath,

3For all even `, let f` = 0.
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f (multiplied by some small constant) is an upper bound to the total number of com-

putations made by LocalMM.

We prove the following:

Proposition 5.3.5. For every 1 ≤ ` ≤ 2k−1, there exist a constant c`, which depends

only on d, such that

Pr[f` > c` log n] ≤ 2k − `
n4

.

Proof. The proof is by induction. For the base of the induction, we have, from

Corollary 4.3.6, that there exists an absolute constant c2k−1, which depends only on

d, such that

Pr[f2k−1 > c2k−1 log n] ≤ 1

n4
.

For the inductive step, we use the law of total probability:

Pr[fi > ci log n] =[fi > ci log n|fi+1 ≤ ci+1 log n] Pr[fi+1 ≤ ci+1 log n]

+ [fi > ci log n|fi+1 > ci+1 log n] Pr[fi+1 > ci+1 log n]

≤[fi > ci log n|fi+1 ≤ ci+1 log n] + Pr[fi+1 > ci+1 log n]

≤ 1

n4
+

2k − i− 1

n4
(5.1)

=
2k − i
n4

where Inequality (5.1) is due to Corollary 4.3.8 and the inductive hypothesis.

Taking a union bound over all k levels immediately gives

Lemma 5.3.6. There exists a constant c, which depends only on d and ε, such that

Pr[f > c log n] ≤ 1

n3
.

Proof of Theorem 5.2.4. Using Lemma 5.3.6, and taking a union bound over all possible

queried edges gives us that with probability at least 1 − 1/n, LocalMM will require

at most O(log n) probes to G. Therefore, for each execution of LocalMM, we require

at most O(log n)-independence for each conflict graph, and therefore, from Theorem

4.1.8, we require d1/εe seeds of length O(log n), which upper bounds the space required

by the algorithm. The time required is upper bound by the time required to compute
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r(p) for all the required nodes in the conflict graphs, which is O(log2 n).

5.4 Pseudocode

Algorithm 4: LocalMM

Input : G = (V,E), e ∈ E and ε > 0
Output: yes/no

Seed S ;
if this is the first execution of LocalMM then

(S, k)← Initialize(G, ε) ;

Return IsInMatching(G, e, 2k − 1,S).

Procedure 5: Initialize(G = (V,E), ε)

// This is run only at the first execution

n← |V | ;
k ← d1/εe ;
for `← 1, 3, . . . 2k − 1 do

Generate an almost O(log n)-wise independent seed S` of length O(log n) ;

S =
⋃
`

S` ;

Return (S, k) ;

Procedure 6: IsInMatching(G, e, `, S)

if ` = −1 then // The empty matching
Return false

b1 ← IsInMatching(G, e, `− 2, S) ;
b2 ← false ;
P ← {p ∈ G : e ∈ p ∧ |p| = `} ;
for all p ∈ P do

if IsPathInMIS(G, p, `, S) then
b2 ← true ;

Return b1 ⊕ b2 ;
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Procedure 7: IsPathInMIS(G, p, `, S)

C ← RelevantPaths(G, p, `, S) ; // C is a subgraph of CM`−2
(`)

I ← Greedy MIS (C, π(C, s`)) ;
Return (v ∈ I) ;

Procedure 8: IsFree(G, v, `, S)

IsFreeVertex ← true ;
for all u ∈ N(v) do // All edges touching v

if IsInMatching(G, (u, v), `− 2,S) then
IsFreeVertex ← false ;

Return IsFreeVertex ;

Procedure 9: RelevantPaths(G, p, `, S)

Initialize C = (VC , EC)← (∅, ∅) ;
if IsAnAugmentingPath(G, p, `,S) then

VC ← {p} ;

else
Return C ;

while ∃p ∈ VC : (p, p′) ∈ EC , r`(p′, s`) < r`(p, s`) do
if IsAnAugmentingPath(G, p′, `,S) then

VC ← p′ ;
for all p′′ ∈ N(p′) do // Edges between p′ and vertices in VC

if p′′ ∈ VC then
EC ← (p′, p′′) ;

Return C ;
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Procedure 10: IsAnAugmentingPath(G, p, `, S)

// Checks that p is an augmenting path.

if ` = 1 then // all edges are augmenting paths of the empty matching

Return TRUE ;

Let p← (e1, e2, . . . , e`), with end vertices v1, v`+1 ;
IsPath ← true ;
for i = 1 to ` do

if i (mod 2) = 0 then // All even numbered edges should be in the

matching

if ¬IsInMatching(G, ei, `− 2,S) then
IsPath ← false ;

if i (mod 2) = 1 then // No odd numbered edges should be in the

matching

if IsInMatching(G, ei, `− 2,S) then
IsPath ← false ;

if (¬IsFree(G, v1, `,S)∨ ¬IsFree(G, v`+1, `,S)) then
IsPath ← false ; // The vertices at the end should be free

Return IsPath ;



Chapter 6

Constant-Time LCAs

In this chapter we give constant-time, constant-probe LCAs to the following graph

problems, assuming graphs with constant maximal degree.

• Graphic Matroids. Given a weighted graph, the task is to find an acyclic edge

set (forest) of approximately the maximum possible weight. In the corresponding

LCA, a query specifies an edge, and the algorithm says whether the given edge

is in the solution forest. We present a deterministic (1− ε)-approximate LCA for

graphic matroids, whose running time and space are independent of the size of

the matroid (see Section 4.1 for formal definitions).

• Integer Multi-Commodity Flow (IMCF) and Multicut on Trees. Given a tree with

capacitated edges and source-destination pairs, the goal of IMCF is to route the

greatest possible total flow where each pair represents a different commodity,

subject to edge capacity constraints. Multicut is the dual problem where the goal

is to pick an edge set of minimal total capacity so that no source can be connected

to its destination without using a selected edge. We give a deterministic LCA

for IMCF and multicut on trees that runs in constant time and gives a (1/4)-

approximation to the optimal IMCF and a 4-approximation to the minimum

multicut. We also give a randomized LCA to IMCF, with constant running time,

very little enduring memory (less than a word), and expected approximation ratio

1
2 − ε for any constant ε > 0.

• Weighted Matching. Given a weighted graph, we would like to approximate the

maximum weight matching. We design a deterministic reduction from any (pos-

sibly randomized) LCA A for unweighted matching with approximation ratio α

64
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to weighted matching with approximation ratio α/8. Our reduction invokes A

a constant number of times. Both the running time and approximation ratio

are independent of the magnitude of the edge weights. We also give a constant-

time 1/2 - approximation algorithm to maximum cardinality matching, however

its enduring memory requirement is O(log n). Combining these results gives a

constant-time 1/16 - approximation algorithm to maximum weighted matching.

It is not currently known whether there exists an approximation algorithm to

maximum matching that requires constant time and memory. It is interesting

to compare these results to those of Even et al. [29]. They give a (1 − ε) ap-

proximation LCA to weighted matchings on graphs of constant bounded degree;

its probe complexity is O(log∗ n log (wmax − wmin)), where wmax and wmin are

the weights of the heaviest and lightest edges respectively (or O(log∗ n log n) if

wmax−wmin > n). Our reduction gives a worse approximation ratio, but removes

the dependence on n of the running time.

This chapter is based on [66].

6.1 Graphic Matroids

Definition 6.1.1. A matroid M = (E, I) is an ordered pair, where E is a finite set

of elements (called the ground set), and I is a family of subsets of E, (called the

independent sets), which satisfies the following properties:

1. ∅ ∈ I,

2. If X ∈ I and Y ⊆ X then Y ∈ I,

3. If X,Y ∈ I and |Y | < |X| then there is an element e ∈ X such that Y ∪ {e} ∈ I.

For a more comprehensive introduction to matroids, we refer the reader to [84].

In this section we consider the problem of finding the maximum weight basis of a

graphic matroid, defined as follows.

Definition 6.1.2 (Graphic matroid). A graphic matroid is a matroid whose indepen-

dent sets are forests in an undirected graph.

We are given a graphic matroidM = (E , I), and would like to find an independent

set of (approximately) maximal weight. In graph terminology, we are given a graph
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G = (V,E), with non-negative edge weights, w : E → R+; we would like to find an

acyclic set of edges of (approximately) maximal weight. That is, we seek a forest whose

weight is close to the weight of a maximal spanning tree (MaxST). Without loss of

generality, we assume edge weights are distinct, as it is always possible to break ties by

ID. Recall that when the edge weights are distinct, there is a unique MaxST.

We first describe a parallel algorithm for finding a MaxST in a graph, and then

explain how to adapt it to an LCA. Our parallel algorithm is less efficient than others

(say, the Bor̊uvka’s algorithm [77]), but adapting it to an LCA is easy, and proving it

correct, or analyzing its local properties, are simple.

We first need a few definitions. Define the distance between a vertex v and an edge

e = (u,w), denoted dist(v, e), to be min{dist(v, u), dist(v, w)}.

Definition 6.1.3 (Connected component, Truncated CC). Let G = (V,E) be a simple

undirected graph. For a vertex v ∈ V , and a subset of edges S ⊆ E, the connected

component of v with respect to S is CCS(v) ⊆ S which includes the edges e ∈ S that

have a path from e to v using only edges in S. (Note that CCS(·) induces a partition of

S.) The k-truncated connected component of v is the set of all vertices in the connected

component of v at distance at most k from v (w.r.t. G). We denote it by kTCCS(v).

Algorithm 11 works as follows. We maintain a forest S, initially empty. For any

vertex v, denote Γkv = kTCCS(v). In round k, vertex v considers the cut (Γkv , V \ Γkv)

and adds the heaviest edge of the cut, say e, to S. (Note that k is both the round

number and the radius parameter of the truncated connected component.) In contrast

to many MaxST algorithms, an edge can be considered more than once, and it is

possible that an edge e is considered—and even added—when it is already in S (if we

add e to S when e ∈ S, S remains the same).

6.1.1 Correctness of Algorithm 11

The correctness of Algorithm 11 relies on the so-called “blue rule” [103].

Lemma 6.1.4 ([103]). Let C be any cut of the graph. Then the heaviest edge in C

belongs to MaxST.

Corollary 6.1.5. All edges added to S by algorithm 11 are in MaxST.

Corollary 6.1.5 establishes the correctness of Algorithm 11.
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Algorithm 11: Parallel (CREW) MaxST Approximation Algorithm.

Input : G = (V,E) with weight function w : E → R+, ε > 0
Output: a forest S
// assume all edge weights are distinct

For all v ∈ V , Sv = ∅;
for round k = 0 to 1/ε do

For each vertex v, let Γkv = kTCCS(v) ;
for all vertices v ∈ V in parallel do

if e is the heaviest edge of the cut (Γkv , V \ Γkv) then
Sv = Sv ∪ {e};

Return S =
⋃
v∈V Sv.

6.1.2 Approximation Guarantee

We now turn to analyze the approximation ratio of Algorithm 11. To this end, define

Sk to be the set of edges of MaxST that were added to S in rounds 1, 2, . . . , k (implying

that Sk ⊆ Sk+1). Let Rk = MaxST \Sk.

Consider the component tree of MaxST, defined as follows: the node set is

{CCSk(v) | v ∈ V }, and the edge set is {(CCSk(v), CCSk(u)) | (v, u) ∈ Rk}. In words,

there is a node in the component tree for each connected component of Sk, and there

is an edge in the component tree iff there is an edge in Rk connecting nodes in the

corresponding components. We choose an arbitrary component as the root of the com-

ponent tree, and direct all the edges towards it; this way, each edge e ∈ Rk is outgoing

from exactly one connected component of Sk. We denote this component by CCke .

Note that CCie ⊆ CCje for i < j because components only grow. For any set of edges

S, let w(S) =
∑

e∈S w(e).

The following proposition is the key to the analysis.

Proposition 6.1.6. For any k ≥ 1, ∀e ∈ Rk, w(e) ≤ w(CCke )
k .

Proof. If Rk is empty, the claim holds trivially. Let e = (v, u) be any edge in Rk

(directed from v to u). Edge e was not chosen by vertex v in rounds 1, . . . , k. For

i ∈ [k], let ei be the edge chosen by v in round i. It suffices to show that (1) all edges

ei are heavier than e, i.e. ∀i ∈ [k], w(ei) > w(e), and that (2) the edges ei are distinct,

i.e., ∀i, j ∈ [k], i 6= j ⇒ ei 6= ej .

The proof of (1) is straightforward: e was in the cut (Γiv, V \Γiv) in all rounds i ∈ [k],

but it was never chosen. This must be because v chose a heavier edge in each round.
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Figure 6.1: The situation considered in the proof of Proposition 6.1.6, for k = 2. The
edge e = (u, v) is in Rk. Solid edges are in S, dashed edges are in E \ S. The shaded
area represents CC2

e , and the dotted arc represents the distance 2 range. Edges marked
by ? are considered by v in round 2.

To prove (2), we show by induction that ei is distinct from {e1, e2, . . . , ei−1}. The

base of the induction is trivial. For the inductive step, consider the two possible cases.

If ei /∈ CCi−1
e , then clearly, ei cannot be any edge that was previously added. And if

ei ∈ CCi−1
e , then ei must be at distance exactly i from v, otherwise it would not have

been in the cut (Γiv, V \ Γiv) and could not have been added. But e1, . . . , ei−1 are all at

distance at most i− 1 (w.r.t. G).

Corollary 6.1.7. For k ≥ 0, w(Rk) ≤ w(Sk)
k .

Proof.

w(Rk) =
∑
e∈Rk

w(e)

≤
∑
e∈Rk

w(CCke )

k
by Prop. 6.1.6

≤ w(Sk)
k

e 6= e′ ⇒ CCke 6= CCke′ , and
⋃
e∈Rk

CCke ⊆ Sk

This enables us to prove our approximation bound. Denote the weight of MaxST
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by OPT.

Lemma 6.1.8. w(Sk) ≥ (1− 1
k+1)OPT.

Proof. As Rk = MaxST \Sk,

w(Sk)
OPT

=
w(Sk)

w(Sk) + w(Rk)
≥ w(Sk)
w(Sk) + w(Sk)/k

=
k

k + 1
,

where the inequality is due to Corollary 6.1.7.

This concludes the analysis of Algorithm 11. We now describe the LCA we derive

from it.

6.1.3 Implementation and Complexity Analysis

Given a graph G = (V,E) and a query e = (u, v) ∈ E, the implementation of Algo-

rithm 11 as an LCA is as follows. Consider iteration k of Algorithm 11. Probe G to

discover N2k(u) and N2k(v). Simulate Algorithm 11 on all vertices in Nk(u) ∪Nk(v)

for k rounds. In each round i, for each node s ∈ Nk(u)∪Nk(v), the algorithm computes

Γiv = iTCCS(v), finds the heaviest edge e in the cut (Γiv, V \ Γiv), and adds it to the

solution. This gives the following lemma.

Lemma 6.1.9. The time required to simulate the execution of Algorithm 11 for k

rounds as an LCA is kdO(k), and the probe complexity is dO(k).

Proof. The time to discover N2k(v) ∪ N2k(u) by probing the graph is bounded by

dO(k). Each vertex in z ∈ Nk(v) ∪Nk(u) executes Algorithm 11 k rounds: in round j,

it constructs Sz, by exploring N j(z) ⊆ N2k(v) ∪N2k(u). Overall, the time complexity

is dO(k) +
∑

z∈Nk(v)∪Nk(u)

k|Nk(z)| = kdO(k).

Combining Lemmas 6.1.8 and 6.1.9 gives the following result.

Theorem 6.1.10. Let G be a graph whose degree is bounded by d. For every ε > 0,

there exists a deterministic (dO(1/ε), 1
εd
O(1/ε), 0, 1

εd
O(1/ε), 0)-LCA, that computes a forest

whose weight is a (1− ε)-approximation to the maximal spanning tree of G.



70 CHAPTER 6. CONSTANT-TIME LCAS

6.2 Multicut and Integer Multicommodity Flow in Trees

In this section we consider the integer multicommodity flow (IMCF) and multicut prob-

lems in trees. While simple, our LCAs demonstrate how, under some circumstances,

one can find constant-time LCAs for apparently global problems.

The input is an undirected graph G = (V,E) with a positive integer capacity c(e)

for each e ∈ E, and a set of pairs of vertices {(s1, t1), . . . , (sk, tk)}. (The pairs are

distinct, but the vertices are not necessarily distinct.)

In the Integer Muticommdity Flow Problem, the goal is to route commodity i from

si to ti so as to maximize the sum of the commodities routed, subject to edge capacity

constraints. Note that in a tree, the only question is how much to route: the route

is uniquely determined anyway. In the dual Multicut Problem, the goal is to find a

minimum capacity multicut, where a multicut is an edge set that separates si from ti

for all 1 ≤ i ≤ k.

We make the following assumptions about the input to allow for appropriately

bound the time and space complexity of the algorithms. First, we assume that in the

given tree each node has at most d = O(1) children, and that T is rooted in the sense

that the depth of each vertex is known and is part of the properties that are found by

querying the vertex. Second, we assume that the distances from si to ti are bounded

by some given parameter `; i.e., ∀i,dist(si, ti) ≤ `. Our bounds will be a function of

`, so that if ` is independent of tree size, then so are the time and space complexity of

our algorithms.

As before, we adapt a classical algorithm to an LCA. This time we use the algorithm

of Garg et al. [36] (Algorithm 12) as a subroutine.

Algorithm 12: Multicut and IMCF in trees [36, 107]

Input : A rooted tree T
Output: a flow f and a cut D

Initialize f = 0, D = ∅;
for each vertex v in nonincreasing order of depth do

for each pair (si, ti) s.t. lowest common ancestor(si, ti) = v, do
Greedily route flow from si to ti if possible;
Add all saturated edges to D in arbitrary order;

Let e1, . . . , ek be the ordered list of edges in D;
for j = k down to 1 do

If D − {ej} is a multicut, then remove ej from D.;
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Theorem 6.2.1 ([107]). Algorithm 12 achieves approximation factors of 2 for the

multicut problem and 1/2 for the IMCF problem on trees.

Our deterministic LCA is detailed in Algorithm 13. It finds a (4+ε)-approximation

to the multicut problem, and in trees with minimum capacity cmin ≥ 2, the same

algorithm finds an IMCF with approximation factor bcmin/2c
2cmin

≥ 1
6 .1 We also present a

randomized Algorithm (Algorithm 14), that gives an approximation factor of (1
2 − ε)

to IMCF for any desired ε > 0 (the running time depends on 1/ε). The algorithms

are similar, in that they partition the tree to subtrees and apply Algorithm 12 to each

subtree. The randomized algorithm requires a very small amount of enduring memory,

namely O(log(`/ε)) bits.

6.2.1 Deterministic LCA

We first describe the deterministic LCA. An edge is said to be at depth z if it connects

vertices at depths z−1 and z. The deterministic algorithm (Algorithm 13) for multicut

is as follows. We consider two overlapping decompositions of the tree into subtrees of

height 2`: the first decomposition is obtained by removing all edges at depth k` for

even values of k, and the second is by removing all edges at depth k` for odd values of

k. Now, given an edge e, we run Algorithm 12 on the subtrees that contain e (there

is at least one such tree and at most two). Let the output of the “even” instance be

De, and the output of the “odd” instance be Do. The output is De ∪Do. Correctness

follows from the fact that each (si, ti) pair is completely contained in (at least) one

of the subtrees by the assumption that dist(si, ti) ≤ `. Regarding the approximation

ratio, recall that by Theorem 6.2.1, the capacity of each of De, Do is no larger than

twice the minimum multicut capacity, the capacity in the overall output is at most 4

times that of the minimal capacity multicut.

To obtain a feasible flow, we start by splitting the capacity of each edge e ∈ D

between the subtrees it is a member of, such that in each subtree there are at least b ce2 c

capacity units. This is possible because each edge is a member in at most 2 subtrees.

Now, given a query e to the LCA, we run Algorithm 12 on the trees e is a member

of, obtaining flow values ~fe(e) for the “even” subtree and ~fo(e) for the “odd” subtree.

The LCA outputs ~fe(e) + ~fo(e).

1The ratio is 1
4

when all capacities are even, and it tends to 1
4

as cmin → ∞. For cmin = 1 the
approximation ratio is 0.
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Algorithm 13: Deterministic LCA for Multicut in Trees

Input : A graph G = (V,E), with c : E → Z+, and ` > 0

Output : A multicut D

Set h = 2`;

Step 1.

Delete all edges at depth k`, for odd k;

On each remaining subtree Ti, run Algorithm 12;

Let Di be the multicut returned on T i;

Let Do = ∪iDi;

Step 2.

Delete all edges at depth k`, for even k;

On each remaining subtree Ti, run Algorithm 12;

Let Dj be the multicut returned on T j ;

Let De = ∪jDj ;

Step 3.

Let D = Do ∪De;

Return D.

6.2.1.1 Approximation Guarantee

Let us call the subtrees created in Step 1 of Algorithm 13 odd subtrees, and the subtrees

created in Step 2 even subtrees.

Lemma 6.2.2. Algorithm 13 outputs a multicut, whose capacity is at most 4 times the

capacity of the minimum multicut of T .

Proof. Each vertex and edge is contained in two subtrees, and as the subtrees are of

depth 2`, each path (si, ti) must be fully contained within either an odd subtree or an

even subtree (or both). Therefore, at least one edge in D1 ∪D2 is on the path between

si and ti: D is a multicut. From Theorem 6.2.1, D1 and D2 are 2-approximations to

the minimal capacity multicut of T , hence their union is at most a 4-approximation.

Lemma 6.2.3. Algorithm 13 outputs a feasible flow, whose value is at least (1
4 −

1
4cmin

)

fraction of the maximal multicommodity flow on T .

Proof. Let fo and fe denote the flows computed on odd and even trees, respectively.

Their union is feasible because each of them uses at most half of the capacity of each
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edge. Moreover, fi is a 1/2 approximation to the flow of Ti. Denote the value of the

maximal IMCF on T by f∗. Let f∗i be the optimal flow on the subtree Ti. As in

Algorithm 13, we denote indices of odd subtrees by i, and even subtrees by j. Then

f∗ ≤
∑
i

f∗i +
∑
j

f∗j

≤
∑
i

2fi +
∑
j

2fj

≤ (2fe + 2fo) · cmin

bcmin/2c

≤ 4cmin

cmin − 1
(fe + fo) .

6.2.1.2 Complexity Analysis

The implementation of Algorithm 13 as an LCA is straightforward: when queried on an

edge, determine to which subtrees it belongs, and then run simulate Algorithm 13 on

those two subtrees. The maximal size of a subtree is d2`, hence our probe complexity

is O(d2`). We do not attempt to optimize the running time; we note that it is trivial to

implement the algorithm on subtree Tj in time O(|Tj |3), as there can be at most |Tj |2

pairs (si, ti) in Tj . This gives

Theorem 6.2.4. Given a tree T with maximal degree d, integer edge capacities at

least cmin and source-destination pairs with maximal distance at most ` > 0, there is a

deterministic (dO(`), dO(`), 0, dO(`), 0)-LCA for 4-approximate multicut and (1
4 −

1
4cmin

)-

approximate IMCF. If all capacities are even, the approximation ratio to IMCF is 1
4 .

6.2.2 Randomized LCA

We now turn to the randomized setting. Our randomized algorithm ( Algorithm 14) is

very similar: instead of an overlapping decomposition, we use a random one as follows.

Let H = d `εe. We pick an integer j uniformly at random from [H], and remove all edges

whose depth modulo H is j − 1. The result is a collection of subtrees of depth at most

H − 1 each. Now, given an edge e, we run Algorithm 12 on the subtree that contains e

and output the output of Algorithm 12 (with probability 1/H, the edge queried, e, is

not in any tree; in this case, e carries 0 flow).
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Algorithm 14: Integer Multicommodity Flow in Trees

Input : A graph G = (V,E), with c : E → Z+, and ` > 0
Output : A flow f

Let H = d `εe;
Uniformly sample an integer j from {0, . . . ,H};
Delete all edges at depth j + kH, for all k ∈ N such that j + kh ≤ depth(T );
On each remaining subtree, run Algorithm 12;
Return the union of the flows on all subtrees.

Theorem 6.2.5. Algorithm 14 achieves an approximation ratio of 1/2− ε to the max-

imum integer multicommodity flow on trees.

Proof. For any i, the probability that the path (si, ti) is not fully contained within a

subtree is at most `
H ≤ ε. Fix an optimal solution f∗ with value |f∗|. After deleting

edges, the expected amount of remaining flow is at least (1− ε)|f∗|. By Theorem 6.2.1,

Algorithm 12 output at least a half of that amount. The result follows.

The implementation of Algorithm 14 as an LCA is almost identical to that of

Algorithm 13; in order to achieve a 1/2− ε approximation to the IMCF, the enduring

memory has to hold an integer whose value is at most d `εe, i.e., O(log(`/ε)) bits. We

therefore have

Theorem 6.2.6. Given a tree T with maximal degree d, integer edge capacities

and vertex pairs with maximal distance at most ` > 0, there is a randomized

(dO(`/ε), dO(`/ε), 0, dO(`/ε), 0)-LCA that achieves an approximation ratio of (1/2 − ε) to

IMCF.

6.3 Weighted Matchings

In this section we present a different kind of an LCA: a reduction. Specifically, we

consider the task of computing a maximum weight matching (MWM), and show how

to locally reduce it to maximum cardinality matching (MCM). Our construction, given

any graph of maximal degree d and a t-time α-approximation LCA for MCM, yields

an O(td)-time,α8 -approximation LCA for MWM.

Formally, in MWM we are given a graph G = (V,E) with a weight function w :

E → N, and we need to output a set of disjoint edges of (approximately) maximum

total weight. In MCM, the task is to find a set of disjoint edges of (approximately) the

largest possible cardinality.
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The main idea in our reduction is a variant of the well-known technique of scaling

(e.g., [63, 105, 109]): partition the edges into classes of more-or-less uniform weight, run

an MCM instance for each class, and somehow combine the MCM outputs. Motivated

by local computation, however, we use a very crude combining rule that lends itself

naturally to LCAs.

Specifically, the algorithm is as follows (the “global” algorithm is presented as

Algorithm 15). Let γ = 4. Partition the edges by weight to sets Ei, such that

Ei = {e : w(e) ∈ [γi−1, γi)}. For each i, find a maximum cardinality matching Mi

on the graph Gi = (V,Ei), using any MCM algorithm. Let M = ∪iMi. Given an edge

e, our LCA for MWM returns “yes” iff e is a local maximum in M , i.e., iff (1) e is in

M , and (2) for any edge e′ in M which shares a node with e, w(e′) < w(e) (no ties can

occur).

Algorithm 15: Reduction of MWM to MCM

Input : A graph G = (V,E), with w : E → N, and γ > 2
Output: A matching M

Partition the edges into classes Ei = {e : w(e) ∈ [γi−1, γi)} for i = 1, 2, . . .
In parallel, compute an unweighted matching Mi for each level i;
M =

⋃
iMi;

for each edge e ∈M do
if e has a neighbor e′ ∈M , with class(e′) < class(e) then

Remove e from M ;

Return M .

Theorem 6.3.1. Let A be a (p(n), t(n), em(n), tm(n), δ(n))-LCA for unweighted

matching, whose output is an α-approximation to the maximum matching. Then given

a graph G = (V,E) with maximal degree d and arbitrary weights on the edges, there is

an (O(d · p(n)), O(d · t(n)), O(d · em(n)), O(d · tm(n)), O(d · δ(n)))-LCA that computes

an α/8-approximation to the maximum weighted matching.

6.3.1 Correctness and Approximation Guarantee

No two adjacent edges within a class can be selected to M , as within each class we use

a matching algorithm. Now consider two edges e, e′ ∈M that are not in the same class

(assume w.l.o.g. that class(e′) < class(e)), and are adjacent in M after a matching has

been computed for each class. Edge e is removed from M . Hence no adjacent edges can
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Figure 6.2: A simple example. Here γ = 3 and that M = ∪iMi is the entire graph.
The M -tree of the edge of weight 3 consists of the edge itself and its two neighbors of
weight 1. The M -tree of the edge of weight 10 includes itself and the M -tree of the
edge of weight 3. The M -tree of the edge of weight 9 is the entire graph, except the
edge of weight 10.

be selected to M . The more interesting part is the approximation ratio analysis. For

any edge (u, v) = e ∈ M , recursively define a tree Te as follows. If e is lighter than all

of its neighbors in M , then Te = {e}. Otherwise, let fu be the heaviest edge in M that

touches u and is lighter than e. Define fv similarly, and let Te = {e} ∪ Tfu ∪ Tfv . (If fu

does not exist, let Tfu = ∅; similarly fv.) We call Te the M -tree of e. See Figure 6.2

for an example.

Define a new weight function on G, ŵ: ŵ(e) = γclass(e)−1; i.e., ŵ(e) is w(e) rounded

down to the nearest power of γ. Note that the choices made by Algorithm 15 are identi-

cal under w and ŵ. For any set of edges S and weight function w, let w(S) =
∑

e∈S w(e).

The main argument in the analysis of the approximation ratio of Algorithm 15 is the

following.

Proposition 6.3.2. Let e = (v, u) be any edge in M , such that ŵ(e) = γk and let Te

be the M -tree of e. Then ŵ(Te) ≤
k∑
i=0

2k−iγi.

Proof. The proof is by induction on k. For the base of the induction, k = 0,we have

ŵ(Te) = 20γ0. For the inductive step, assume that the proposition holds for all integers



6.3. WEIGHTED MATCHINGS 77

up to k − 1. Let e = (u, v). The heaviest edge that is lighter than e and touches u

(denoted fu) weighs at most γk−1. Similarly for the heaviest edge that is lighter than

e and touches v (fv). Therefore, by the inductive hypothesis,

ŵ(Te) ≤ γk + 2
k−1∑
i=0

2k−i−1γi =
k∑
i=0

2k−iγi.

Corollary 6.3.3. Let e = (v, u) be any edge in M , such that ŵ(e) = γk and let Te be

the M -tree of e. Then ŵ(e) ≥ γ−2
γ ŵ(Te).

Proof. As γ > 2,

ŵ(Te) ≤
k∑
i=0

2k−iγi by Prop. 6.3.2

= γk
k∑
i=0

2k−i

γk−i

= γk
k∑
j=0

2j

γj

< γk
∞∑
j=0

2j

γj

= ŵ(e)
γ

γ − 2
.

Lemma 6.3.4. Using any α-approximate MCM algorithm, Algorithm 15 finds a match-

ing of total weight αγ−2
γ2 OPT.

Proof. Let M∗i be a maximum weighted matching on Gi = (V,Ei), and let M∗ =

∪iM∗i . Let M̂∗i be a maximum cardinality matching (MCM) on Ĝi. Clearly, for all i,

w(M̂∗i ) ≥ 1
γw(M∗i ), because each edge in M∗i weighs at most γ times any edge of M̂∗i ,

and M∗i does not contain more edges than M̂∗i . Also note that w(M∗) ≥ OPT, because

any restriction of an optimal MWM to edges of class i cannot have more weight than

M∗i . Call a locally heaviest edge in M an output edge. Note that every edge e ∈ M is
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contained in the M -tree of at least one output edge. We can therefore conclude that

∑
e:e is an output edge

w(e) ≥
∑

Te:e is an output edge

γ − 2

γ
w(Te) by Corr. 6.3.3

≥ γ − 2

γ
w(M)

=
γ − 2

γ

∑
i

w(Mi)

≥ γ − 2

γ

∑
i

αw(M̂∗i )

≥ γ − 2

γ2

∑
i

αw(M∗i )

= α
γ − 2

γ2
w(M∗)

≥ αγ − 2

γ2
OPT.

It is easy to verify that the optimal value of γ is 4, yielding approximation factor

α/8.

6.3.2 Complexity Analysis

The simulation of this algorithm as an LCA is simple, and, unlike the global algorithm,

its complexity is completely independent of the weights on the edges. Suppose we are

queried about edge e. Let N be the set of edges that includes e and all of its neighboring

edges whose weight is greater than w(e). We invoke, for each e′ ∈ N , the LCA for MCM

on the edges whose weight class is class(e′). The answer for e is “yes” iff the MCM

LCA replied “yes” for the query on e, and “no” for all other queries. Theorem 6.3.1

follows.

6.3.3 Unweighted Matching

In order to guarantee that Algorithm 15 runs in constant time, we need to supply it

with a constant-time LCA for unweighted matching. Unfortunately, no determinis-

tic constant-time constant approximation algorithm exists for MCM [59]. There are,

however, several constant-time approximation algorithms to MCM that one may use;

for example, the constant-time MCM of Nguyen and Onak [79], or a straightforward

implementation of Itai and Israeli’s parallel MCM algorithm [48] as an LCA. We note,
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however, that in both cases, we need enduring memory of size O(log n), as we need at

least pairwise independence.

For completeness, we give the implementation of Itai and Israeli’s algorithm, with

a simple analysis. It is important to note that their algorithm finds an MCM and

runs in O(log n) rounds. Using the reduction of Parnas and Ron (see Chapter 3)

naively would yield an “LCA” with polynomial running time. We therefore have to

terminate the simulation after a constant number of rounds. We show that we can find

an arbitrarily good approximation to the MCM, in expectation. We note that it is not

known whether there exists a constant-time MCM-approximation LCA that requires a

constant enduring memory.

The algorithm we present is possibly the simplest conceivable randomized algorithm

for maximal matching. Once again, we present it as a parallel algorithm, and then show

how to implement it as an LCA. For ease of analysis, when an edge is added to the

matching, we do not remove it or its neighbors from the graph. It is easy to modify

the algorithm to do so; this can only improve its approximation factor.

Algorithm 16: Parallel (CREW) Maximal Matching Algorithm.

Input : G = (V,E), ε > 0
Output: a matching M

M = ∅;
for k = 0 to d2 ln 2

ε do
For each vertex v, select a neighbor u uniformly at random;
for each edge e = (u, v) in parallel do

if u and v selected each other and M ∪ {e} is a matching then
M = M ∪ {e};

Return M .

Theorem 6.3.5. Given a graph G of bounded degree d, for any ε, there is a random-

ized (dO(d2 ln 1/ε), dO(d2 ln 1/ε), O(log n log 1/ε), dO(d2 ln 1/ε), 0)-LCA that gives a (1/2− ε)-

approximation to the maximum matching.

We first prove some lemmas.

Lemma 6.3.6. The output of Algorithm 16 is a (1− ε
2) approximation to some maximal

matching.

Proof. At the conclusion of Algorithm 16, it outputs a legal matching: whenever an edge
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e is considered for addition to M , it is only added if M ∪ {e} is a legal matching. Note

that even though we do the additions in parallel, there is no danger of two neighboring

edges being added concurrently due to the edge selection process, which guarantees no

vertex has more than one neighboring edge selected at any time. Let M∗ be a maximal

matching obtained by taking the matching output by Algorithm 16 and greedily adding

edges to it until no more edges can be added. Define an edge to be eligible if it is in

M∗ \M .

The probability that an eligible edge e is not added to M in a round is 1 − 1
d2 .

Setting k = d2 ln 2/ε, the probability that e is not added to M in any of the k rounds

is (
1− 1

d2

)k
≤
(

1

e

)ln 2/ε

=
ε

2
.

Similarly to Algorithm 11, it is straightforward to implement Algorithm 16 as an

LCA: given a query e = (u, v), if we wish to simulate Algorithm 16 for k rounds, we

probe G to obtain Nk(e). To see whether e is added to M in round i, it suffices to

determine whether any of its neighbors e′ ∈ N(e) were added to M in any round up to

i − 1. In order to determine this, we need to check whether any of them were added

to M in any round up to i− 2, and so on. Therefore, to determine whether e is added

to M after k rounds, we need to simulate Algorithm 16 on N i(e) for k − i rounds.

Therefore, we obtain

Lemma 6.3.7. The time to execute Algorithm 11 for k = d2 ln 2
ε is O(d2k).

Proof. Denote by T (k) the time it takes to execute Algorithm 16 for k rounds. We

show that T (k) ≤ (d)2k, by induction on the number of rounds, k. Assume we are

given a edge e = (u, v) as our query. For k = 0, we need to check if it is chosen by both

endpoints, O(1). Assume that the lemma holds for j ≤ k − 1. On round k, we need to

check whether e is selected, and whether it can be added to M , for which we need to

check whether any of e’s neighbors were previously added to M . This takes time

T (k) = 2dT (k − 1) +O(1) = 2d · d2k−2 +O(1) ≤ d2k,

for d ≥ 2.

As the replies to all queries need to be consistent with the same matching, we
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require that the random bits used by each vertex remain the same each time the LCA

is invoked. For this, we need a source of randomness. Each query to the LCA requires

the generation of at most d2k random numbers i ∈ [d]. From Theorem 4.1.8, we have

that a seed of length O(log (n/ε)) suffices, as we only require d2k-wise independence,

for O(log(1/ε)) rounds. This, along with Lemmas 6.3.6 and 6.3.7, proves the theorem.
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Chapter 7

Local Computation Mechanisms

In the second part of the thesis, we consider local computation mechanisms. Similarly

to the previous chapters, we are only interested in a small part of the solution at any

given time, but in addition, we need to meet some game theoretic requirements. In

this chapter, we consider a relatively simple problem - the housing allocation problem.

There is a set of houses and a set of agents, and the agents that have some preference

over the houses. We wish to find an allocation of houses to agents that satisfies some

properties. Most importantly, we would like the allocation to be stable (there are no two

agents that would like to switch houses), and truthful (agents have no incentive to lie

about their preferences). We could use one of the matching algorithms that we described

in previous chapters, but that would guarantee neither stability nor truthfulness. In

this and the coming chapters we show how we can accommodate these game-theoretic

requirements. Chapters 7 through 10 are based on [42].

7.1 Notation and Preliminaries

We use the standard notation of game theoretic mechanisms. There is a set I of n

rational agents and a set J of m items. In some settings, e.g., the stable marriage

setting, there are no objects, only rational agents. Each agent i ∈ I has a valuation

function vi that maps subsets S ⊆ J of the items to non-negative numbers. The utilities

of the agents are quasi-linear, namely, when agent i receives subset S of items and pays

p, her utility is ui(S, p) = vi(S) − p. Agents are rational in the sense that they select

actions to maximize their utility. We would like to allocate items to agents (or possibly

agents to other agents), in order to meet global goal, e.g., maximize the sum of the
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valuations of allocated objects (see, e.g., [80]).

A mechanism with payments M = (A,P) is composed of an allocation function A,

which allocates items to agents, and a payment scheme P, which assigns each agent

a payment. A mechanism without payments consists only of an allocation function.

Agents report their bids to the mechanism. Given the bids b = (b1, . . . , bn), the mech-

anism allocates the item subset Ai(b) ⊆ J to agent i, and, if the mechanism is with

payments, charges her Pi(b); the utility of agent i is ui(b) = vi(Ai(b))− Pi(b).

A randomized mechanism is universally truthful if for every agent i, for every random

choice of the mechanism, reporting her true private valuation maximizes her utility. A

randomized mechanism is truthful in expectation, if for every agent i, reporting her true

private valuation maximizes her expected utility. That is, for all agents i, any bids b−i

and bi, E[ui(vi, b−i)] ≥ E[ui(bi, b−i)].

We say that an allocation function A admits a truthful payment scheme if there

exists a payment scheme P such that the mechanism M = (A,P) is truthful.

A mechanism M = (A,P) fulfills voluntary participation if, when an agent bids

truthfully, her utility is always non-negative, regardless of the other agents’ bids, i.e.,

for all agents i and bids b−i, ui(vi, b−i) ≥ 0 .

Definition 7.1.1 (Mechanisms without payments). We say that a mechanism M is a

(p(n), t(n), em(n), tm(n), δ(n))-local computation mechanism if its allocation function

is computed by a (p(n), t(n), em(n), tm(n), δ(n))-LCA.

Definition 7.1.2 (Mechanisms with payments). We say that a mechanismM = (A,P)

is a (p(n), t(n), em(n), tm(n), δ(n))-local computation mechanism if both the allocation

function A and the payment scheme P are computed by (p(n), t(n), em(n), tm(n), δ(n))-

LCAs.

In other words, given a query x, A computes an allocation and P computes a

payment, and both are LCAs. Furthermore, the replies of A to all of the queries are

consistent with a single feasible allocation.

A truthful local mechanism M = (A,P) is a local mechanism that is also truthful.

Namely, each agent’s dominant bid is her true valuation, regardless of the fact that

the mechanism is local.
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7.2 Warm Up - Random Serial Dictatorship

We first show a very simple local computation mechanism for the housing problem. We

would like to allocate n houses to n agents. Assume that each agent is interested in

a constant number of houses, d, and that the preferences are drawn from the uniform

distribution. Each agent i has a complete preference relation Ri over the d houses.

In the random serial dictatorship (RSD) algorithm, a permutation over the agents is

generated, and then each agent chooses her most preferred house out of the unallocated

houses. This algorithm has some desirable properties: it is truthful, nonbossy1 and

neutral2; in fact, no other mechanism has all of these properties [101]. We note that

the algorithm is a crisp, neighborhood-dependent online algorithm, and therefore can

be implemented as an LCA: we can simply use the reduction of Chapter 4.

One other nice property of RSD is that each agent has the same probability of

having the first choice. This is an intuitively necessary property for any algorithm to

be considered “fair”. We define this formally as follows.

Property 7.2.1. Let M be a mechanism for the housing problem. Let Xi denote the

event that agent i has the first choice under M. If

∀i,j ,Pr[Xi]− Pr[Xj ] < ε,

we say that the mechanism is ε-fair.

Unfortunately, the reduction of Chapter 4 does not guarantee this property: an

agent with a large ID has a much smaller probability of being given the first choice

than one with a small ID. In fact, while the probability of the agent with the smallest

ID being given the first choice is at least 1
L (where L is the range of the hash function),

the agent with the largest ID has a vanishingly small probability of being given the

first choice. In order to satisfy this notion of fairness, we can use a larger range for our

hash function (at the expense of a larger seed). Instead of using the construction of

Theorem 4.1.8, we can use Theorem 4.2.2, which immediately implies Property 7.2.1.

We therefore have

1A mechanism is nonbossy if no agent can change the outcome of the mechanism without changing
her own outcome.

2Informally, a mechanism is neutral if the outcome of the mechanism does not depend on the names
of the goods. See [101] for a formal definition.



86 CHAPTER 7. LOCAL COMPUTATION MECHANISMS

Theorem 7.2.2. Let k be some constant integer k > 0. Consider a house allocation

problem with n agents and n houses, and let each agent preference list length be bounded

by k, where each list is drawn uniformly at random from the set of all possible lists of

length k. Then, for any ε > 0 there is an (O(log n), O(log2 n), O(log2 n), O(log2 n), 1/n)

- local computation mechanism that is ε-fair and whose output is identical to the random

serial dictatorship allocation algorithm that uses the same randomness.



Chapter 8

Stable Matching

In the stable matching problem, we are given a set of men and a set of women. The men

have preferences over the women and the women over the men. The goal is to compute a

matching H that is stable; that is, there is no man and woman who prefer each other to

their partner in H. Stable matching has been at the center of game-theoretic research

since the seminal paper of Gale and Shapley [34] (see, e.g., [92] for an introduction

and a summary of many important results). Roth and Rothblum [94] examined the

scenario in which the preference lists are of bounded length; in most real-life scenarios,

this is indeed the case. For example, a medical student will not submit a preference

list for internship over all of the hospitals in the United States, but only a short list.

We examine the variant in which each man m ∈ M is interested in at most k women,

(and prefers to be unmatched than to be matched to anyone not on their list; cf. [93]).

We limit our attention to the setting in which the men’s preferences are assumed to be

uniformly distributed; cf. [47, 53].

The Gale-Shapley algorithm results in a stable matching regardless of the prefer-

ences (see, e.g., [95]); however, its running time is Ω(n2). Indeed this is a lower bound

on any algorithm that finds a stable matching (under full preference lists) [78]. Fur-

thermore, it is known that a linear number of iterations of the Gale-Shapley algorithm

is necessary to attain stability [39]. One direction taken to obtain sub-linear running

time is executing parallel computation on instances with short preference lists. Feder

et al. [31] proposed one such algorithm for stable matching. Unfortunately, it does

not appear possible to convert their algorithm to an LCA, as they require m4 proces-

sors, and the running time is O(
√
m log3 n), where m is the sum of the preference list

lengths. In some cases, matchings that are “almost” stable may be acceptable (see,
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e.g., [27, 96]). There are several ways of defining what it means for a matching to be

almost stable (see e.g., [27]). One of the better accepted notions (e.g., [33, 83, 96]) is to

count the number of blocking pairs1 - the fewer the blocking pairs, the more stable the

matching. Several experimental works on parallel algorithms for the stable matching

problem provide evidence that after a constant number of rounds, the number of block-

ing pairs can be made arbitrarily small. (e.g., [64, 88, 104]). Floréen et al. [33] showed

that in the special case when the lengths of both the men’s and women’s preference

lists are bounded by a constant, there exists a distributed version of the Gale-Shapley

algorithm, which can be run for a constant number of rounds and finds an almost stable

matching.

The Gale-Shapley algorithm is known to be strategy-proof for the men but not for

the women (e.g., [70]). Immorlica and Mahdian [47] showed that in the setting above

(and also for a more general setting), the expected number of people with more than

one stable spouse is vanishingly small, and with probability 1− o(1), truth-telling is a

dominant strategy if the other players are truthful.

In this chapter, we focus on the setting proposed in [47] - the men’s preference

list is of constant length, and is chosen uniformly at random. We show that we can

implement the truncated Gale-Shapley algorithm (where we simply stop the Gale-

Shapley algorithm after a constant number of rounds) as an LCA, and show that this

results in an almost stable matching. We then use similar techniques to show that, in a

more general (non-local) setting, stopping the Gale-Shapley algorithm after a constant

number of rounds gives an almost stable matching as well.

8.1 Model and Main Result

We use a graph-theoretic characterization of the stable matching problem (see, e.g.,

[32, 33]). An instance of the stable marriage problem is represented by a bipartite

graph G = (M ∪W,E), where M represents the set of men, and W the set of women.

We make the conventional assumption that |M | = |W | = n. Each man has a preference

list over the women that he is connected to, and each woman has a preference list over

the men she is connected to. A matching H ⊆ E is a set of vertex-disjoint edges. An

edge e is said to be matched if e ∈ H. A vertex v is matched if there is some u such

1A blocking pair is a man and a woman who both prefer to be paired with each other than with
their current partner.
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that e = (u, v) is matched. An edge (u, v) ∈ E \H is unstable if it holds that (1) u is

unmatched or prefers v over its match in H, and (2) v is unmatched or prefers u over

its match in H. (An unstable edge is often referred to as a blocking pair). A matching

H is stable if there are no unstable edges. The stable matching problem where each

man has a degree of k and his adjacent edges are chosen uniformly at random is called

k-uniform. Note that in this case, the women’s preference list lengths are binomial

random variables whose value is determined by the random choices of the men, and

can therefore have any length in [n].

The Gale-Shapley algorithm finds a stable matching in the k-uniform setting (e.g.,

[35]). To ensure the locality of our algorithm, we allow our mechanism to find an almost

stable matching. To do this, we allow our mechanism to ”disqualify” men, in which

case they remain unmatched, but are unable to contest the matching (the number of

disqualified men is exactly the number of blocking pairs). We try to keep the number

of disqualified men to a minimum. Our main result is the following.

Theorem 8.1.1. Let A = (M,W,P ) be a stable matching problem, |M | =

|W | = n, in the k-uniform setting. For any ε > 0, there is a determinis-

tic (O(log n), O(log n), 0, O(log n), 0)-local computation mechanism for A that finds a

matching with at most εn disqualified men and in which at most 2n
k + εn of the men

remain unmatched.

We begin by describing a non-local algorithm, AbridgedGS, and then show how

to simulate it locally by a local algorithm, LocalAGS.

8.1.1 AbridgedGS

Let AbridgedGS be the Gale-Shapley men’s courtship algorithm, where the algorithm

is stopped after ` rounds, and the men rejected on that round are left unmatched. That

is, in each round, each unassigned man approaches to the highest ranked woman that

has not (yet) rejected him. Each woman then tentatively accepts the man she prefers

out of the men who approached her, and rejects the rest. This continues until the `th

round, and the men who were rejected on the `th round are left unmatched; we say that

these men are disqualified. Note that the set of disqualified men may be a strict subset

of the set of unmatched men: men who were rejected k times before the `th round are

unmatched as well. We simulate AbridgedGS on k-uniform stable matching problems

to obtain the following LCA.
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8.1.2 LocalAGS - an LCA Implementation of AbridgedGS

Define the distance between two people to be the length of the shortest path between

them in the graph. Define the d-neighborhood of a person v to be everyone at a distance

at most d from v, denoted Nd(v)

Assume that we are queried on a specific man, m1. We simulate AbridgedGS

locally as follows: Choose some constant `, whose exact value will be determined later.

For each man in the 2`-neighborhood of m1, (i.e., for all mi such that mi ∈ N2`(m1)), we

simulate round 1 of AbridgedGS. That is, each one approaches his preferred woman,

and is either tentatively accepted or rejected . Then, for each man mi ∈ N2`−2(m1),

we simulate round 2. And so on, until for mi ∈ N2(m1), (that is, m1 and his closest

male neighbors), we simulate round `. We return the woman to whom m1 is paired,

“unassigned” if he was rejected by k women, and “disqualified” if he was rejected by a

woman in round `. We denote this algorithm LocalAGS.

In order to prove Theorem 8.1.1, we need to prove several things: that LocalAGS

correctly simulates AbridgedGS and that its running time and space are bounded

by O(log n) (Subsection 8.1.3), and that “not too many” men are left unmatched or

disqualified (Subsection 8.1.4).

8.1.3 Correctness and Complexity

The following claim shows that the steps executed by LocalAGS are sufficient to

correctly determine the output of AbridgedGS when queried on m1.

Claim 8.1.2. For any two men, mi and mj, whose distance from each other is greater

than 2`, mi’s actions cannot affect mj if Algorithm AbridgedGS terminates after `

rounds.

Proof. The proof is by induction. For ` = 1, let w1 be mj ’s first choice. Only men

for whom w1 is their first choice can affect mj , and these are a subset of the men at

distance 2 from mj . For the inductive step, assume that the claim holds for ` − 1.

Assume by contradiction that there is a man mi whose actions can affect mj within `

rounds, who is at a distance of at least 2`+ 2 from mj . From the inductive claim, none

of mi’s actions can affect any of mj ’s neighbors within ` − 1 rounds. As their actions

in round ` − 1 (or any previous round) will not be affected by mi, and they are the

only ones who can affect mj in round `, it follows that mi cannot affect mj within `



8.1. MODEL AND MAIN RESULT 91

rounds.

We notice that AbridgedGS is, in fact, a constant-time distributed algorithm

(assuming ` is a constant). By Claim 2.3.5, the graph is (n/2)-conditionally 2d-light,

and we can apply Theorem 3.2.2 to obtain the following.

Lemma 8.1.3. The number of probes, running time and transient space requirements

of algorithm LocalAGS is O(log n) per query with probability at least 1− 1
n2 .

8.1.4 Bounding the Number of Men Removed

In this section we prove that “not too many” men remain unmatched. There are two

possible reasons for a man to be unmatched by LocalAGS: (1) he had already been

rejected k times by round ` (hence he never reaches round `), or (2) he was rejected

(and hence disqualified) on round `. We upper the probability of both (Lemma 8.1.5

and Corollary 8.1.9, respectively), and apply a union bound, to obtain the following

result.

Lemma 8.1.4. For any ε > 0, setting ` = 2k
ε in Algorithm LocalAGS ensures that

at most 2n
k + εn men remain unmatched with probability at least 1− 1

n2 .

8.1.4.1 Removal due to short lists

We bound the number of unassigned women as a result of the fact that the lists are

short, noting that the number of unassigned women equals the number of unassigned

men. This is given by the following lemma.

Lemma 8.1.5. In the k-uniform setting, the Gale-Shapley algorithm results in at most

2n
k men being unassigned, with probability at least 1− 1

n2 .

Before proving Lemma 8.1.5, we will require a few preliminaries. We use the princi-

ple of deferred decisions: instead of “deciding” on the preference lists in advance, each

man chooses the (i + 1)th woman on his list only if he is rejected by the ith - this is

known to be equivalent to the choices being made in advance (e.g., [52]).

Consider the following stochastic process, denoted Ξ: In each round t, the (random-

ized) assignment function f t is given the matching of the previous round, Ht−1, and

assigns each man m ∈M a woman w ∈W , such that if m was matched in Ht−1, he is

assigned the same woman (i.e., if (m,w) ∈ Ht−1, then f t(m) = w); if he is unmatched
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in Ht−1, he is assigned a woman uniformly at random. Let St(w) be the set of men

assigned woman w by f t, i.e., St(w) = {m : f t(m) = w}. For every woman w such

that St(w) 6= ∅, a single m ∈ St(w) is chosen arbitrarily to be w’s match in Ht, i.e.,

(w,m) ∈ Ht. The process is intialized with H0 = ∅, and iterates for k rounds.

Remark 8.1.6. Note that a man can choose the same woman more than once. Com-

pare this to the case each man can approach each woman once: If a man approaches

a woman he had already approached, she must be matched, and hence in this case,

the men have a lower probability of approaching an unassigned woman. Therefore the

number women that are unassigned at the end of this process is an upper bound to the

number of unassigned women in the system where men can only approach each woman

once.

Let Xt
j be the indicator variable that is 1 if woman j is unassigned after round t,

i.e., there does not exists a man m ∈M such that (m,w) ∈ Ht. Let Xt =
∑n

j=1X
t
j be

the number of unassigned women after round t.

Proof of Lemma 8.1.5. The time required by the stochastic process Ξ described above

is at most the time required by the Gale-Shapley algorithm with short lists in the k-

uniform setting (from Remark 8.1.6 and the fact that it may be stopped prematurely).

Hence it suffices to prove that for any constant t,

Pr[Xt >
2n

t
] ≤ t

n3
.

The proof is by induction. The base of the induction, t = 1, is immediate. For the

inductive step, assume that after round t, Xt = n/µ (for some µ > 0). In round t+ 1,

E[Xt+1|Xt = n
µ ] = n

µ(1−1/n)n/µ, because each unassigned man approaches any woman

with probability 1/n; hence, the probability that a specific woman is not approached

by any man is (1− 1/n)n/µ.

For the rest of the proof, assume that Xt ≤ 2n
t , and fix Xt to be some such value.

We get

E[Xt+1|Xt ≤ 2n

t
] ≤ 2n

t
(1− 1/n)2n/t <

n

t/2 · e2/t
<

2n

t+ 2
, (8.1)

using ex > 1 + x.
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It remains to show that Xt+1 is concentrated around its mean. To do so, we will

define a specific martingale and use Azuma’s inequality (Lemma A.1.2).

Order the men arbitrarily, M = {1, 2, . . . n}. Let Mi be the set of the first i men in

the ordering: Mi = {1, 2, . . . i}. Fix some matching Ht. For some realization g of the

assignment function f t+1, define the following martingale

Y t+1
i (Ht, g) = E[Xt+1|Ht, f t+1(j) = g(j) for all j ∈Mi],

In other words, Y t+1
i (Ht, g) is the expected number of unassigned women at round

t+ 1, given that the matching at round t was Ht, where the expectation is taken over

all realizations of f t+1 that agree with g on the first i men. Note that Y t+1
0 (Ht, g) is

the expected value of Xt+1 over all possible realizations of f t+1; that is, the expected

number of unmatched women after t+ 1 rounds. Y t+1
n (Ht, g) is simply the number of

unmatched women after t+ 1 rounds when the allocation function is g. Xt+1 satisfies

the Lipschitz condition, because if two realizations of f t+1, say f ′ and f ′′, only differ

on the allocation of a single man,
∣∣Xt+1|f ′ −Xt+1|f ′′

∣∣ ≤ 1 (where Xt+1|f denotes the

realization of Xt+1 given that f is the realization of f t+1). Therefore, (see [5]),

|Y t+1
i+1 (Ht, g)− Y t+1

i (Ht, g)| ≤ 1.

We can therefore apply Lemma A.1.2 (Azuma’s inequality):

Pr[|Xt+1 − E[Xt+1]| > λ
√
n] < 2e−λ

2/2.

Setting λ = 2
√
n

(t+1)(t+2) , we have that

Pr

[
|Xt+1 − E[Xt+1]| > 2n

(t+ 1)(t+ 2)

]
< 2e−2n/t4 ,

for t ≥ 2.

Therefore, since we assume that Xt ≤ 2n
t and hence, by Equation (8.1), E[Xt+1] <

2n
t+2 , it holds that

Pr

[
Xt+1 >

2n

t+ 1
|Xt ≤ 2n

t

]
< 2e−2n/t4 <

1

n3
, (8.2)
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for t ≤
(

6n
logn

)1/4
. By the inductive hypothesis

Pr

[
Xt >

2n

t

]
≤ t

n3
. (8.3)

Therefore, using Equations (8.2), and (8.3), we have

Pr

[
Xt+1 >

2n

t+ 1

]
= Pr

[
Xt+1 >

2n

t+ 1
|Xt ≤ 2n

t

]
Pr

[
Xt ≤ 2n

t

]
+ Pr

[
Xt+1 >

2n

t+ 1
|Xt >

2n

t

]
Pr

[
Xt >

2n

t

]
.

≤ t

n3
+

1

n3

=
t+ 1

n3
.

8.1.4.2 Removal due to the number of rounds being limited

Because we stop the LocalAGS algorithm after a constant (`) number of rounds, it is

possible that some men who “should have been” matched are disqualified because they

were rejected by their ith choice in round ` (i < k). We show that this number cannot

be very large.

Let Rr denote the number of men rejected in round r ≥ 1.

Observation 8.1.7. Rr is monotone decreasing in r.

Lemma 8.1.8. The number of men rejected in round r is at most nk
r .

Proof. As each man can be rejected at most k times, the total number of rejections

possible is kn. The number of men who can be rejected in round r is at most

Rr ≤ kn−
r−1∑
j=1

Rj

⇒Rr ≤ kn− (r − 1)Rr (8.4)

⇒Rr ≤ n
k

r
.

Where Inequality (8.4) is due to monotonicity of Rr, i.e., Observation 8.1.7.
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Corollary 8.1.9. For any ε > 0, setting r = k
ε ensures that the number of men rejected

in round r is at most εn.

8.2 Some General Properties of the Gale-Shapley Algo-

rithm

We use the results and ideas of Section 8.1 to prove some interesting features of the

(general) Gale-Shapley stable matching algorithm, when the mens’ lists are of length

at most k. (These results immediately extend to our local version of the algorithm,

LocalAGS.) Note that the proof of Lemma 8.1.8 makes no assumption on how the

men’s selection is made, and therefore, Lemma 8.1.8 implies that as long as each man’s

list is bounded by k, if we run the Gale-Shapley for ` rounds, at most nk
` men will be

rejected in that round. This immediately gives us an additive approximation bound for

the algorithm if we stop after ` rounds:

Corollary 8.2.1 (to Lemma 8.1.8). Assume that the output of the Gale-Shapley algo-

rithm on a stable matching problem, where the preference lists of the men are of length

at most k, is a matching of size M∗. Then, stopping the Gale Shapley algorithm after

` rounds will result in a matching of size at least M∗ − nk
` .

We would like to also provide a multiplicative bound. Again, we assume that the

mens’ list length is bounded by k, but make no other assumptions. For each round

i, let Mi be the size of the current matching; let Di be the number of men who have

already approached all k women on their list and have been rejected by all of them; let

Ci be the number of men who were rejected by women in round i, but have approached

fewer than k women so far; as before, let Ri be the number of men rejected in round i.

Denote the size of the matching returned by the Gale-Shapley algorithm (if it were to

run to completion) by M∗.

Claim 8.2.2. Ck+1 ≤ kM∗.

Proof. Note that Ri = Ci + Di − Di−1. For i < k,Di = 0. As Mi is monotonically

increasing in i, ∀i ≤ k,Ri ≥ n−M∗.

k∑
i=1

Ri ≥ kn− kM∗.
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Hence,

Ck+1 ≤ kn−
k∑
i=1

Ri ≤ kM∗.

Corollary 8.2.3. For every ε > 0, there exists a constant ` > 0 such that C` ≤ εM∗.

Proof. Denote the maximum number of total rejections possible from round i onwards

by Li. Clearly,

Li ≤ k(Mi + Ci) ≤ k(M∗ + Ci).

For all i such that Ci ≥ εM∗, we have

Li ≤
(

1 +
1

ε

)
kCi.

Therefore, from Claim 8.2.2,

Lk+1 ≤
(

1 +
1

ε

)
k2M∗.

Putting everything together, we have,

Li+1 ≤ Li − Ci

⇒ Li+1 ≤ Li

(
1− 1

k(1 + 1
ε )

)

⇒ Lk+i+1 ≤ Lk+1

(
1− 1

k(1 + 1
ε )

)i

≤
(

1 +
1

ε

)
k2M∗

(
1− 1

k(1 + 1
ε )

)i
≤ 2k2M∗e

− i

k(1+ 1
ε ) .

Taking i = k(1 + 1
ε ) log 2k2

ε gives Ck+i+1 ≤ Lk+i+1 ≤ εM∗.

This gives us,

Theorem 8.2.4. Consider a stable matching problem. Let the length of each man’s list

be bounded by k. Denote the size of the stable matching returned by the Gale-Shapley

algorithm by M∗. Then, if the process is stopped after O(kε log k
ε ) rounds, the matching
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returned is at most a (1 + ε)-approximation to M∗, and has at most εM∗ unstable

couples.

As a corollary to Theorem 8.2.4, when the men’s and women’s list lengths are both

bounded by a constant, there is an LCA that runs in constant time an provides a

matching with at most ε unstable edges that is a (1+ε) approximation to the matching

returned by the Gale-Shapley algorithm.

Corollary 8.2.5. If both men and women have lists of length at most k, then for any

ε there is an (O(1), O(1), 0, O(1), 0)-LCA for stable matching that returns a matching

that is at most a (1 + ε)-approximation to the matching returned by the Gale-Shapley

algorithm, and with at most an ε-fraction of the edges being unstable.



Chapter 9

Machine Scheduling

Consider the following job scheduling problem: n identical jobs arrive online and need

to be allocated to m identical machines, with the objective of minimizing the makespan

- the maximal load on any machine. Azar et al. [9] proposed the following algorithm:

each job chooses, uniformly at random, d machines, and allocates itself to the least

loaded machine from its d choices. They showed that the maximal load is Θ(n/m) +

(1 + o(1)) ln lnm/ ln d. A large volume of work has been devoted to variations on this

problem, such as having weighted jobs [102]; and variations on the algorithm, such as

the non-uniform job placement strategies of [108]. Of particular relevance to this work

is the case of non-uniform machines: Berenbrink et al. [14] showed that in this case

the maximum load can also be bounded by Θ(n/m) +O(ln lnm).

The classical off-line job scheduling problem has two main variations: (1) Related

machines, where each job i takes a certain amount time, ti, to complete, regardless of

which machine it is allocated, and (2) Unrelated machines, where each job i takes time

ti,j to complete on machine j. Both problems are known to be NP -hard. Hochbaum

and Shmoys [44] showed a PTAS for scheduling on related machines. Lenstra et al.

[58], presented a 2-approximation algorithm for scheduling on unrelated machines and

showed that the optimal allocation is not approximable to within 3
2−ε (unless P = NP ).

The problem of finding a truthful mechanism for scheduling (on unrelated machines)

was introduced by Nisan and Ronen [81], who showed an m-approximation to the prob-

lem, and a lower bound of 2. Archer and Tardos [8] were the first to tackle the related

machine case; they showed a randomized 3-approximation polynomial algorithm and

a polynomial pricing scheme to derive a mechanism that is truthful in expectation.

Since then, much work has gone into finding mechanisms with improved approximation

98
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ratios, until Christodoulou and Kovács [20] settled the problem by showing a deter-

ministic PTAS, and a corresponding mechanism that is deterministically truthful.

In this chapter, we consider related machines. We show two local mechanisms:

one for the more general setting that is truthful in expectation, and one for the re-

stricted case (i.e., when each job can run on one of at most a constant number of

predetermined machines) that is universally truthful. Both mechanisms provide an

O(log log n)-approximation to the optimal makespan.

9.1 The Model

We consider the following (off-line) job scheduling setting. There is a set I of m

machines (or “bins”) and a set J of n uniform jobs (or “balls”). Each machine i ∈ I

has an associated capacity ci (sometimes referred to as its “speed”). We assume that

the capacities are positive integers. Given that hi jobs are allocated to machine i, its

load is `i = hi/ci. (hi is also called the height of machine i.) The utility of machine i

is quasi-linear, namely, when it has load `i and receives payment pi then its utility is

ui(`i, pi) = pi − `i.

The makespan of an allocation is maxi{`i} = maxi{hi/ci}. In our setting, the

players are the machines and their private information is their true capacities. Each

machine i submits a bid bi (which represents its capacity). The mechanism designer

would like to elicit from the machines the true information about their capacities in

order to be able to minimize the makespan of the resulting allocation. We assume that

the capacities of the machines cannot depend on the number of machines or jobs in the

system (i.e., that the bids of the machines are independent of m or n), and hence are

upper bounded by some constant. Although we feel this is a reasonable assumption, in

Remark 9.2.6, we show that in some cases we can relax it.

For any allocation algorithm A, and bid vector b, define A(b) =

(A1(b), . . . ,Aj(b), . . . ,An(b)) to be the allocation vector, which, when given b as an

input, assigns each job j to a machine i = Aj(b). When the bids b−i (the bids of all

machines except for i) are fixed, we sometimes omit them from the notation for clarity.

Definition 9.1.1. (Monotonicity) A randomized allocation function A is monotone

in expectation if for any machine i, and any bids b−i, the expected load of machine i,

E[`i(bi, b−i)], is a non-decreasing function of bi.
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A randomized allocation function A is universally monotone if for any machine i, and

any bids b−i, the load of machine i, `i(bi, b−i), is a non-decreasing function of bi for

any realization of the randomization of the allocation function.

Given an allocation function A, we would like to provide a payment scheme P to

ensure that our mechanism M = (A,P) is truthful. It is known that a necessary and

sufficient condition is that the allocation function A is monotone ([74]; see also [8]).

Theorem 9.1.2. [74] The allocation algorithm A admits a payment scheme P such

that the mechanism M = (A,P) is truthful-in-expectation (universally truthful) if and

only if A is monotone in expectation (universally monotone).

We consider two load balancing settings: The standard setting (cf. [14, 110]) is

a slight variation on the basic power-of-d choices setting proposed in [9]. Let d ≥ 2

be some integer. For each job j, the mechanism chooses a subset Ij ⊆ I, |Ij | = d

of machines that the job can be allocated to. The probability that machine i ∈ Ij is

proportional to bi (specifically, it is dbi∑
i bi

). In the restricted setting (cf. [10]), each job

can be allocated to a subset of at most d machines, where the subsets Ij are given as

an input to the allocation algorithm. The restricted setting models the case when the

jobs have different requirements, and there is only a small subset of machines that can

run each job. We restrict our attention to the case when the number jobs n = Θ(C)

jobs where C is the total capacity of the machines. This is a standard assumption, as

it is considered to be the worst case scenario (see e.g., [9, 14, 110]), and so a solution

for this case implies that there is an equally good solution for all other cases as well.

In both of these settings our results rely on a reduction to an on-line algorithm for

the problem. This is summarized in the the following theorem, which is an adaptation

of Theorem 4.5.2.

Theorem 9.1.3. Consider a job scheduling problem for n jobs and Θ(n) machines. For

each job j, there is a constant-size subset of machines Ij, chosen uniformly at random,

and j cannot be allocated to any machine i /∈ Ij. For any crisp on-line algorithm LB,

there exists an (O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-LCA that, when queried

on a job, allocates it to a machine, such that the resulting allocation is consistent with

that of LB.

Using known crisp online load balancing algorithms, we can get LCAs for many

problems, such as the following.
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Corollary 9.1.4. (Using [13]) Suppose we wish to allocate m balls into n bins

of uniform capacity, m ≥ n, where each ball chooses d bins independently and

uniformly at random. There exists a (O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-

LCA that allocates the balls in such a way that the load of the most loaded bin is

m/n+O(log log n/ log d) w.h.p.

Corollary 9.1.5. (Using [108]) Suppose we wish to allocate n balls into n

bins of uniform capacity, where each ball chooses d bins independently at ran-

dom, one from each of d groups of almost equal size θ(nd ). There exists a

(O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-LCA that allocates the balls in such a way

that the load of the most loaded bin is ln lnn/(d− 1) ln 2 +O(1) w.h.p. 1

Corollary 9.1.6. (Using [14]) Suppose we wish to allocate m balls into n ≤ m

bins, where each bin i has a capacity ci, and
∑

i ci = m. Each ball chooses

d bins at random with probability proportional to their capacities. There exists a

(O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-LCA that allocates the balls in such a way

that the load of the most loaded bin is 2 log log n+O(1) w.h.p.

Corollary 9.1.7. (Using [17]) Suppose we have n bins, each represented by one point

on a circle, and n balls are to be allocated to the bins. Assume each ball needs to choose

d ≥ 2 points on the circle, and is associated with the bins closest to these points. There

exists a (O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-LCA that allocates the balls in

such a way that the load of the most loaded bin is ln lnn/ ln d+O(1) w.h.p.

9.2 A Mechanism for the Standard Setting

In the standard setting, each machine i has an integer capacity ci. One way of modeling

this is to think of the allocation field as consisting of
∑

i ci slots of size 1, where machine

i “owns” ci slots. Recall that a machine’s height is the number of jobs that are allocated

to it; the load of machine i is its height divided by ci. The virtual load of machine i

is its height divided by its bid bi. Given the bids b of the machines, let B =
∑n

i=1 bi.

An allocation algorithm allocates jobs to slots: when a job j is allocated to a specific

slot, the machine that owns the slot receives j. We provide the following simple on-line

allocation algorithm ASLMS , which is modeled on the algorithm presented in [14].

1In fact, in this setting the tighter bound is ln lnn
d lnφd

+ O(1), where φd is the ratio of the d-step

Fibonacci sequence, i.e. φd = limk→∞
k
√
Fd(k), where for k < 0, Fd(k) = 0, Fd(1) = 1, and for k ≥ 1

Fd(k) =
∑d
i=1 Fd(k − i)
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1. Choose for job j a subset Ij of d slots out of B, where each slot has equal

probability. (Ij may include different slots owned by the same machine.)

2. Given Ij , job j is allocated to the lowest slot (i.e., the one containing the fewest

jobs) in Ij (breaking ties uniformly at random). Slots are treated as being inde-

pendent of their machines. That is, it is possible that if a job chooses two slots a

and b, which belong to machines A and B, a has fewer jobs than b, but B has a

higher (virtual) load than A.

Note: Although it may not be possible to compute B locally exactly, it has been shown

in that an approximate calculation suffices (e.g., [17, 110]); therefore, for simplicity, we

assume that it is possible to compute B locally.

Lemma 9.2.1. The randomized allocation algorithm ASLMS is monotone in expecta-

tion.

Proof. Let B =
∑

j bj and B−i =
∑

j 6=i bj . Since all the slots are identical, by symmetry

the expected number of jobs allocated to each slot is exactly n/B. The expected height

of machine i is therefore

E[hi(bi)] =
bi

B−i + bi
n,

which is monotone increasing in bi (for bi, B−i ≥ 0).

From Theorem 9.1.2, we conclude:

Lemma 9.2.2. The randomized allocation function ASLMS admits a payment scheme

PSLMS such that the mechanismMSLMS = (ASLMS ,PSLMS) is truthful in expectation.

It is interesting to note that the above algorithm does not admit a universally

truthful mechanism. To show this, we prove a slightly stronger claim, which we then

adapt to our setting: the Greedy algorithm, in which each job chooses d machines at

random, and is allocated to the least loaded among them (post-placement)2, breaking

ties arbitrarily), does not admit a universally truthful mechanism.

Claim 9.2.3. Algorithm Greedy is not universally monotone.

2That is, the load is computed including the allocation of the arriving job. For example, if machine
A has capacity 4 and height 2 and machine B has capacity 16 and height 9, the job will go to machine
B, as after placing the job, the load on B would 10/16, compared to 3/4 on A.
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Proof. Assume we have 4 machines: A, B, C, andD, with bids 4, 4, 8 and 1 respectively.

The first 2 jobs choose machines A and D (which we abbreviate to AD), the next 2

jobs choose BD, and the next 6 jobs choose CD. After these 10 jobs, the heights of

the machines are (2, 2, 6, 0) (recall that the Greedy algorithm allocates according to the

post-placement load). The 11th job chooses AB, and the 12th job chooses AC. As ties

are broken at random, assume machine A receives job 11. Machine C then receives job

12, making the capacities (3, 2, 7, 0).

Now assume machine C bids 9, and the choices of the first 10 jobs and the 12th job

remain the same, but because C bid higher, now the 11th job chooses C instead of A

(so job 11 chooses BC). Now machine B receives the 11th job and machine A receives

the 12th job, making the capacities (3, 3, 6, 0). Machine C received less jobs although

it bid more!

It is easy to adapt the above proof to Algorithm ASLMS : instead of choosing

machines, each job chooses 2 slots. So the first job will choose slot 1 of machine A and

the only slot of machine D; the second job will choose slot 2 of machine A and machine

D’s slot; and so on. This gives the following corollary.

Corollary 9.2.4. Algorithm ASLMS is not universally monotone.

By Theorem 9.1.3, the allocation function ASLMS can be transformed to an

(O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-LCA . For clarity, we overload the nota-

tion, letting ASLMS represent both the on-line allocation algorithm and its respective

LCA, as it is easy to distinguish between them from context. We would now like to

show a payment scheme PSLMS such that the mechanismMSLMS = (ASLMS , PSLMS)

is a local mechanism. We need to show a payment scheme that can be implemented as

an LCA and guarantees truthfulness. We give a deterministic payment scheme, that is

similar to the payments schemes of [7] and [14]. We also comment on the possibility of

a randomized payment scheme when the bids can depend on the total capacity. The

randomized payment scheme is similar to that of [11].

Lemma 9.2.5. If the bids of the machines are bounded by a constant, there exists

a deterministic local payment scheme PSLMS such that the mechanism MSLMS =

(ASLMS ,PSLMS) is truthful in expectation.

Proof. Archer and Tardos [8] showed that the following payment scheme makes for a
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truthful mechanism fulfilling voluntary participation. For bid bi:

pi(bi, b−i) = bihi(bi, b−i) +

bi∑
x=0

hi(x, b−i)dx . (9.1)

As bi is bounded by a constant, we can execute ASLMS with all values of bi ∈ [0, bi], to

compute pi. This takes a constant number of executions of ASLMS .

Remark 9.2.6. If bi is not necessarily a constant, but the mechanism has access to the

value B−i, there is a randomized payment scheme that we can use. Equation (9.1) is the

expected payment. From symmetry, E(hi(B)) = bi
B , hence we can rewrite Equation (9.1)

as

pi(bi, b−i) = n
b2i

B−i + bi
+ n

bi∑
x=0

x

B−i + x
.

Choose, uniformly at random, k ∈ [1, bi], and take the payment to be

n
b2i
B

+ nbi ·
k

B−i + k

This gives the correct expected payment, and takes O(1) time.

Berenbrink et al. [14], showed that ASLMS provides an O(log logm) approximation

to the optimal makespan. Therefore, by Theorem 9.1.3, the LCA of ASLMS provides

the same approximation ratio. Combining Lemma 9.2.2, and Lemma 9.2.5, we state

our main result for the standard setting:

Theorem 9.2.7. There exists an (O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-local

mechanism to scheduling on related machines in the standard setting that is truthful

in expectation, and provides an O(log log n)-approximation to the makespan.

9.3 A Mechanism for the Restricted Setting

In the restricted setting, each job can only be allocated to one of a set Ij ⊆ I of d

machines (i.e., |Ij | = d). As opposed to the standard setting, Ij is not selected by

the mechanism, but is part of the input. We assume that these sets are selected i.i.d.

from all possible sets, and the probability of machine i to be in Ij is proportional to

its capacity ci. The first assumption is necessary for bounding the running time, the
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second to guarantee the approximation ratio. The second requirement can be relaxed

slightly, (see e.g. [110]) but for clarity of the proofs, we will assume that it holds exactly.

Similarly to the previous subsection, we assume that the capacity of each machine is

bounded by a constant.

We define the (on-line) algorithm ARLMS for assigning jobs to machines as follows.

Initially, a permutation π of the machines is selected arbitrarily, for tie-breaking. Job t

is assigned to the machine i ∈ Ij for which the post-placement load, lpt+1
i (bi) = bh

t
i(bi)+1
bi
c

is smallest, breaking ties according to π. The following claim shows why it is necessary

to take the floor of the load (in other words, why we cannot define lpt+1
i (bi) =

hti(bi)+1
bi

):

the Greedy algorithm with lpt+1
i (bi) defined this way does not admit a universally

truthful mechanism.

Claim 9.3.1. The (unmodified) Greedy algorithm is not universally monotone in the

restricted case.

Proof. Assume we have 3 machines A,B,C, with bids (4, 8, 36) respectively, and a tie-

breaking permutation: A < B < C (jobs always prefer machine A to machines B and

C, and machine B to machine C). The allocation at time t is (1, 3, 18). The next

job’s restricted set contains machines A and B (which we abbreviate to AB), and the

following two jobs’ sets are BC and AB respectively. The first job is allocated to A

(since the post-placement loads on A and B are 2/4 and 4/8 respectively, hence we use

the tie-breaking rule). The second job is allocated to B (4/8 < 19/36) and the third

job to B (5/8 > 3/4). The heights of the machines are now (2, 5, 18).

Now assume B declares its capacity to be 9, and assume that at time t, there is no

difference in the allocation (it is easy to verify that this is indeed possible). The loads

at time t in this case are: 1/4, 3/9, 18/36. The jobs’ choices are part of the input to

the mechanism, so are unaffected by the bids, and remain AB,BC,AB. The first job

is allocated to B (2/4 > 4/9), the second job to C (19/36 < 20/36 = 5/9), and the

third job to A (2/4 < 5/9). The heights of the machines are now (2, 4, 19). Thus, B

receives less jobs despite bidding higher.

Interestingly, although Greedy is not universally monotone, ARLMS is.

Theorem 9.3.2. For any permutation π of the machines and any job arrival order, the

allocation function ARLMS is universally monotone increasing in the machines’ bids.
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From the definition of universal monotonicity (Definition 9.1.1), it suffices to prove

the following lemma:

Lemma 9.3.3. For any machine i, fixing b−i, for any b′i > bi, we have that

hi(ARLMS(b′i, b−i)) ≥ hi(ARLMS(bi, b−i)).

To prove Lemma 9.3.3, define Dt(k, b′i, bi) to be the difference in the number of jobs

allocated to machine k between ARLMS(b′i) and ARLMS(bi) up to and including the

arrival of job t (which we call time t). We abbreviate this to Dt(k) when b′i and bi

are clear from the context. (If machine k received less jobs, then Dt(k) is negative.)

We say that machine k steals a job from machine l at time t if AtRLMS(bi) = l and

AtRLMS(b′i) = k. We will show that the only machine for which Dt(k) can be positive

at some time t is machine i, therefore, as
∑n

j=1D
t(j) = 0, we have that Dt(i) can never

be negative.

Proposition 9.3.4. For any machine i, fixing b−i, if b′i > bi then at all times t, for

any machine k 6= i, Dt(k) ≤ 0.

Informally, Proposition 9.3.4 says that if bin i claims its capacity is larger than it

actually is, no bin except for i can receive more balls. The following corollary follows

immediately from Proposition 9.3.4, and implies Lemma 9.3.3.

Corollary 9.3.5. For any machine i, fixing b−i, if b′i > bi then at all times t, Dt(i) ≥ 0.

Before proving Proposition 9.3.4, we first will make the following simple observation

Observation 9.3.6. For any machine k, if Dt(k) ≤ 0 then lptk(b
′
i) ≤ lptk(bi).

Proof. For k 6= i, as k’s bid is the same in both allocations, if it received less jobs by

time t in ARLMS(bi) then the observation follows. If k = i, the observation follows

since b′i > bi.

We now prove Proposition 9.3.4:

Proof of Proposition 9.3.4. The proof is by induction on t. At time t = 0, D0(k) = 0

for every k.

Assume the proposition is true for times t = 0, 1, . . . , τ − 1. We show it holds for

t = τ , by contradiction. Assume that we have a machine k 6= i such that Dτ (k) > 0.

At time τ − 1, for all k 6= i, by the induction hypothesis, it holds that Dτ−1(k) ≤ 0.
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The only way that Dτ (k) > 0 is if machine k has Dτ−1(k) = 0 and at time τ steals a

job. Assume first that machine k steals a job from machine l 6= i. This means that in

ARLMS(bi), machine l received job τ , therefore

lpτl (bi) ≤ lpτk(bi). (9.2)

By Observation 9.3.6, lpτl (b′i) ≤ lpτl (bi), and so

lpτl (b′i) ≤ lpτl (bi) ≤ lpτk(bi) = lpτk(b′i).

If machine k steals job τ from machine l, then lpτk(b′i) ≤ lpτl (b′i). This is a contradiction

to Equation (9.2) because there cannot be an equality both here and in Equation

(9.2), as the tie-breaking permutation π is fixed. More precisely, if lpτl (b′i) = lpτl (bi) =

lpτk(bi) = lpτk(b′i), then job τ will be allocated to the same machine in bi and b′i, according

to the permutation π.

Therefore, machine k must steal job τ from machine i, which gives us

lpτi (bi) ≤ lpτk(bi) = lpτk(b′i) ≤ lpτi (b′i). (9.3)

The first inequality is due to the fact that machine i receives job τ in ARLMS(bi). The

equality is due to the fact that Dτ−1(k) = 0, and the second inequality is because

machine k receives job τ in ARLMS(b′i). And so,

lpτi (bi) < lpτi (b′i), (9.4)

because one of the inequalities in Equation (9.3) must be strict, as the tie-breaking

permutation π is fixed.

Assume that the last time before τ that machine i stole a job is time ρ, and label

by z the machine that i stole from at that time. We have

lpρi (b
′
i) ≤ lpρz(b′i) ≤ lpρz(bi) ≤ lp

ρ
i (bi).

The first inequality is because machine i received job ρ in ARLMS(b′i). The middle

inequality is because Dρ(z) ≤ 0. The last inequality is because machine z received job
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ρ in ARLMS(bi). Again, at least one inequality must be strict, giving

lpρi (b
′
i) < lpρi (bi),

which implies, for all α ≥ 0,

⌊
hρi (b

′
i) + α+ 1

b′i

⌋
≤
⌊
hρi (bi) + α

bi

⌋
, (9.5)

since b′i > bi ≥ 1.

Because job ρ was the last job that machine i stole, it received at least as many jobs

between ρ and τ in ARLMS(bi) as in ARLMS(b′i). Label the number of jobs i received

between ρ and τ (including ρ but excluding τ) in ARLMS(bi) by β and in ARLMS(b′i)

by β∗.

Observation 9.3.7. β∗ ≤ β + 1.

Proof. Machine i received at least as many jobs in ARLMS(bi) as in ARLMS(b′i) after ρ.

This must be true because ρ was the last time machine i stole a job. However, machine

i received the job at time ρ in ARLMS(b′i) but not in ARLMS(bi), and so we cannot

claim that β∗ ≤ β, but only that β∗ ≤ β + 1.

Proof of Proposition 9.3.4 continued. From the definition of lp and equation (9.5),

we get:

lpτi (b′i) =

⌊
hτi (b′i) + 1

b′i

⌋
=

⌊
hρi (b

′
i) + β∗ + 1

b′i

⌋
(9.6)

≤
⌊
hρi (b

′
i) + β + 2

b′i

⌋
(9.7)

≤
⌊
hρi (bi) + β + 1

bi

⌋
(9.8)

= lpτi (bi). (9.9)

Equality (9.6) stems from the definition of β∗, Inequality (9.7) is due to Observation

9.3.7, Inequality (9.8) is due to Equation (9.5), and Equality (9.9) is from the definition

of β.
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This is in contradiction to Equation (9.4), and therefore Dτ (k) ≤ 0. This concludes

the proof of the proposition.

Given that ARLMS is universally monotone, we can once again use the payment

scheme of Archer and Tardos [8] to obtain the following lemma.

Lemma 9.3.8. There exists a local payment scheme PRLMS such that the mechanism

PRLMS = (ARLMS ,PRLMS) is universally truthful.

It remains to bound the approximation ratio of our algorithm.

Lemma 9.3.9. The allocation algorithm ARLMS provides an O(log log n)-

approximation to the optimal allocation.

The proof is similar to the proof for the unmodified Greedy algorithm in the case

of non-uniform bins of [14]. We provide it for completeness. We prove the theorem for

the case d = 2 (each job can be assigned to one of 2 machines). The proof is easily

extendable to d > 2. For the proof (not the algorithm), we regard each machine i of

capacity ci as having ci slots of capacity 1. Before presenting the proof we need several

definitions:

The load vector of an allocation of jobs to m machines is L = (`1, . . . , `m), where

`i is the load of machine i. The normalized load vector L̄ consists of the members

of L in non-increasing order (ties are broken arbitrarily). For the case of non-uniform

machines of capacities c1, . . . cm, and total capacity C =
∑m

i=1 ci, we define the slot-load

vector S = (h1,1, . . . h1,c1 , h2,1, . . . h2,c2 , . . . hn,1, . . . hn,cn), where if machine i is allocated

r jobs, the first r mod c slots will have dr/ce jobs, and the remaining slots will have

br/cc jobs. If a machine has an uneven allocation of jobs, we call the slots with more

jobs heavy, and the slots with less jobs light. If all of the slots of the machine have an

identical number of jobs assigned to them, we call all the slots light. When we allocate

a job to a machine, we add it to one of the light slots, arbitrarily. The normalized slot

load vector S̄ is S sorted in non-increasing order (slots of the same machine may be

separated in S̄). We add a subscript t to these vectors, i.e., Lt, L̄t, St and S̄t to indicate

the vector after the allocation of the t-th job.

Definition 9.3.10 (Majorization, �). We say that a vector P = (p1, . . . , pa) majorizes
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vector Q = (q1, . . . , qb) (denoted P�Q) if and only if for all 1 ≤ k ≤ min(a, b),

k∑
i=1

p̄i ≥
k∑
i=1

q̄i,

where p̄i and q̄i are the i-th entries of the normalized vectors P̄ and Q̄.

For n ∈ N, let [n] denote {1, . . . , n}.

Definition 9.3.11 (System Majorization). Let A and B be two processes allocating

n jobs to machines with total capacity C. Let τ = (τ1 . . . τ2n), τi ∈ [C] be a vector

representing the (slot) choices of the n jobs (τ2i−1 and τ2i are the choices of the i-th

job). Let SA(τ) and SB(τ) be the slot load vectors using A and B respectively with the

random choices specified by τ . Then we say

1. A majorizes B (denoted by the overloaded notation A�B) if there is a bijection

f : [C]2n → [C]2n such that for all possible random choices τ ∈ [C]2n,we have

LA(τ)�LB(f(τ)).

2. The maximum load of A majorizes the maximum load of B (denoted by A�nB)

if there is a bijection f : [C]2n → [C]2n such that for all possible random choices

τ ∈ [C]2n, it holds that

`A1 (τ) ≥ `B1 (f(τ)),

where `A1 (τ) and `B1 (f(τ)) are the loads of the most loaded bins in A and B

respectively with the random choices specified by τ and f(τ) respectively.

It is immediate that the following holds.

Observation 9.3.12. A�B ⇒ A�nB.

We now turn to the proof of Lemma 9.3.9.

First, notice that if we have an system of m identical machines, each of capacity 1,

both the unmodified Greedy algorithm and the allocation algorithm ARLMS will behave

in exactly the same way - the load and the bloadc are the same if the capacity is 1.

From [9], we know that the maximal load on any machine when allocating n = m jobs

(to m machines with capacity 1) with the Greedy algorithm, is Θ(log log n). Therefore,

the maximal load when allocating n = m jobs with ARLMS is also Θ(log log n) in this
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setting. We would like to show that the maximal load of a system with non-uniform

machines of total capacity C is majorized by the maximal load of a system with C

machines of capacity 1, when the allocating algorithm is ARLMS . We will show that

the first system majorizes the second, and deduce the required result from Observation

9.3.12.

We restate Claim 2.4 of [110]:

Claim 9.3.13 ([110]). Let P and Q be two normalized integer vectors such that P�Q.

If i ≤ j then P + ei�Q+ ej where ei is the i-th unit vector and P + ei and Q+ ej are

normalized.

Lemma 9.3.14. For allocation algorithm ARLMS, let A be a system with non-uniform

machines of total capacity C, and B be a system with C uniform machines of capacity

1 each. Then B�A.

Proof. We use the slot load vectors of systems A and B (in B the load vector and slot

load vector are identical), and show that SB(f(τ))�SA(τ). The bijection is such that

the jobs in both processes choose the same k1 < k2 ∈ {1, . . . , C} in the normalized

slot load vectors, and the choice corresponds to machines k1, k2 in B and the machines

associated with those specific slots in system A. We use induction: for t = 0, the claim

is trivially true.

From the inductive hypothesis, before the allocation of the t-th job,

SBt−1(f(τ))�SAt−1(τ). In system B, the t-th job goes to machine k2. In system A,

if the bloadc of the machine of k1 is greater than that of the machine of k2, the job

goes to k2 if k2 is a light slot, or to a slot to the right of k2 (a lighter slot of the same

machine), if k2 is a heavy slot. If the bloadsc of the machines of k1 and k2 are the same,

again, the job goes to k2 if k2 is a light slot, or to a slot to the right of k2 (again, a

lighter slot of the same machine), if k2 is a heavy slot. In all cases, by Claim 9.3.13, it

follows that SB(f(τ))�SA(τ).

Putting everything together gives our main result for this subsection.

Theorem 9.3.15. There exists an (O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-local

mechanism for scheduling on related machines in the restricted setting that is universally

truthful and gives an O(log log n)-approximation to the makespan.



Chapter 10

Combinatorial Auctions

Combinatorial auctions are an extremely well-studied problem in algorithmic game

theory, see e.g., [25] for a survey. The general premise is the following: we wish to

allocate m (possibly different) goods to n players, who have valuations for subsets of

goods, with the goal of maximizing the social welfare (sometimes we may have other

goals, but we focus on social welfare maximization in this work). The general problem,

where each player may have an an arbitrary valuation for each subset of the goods

is known to be NP -hard; indeed, even approximating the optimal solution for single-

minded bidders to within m1/2−ε is NP -hard [57]. Therefore, in order to obtain useful

approximation algorithms, we must relax some of our demands. There are hundreds, if

not thousands of papers devoted to various relaxations; the one we focus on is single-

minded bidders: There are m indivisible goods, and n buyers. Each buyer i is interested

in a specific subset of the items, S∗i , and has a utility vi if she receives all of the items

in her subset and 0 otherwise. We would like find an allocation that maximizes the

social welfare. Unfortunately, this problem is also NP -hard, as is approximating the

social welfare to within m1/2−ε [80]. When all buyers are interested in at most k items

(which we call the k-single minded case), we can find a 2(k+1)
3 approximation to the

optimal welfare by a reduction to weighted set packing and the algorithm of Chandra

and Halldórsson [19]. We can convert this approximation algorithm into a truthful

mechanism by computing VCG-like payments, in the same fashion that we show in

Sections 10.1.2 and 10.2, by running the allocation algorithm once again without each

agent. Before tackling the k-single minded case (Section 10.2), we find local mechanisms

for two simpler problems involving unit-demand buyers.

112
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10.1 Unit-Demand Buyers

We propose local truthful mechanisms for auctions with unit-demand buyers, in which

each buyer is interested in at most k items, chosen uniformly at random. First, we

tackle the case where all buyers have the same valuation for the items in their sets, and

the buyers’ private information is their sets. Then we examine the case in which the

buyers’ sets are public knowledge and the buyers’ private information is their valuations

for their items, with the restriction that buyers have the same valuation for all items

in their set.

In both cases, we use LCAs for maximal matching to obtain a 1
2 -approximation

to the optimal solution, as any maximal matching is a 1
2 -approximation to the maxi-

mum matching. We could use a (1 − ε)-approximation algorithm (such as the one of

Chapter 5) to obtain a better approximation ratio, but it is not clear how to guarantee

truthfulness in that case. Designing a local computation mechanism that obtains an

approximation ratio better than 1
2 is an open problem.

10.1.1 Unit-Demand Buyers with Uniform Value

Consider the following scenario. There is a set I of n unit-demand buyers, and a

set J of m indivisible items. There is a fixed, identical value for all items, which we

normalize to 1. Each buyer i is interested in a set Ji of at most k items (where k is a

constant). We can treat this auction as a graph G = (V,E), in which V = J ∪ I, and

E = {(i, j) : i ∈ I, j ∈ Ji}. The value of a subset S to buyer i (vi(S)) is 1 if S ∩ Ji 6= ∅

and 0 otherwise. Namely, the buyers are indifferent between the items in their set (they

all have the same valuation for the items in their set, and a zero valuation for all other

items). The utility of buyer i is quasi-linear, that is, when she receives items S and

pays p her utility is ui(S, p) = vi(S) − p. We assume that the subsets Ji are selected

uniformly at random and that kn/m = O(1). 1

Our goal is to design a local mechanism that maximizes the social welfare. In order

to do this, we would like to satisfy as many buyers as possible, allocating each buyer

a single item from her set. We call this type of auction an k−UDUV (unit demand,

uniform value) auction.

Ideally, we would like to find a maximum matching between the buyers and items,

1Hence, as in Claim 2.3.5, the graph is (n/2)-conditionally d-light, for some constant d.
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as this will maximize the social welfare. However, Corollary 2.5.2 shows that it not

possible to solve the maximum matching problem locally, even on bipartite graphs.

We will therefore content ourselves with finding an approximation to the maximum

matching.

10.1.1.1 A 1
2-approximation to the maximum matching

To obtain a 1
2 -approximation, we use the (O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-

LCA for finding maximal matchings in undirected graphs of Chapter 4. We denote this

algorithm by AUDUV .

Our mechanism MUDUV = (AUDUV ,PUDUV ) works as follows. The mechanism

receives from each buyer i a subset J ′i ⊂ J . As discussed previously, AUDUV generates

a random order in which it considers the items; clearly the buyers cannot influence the

order in which the items as considered.

As the values of all items are identical, any payment scheme PUDUV that fulfills

voluntary participation is adequate, i.e., the payment can be any value in the range

[0, 1]. For example, charge p = 1/2 from any buyer that receives an item and p = 0

from any buyer that does not receive an item.

In order to show that our mechanism is truthful, we need only to show that buyers

cannot profit by bidding J ′i 6= Ji.

Theorem 10.1.1. In the k-UDUV auction, the mechanism MUDUV =

(AUDUV ,PUDUV ) is universally truthful and provides a 1
2 -approximation to the optimal

allocation.

Proof. The proof will be done in two steps. First, we show that for any J ′i , bidding

Ji∩J ′i weakly dominates bidding J ′i . Second, we show that bidding Ji weakly dominates

bidding any J∗i ⊆ Ji.

To show that Ji∩J ′i weakly dominates bidding J ′i , label the items in Ji∩J ′i as good,

and those in J ′i \ Ji by bad. If a good item is allocated to buyer i when she bids J ′i ,

it will also be allocated to her when bidding Ji ∩ J ′i . Therefore the value of buyer i

cannot decrease by bidding Ji ∩ J ′i , and hence Ji ∩ J ′i weakly dominates bidding J ′i .

To show that bidding Ji weakly dominates bidding any J∗i ⊆ Ji, consider the

following. If buyer i does not receive any items when bidding J∗i , the claim trivially

holds. Assume buyer i receives item j when bidding J∗i . Then, when bidding Ji, if she
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has not received any item from Ji \ J∗i before considering item j, then she will receive

item j. Therefore, if she receives an item when bidding J∗i , she will also receive an item

when bidding Ji, and have the same valuation and utility. This proves that bidding Ji

weakly dominates bidding J∗i ⊆ Ji.

The reasoning that the allocation is a 1
2 -approximation is similar to the proof of

maximal versus maximum matching. Consider a buyer that is not allocated an item in

AUDUV and is allocated an item in the optimal allocation. Her item is allocated to a

unique different buyer in AUDUV . This bounds the number of buyers allocated items

in the optimal allocation and not in AUDUV by the number of buyers that are allocated

items in AUDUV , giving the factor of 1
2 approximation, and completing the proof of the

theorem.

Theorem 10.1.2. The k-UDUV auction has an (O(log n), O(log2 n), O(log n),

O(log2 n), 1/n)-local mechanism that is universally truthful and provides a 1
2 -

approximation to the optimal social welfare.

10.1.2 Unit Demand Buyers, Uniform-Buyer-Value

There is a set I of n buyers, and a set J of m items. Each buyer i is interested in a set

of at most k items, Ji ⊆ J , which is chosen uniformly at random from all possible sets,

is public knowledge, and has a private valuation, ti (which represents the value of any

item from Ji to buyer i). Buyer i’s valuation for subset S is vi(S) = ti if S ∩ Ji 6= ∅,

and 0 otherwise. The utility of buyer i is quasi-linear, namely her utility of receiving

subset S and paying p is ui(S, p) = vi(S)− p.

Similarly to Claim 2.3.5, we can treat this auction as a ((polylog n)-conditionally

d-light) weighted graph G = (V,E), in which V = J ∪ I, and E = ∪iEi where

Ei = {(i, j) : j ∈ Ji}. Every edge e ∈ Ei has weight w(e) = ti.

In addition, we make the simplifying assumption that the buyers are Bayesian - the

valuations ti are randomly drawn from some prior (not necessarily known) distribution,

that is identical to all buyers. We call this type of auction an k−UDUBV (unit demand,

uniform buyer value) auction.

We require that if buyer i does not receive an item, she pays nothing. If buyer

i receives an item, the mechanism charges her pi(b), where b is the bid vector. Any

buyer will receive at most one item in the allocation of the mechanism. We would like
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to ensure that bidding truthfully is a dominant strategy for all buyers. Hence, we need

to show that, for all bi and b−i, we have ui(ti, b−i) ≥ ui(bi, b−i).

The allocation algorithm, AUDUBV , is as follows. First, AUDUBV orders the buyers

by their bids. Starting with the buyer with the highest bid, each buyer i is allocated

an item ji ∈ Ji such that ji has not yet been allocated. If more than one such item

exists, we allocate the (lexicographically) first ji ∈ Ji. (We assume the items have

lexicographic order.) If there is no such item, then buyer i is not allocated any item.

We continue until we cannot allocate any more items.

First, we claim that the resulting allocation is a 1
2 -approximation.

Claim 10.1.3. The allocation algorithm AUDUBV provides a 1
2 -approximation to the

optimal allocation, with respect to the bids b.

Proof. The proof is similar to the proof that any maximal matching is a 1
2 -

approximation to a maximum matching. Regard the auction as a bipartite graph

G = (U,W,E), with U representing the buyers and W representing the items. There

is a weighted edge between each buyer i and every item ji ∈ Ji. The weight of each

edge e = (i, ji) is the bid of buyer i, bi. The optimal allocation is a maximum weighted

matching, while AUDUBV considers the buyers in the order of their bi’s and finds a

maximal matching.

If an edge e = (i, ji) is added in AUDUBV but not in the optimal matching, then it

is allocated instead of at most 2 edges in the optimal matching (an edge e′ containing

i and an edge e′′ containing ji). Because AUDUBV considers edges according to their

weights, we know that w(e) ≥ w(e′) and w(e) ≥ w(e′′). Therefore 2w(e) ≥ w(e′)+w(e′′)

and so the ratio between the allocation of AUDUBV and the optimal allocation is at

least 1
2 .

We now need to specify the payment mechanism. To calculate buyer i’s payment

when she receives an item, we run AUDUBV without buyer i. Buyer i pays the smallest

value for which any of her items is sold when the auction is run without her. (This is

exactly the minimal value of bi which would still gain her an item). We label buyer i’s

payment by pi, hence, the payments are PUDUBV = {p1, . . . pn}.

Claim 10.1.4. In mechanism MUDUBV = (AUDUBV ,PUDUBV ), for all buyers i and

all bi, bidding ti weakly dominates bidding bi.
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Proof. We will show that, fixing the bids of all other buyers at b−i,

1. Buyer i has no incentive to over-bid, i.e., bid bi > ti .

2. Buyer i has no incentive to under-bid i.e., bid bi < ti .

To prove (1), we notice that if buyer i receives an item, then she has no incentive

to bid higher, as she has no preference between items. Furthermore, bidding higher

cannot change her payment, as her payment is independent of her bid. If she does not

receive an item, then pi ≥ bi(= ti)
2, and so if she bids more, she might receive an item,

but will have to pay at least ti if she does, which will result in a non-positive utility.

To prove (2), we notice that if buyer i does not receive an item, she cannot obtain

an item by bidding lower, because the algorithm allocates first to higher bids. If she is

allocated an item, then bidding lower will not make a difference, unless she bids under

pi, in which case she will not receive any item, and hence have zero utility.

Claims 10.1.3 and 10.1.4 imply the following.

Theorem 10.1.5. The mechanism MUDUBV is universally truthful and provides a

1
2 -approximation to the optimal social welfare.

Algorithm AUDUBV is a (O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-LCA for

maximal matching on (polylog n)-conditionally d-light graphs. Notice, however, that

we need to run AUDUBV once for calculating the allocation, and k more times for

calculating the payment. Hence, we have the following.

Theorem 10.1.6. There is an (O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-local

mechanism for k−UDUBV auction that is universally truthful and provides a 1
2 -

approximation to the optimal social welfare.

10.2 k- Single Minded Bidders

We extend the results of Section 10.1.2 to the case of combinatorial auctions with k-

single-minded bidders: There is a set I of n buyers, and a set J of m items. Each

buyer i is interested in a set of at most k items, Ji ⊆ J , which is public knowledge,

and has a private valuation, ti, which represents the value of the entire subset Ji to

2As specified, if buyer i does not receive an item, she pays 0. However, if the mechanism were to
compute the payment, i.e., run the mechanism without her, the payment would be pi ≥ bi(= ti).



118 CHAPTER 10. COMBINATORIAL AUCTIONS

buyer i. Buyer i’s valuation for subset S is vi(S) = ti if Ji ⊆ S, and 0 otherwise. The

utility of buyer i is quasi-linear, namely her utility of receiving subset S and paying p

is ui(S, p) = vi(S)− p.

As in Subsection 10.1.2, we assume that Ji has a uniform or binomial distribution,

and that the valuations ti are randomly drawn from some prior (not necessarily known)

distribution, and kn/m = O(1).

The allocation algorithm, AkSMB, is as follows. First, AkSMB orders the buyers

by their bids. Starting with the buyer with the highest bid, each buyer i is allocated

subset Ji such that no item ji ∈ Ji has been allocated yet. We continue until we cannot

allocate any more subsets.

Claim 10.2.1. The allocation algorithm AkSMB provides a 1
k -approximation to the

optimal allocation, with respect to the values b.

Proof. Compare the allocation of Algorithm AkSMB, J∗, to the optimal allocation,

OPT . Each set J ∈ J∗ is chosen by AkSMB instead of at most k sets in OPT , but its

weight is greater than each of their weights, because AkSMB is a greedy algorithm.

The payment scheme is as follows. To calculate buyer i’s payment when she receives

an item, we run AkSMB without buyer i. Buyer i pays the highest value of the allocated

sets Jx for which Ji ∩Jx 6= ∅. (This is exactly the minimal value of bi which would still

gain her an item). We label buyer i’s payment by pi, and let PkSMB = {p1, . . . pn}.

Claim 10.2.2. In mechanism MkSMB = (AkSMB,PkSMB), for all buyers i and all bi,

bidding ti weakly dominates bidding bi.

The proof is similar to the proof of Claim 10.1.4 and is omitted.

Combining Claims 10.2.1 and 10.2.2, we get

Theorem 10.2.3. There exists an (O(log n), O(log2 n), O(log n), O(log2 n), 1/n)-local

mechanism for combinatorial auctions with known k−single minded bidders (where the

sets are sampled uniformly at random) that is universally truthful and provides a 1
k -

approximation to the optimal social welfare.
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Discussion and Future Directions

In the first part of the thesis we described several techniques for designing local compu-

tation algorithms; the two main ones being (1) reductions to distributed (and parallel)

algorithms and (2) reductions to online algorithms. The reduction to distributed al-

gorithms is due of Parnas and Ron; our main result was proving a tighter bound for

the running time of the simulation of the distributed algorithm on d-light graphs. For

the reduction to online algorithms, we showed that we can use a random seed of length

O(log n) to generate a random ranking the vertices (or edges) of the graph, and that

we can simulate an online algorithm on the vertices (edges) in the order defined by

this ranking. This allows us to obtain LCAs that require time O(log2 n) and transient

space O(log n loglog n) or vice versa. Given a truly random ordering on the vertices of

a line graph, with probability at least 1
n , there will be a monotone increasing segment

of length Ω( logn
loglogn). This gives an immediate lower bound on the time and transient

space requirements of our LCAs, when we apply this reduction. It would be interesting

to obtain tighter bounds. Furthermore, it would be interesting to extend the techniques

of the thesis (and others), to obtain better bounds for similar LCAs on a wider family

of graphs.

In some cases (for example in our reduction to the online greedy MIS algorithm), we

can use a known distributed or online algorithm as a black box; in other cases, we may

benefit from designing new (or variations on known) distributed, parallel and online

algorithms. An interesting example of a new parallel algorithm that was designed espe-

cially for the purpose of reduction from LCAs is the maximum weight forest algorithm

of Chapter 6. There are many known parallel algorithms for maximum weight forests,

and they all outperform our new algorithm, because it (the new one) performs many

119
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redundant operations. However, this “flaw” is exactly what makes it simple to adapt it

to an LCA. A research direction for future work is to develop new parallel and online

algorithms to tackle problems that the current reductions do not hold for.

Most of the work on LCAs thus far has focused on proving upper bounds for specific

(families of) algorithms on specific (families of) graphs. Other than result presented in

Chapter 2, we are not aware of any impossibility results. One of the more important

directions in the study of local computation algorithms seems to be the lower bounds

and more impossibility results, in order to better characterize the possibilities and limits

of LCAs.

In the second part of the thesis we designed local computation mechanisms for

several game theoretic problems. We showed how we can adapt our maximal matching

LCA to obtain a local mechanism for the housing allocation problem. We then tackled

the more complex problem of stable matching, and described an LCA for it based on the

Gale-Shapley algorithm. We showed that, when the men’s preference lists are random

and have bounded length, there is an LCA that finds an “almost stable” matching.

Interestingly, we were able to use our techniques to obtain a non-local result: we

showed that in the general case when the men’s list are bounded, stopping the Gale-

Shapley algorithm after a constant number of rounds can guarantee an arbitrarily

stable matching. To our knowledge, this was the first time techniques from LCAs

were used to obtain results in other fields. Others have also used LCAs to design and

analyze algorithms that are not LCAs; for example, Even et al. [30] used LCAs to

design better distributed algorithms for maximum matching. It would be interesting to

continue finding links between LCAs and other fields, and to see whether the techniques

developed for LCAs will be useful in other disciplines as well.

Finally, we showed local computation mechanisms for two load balancing problems,

two combinatorial auctions with unit-demand bidders and combinatorial auctions with

k-minded bidders. We feel that this is the first step in the field or local computation

mechanism design, which may become a more practical field as markets continue to

grow.
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Appendix A

Auxiliary Results

A.1 Chernoff Bounds

Theorem A.1.1 (Chernoff bound). Let X be a binomially distributed random variable,
X ∼ B(n, p), such that µ = np. Then, for λ > 2e− 1 it holds that

Pr[X > (1 + λ)µ] < 2−µλ.

Proof. Substituting λ ≥ 2e− 1 into the standard Chernoff bound gives

Pr[X > (1 + λ)µ] ≤
(

eλ

(1 + λ)1+λ

)µ
≤
(

eλ

(2e)1+λ

)µ
=≤ 2−µλ

Lemma A.1.2 (Azuma’s Inequality [5]). Let c = Y0, . . . , Yn be a martingale with
|Yi+1 − Yi| ≤ 1 for all 0 ≤ i ≤ n. Then

Pr[|Yn − c| > λ
√
n] < 2e−λ

2/2.

A.2 Stochastic Dominance

We recall the following facts about stochastic dominance (see, e.g., [82]).

1. If X ≤st Y and Y ≤st Z then X ≤st Z.

2. For any integer n, let {X1, X2, . . . Xn} and {Y1, Y2, . . . Yn} be two sequences of
independent random variables. If ∀i,Xi ≤st Yi, then

∑n
j=1Xj ≤st

∑n
j=1 Yj .

We need the following observation and lemmas.

Observation A.2.1. For any x ≤ α,B(x, dα) ≤st B(α, dα).

Lemma A.2.2. Let Y1, Y2 be independent discrete random variables. Let X1, X2 be
(possibly) dependent discrete random variables, such that X1 is independent of Y2. If
X1 ≤st Y1, and conditioned on any realization of X1, it holds that X2 ≤st Y2, then

X1 +X2 ≤st Y1 + Y2.
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Proof. For every realization x of X1, define a different random variable for X2. That
is X2(x) = X2|X1 = x. Note ∀x,X2(x) ≤st Y2. Further note that X1 and Y2 are
independent. From the law of total probability,

Pr[X1 +X2 > k] =
∑
x

Pr[x+X2(x) > k] · Pr[X1 = x]

=
∑
x

Pr[X2(x) > k − x] · Pr[X1 = x]

≤
∑
x

Pr[Y2 > k − x] · Pr[X1 = x]

=
∑
x

Pr[x+ Y2 > k] · Pr[X1 = x]

= Pr[X1 + Y2 > k]

≤ Pr[Y1 + Y2 > k].

This implies

Lemma A.2.3. Let {Y1, Y2, . . . , YN} be a sequence of independent random variables.
Let {X1, X2, . . . , XN} be a series of (possibly) dependent random variables. If it holds
that X1 ≤st Y1, and for any 1 ≤ i ≤ N , conditioned on any realization of X1, . . . Xi−1,
it holds that Xi ≤st Yi, then

N∑
j=1

Xj ≤st
N∑
j=1

Yj .

Proof. We prove by induction on i that
∑i

j=1Xj ≤st
∑i

j=1 Yj . For i = 1 we have that

X1 ≤st Y1. Assume that
∑i

j=1Xj ≤st
∑i

j=1 Yj , we prove that
∑i+1

j=1Xj ≤st
∑i+1

j=1 Yj .

Let Z1 =
∑i

j=1Xj , Z2 = Xi+1, W1 =
∑i

j=1 Yj , and W2 = Yi+1. Applying Lemma A.2.2
with Z1, Z2,W1,W2 we get that Z1 + Z2 ≤st W1 +W2 as required.

For the second lemma we prove, we require the following well-known inequalities:

Fact A.2.4. For every 0 < x < 1 and every y > 0,(
1− x

y

)y
< e−x < 1− x

2
.

Claim A.2.5. Let 2d < α ≤ n. Let X and Y be random variables such that X ∼
B(1, dα) and Y ∼ B(dn2

α e,
2d
n2 ). Then X ≤st Y .

Proof. X is in fact a random variable with the Bernoulli distribution. As X can only
take the values 0 or 1, to show stochastic dominance, it suffices to show that Pr[Y =
0] ≤ Pr[X = 0].

Pr[Y = 0] =

(
1− 2d

n2

)dn2

α
e
< e−2d/α < 1− d

α
= Pr[X = 0].
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Claim A.2.6. Let X be a random variable such that X ∼ B(α, dα), and let

X1, X2, . . . , Xα−1 be random variables duch that ∀i,Xi ∼ B(1, dα). Then X ≤st
α−1∑
i=1

Xi + 1.

The proof is immediate from the definition of the binomial distribution.

Claim A.2.7. Let Y be a random variable such that Y ∼ B(n2, 2d
n2 ) and let

Y1, Y2, . . . , Yα−1 be random variables such that ∀i, Yi ∼ B(dn2

α e,
2d
n2 ). Then

α−1∑
i=1

Yi ≤st Y .

Proof. It suffices to show that (α− 1)dn2

α e ≤ n
2.

(α− 1)

⌈
n2

α

⌉
≤ (α− 1)(

n2

α
+ 1) ≤ n2 − n+ α− 1 < n2,

because α ≤ n.

Combining Claims A.2.5, A.2.6 and A.2.7, we get

Lemma A.2.8. Let Z and X be random variables such that Z ∼ 2d + B(n2, 2d
n2 ) and

X ∼ B(α, dα), where d ≤ α ≤ n. Then X ≤st Z.

Proof. If α ≤ 2d, the lemma holds immediately. Assume α ≥ 2d. Then, using the
notation of Claims A.2.6 and A.2.7

X ≤st
α−1∑
i=1

Xi + 1 ≤st
α−1∑
i=1

Yi + 1 ≤st B(n2,
2d

n2
) + 1 ≤st Y + 1 ≤st Z.
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 תמצית

 

אלגוריתמי חישוב מקומיים )אח"מים( מאפשרים גישה לחלקים קטנים של פתרון לבעיה נתונה, תוך כדי שימוש 

בזמן ומקום פולילוגאריתמיים באורך הקלט. הניחו, למשל, שיש גרף ענק עליו אנו רוצים לחשב קבוצה בלתי 

הגרף. הגרף כל כך גדול שחישוב כל הפתרון ייקח יותר מדי זמן, ובנוסף, יתכן  תלויה מקסימאלית של קודקודי

שבכל זמן נתון, איננו צריכים את הפתרון  נניחואין לנו מספיק מקום כדי לאחסן את הפתרון כולו. מצד שני, 

תלויה. -ה הבלתיבוצהאם הם נמצאים בק –כולו. במקום זאת, מדי פעם אנו נשאלים לגבי קודקודים מסוימים 

אח"מ יאפשר לנו להגיב לשאילתות אלה באופן עקבי )כלומר, אם האח"מ נשאל לגבי כל קודקודי הגרף, כל 

פולילוגאריתמיים. בתזה זו אנו מפתחים  (, תוך שימוש בזמן ובמרחביחידעקביות עם פתרון תהיינה התשובות 

 אח"מים.וניתוח טכניקות וכלים לתכנון 

d –פים גרשל ו מציגים משפחה חדשה אנ − light , גרפים  מספרובעלי דרגה חסומה הכוללת גרפים

dעל גרפילבעיות מסוימות  רדוקציה מאח"מיםלעשות כיצד ניתן  אנו מראים .מענייניםאקראיים  − light 

Parnas and Ron (2007 .)הוצגה ע"י לאלגוריתמים מבוזרים  רדוקציהאלגוריתמים מבוזרים ומקוונים. הל

dם על גרפי ההניתוח של − light של לאלגוריתמים מקוונים המבוססת על רעיון  מציגים רדוקציהאנו . חדש

Nguyen and Onak  (2008 הרעיון הוא :)קוון מאלגוריתם הרצה של צר סדר אקראי על הקודקודים ולדמות ילי

𝑂(logבאורך גרעין של אקראיות  לשמור מספיקכי ו מראים אנזה.  סדרעל  𝑛)  את האקראיות שאנו  צריליבכדי

𝑂(log2 האח"מים שנוצרים לא משתמשים ביותר מ  צריכים, ושבהסתברות גבוהה 𝑛)או מקום להשיב לכל  זמן

 זיווגת, קבוצה בלתי תלויה מקסימאלי כגון:לבעיות  אח"מים לנו להשיג ותמאפשר ואל רדוקציותשאילתא. 

dגרפים מקסימלי, איזון עומסים וצביעה על  − light אח"מאת הטכניקות הללו כדי להשיג  יםרחיבמו . אנ 

 בנוסף, אנו מראים כי במקרים מסוימים, אנו יכולים לעצב .בעלי דרגה קבועהמקסימלי על גרפים  זיווגקירוב ל

אנו ת. ליתר דיוק, המקסימלי בדרגה אלא רק( אינו תלוי בגודל הגרף, המקוםזמן הריצה )ואח"מים עבורם 

נטולת מעגלים קבוצת קשתות של מטרואיד גרפי )כלומר,  מקסימאלילבסיס משוקלל קירוב  מציגים אח"מ

זיווג מקומית של  משאבים על עצים, ורדוקציה-וזרימה מרובת חתך מרובה לקירוב ת(, אח"מיםמקסימאלי

כך שזמן ריצתו של האח"מ המיוצר בלתי תלויה במשקלי , ממושקל מקסימאלי לאח"מ לזיווג מקסימאלי

 הקשתות. 

אלה כ -לסביבות אסטרטגיות  םאלגוריתמיבתכנון כרוך  (mechanism design) ניםתחום עיצוב מנגנו

 קלט לאלגוריתם מורכב )או כולל( מידע פרטי שנמסר ע"י סוכנים שיש להם עניין בתוצאה. אנו מציגים אתהש

סוכן יחיד, ונדרשים להחזיר  המקבלים שאילתא עלעיצוב מנגנונים  ", הכוללעיצוב מנגנון חישוב מקומיהתחום "



מכירה  נניח ויש. כדוגמא, מהמנגנון תוך שמירה על המאפיינים הנדרשים לסוכן,רלוונטי שאת החלק מהפתרון 

היינו רוצים שהוא יגיד סוכן,  את המנגנון לגבימתשאלים אנו פומבית של מיליון פריטים למיליוני סוכנים. כאשר 

לתמרץ את כל היינו רוצים בעת  ובהתשלום שהוא חייב עבור פריטים אלו. לנו אילו פריטים הסוכן מקבל ומה 

 .פריטיםלשווי ה יהםהערכותלדווח בצורה כנה על הסוכנים 

 בזמן ובמרחבלהגיב לכל שאילתא נדרשים מנגנוני חישוב מקומיים אח"מים, בדומה ל

משתמש כאשר המנגנון  .גלובלי פתרון בקנה אחד עם אותו לעלותות תליהתגובות לשאעל , ופולילוגאריתמיים

על המנגנון לתמרץ את תר על כן, י .פולילוגאריתמיים בזמן ובמרחבהוא תשלומים, חישוב התשלומים נעשה גם ב

 המשתתפים לדווח בצורה כנה. 

( 2יציב, ) זיווג( 1: )תורת המשחקיםעיות בבאנו מציגים מנגנוני חישוב מקומיים עבור מגוון רחב של 

חלק מהטכניקות שלנו יש ל .( הקצאת דיור4) -ו ת וכירות פומביות קומבינטורימגוון מ  (3), עומסים איזון

העדפה של הגברים חסומות, רשימות אנו מראים כי כאשר  כללית )לא מקומית(:הבעיית זיווג יציב השלכות ל

-Galeאלגוריתם  של סיבוביםהיציב תוך מספר קבוע של  לזיווגקירוב טוב זיווג המהווה אנחנו יכולים להשיג 

Shapley. 



 תקציר

 

 : תכנון אלגוריתמי חישוב מקומי 1חלק 

 

בחלק הראשון של התזה, אנו מציגים את המודל של אלגוריתמי חישוב מקומיים )אח"מים( ומתארים מספר 

אנחנו מציגים את המודל ומגדירים את חמשת הקריטריונים לביצועים של  2בפרק  טכניקות לעיצוב אח"מים.

 גרעיןהזיכרון הנדרש כדי לאחסן את  שאילתא; גרף עבור כללשהאח"מ מבצע  גישותהמספר  אח"מים על גרפים:

לחישוב התשובה  המקום הנדרש כל שאילתא;ענות לל הנדרשהזמן  ;(אקראי האח"מאם ) ת,ואקראיה

 הגישות, הזמן או המקום.חורג ממספר  שהאח"מוההסתברות  לשאילתא;

dמכנים  אנואותה לאחר מכן, אנו מציגים משפחה של גרפים,     − light גרף :d − light  הוא גרף שנדגם

 זנב-נשלטת ע"י התפלגות קלתנחשף הבא ההקודקוד דרגת , גרף כלשהו כבר נחשף-שכאשר תתכך , מהתפלגות

אנו  אקראיים.בעלי דרגה חסומה וגרפים גרפים  , כוללכוללת מספר רב של גרפים משפחה זו  .dבעלת תוחלת 

  עצמו. הגרף-לא הרבה יותר גדולה מתת הגרף-תתשכונה של גדול מספיק נחשף, הגרף -בהינתן שתתמראים כי 

שאין להן , מיבזמן פולינו שניתן לפתור אלה כבעיות, אפילו קיימות כי  , אנו מראים2פרק סופו של ב

 .זיווג מקסימוםל אח"מקיים אנו מראים כי לא ליתר דיוק,  .אח"מים

מסוימים, בהתאמה,  מקווניםאלגוריתמים מבוזרים ו מירלה אנו מראים כיצד ניתן 4-ו 3בפרקים 

אנו נשאלים לגבי קודקוד לאלגוריתמים מבוזרים הוא כדלקמן: אם  רדוקציההרעיון מאחורי ה .אח"מיםל

 לדמות, של סיבובים, ניתן kהמסיים את ריצתו לאחר מספר קבוע,  D , ויש לבעיה אלגוריתם מבוזרvמסוים, 

dאם הגרף הוא  .v-מ  kהיותר דקודים במרחק לכל על כל הקו Dאת הרצת  − light מספר, אנו מראים כי 

לאלגוריתמים מקוונים היא  רדוקציההבהסתברות גבוהה לוגריתמי בגודל הגרף. הקודקודים האלה הוא 

מכיוון שאנו רוצים  .על סדר זה Aמקוון אלגוריתם  , ומדמיםסדר אקראי על הקודקודים כדלקמן: אנו מייצרים

 כל עבורסדר האותו על  Aאת לדמות  עלינוות תהיינה עקביות עם פתרון יחיד, תליהתשובות לכל השאש

אקראי, ולכן  כך שהסדרב ותלמרבה הצער, התוצאות שלנו תלוי .סדר הזההאת  עלינו לשמורלכן  .השאילתות

אקראי,  יהיה סדרשה למרות שאנו דורשים (.מספר סידורי)למשל, לפי  בסדר שרירותייכולים להשתמש  איננו

אנו יכולים לקבל יותר אקראיות.  ,כללי, ככל שיש לנו יותר מקום באופן .תאנחנו לא דורשים אקראיות מוחלט

סדר קטן זה, אנו יכולים ליצור   מגרעין ינו.למטרות מספיקשל ביטים אקראיים  מתברר כי מספר לוגריתמי

לוגאריתמי של פעמים עבור כל יבטיח שנצטרך לגשת לגרף מספר פולשעדיין מ ,אקראי על הקודקודים "כמעט"



תוחלת, אנו צריכים מספר קבוע של גישות מראים כי ב גם אנו שאילתא במקרה הגרוע ביותר, בהסתברות גבוהה.

  אח"מ לקירוב זיווג מקסימום על גרפים בעלי דרגה חסומה.אנו מראים  5בפרק לגרף עבור כל שאילתא. 

אנו מראים כי לעיתים נוכל לתכנן אח"מים שזמן ריצתם אינו תלוי לק הראשון של התזה בסופו של הח

1ציגים אח"מ למציאת יער שמשקלו קירוב אנו מ (.6בגודל הגרף, אלא רק בדרגה המקסימאלית )פרק  − 𝜀  

צים על ע משאבים אינטגראלית וחתכים מרובים-ואח"מים לחישוב זרימה רבתלמשקל היער פורש המקסימאלי, 

שנותן אלגוריתם  בהינתןלבסוף, אנו מראים כי, קירוב לפתרונות האופטימאליים בהתאמה.  -1/4 -ו -4שמהווים 

𝛼לזיווג מקסימום )לא ממושקל( שרץ בזמן קבוע, ניתן לקבל אלגוריתם המשיג קירוב  𝛼קירוב  לזיווג  ⁄8

 ו בגודל הגרף.האח"מ אינו תלוי בפונקצית המשקל אזמן הריצה של מקסימום ממושקל. 

 

 

 מנגנוני חישוב מקומי ן: תכנו2לק ח

 

ם )במובן של תורת המשחקים(, הדורשים מנגנוני -  בחלקו השני של התזה, אנו מתכננים מנגנוני חישוב מקומי

יישום אלגוריתם  -דוגמא פשוטה  ונותניםהמודל את אנו מגדירים  7בפרק  .פולילוגאריתמי זמן ומקום

רשימת  הקונכל קונים, ויש לקבוצת בתים ו קבוצתדיור, יש ההקצאת  תייבבע אקראית. תדיקטטורה סידורי

אלגוריתם הדיקטטורה הסידורי ליש  של בתים לקונים. "טובה" הברצוננו למצוא הקצא עדיפות על פני הבתים.

המקומי דורש המנגנון  היעדר תמריץ לקונים לשקר לגבי רשימת העדפותיהם., כגון תכונות רצויותהאקראי כמה 

אקראית  היא באורך קבוע, והבתים בה נבחריםשל כל קונה  הרשימהשעיקר מגבלות מסוימות )ב שהקלט יקיים

 האח"מ מחזיר את הבית שמוקצה לו, תוך שמירה על התכונות הרצויותעל קונה, כאשר הוא נשאל (, ודבאופן אחי

 מקומי. הלא מנגנוןהשל 

בתור אח"מ כאשר  Gale-Shapleyזיווג היציב של אלגוריתם ה , אנו מראים כיצד ליישם את8בפרק  

גבר , כל Gale-Shapleyבאלגוריתם  רשימת כל גבר מכילה מספר קבוע של נשים, שנבחרו אקראית באופן אחיד.

 ניגשוהגבר שהיא מעדיפה מכל הגברים ש)טנטטיבית( את האישה מקבלת  .עליואישה המועדפת ביותר ל ניגש

כל  ישה הבאה ברשימה שלו.גבר שדחה בסיבוב הקודם ניגש לאבסיבוב הבא, כל  אליה, ודוחה את כל השאר.

בסיבוב כולל זה שהיא קיבלה עומדים מולה, ששהיא מעדיפה )מתוך כל הגברים  גבראישה שוב מקבלת את ה

זיווג זה פלי הראו כי וש גייל .גבר עומד מול אישה אחתממשיך עד שכל תהליך זה  הקודם, אם היה כזה(.

של סיבובים, , k, למספר קבוע Gale-Shapleyאלגוריתם  ים אתדממו פשוט: אנהיישום המקומי שלנו  יציב.

שעל ידי בחירת מספר הסיבובים, אנו יכולים להבטיח כי  אנחנו מראיםנפסל.  k -כאשר כל גבר שנדחה בסיבוב ה

קיימים מעט מאוד זוגות של ז"א ) יציב כמעטשלנו הוא  יווגזזה מבטיח כי ה הגברים נפסל.קטן כרצוננו מחלק 



 ,להראות שפיתחנואנו משתמשים בטכניקות  גברים ונשים שמעדיפים אחד את השני על פני בן הזוג שלהם בזיווג.(

למצוא  יכולים ו(, אנלא רק כאשר מדובר באח"מים)באורך חסום  שבמקרה הכללי, כאשר הרשימות של הגברים

 סיבובים. למספר קבוע של Gale-Shapleyאלגוריתם  הרצתעל ידי כרצוננו טוב זיווג כמעט יציב 

 mעל  עבודות nאנחנו רוצים לתזמן  :על מכונות את הבעיה של תזמון עבודות חוקריםאנו  9בפרק   

התרחיש  בוחנים אתאנו  .בעיה זו וריאציות רבותליש  המכונות. של מכונות כדי למזער את זמן הריצה המקסימלי

עבורן המידע הפרטי  ,ותאסטרטגי ותהמכונות הן סוכנ .מכונות קשורות mעל זהות עבודות  nשבו עלינו לתזמן 

 אנחנו מראים: הוא מהירותן.

 לפתרון האופטימלי.לוגלוגאריתמי קירוב  הנותןלתזמון על מכונות קשורות, בתוחלת  כןמנגנון מקומי  .1

אוניברסלית לתזמון על מכונות מוגבלות )כלומר, כאשר כל עבודה יכולה בצורה  כןמנגנון מקומי  .2

להתבצע על לכל היותר מספר קבוע של מכונות שנקבעו מראש(, הנותן קירוב לוגלוגאריתמי לפתרון 

 האופטימלי.

 של האלגוריתמים שלנו. כנותכמו כן, אנו מראים כמה תוצאות עדינות ומפתיעות על ה

 מכרזיםהם ם קומבינטורי םמכרזימכרזים קומבינטורים הקשורים לזיווגים.  חוקרים, אנו 10בפרק  

קונים משתתפים  mאת התרחיש הבא:  בוחניםאנו  על חבילות של פריטים. ירלהציע מח קונים יכולים בהם

פריטים, הנדגמים אקראית. כמו כן, כל  kבקבוצה של לכל היותר  ןפריטים, כאשר כל קונה מעוניי nבמכרז עבור 

נים מקומיים כנים אנחנו מראים מנגנוקונה מעוניין לקבל לכל היותר פריט אחד מהקבוצה )לא משנה איזה(. 

 ווריאציות הבאות. ל אוניברסליתבצורה 

 (.חברתית ה)מבחינת רווח לפתרון האופטימאלי ½שני המנגנונים נותנים קירוב 

והמידע הפרטי של הקונים הוא בהם הם מעוניינים, הערכת שווי לפריטים את אותה כל הקונים ליש כש .1

 הם מעוניינים. הבפריטים הקבוצות 

הקבוצות ידועות, והמידע הפרטי של הקונים הוא הערכת השווי שלהם עבור הפריטים בהם הם כש .2

 מעוניינים )תחת ההנחה שהשווי זהה עבור כל הפריטים(.

ת עבור קבוצה זו, אנו מראים הערכת שווי פרטי ויש לו, 𝑘בגודל לכל היותר פריטים קבוצת אם כל קונה מעוניין ב

1אוניברסלית המוצא פתרון שמהווה קירוב בצורה שקיים מנגנון מקומי כן 
𝑘⁄ רווחה לפתרון האופטימלי ביחס ל  
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