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Abstract

We consider learning decision trees in the boosting framework, where we assume

that the classifiers in each internal node come from a hypothesis class HI which

satisfies the weak learning assumption.

In this work we consider the class of stochastic linear classifiers for HI , and

derive efficient algorithms for minimizing the Gini index for this class, although

the problem is non-convex. This implies an efficient decision tree learning algo-

rithm, which also has a theoretical guarantee under the weak stochastic hypothesis

assumption.
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Chapter 1

Introduction

Decision trees have been an influential paradigm from the early days of machine

learning. On the one hand, they offer a “humanly understandable” model, and on

the other hand, the ability to achieve high performance using a non-convex model.

Decision trees provide competitive accuracy to other methodologies, such as linear

classifiers or boosting algorithms. In particular, decision forests provide state of

the art performance in many tasks.

Most decision tree algorithms used in practice have a fairly similar structure.

They provide a top-down approach to building the decision tree, where each in-

ternal node is assigned a hypothesis from some hypothesis class HI . The most

notable class is that of decision stumps, namely, a threshold over a single attribute,

e.g., xi ≥ θ. The decision tree algorithm decides which hypothesis to assign in

each internal tree node, to the most part they perform it by minimizing locally

a convex function called splitting criteria. Decision tree algorithms differ in the

splitting criteria they use, for example, the Gini index is used in CART [BFSO84]

and the binary entropy is used in ID3 [Qui86] and C4.5 [Qui93].

From a computational perspective, proper learning of decision tree is hard

[ABF+08]. However, assuming the weak learner hypothesis, as is done in boost-

ing, [KM99] show that decision tree algorithms do indeed boost the accuracy of the

basic hypotheses. Specifically, they show that for a variety of splitting indices, in-
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Chapter. 1: Introduction 6

cluding Gini index and binary entropy, if one assumes the weak learner assumption,

the resulting decision tree will achieve boosting and guarantee strong-learning.

This work looks at the variation of extending the decision tree algorithms by

allowing a linear classifier at each node. Such decision trees are named oblique

decision trees, originally proposed in CART-LC and developed by [MKS94] and

[HKS93], and extended in a variety of directions [BB98, FAB08, RLSCH12, GMD13,

WRR+16]. However, a clear downside of oblique decision trees is that even mini-

mizing the splitting criteria in an single internal node becomes a non-convex prob-

lem, and the various algorithms resort to methods which converge to a local min-

ima. From a complexity point of view, oblique decision trees with three internal

nodes already encodes three-node neural networks, which is computationally hard

to learn [BR93].

Our Contributions: Our main goal is to perform an efficient computation for se-

lecting a hypothesis in each internal tree node, namely, being able to efficiently

minimize the splitting criteria. We are able to perform this task efficiently for the

related class of stochastic linear classifiers. A stochastic linear classifier has a

weight vector w and given an input x it branches right with probability (x>w +

1)/2, where we assume that x and w are unit vectors. We show how to efficiently

minimize the Gini index for stochastic linear classifiers. We use our efficient Gini

index minimization as part of an overall decision tree learning algorithm. We show,

similar to [KM99], that under the weak stochastic hypothesis assumption our algo-

rithm achieves boosting and strong-learning.

The stochastic linear classifier has a few advantages over other models:

1. Unlike decision trees with decision stumps, it can produce more general de-

cision boundaries which may depend on many attributes.

2. Unlike linear classifiers, it produces a hierarchal structure that allows to fit

non-separable data. (See Figure 1.1 for an illustration of how it fits a non-

separable input.)
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Figure 1.1: Example of decision tree with stochastic linear classifier for learning an XOR

like function.

3. Unlike oblique tree, it can efficiently minimize the splitting criteria for a

single node.

On the downside, since the model becomes more complicated it also becomes less

interpretable than either linear classifiers or decision trees which are based on de-

cision stumps.



Chapter 2

Related Work

Decision tree algorithms are one of the popular methods in machine learning. Most

decision tree learning algorithms have a natural top-down approach. Namely, start

with the entire sample, select a leaf and a hypothesis and replace the leaf by an

internal node that splits using this hypothesis. A main difference between different

decision tree algorithms is in the class of hypotheses HI used and how they select

the splitting hypothesis, e.g., the splitting criteria used.

The two most popular decision trees algorithms are C4.5 by [Qui93] and CART

by [BFSO84]. Both use decision stump as hypotheses in internal nodes. (A deci-

sion stump compares an attribute to a threshold value, e.g., xi ≥ θ.) The differ-

ence between the two algorithms is the specific splitting criteria G(x), where x

is the probability of positive examples within the node. CART uses the Gini in-

dex, i.e., G(x) = 4x(1 − x), while C4.5 uses the binary entropy, i.e., G(x) =

−x log x − (1 − x) log (1− x). One significant benefit of decision stumps is that

the size of the hypothesis class, given a sample of size m, is only dm, where d is

the number if attributes. Since for each attribute we have at most m distinct values

in a sample of size m.

The idea of using linear classifiers for HI , the hypotheses class of the internal

nodes , date back to CART-LC. A clear drawback is that the size of this hypothesis

class is no longer linear in the dimension, but infinite, and minimizing the splitting

8



Chapter. 2: Related Work 9

criteria is potentially a hard computational task. The original proposal of CART-LC

suggested to do a simple gradient decent, which deterministically reaches a local

minima. One of the successful implementation of oblique decision trees is OC1 by

[MKS94], which uses a combination of hill climbing and randomization to search

for a linear classifier of each internal node. Alternative approaches use simulated

annealing by [HKS93] or evolutionary algorithms by [CK03], to generate a linear

classifier in each internal node. The work of [BB98] build a three internal-nodes

decision tree using a non-convex optimization which also maximizes the margins

of the linear classifiers in the three nodes. The work of [WRR+16] uses the eigen-

vector basis to transform the data, and uses decision stumps in the transformed

basis (which are linear classifiers in the original basis).

Even though decision tree algorithm are tremendously popular, due to their effi-

ciency and simplicity, they are challenging to analyze theoretically. [KM99] intro-

duced a framework to analyze popular decision tree algorithms based on the Weak

Hypothesis Assumption of [Sch90]. The Weak Hypothesis Assumption states, that

for any distribution, one can find a hypothesis in the class that achieves better than

random guessing. The main result of their work shows that decision trees can be

used to transform weak learners to strong ones. Qualitatively, assuming the weak

learners always have bias at least γ, decision trees provably achieve an error of

ε with size of (1/ε)O((γε)−2), for the Gini index, and (1/ε)O((γ)−2 log (ε−1)), for

the binary entropy. They also introduce an new splitting criteria which guarantees

a bound (1/ε)O((γ)−2) which is polynomial in 1/ε. We extend the framework of

[KM99] to encompass stochastic linear classifiers, which we use as our hypothesis

class for internal decision tree nodes.



Chapter 3

Model

Let X ⊂ Rd be the domain and Y = {0, 1} be the labels. There is an unknown

distributionD overX×Y and samples are drawn i.i.d. fromD. Given a hypothesis

class H the error of h ∈ H is ε(h) = Pr[h(x) 6= y] where the distribution is both

over the selection of (x, y) ∼ D and any randomization of h.

Given two hypothesis classes HI and HL mapping X to {0, 1} we define

a class of decision tree T (HI , HL) as follows. A decision tree classifier T ∈

T (HI , HL) is tree structure such that each internal node v contains a splitting

function hv ∈ HI and each leaf u contains a labeling function hu ∈ HL. In order

to classify an input x ∈ X using the decision tree T , we start at the root r and

evaluate hr(x). Given that hr(x) = b ∈ {0, 1} we continue recursively with the

subtree rooted at the child node vb. When we reach a leaf l we output hl(x) as the

prediction T (x). In case that HI includes randomized hypotheses we take the ex-

pectation over their outcomes. We denote by ε(T ) the error of the tree, and the set

of leaves in the tree as Leaves(T ). We denote the event that input x ∈ X reaches

node v ∈ T with the predicate Reach(x, v, T ), and when clear from the context

we will use Reach(x, v).

Splitting criterion Intuitively, the splitting criterion G, is a function that mea-

sures how “pure” and large a node is. This function is used to rank various possible
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splits of a leaf v using a hypothesis from HI . Formally G is a permissible splitting

criterion: if G : [0, 1]→ [0, 1] and has the following three properties:

1. G is symmetric about 0.5. Thus, ∀x ∈ [0, 1] : G(x) = G(1− x).

2. G is normalized: G(0.5) = 1 and G(0) = G(1) = 0.

3. G is strictly concave.

Three well known such functions are:

1. Gini index: G(q) = 4q(1− q)

2. The binary Entropy: G(q) = −q log (q)− (1− q) log (1− q)

3. sqrt criterion: G(q) = 2
√
q(1− q).

One can verify that any permissible splitting criteriaG has the property thatG(x) ≥

2 min{x, 1− x} and therefore upper bounds twice the classification error (see ap-

pendix H).



Chapter 4

Decision Tree Learning

Algorithms

The most common decision tree learning algorithms have a top-down approach,

which continuously split leaves in a greedy manner. The algorithms work in iter-

ations, where in each iteration one leaf is split into two leaves using a hypothesis

from HI . The decision which leaf to split and which hypothesis from HI to use to

split it is governed by the splitting criteria G.

Let us start with a few definitions which will help clarify the role of the splitting

criteria G. For simplicity we will describe it using the distribution over examples,

and later we will explain how it works on a sample. Fix a given decision tree T .

We define the probability of reaching node v ∈ T as:

weight(v) = Pr
(x,y)∼D

(Reach(x, v))

and its purity as:

purity(v) = Pr
(x,y)∼D

(y = 1|Reach(x, l))

which is the probability of a positive label conditioned on reaching node v.

The score of the splitting criterionGwith respect to a decision tree T is defined

12



Chapter. 4: Decision Tree Learning Algorithms 13

as follows,

G(T ) =
∑

l∈Leaves(T )

weight(l) ·G(purity(l)). (4.1)

This is essentially the expected value of G(purity(l)) when we sample a leaf

l using the probability distribution D over the tree T . Recall that G is an upper

bound on the error, and therefore G(T ) is an upper bound on the error using T .

This explains the motivation of minimizing G(T ).

The decision tree algorithms iteratively split leaves, with the goal of minimiz-

ing the score of the tree. Let Split(T, l, h) be the operation that splits leaf l using

hypothesis h. The inputs of Split(T, l, h) are: T a tree, l ∈ Leaves(T ) a leaf

and a hypothesis h ∈ HI . The output of Split(T, l, h) is a tree T ′ where leaf l is

replaced by an inner node v which has a hypothesis h and two children v0 and v1,

where v0 and v1 are leaves. When using the resulting tree, and input x that reaches

v then h(x) = b implies that x continues to node vb. Notice that the split is local,

it influences only inputs that reached leaf l in T .

The selection of which leaf and hypothesis to use is based on greedily mini-

mizing G(T ). Consider the change in G(T ) following Split(T, l, h)

∆l,h =G(T )−G(Split(T, l, h)) (4.2)

=weight(l) ·G(purity(l))−
∑

b∈{0,1}

(weight(vb) ·G(purity(vb)))

where v0 and v1 are the leaves that result from split leaf l. The algorithm would

need to find for each leaf l the hypothesis h ∈ HI which maximizes ∆l,h. This can

be done by considering explicitly all the hypothesis in HI , in the case where HI

is small, or by calling some optimization oracle. For now, we will abstract away

this issue and assume that there is an oracle that given l returns h ∈ HI which

maximizes ∆l,h, hence minimize G(T ).

We now describe the iterative process of building the decision tree. Initially,

the tree T is comprised of just the root node r. We split node r using the hypothesis
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h which maximizes ∆r,h (thus minimizing G(T )). In iteration t, when we have a

current tree Tt, we consider each leaf l of Tt and compute the hypothesis hl ∈ HI

which maximizes ∆l,h using the oracle. We select the leaf that can guarantee the

largest decrease, i.e., lt = max argl,h ∆l,h, and set Tt+1 = Split(T, lt, hlt).

When the decision algorithm terminates it assigns a hypothesis from HL to

each leaf. Many decision tree learning algorithms simply use a constant hypothesis

which is a label, i.e., {0, 1}. Our framework allows for a more elaborate hypothesis

at each leaf, we only assume that the error of the hypothesis at leaf l is at most

min{x, 1− x} where x = purity(l).

Using a sample: Clearly the decision tree algorithms do not have access to the

true distribution D but only to a sample S. Let S be a sample of examples sampled

from D (S is a multiset) and let DS be the empirical distribution induced by S.

We simply redefine the previous quantities using the empirical distribution DS .

Specifically,

weight(v) = Pr
(x,y)∼DS

(Reach(x, v)) =
|{(x, y) ∈ S : Reach(x, v) = TRUE}|

|S|

purity(v) =

Pr
(x,y)∼DS

(y = 1|Reach(x, l)) =
|{(x, y) ∈ S : Reach(x, v) = TRUE, y = 1}|
|{(x, y) ∈ S : Reach(x, v) = TRUE}|

As a result of this change the expressions for G(T ) and ∆l,h in equations (4.1) and

(4.2) are maintained. This allows the use of the Top-Down approach as specified

without any further modifications.

Stochastic Hypothesis: We would like to extend the setting to allow for stochas-

tic hypothesis. A major difference between the stochastic and deterministic case is

that in the deterministic case the tree partitions the inputs (according to the leaves)

while in the stochastic case we have only a modified distribution over the input

induced by the leaves. This implies that now, given a tree T , each input x is asso-

ciated with a distribution over the leaves of T . This requires modifications to the
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basic decision tree learning algorithm, most notably maintaining the distribution

over the leaves, per input x. The probability of reaching a node v, whose a path in

the tree is 〈(h1, b1)...(hk, bk)〉 where hi ∈ HI and bi ∈ {0, 1}, is

Pr
(x,y)∼D

(Reach(x, v)) = Pr (∀i ∈ [1, k] : hi(x) = bi)

=
k∏
i=1

Pr (hi(x) = bi|hj(x) = bj , j < i)

For this reason the modified decision tree learning algorithm keeps for each

input x a distribution over the current leaves of T (In contrast, in the deterministic

case, each input x has a unique leaf). When evaluating the reduction in the split-

ting criteria G, at a leaf v, we compute the distribution over the sample, which is

associated with the current node v (in contrast, in the deterministic case, each node

v is associated with a subset of the inputs).

A detailed description of the top-down decision tree learning algorithm DTL

for a stochastic hypotheses class is provided in Appendix A.



Chapter 5

Weak Learning and Stochastic

Decision Tree Algorithms

In this section we extend the results about the boosting ability of deterministic

decision trees to include stochastic classifiers in the internal nodes. Since we have

stochastic hypothesis we need that the weak learner assumption would hold for the

expected error. Next, we slightly modify the existing analysis and show that the

same boosting bounds that hold in the deterministic case hold also in the stochastic

case. We start by defining the weak learning assumption.

Assumption 5.0.1 (Weak Stochastic Hypothesis Assumption). Let f be any boolean

function over the input space X . Let H be a class of stochastic boolean functions

over X . Let γ ∈ (0, 0.5]. We say H γ-satisfies the Weak Stochastic Hypothesis

Assumption with respect to f if for every distribution D̄ over X , there exists an

hypothesis h ∈ H such that:

Pr
x∼D̄

(f(x) 6= h(x)) ≤ 0.5− γ

where the probability is both over the distribution D̄, and the randomness of h.

Similar to [KM99], we show the following theorem,

16
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Theorem 5.0.1. Let H be any class of stochastic boolean functions over input

space X . Let γ ∈ (0, 0.5], and let f be any target function such that H γ-satisfies

the Weak Stochastic Hypothesis Assumption with respect to f . LetD be any target

distribution, and let T be the tree generated by DTL(D, f,G, t) with t iterations.

Then for any target error ε, the error ε(T ) is less than ε provided that:

t ≥
(

1

ε

)c/(γ2ε2 log (1/ε))

if G(q) = 4q(1− q)

t ≥
(

1

ε

)c log (1/ε)/γ2

if G(q) = H(q)

t ≥
(

1

ε

)c/γ2
if G(q) = 2

√
q(1− q)

The above theorem establishes a tradeoff between the desired error ε, the bias

parameter γ of the Weak Stochastic Hypothesis Assumption, the splitting criteria

G and the decision tree size t. The proof is provided in Appendix B.



Chapter 6

Stochastic Linear Classifier

In this section, we describe the stochastic linear classifier which we use for the

hypothesis classHI , which are the hypotheses used in the internal nodes of the tree.

We will also derive some basic properties which will be useful for our derivations.

Let S = {〈xi, yi〉} be a sample of size N drawn from D. Let Dv be a dis-

tribution over S, i.e., Dv(xi) ≥ 0 and
∑N

i=1Dv(xi) = 1. (We will have various

distributions over the sample S, when we consider different nodes of the tree.) We

assume that the inputs xi are normalized to norm 1, i.e., ‖xi‖2 = 1. We denote the

weight of the positive examples according to Dv by ρ, i.e., ρ =
∑N

i=1 yiDv(xi).

For the Stochastic Linear Classifier we will have a weight vector w, which we

assume is also normalized to norm at most 1, i.e., ‖w‖2 ≤ 1. Our classification

would induce a probability

Pr[y = 1|x,w] =
w · x+ 1

2

Note that since ‖w‖ ≤ 1 and ‖x‖ = 1 then |w · x| ≤ 1 and therefore

0 ≤ Pr[y = 1|x,w] ≤ 1.

We like to define two measures that w induces. The first is Pw, the weight of

samples classified as positive by w. Formally,

Pw =
N∑
i=1

Dv(xi)
w · xi + 1

2
. (6.1)

18



Chapter. 6: Stochastic Linear Classifier 19

Note that 0 ≤ Pw ≤ 1, since
∑N

i=1Dv(xi) = 1 and 0 ≤ w·xi+1
2 ≤ 1.

We define by Qw the weight of positive labels in the samples classified by w

as positive. Formally,

Qw =

N∑
i=1

Dv(xi)
w · xi + 1

2
yi. (6.2)

Clearly 0 ≤ Qw since all the terms are non-negative. We can upper bound Qw by

Pw, since yi ≤ 1:

Qw =

N∑
i=1

Dv(xi)
w · xi + 1

2
yi ≤

N∑
i=1

Dv(xi)
w · xi + 1

2
· 1 = Pw

and we can bound Qw by ρ since w·xi+1
2 ≤ 1:

Qw =

N∑
i=1

Dv(xi)
w · xi + 1

2
yi =

N∑
i=1|yi=1

Dv(xi)
w · xi + 1

2
≤

N∑
i=1|yi=1

Dv(xi) = ρ

Finally, we can also lower bound Qw by Pw − (1− ρ) since:

Pw −Qw =

N∑
i=1

Dv(xi)
w · xi + 1

2
(1− yi) ≤

N∑
i=1

Dv(xi)(1− yi) = 1− ρ

Therefore,

max{0, Pw − 1 + ρ} ≤ Qw ≤ min{Pw, ρ} . (6.3)

Some intuition about the above bounds: since Qw is a subset of positive labeled

samples it is bounded by ρ, and since it is a subset of the samples the classifier

classifies as positive, it is bounded by Pw. Also, clearly it is lower bounded by 0

and also lower bounded by the fraction of positives samples minus the fraction of

the negative predictions of the classifier, i.e., 1− Pw.

We can also write Pw and Qw in vector notation, which sometimes would be

more convenient. For this purpose we denote the distribution Dv ∈ RN as a vector

over the sample inputs, X ∈ RN×d the examples matrix and y ∈ {0, 1}N the

labels of the examples. Using this notation we have:

Pw =
1

2
D>v Xw +

1

2
(6.4)
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Qw =
1

2
(Dv � y)>Xw +

ρ

2
, (6.5)

where the � signal is element-by-element multiplication.

The values of Pw and Qw play an important role in evaluating candidate clas-

sifiers w by plugging them into the splitting criteria, as explained in more details

in the next section.

Remark. One may wonder what will be the stochastic effect on the linear clas-

sifier behavior. Note that if w is a deterministic linear classifier with margin γ,

then it implies that when we use w as a stochastic linear classifier we “err” with

probability (1 − γ)/2. We can amplify the success probability by having a tree

of depth O(γ−2 log ε−1) and reducing the error probability to ε. For more details

please refer to appendix G.



Chapter 7

Approximately minimizing the

Gini Index efficiently

In the previous section we presented the stochastic linear classifiers, which we will

use to split internal nodes in the tree, i.e., the class HI is the set of all stochastic

linear classifiers with norm at most 1. We would like to use the generic top-down

decision tree learning approach in order to greedily minimize the value of the split-

ting criteria, and thus minimizing indirectly the prediction error.

In this section we will discuss how we select a hypothesis fromHI to minimize

the value splitting criteria. Recall that we like to maximize ∆l,w for a given leaf l

over all stochastic linear classifiers w. Given a leaf l, the distribution Dl over the

samples that reach it, and the probability of the positive examples in Dl is ρ, we

would like to find a w that maximizes the drop in the splitting criteria, namely

arg max
w

∆l,w

= arg max
w

weight(l)

(
G(ρ)−

(
Pw ·G

(
Qw
Pw

)
+ (1− Pw)G

(
ρ−Qw
1− Pw

)))
= arg min

w

(
Pw ·G

(
Qw
Pw

)
+ (1− Pw)G

(
ρ−Qw
1− Pw

))
We notice that the splitting criteria value is comprised of two parts: the first,

G(ρ) is the current purity measure and it has the same value for every w, and

21
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therefore does not influences the optimization (therefore it is dropped in the last

line). The second part, is the purity induced by the split w, which we like to

minimize.

In this work we will focus on the case Gini Index, GI , as the splitting criteria.

Recall that GI(x) = 4x(1 − x), where x is the probability of positive example.

We denote by WGI , Weighted Gini Index, the value of the Gini index after a split

using w, namely WGIw = WGI(Pw, Qw) where

WGI(Pw, Qw) =PwGI

(
Qw
Pw

)
+ (1− Pw)GI

(
ρ−Qw
1− Pw

)
=4

(
ρ− Q2

w

Pw
− (ρ−Qw)2

1− Pw

)
(7.1)

Note that for Pw = 0 or Pw = 1, all the examples reach the same leaf, and therefore

there is no change in the Gini index, i.e., WGI(0, Qw) = WGI(1, Qw) = GI(ρ).

The function WGI(p, q) is concave1 (rather than convex). However, note that

both inputs are a function of the weight vectorw, we show in Appendix F that WGI

is not convex in w. This implies that one cannot simply plug-in the Gini index and

minimize over the weights w.

Our first step is to characterize the the structure of the optimal weight vector

w.

Theorem 7.0.1. For any distribution Dl let ~a = D>v X , ~b = (Dv � y)>X and

w∗l = arg min{w:‖w|≤1} WGI(Pw, Qw). There exist constants α and β such that

for w = α~a+ β~b, we have ‖w‖ ≤ ‖w∗l ‖ and both Pw∗l = Pw and Qw∗l = Qw.

Proof. Let Pw∗l = p and Qw∗l = q. Let w′ be the solution for the following

optimization problem:

arg min ‖w‖22

Pw = p

Qw = q

1 ∂2WGI
∂2p

= −8
(
q2

p3
+ (ρ−q)2

(1−p)3

)
≤ 0.
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Clearly, ‖w′‖ ≤ ‖w∗l ‖, Pw′ = p,Qw′ = q and therefore w′ is also an optimal

feasible solution. Lemma D.1.1 in Appendix D.1 shows that the solution for this

optimization problem is:

w′ =
(2q − ρ)(~a ·~b)− (2p− 1)‖~b‖2

‖~a‖2‖~b‖2 − (~a ·~b)2
~a+

(2p− 1)(~a ·~b)− (2q − ρ)‖~a‖2

‖~a‖2‖~b‖2 − (~a ·~b)2
~b

which completes the proof.

Note that ~a = D>v X is the weighted average of the data (average over each

feature) and~b = (Dv � y)>X the weighted average of the positive examples (av-

erage over each feature). The above characterization suggests that we can search of

an approximate optimal solution by using only linear combinations of ~a and~b. Our

main goal is to find a weight vector w such that WGIw −WGIw∗l ≤ ε. At a high

level we perform the search over the possible values of Pw and Qw. Our various

algorithms perform the search in different ways, and get different (incomparable)

running times. We start with defining the approximation criteria.

Definition 7.0.1. Let S be a sample, Dl be a distribution over S, and ε be an

approximation parameter. An algorithm guarantees an ε-approximation for WGI

using a stochastic linear classifierw, such that ‖w‖2 ≤ 1, ifWGIw−WGIw∗ ≤ ε,

where w∗ = arg min{w:‖w‖≤1}WGIw.

The following theorem summarizes the running time of our various algorithms.

Theorem 7.0.2. Let S be a sample, Dv be a distribution over S, and ε be an

approximation parameter. Let ~a = D>v X and~b = (Dv � y)>X . Then:

1. For the case where ~a and ~b are linearly independent, algorithms FixedPQ

and FixedPSearchQ guarantee an ε-approximation forWGI using a stochas-

tic linear classifier. Algorithm FixedPQ runs in timeO(Nd)+O
(
ε−2 log

(
ε−1
))

,

and algorithm FixedPSearchQ runs in time O(Nd) +O
(
d
ε

)
.

2. For the case where ~a and ~b are linearly dependent, i.e., ~b = λ~a, algorithm

DependentWGI runs in time O(Nd), and achieves the optimal result for

WGI using a stochastic linear classifier.
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The rest of this section is organized as follows. In section 7.1 we will give an

overview common to the two algorithms for the linearly independent case, while

sections 7.2 and 7.3, discuss each algorithm (full details can be found in Appen-

dices E.1 and E.2). The differences in the running times between the two algo-

rithms depend on the relation between d and ε. Section 7.4 provides an outline of

algorithm DependentWGI, for the the linearly dependent case, i.e., ~b = λ~a (full

details in Appendix E.3).

7.1 Algorithms for the linearly independent case: overview

The two algorithms we present, combine a search over the domain of WGI, where

we discritize it. The domain includes pairs (p, q), where p = Pw and q = Qw.

As we showed before, the domain includes only the subset {(p, q)|0 ≤ p ≤

1,max (0, ρ+ p− 1) ≤ q ≤ min (ρ, p)}). We note that the class of stochastic

linear classifier also limits the domain, as noted in Appendix D.4, and we consider

the intersection of these two domains. Each of our algorithms partitions the do-

main into cells such that each cell is represented by a finite (constant) number of

candidate points. We will need to verify that the candidate points can indeed be

generated by a feasible w (i.e., ‖w‖2 ≤ 1). The algorithm returns the best results

found, i.e., with the lowest WGI. We note that these algorithms return a weight

vector of the form w = α~a + β~b, which is similar to the characterization of the

optimal weight vector, given in Theorem 7.0.1.

The two algorithms differ in the way they define the cells and the way they

extract candidate points from these cells. However, both use the following theorem

(proved in Appendix C):

Theorem 7.1.1. Given data distribution Dl which has a positive label probability

of ρ and a parameter ε ∈ (0, 1) it is possible to partition the domain of WGI:

{(p, q)|0 ≤ p ≤ 1,max (0, ρ+ p− 1) ≤ q ≤ min (ρ, p)} into O
(
ε−2
)

cells, such
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p

q

1− ρ ρ

ρ

Figure 7.1: Partition Pw to slices

for ρ ≥ 0.5

p

q

1− ρ ρ

ρ

Figure 7.2: Partition (Pw, Qw) to

trapezoid cells for ρ ≥ 0.5

that the if (p1, q1) and (p2, q2) belong to the same cell:

|WGI(p1, q1)−WGI(p2, q2)| ≤ ε .

Using the cell partition, we are able to search for solutions in the domain of the

WGI function directly, and thus we derive an approximation of the optimal solution

w∗. The different cell partitions are illustrated in Figures 7.2 and 7.1.

The main challenge is that the case of extreme values of p and their influence on

the value of WGI(p, q). If we ignore the dependence between the p and q then the

derivatives of WGI(p, q) are unbounded when p ≈ 0 or p ≈ 1. We overcome this

issue by relating the value p = Pw and q = Qw through their common parameter

w, and the structure of the cells. This is what enables us to derive the approximation

bound.

7.2 Algorithm FixedPQ - Iterating over pairs of Pw and

Qw

Algorithm FixedPQ partitions the domain of WGI to trapezoid cells. Note that

the domain of WGI is a Parallelogram, and we partition it using a discritization of

the p values. We like the derivatives of WGI to be monotone in each cell, which

leads us to partition the entire domain to four sub-domains. Figure 7.2 illustrates

the cells. (Details in Appendix C.)
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Algorithm FixedPQ iterates over pairs of (p, q) which are the vertices of the

trapezoid cells. For each such pair its WGI(p, q) is evaluated, and the candidate

(p, q) pairs are sorted from the lowest WGI(p, q) to the highest. The sorted list

is then scanned until a feasible stochastic linear classifier with those parameters is

found, i.e., a weight vector w such that ‖w‖ ≤ 1 and p = Pw and q = Qw.

Notice that computing the value of WGI and testing the feasibility of a pair

(p, q) does not require the computation of the classifier w and can be done in O(1)

time. This follows since w = α~a + β~b, and given the values of α, β, ‖~a‖, ‖~b‖

and (~a ·~b) we can compute the norm of w directly from those values in O(1) time

without computing the weight vector w explicitly. Computing the weight vector w

requires O(d) time. In FixedPQ a weight vector w is computed only once - for

the first feasible candidate point (p, q) encountered in the scan.

The complexity Algorithm FixedPQ is O(Nd) + O
(
ε−2 log

(
ε−1
))

, where

O(Nd) is for computing ~a and ~b and the O
(
ε−2 log

(
ε−1
))

is for sorting O(ε−2)

candidate points.

Candidate generation: A list of (p, q) pairs is created by first selecting O
(
ε−1
)

evenly spaced points that cover the feasible interval for Pw. The feasible interval

is a subsection of [0, 1] that is determined by the data (see Appendix D.4). We also

force points at p = ρ and p = 1 − ρ if these coincide the feasible interval. This

ensures that the cells generated are contained within a single sub-domain (more in

Appendix C).

Next, for each discretized value of p we define O
(
ε−1
)

evenly spaced val-

ues of q in the following two intervals: from max (0, ρ+ p− 1) to ρp, and from

ρp to min (p, ρ). Finally, the pairs are filtered to include only feasible values (as

described in Appendix D.4). This process produces O
(
ε−2
)

pairs.

Appendix E.1 provides pseudo-code, a correctness proof and complexity analysis

for FixedPQ.
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7.3 Algorithm FixedPSearchQ - Iterating over values

Pw

Algorithm FixedPSearchQ iterates over values of p which are the endpoints

of mutually exclusive slices of trapezoid cells (more in Appendix C). A slice of

trapezoid cells, is the set of trapezoid cells which share the same p range (see

Figure 7.1). These endpoints are the candidates in this case, and for each candidate

at most two weight vector are computed. We filter the non-feasible points, and

return the classifier w for the point that achieves the lowest WGI.

Notice that since we do not have the q values in the candidate stage we cannot

compute the value WGI before computing a weight vector w or sort according to

the WGI values as we did in FixedPQ. Instead we must compute a weight vector

w for each candidate and return the best weight vector w. However, since we are

only interested in the minimum WGI there is no need to sort. The complexity of

this algorithm is O(Nd) +O
(
d
ε

)
.

Candidate generation: The candidates are p values that are generated by se-

lecting O
(
ε−1
)

evenly spaced points that cover the feasible interval for Pw as in

FixedPQ. The main difference is that we do not discretize the q values, but main-

tain a complete slice of all feasible q values for a given range of p values. (More in

Appendix C).

Appendix E.2 provides pseudo-code, a correctness proof and complexity analysis

for FixedPSearchQ.

7.4 Algorithm DependentWGI - Dependent case

Algorithm DependentWGI describes the algorithm for the case where the con-

straints over Pw and Qw are dependent, i.e.,~b = λ~a. Appendix C.9, shows that the

optimal weight vector is w = ± ~a
‖~a‖ , both attaining equal values of WGI. In order

to compute this weight vector, we compute ~a and normalize it in O(Nd) time. We
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also compute the WGI value in O(1) time. The total time complexity is O(Nd).

Appendix E.3 provides pseudo-code, a correctness proof and complexity analysis

for DependentWGI.

7.5 Summary

We distinguish between the case that ~a and ~b are linearly independent and the

case when they are linearly dependent. Algorithm DependentWGI finds the op-

timal solution for the case where ~a and~b are linearly dependent, while the remain-

ing two algorithms FixedPQ and FixedPSearchQ are for the linearly inde-

pendent case, each using a different search method. Algorithm FixedPQ iter-

ates over different possible values of (p, q) pairs and its complexity is: O(Nd) +

O(ε−2 log (ε−1)). Algorithm FixedPSearchQ iterates only over a p candidates,

and for each computes the optimal q value. The complexity of FixedPSearchQ

is: O(Nd) + O
(
d
ε

)
. The better running time depends on whether d is larger than

O(ε−1 log (ε−1)) or not.

Finally, if we assume algorithms DependentWGI, FixedPQ and

FixedPSearchQ find a weak learner in HI as described by the Weak Stochastic

Hypothesis Assumption 5.0.1 then we are able to boost the results using the DTL

algorithm using Theorem 5.0.1. Formally the following theorem holds:

Theorem 7.5.1. LetHI be the feasible stochastic linear classifiers over input space

X . Let γ ∈ (0, 0.5], and let f be any target function such that HI γ-satisfies the

Weak Stochastic Hypothesis Assumption with respect to f . Let D be any target

distribution, and let T be the tree generated by DTL(D, f,G, t) by using algo-

rithms DependentWGI, FixedPQ and FixedPSearchQ as the local oracles

for t iterations. Then for any target error ε, the error ε(T ) is less than ε provided

that:

t ≥
(

1

ε

)c/(γ2ε2 log (1/ε))

if G(q) = 4q(1− q)
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Empirical Evaluation

8.1 Validating Strong Learnability

In this section we test our classifier in learning scenarios to verify it captures the

target function well. We demonstrate this ability with targets with increasing dif-

ficulty as well as unbalanced classes. All experiments were carried in the setting

of a 2-dimensional space on random unit size vectors. The reported results are the

average of 10 repetitions of each experiment, and the number of internal nodes in

the tree is 15 unless otherwise noted.

Single Hyperplane: In the first experiment the concept class is a hyperplane

which intersects the origin and both classes have equal weight. As figure 8.1 shows

the algorithm constantly selects hyperplanes which are very close to the target func-

tion, and indeed as a result the accuracy of the trained model is around 0.99 which

shows that the target is captured well.

Single Hyperplane and Artificial Bias: Next, we investigate the behavior when

we add a bias term to the classifier. We model the bias term by adding a constant-

valued feature to each example. We note that since the decision boundary intersects

the origin there is no reason to add this bias term, however, we want to examine the

29
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Figure 8.1: Single Hyperplane Decisions

The decisions taken by the proposed classifier. The title explains the

position in the tree hierarchy (root is index 0). On the left the input

distribution s.t the circle size is relative to sample weight and the color

is based on the true label. On the right the decision of the internal node.
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case where the classifier and the target are mismatched (in practice when the target

function is unknown it may be beneficial to use a bias in different scenarios).

Now, the data contains an artificial constant that the classifier should theoreti-

cally ignore. A-priori, we know it is possible to cancel the effect of the bias: both ~a

and~b will have their last coordinate to be the value of the bias, the decision in each

node of the tree - w is a linear combination of the form w = α~a + β~b. Therefore,

for the bias to be canceled out, the classifier needs to enforce α− β = 0.

In practice, we indeed see a trend of the classifier to reduce the last coordinate

to 0. However as shown in table 8.1, we also see a drop in the confidence when the

bias is increased. This phenomena is explained if we consider the limitations we

imposed on the stochastic linear classifier:

When the bias (denoted as b) is zero, the data vector x is exactly norm one

i.e 1 =
∑
x2
i . Since the stochastic linear classifier is restricted to consider input

vectors of norm ≤ 1, once a bias b > 0 is introduced, all the true data coordinates

(xi) are normalized by a factor θb which is:

1 =
∑

(θb · xi)2 + b2 → θb =
1√

1 + b2

Denote xb andwb the data and the classifier if the data is modeled with bias b. Even

if we assume that ∀b : w0 = wb (the algorithm completely ignores the bias) we

still need to consider how the classifier output changes because of this added bias.

Denote by c = w0·x0+1
2 (the result of the prediction without bias) thus w0 · x0 =

2c− 1, the new prediction for bias b > 0 is

cb =
wb · xb + 1

2
=
w0 · xb + 1

2
=
θb · w0 · x0 + 1

2
= θb(c− 0.5) + 0.5

The first transition is because we assumed that w0 = wb.

The confidence is the distance cb − 0.5 and therefore for b is θb(c − 0.5) and

since θb < 1 we have that cb is always smaller than the confidence for bias 0 (which

is c − 0.5). In other words, even if we have the same stochastic linear classifier,

we lose a factor of θb in confidence due to the restriction ‖x‖ ≤ 1. We notice that

by weakening the restriction to ‖w · x‖ ≤ 1 we could have avoided the reduction
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Table 8.1: Bias effects on confidence
b bias cb positive mean θb normalization coefficient

0 0.8 1

1 0.71 0.707

1.5 0.67 0.555

2 0.63 0.447

3 0.6 0.316

5 0.55 0.196

10 0.51 0.099

in confidence however it is unclear what effect it would have on our solution since

the optimization solved in Appendix D.1 will no longer hold.

Table 8.1 shows the drop in prediction confidence in the first internal node as

the bias changes. We note that in our tests the weight in the predictor that matched

the bias was reduced to almost 0. The middle column shows that the prediction

confidence was indeed reduced according to the relation described above.

Single Hyperplane with Unbalalnced Labels In the next test, we show strong

learnability even for unbalanced classes. For this experiment we changed the ratio

between classes from 1:1 we had in the previous experiments to 2:1 ratio between

the classes. We observed that our classifier’s accuracy dropped to 0.94. In order to

understand this drop we considered the first split of the tree. We noticed that even

though the accuracy dropped, when considering the soft accuracy i.e the average

of ‖yi − ŷi‖ we see that both the ”basic” balanced case and the unbalanced case

both consistently reach to scores around 0.3. We expected the soft accuracy value

to be comparatively low compared to the accuracy since we now care about the

confidence of the classification and not the sign. We know that the stochastic lin-

ear classifier could potentially reach perfect confidence but it is rarely achieved in

practice. Therefore the drop in accuracy is attributed to the fact that our classifier
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tries to optimize the distances to the separating hyperplane and not the sign, but it

still preforms well in terms of accuracy (as it still scores accuracy of 0.94).

Multiple Hyperplanes - XOR In the next set of experiments the target function

is a XOR of the input hyperplanes (XOR is the product of the signs of w · x for

every w in the target function). We chose this type of targets, since our classifier is

an aggregation of linear decisions and should therefore capture this structure well.

In the first experiment we have two fixed hyperplanes. The reason the hyper-

planes are fixed is to make sure the classes are balanced. In the second experiment,

we again have two hyperplanes but now these are chosen randomly, which may

result in very unbalanced classes (for instance if the two hyperplanes lie very very

close to each other). In the last experiment we raise the number of hyperplanes to

three.

As expected, the accuracy goes down as the target becomes more complex: in

the first experiment the classifier has an accuracy of 0.94 while just changing to

unbalanced classes in the second experiment causes the accuracy to drop to 0.9.

The third experiment which has a more complex target achieves an initial accuracy

of 0.81. For the last experiment we also tested adding more internal splits, raising

the number of internal nodes from 15 (which we use as a default parameters) to

30 raises the accuracy to 0.9. Raising the number of nodes to 60 gives just 0.03

more to a total of 0.93. In general we see deceasing accuracy gains as we add more

nodes.

Finally, considering all the above experiments we can conclude that the pro-

posed classifier is able to capture these target concepts well (even non linear ones).

8.2 Comparison to other classifiers

This section discuss empirical evaluations of our classifier on synthetic data-sets we

created with the motivation of understanding the benefit of our decision tree using

stochastic linear classifiers, compared to decision tree with decision stumps, e.g.,
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CART, and a standard linear classifier, e.g., linear SVM. We selected the simulated

data, with the goal of highlighting the similarities and differences between the

classifiers. In the following, we described the results of two simulated data sets.

In the first experiment we demonstrate that unlike standard decision tree algo-

rithms, our method fits well a data-set which is labeled according a random linear

boundary with noise in a high dimension. Specifically, we select a random hy-

perplane w and each sample x are random unit vectors, where the the label is

y = sign(w · x) and dimension is d = 100. We add random classification noise,

i.e., flip the label with probability of θ. We show the accuracy of our model com-

pared to both CART and linear SVM as a function of the noise rate θ in Figure

8.2. Clearly, SVM is ideal for this task, and indeed it outperforms the other two

classifiers. We ran both CART and our method to build decision trees of depth 10.

The results show that our method achieves competitive performance to SVM while

outperforming CART.

The second synthetic data set demonstrates the ability of our classifier to handle

non-linearly separable examples, where the boundaries are not axis aligned. Again,

all samples are random unit vectors of dimension d. The labels correspond to

the XOR of the samples with two hyperplanes, which are perpendicular to each

other and are not axis aligned. Specifically we take w1 = [~1d/2,~1d/2] and w2 =

[ ~−1d/2,~1d/2] and the label is y = sign(x ·w1)⊕ sign(x ·w2). Both decision trees

were allowed to reach depth of 10 and the sample size is 10, 000. We used various

dimension sizes from d = 6 to d = 30, and the results are plotted in Figure 8.3.

The results were in line with out intuition. First, Linear SVM achieves the

worst performance since it does not have the expressive power required for rep-

resenting this target function. Second, a decision tree algorithm, such as CART,

which considers only a single attribute in each split, requires a significant depth

to approximate this high-dimensional XOR. Finally, our method achieves a good

accuracy since it is not limited to a single hyperplane, as is Linear SVM, nor is it

limited to axis aligned decisions, as is CART. We do note, that since our method
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Unit vectors with norm 1, are la-

beled according to a multi dimen-

sional non-axis aligned XOR. Our

stochastic classifier (green) achieves

much higher accuracy than both a

linear SVM (blue) and CART (red).

is stochastic, we need to continuously repeat a hyperplane in order to make a split

more significant. This explains why, due to the limited depth of the decision tree,

our performance deteriorate as the dimension increases. An alternative is to limit

the number of nodes in the decision tree. Further experiments show that our method

can achieve the above performance with only 50 internal nodes (rather than a depth

of size 10, which implies 1024 internal nodes).

8.3 Real Data-sets

We show the performance of our classifier compared to Linear SVM and CART

on three data-sets that were taken from UCI dataset repository [Lic13]. The first

dataset Promoters contains 106 examples with 57 categorical features and two

classes. Since our algorithm runs on numeric data we encode each feature to it’s

one-hot representation for a total of 228 numerical features. The second dataset is

the Heart Disease Data Set which contains 303 samples with 13 numeric features.

In the original data there are 74 features, but it is common to use the above subset
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of features. The original data contains one negative class to indicate no disease

in the patient, and 4 positive classes each corresponding to a certain disease. We

reduced the problem to a positive vs. negative classification, by combining all the

diseases to one class. The third dataset Statlog (Heart) Data Set, has the same for-

mat as the previous only the target variable is already in binary format. There are

13 features and 270 samples in this dataset.

The following table shows the accuracy of all three classifiers used in our ex-

periments, and demonstrates the advantage of our proposed method:

Dataset CART Linear SVM Stochastic Tree

Promoters 0.8 0.87 0.91

Heart Disease Data Set 0.7 0.73 0.77

Statlog (Heart) Data Set 0.83 0.78 0.85

We note that we gave the same depth restriction to CART and our Stochastic

Decision Tree, however, our method seems sometimes to require a smaller depth to

converge. For the Promoters data-set, while CART was still improving at depth 10,

while the stochastic tree only needed only a depth of 3 to converge. This along with

the comparatively strong result of the Linear SVM may hint that the true decision

boundary can be approximated well with a hyperplane which is not axis aligned.

For the other two data-sets, Heart Disease Data Set and Statlog (Heart) Data Set

both methods converged at the same depth of 3 and 5 correspondingly.
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Conclusion

In this work we introduced a stochastic decision tree learning algorithm based on

stochastic linear classifiers. The main advantage of our approach is that it allows

the internal splits in the node to have a global effect, on the one hand, and we

can efficiently minimize the Gini index, on the other hand. From a theoretical

perspective, we are able to maintain the basic decision tree learning result under

the assumption of weak learning.

Our empirical finding are encouraging, and suggest doing a more comprehen-

sive empirical analysis of the strengths and weaknesses of our method. Another

possible research direction would be to explore the benefits of the stochastic linear

classifier in other boosting frameworks such as AdaBoost.

From a more theoretical perspective we hope to extend our method to work

efficiently for a large class splitting functions, under minimal assumptions on this

class.

Another challenging research direction, is to change the linear modeling for

Pr (y|x) to a more complex representation, such as a log linear model. This gives

rise to an immediate computational challenge of efficiently minimizing the splitting

criteria.
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Appendix A

Decision tree learning algorithm:

pseudo code

The pseudo code of Algorithm 1 encapsulates most existing decision tree learning

(DTL) algorithm, including algorithms such as CART by [BFSO84] and C4.5 by

[Qui93]. Our exposition of the decision tree algorithms tries to abstract the specific

splitting function G and the way to minimize it. We also generalize the standard

framework to handle stochastic classifiers. We start with describing the oracles we

assume.

The first oracle minimizes the splitting criteria for a hypothesis in an internal

node. The function FitHI(S,D,G) receives as input a sample S, and a distri-

bution D over the sample S and a splitting criteria G. It returns (h∗, g∗) where

h∗ ∈ HI is the hypothesis that minimizes the splitting criteria G over the distribu-

tion D on S and g∗ is its reduction in the value of the splitting criteria G.

The second oracle FitHL(S,D) receives as input a sample S, a distribution

D over the sample S and returns a hypothesis h ∈ HL which minimizes the error

(and not the splitting criteria G).

We have a function SplitLeaf(T, l, h) which receives a decision tree T , a leaf

l ∈ Leaves(T ), a hypothesis h ∈ HI and returns a new tree where we split leaf l

using hypothesis h.

40
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The decision tree learning algorithm runs t iterations. In each iteration, for each

leaf l ∈ Leaves(T ) the function FitHI evaluates the optimal predictor h∗l for the

leaf l along with g∗l , the local reduction in G induced by h∗l . The local reduction

is weighted by wl to obtain the global reduction in G, i.e., wlg∗l , and we select the

leaf that minimizes G globally. We update the tree by splitting this leaf, and for

the new leaves update the probabilities of inputs to reach each of them. Once t

iterations are done and the leaves have been determined, FitHL selects for each

leaf a predictor from HL by minimizing the error (and not the splitting criteria G).

One can observe that our framework encapsulates common decision tree method-

ologies algorithms, such as C4.5 and CART, as follows:

1. HI is the family of all decision stumps and HL = {0, 1}.

2. The function FitHI is implemented by evaluating all the decision stumps

and selecting the best according to G.

3. The function FitHL sets y = 0 or y = 1 according to the majority class in

the leaf, minimizing the error given a constant label predictor

We presented a general basic scheme of the DTL algorithm. We did not de-

scribe other hyperparameters (such as minimal split size) or methods to refine the

model (such as pruning) which could be applied to the generic algorithm in order

to improve results. Our goal is to focus of the core properties of the DTL which

we believe are well represented in our framework.
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Algorithm DTL(S - sample, G splitting criteria, t number of iterations)

1 Initialize T to be a single-leaf tree with node r, for x ∈ S: pr(x) = 1
|S| ,

wr = 1, and qr = |{x∈S:f(x)=1}|
|S| .

2 while |Leaves(T )| < t do

3 ∆best ← 0; bestl ← ⊥; besth ← ⊥

4 for each l ∈ Leaves(T ): do

5 h∗l , g
∗
l ← FitHI(S,

1
wl
pl(x), G)

6 ∆l ← wlG(ql)− wl · g∗l
7 if ∆l ≥ ∆best then

8 ∆best ← ∆l; bestl ← l; besth ← h∗l

end

end

9 for x ∈ S do

10 pl1(x)← pl(x) · Pr (besth(x))

11 pl0(x)← pl(x) · (1− Pr (besth(x)))

end

12 wl1 ←
∑

x∈S pl1(x); wl0 ←
∑

x∈S pl0(x)

13 ql1 ←
∑

x∈S:f(x)=1 pl1(x); ql0 ←
∑

x∈S:f(x)=1 pl0(x)

14 T ← SplitLeaf(T, bestl, besth)

end

15 for each l ∈ leaves(T ): do
hl ← FitHL(S, 1

wl
pl(x))

end

16 return T
Algorithm 1: Decision tree learning algorithm



Appendix B

Proof of Theorem 5.0.1

In this section we provide a sketch of the proof for Theorem 5.0.1 under the

Stochastic Weak Learning Assumption. The proof is based on the proof for the

deterministic case by [KM99], however it is slightly modified to account for the

stochastic hypothesis we introduce in this work. We will only prove the place

where the proofs differ, namely Lemma 2 of [KM99] is substitute by Lemma B.0.1.

We start with a few notations. Let f be the target function, let T be a decision

tree, a leaf l ∈ Leaves(T ), and let h ∈ HI . Denote the leaves introduced by

Split(T, l, h) by l1 and l0. Recall that purity(l) is the fraction of positive exam-

ples that reach leaf l from all of the examples that reach it. We use the following

shorthand notations for reoccurring expressions:

q =purity(l), p = purity(l0), r = purity(l1)

τ = Pr
(x,y)∼D

(Reach(x, l1)|Reach(x, l))

= Pr
(x,y)∼D

(h(x) = 1|Reach(x, l))

=
weight(l1)

weight(l)

Since q = (1 − τ)p + τr and τ ∈ [0, 1] than without loss of generality we have:

p ≤ q ≤ r. Let:

δ = r − p .
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Let Dl be the distribution over input at leaf l. We also define D′l the balanced

distribution over inputs in leaf l in which the probability positive (or negative)

weights is 1/2. Formally,

Dl(x) =
Reach(x, l)

weight(l)
D(x)

D′l(x) =


Dl(x)

2q if f(x) = 1

Dl(x)
2(1−q) if f(x) = 0

Recall that the information gain is ∆ = G(q) − (1 − τ)G(p) − τG(r). Note

that if either δ is small or τ is near 0 or 1 then the information gain is small.

Lemma B.0.1 shows that if h ∈ HI is used to split at l, and h satisfies the Weak

Stochastic Hypothesis Assumption for D′l, then both δ cannot be too small, and τ

cannot be too close to either 0 or 1.

Lemma B.0.1. Let p, τ and δ be as defined above for the split h ∈ HI at leaf l.

Let Dl and D′l also be defined as above for l. If the function h satisfies

Prx∼D′l (h(x) 6= f(x)) ≤ 0.5− γ, Then:

τ(1− τ)δ ≥ 2γq(1− q) .

Proof. We calculate the following expressions in terms of τ, r and q:

Pr
x∼Dl

(f(x) = 1, h(x) = 1) = τr

Therefore,

Pr
x∼Dl

(f(x) = 0, h(x) = 1) = τ(1− r)

and

Pr
x∼Dl

(f(x) = 1, h(x) = 0) = (1− τ)p = q − τr

Next we consider the error terms under the distribution D′l. When changing from

the distribution Dl to D′l we need to scale the expression according to the labels:

Pr
x∼D′l

(f(x) = 0, h(x) = 1) =
τ(1− r)
2(1− q)
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and

Pr
x∼D′l

(f(x) = 1, h(x) = 0) =
q − rτ

2q

Finally the error terms are combined to achieve the total error:

Pr
x∼D′l

(f(x) 6= h(x)) = Pr
x∼D′l

(f(x) = 0, h(x) = 1) + Pr
x∼D′l

(f(x) = 1, h(x) = 0)

=
τ(1− r)
2(1− q)

+
q − rτ

2q
=

1

2
+
τ

2

(
1− r
1− q

− r

q

)
=

1

2
+
τ

2
· q − r
q(1− q)

By our assumption on h we have,

Pr
x∼D′l

(f(x) 6= h(x)) =
1

2
+
τ

2
· q − r
q(1− q)

≤ 1

2
− γ

which implies that
τ

2
· r − q
q(1− q)

≥ γ

Substituting r = q + (1− τ)δ we get:

τ

2
· (1− τ)δ

q(1− q)
≥ γ → τ(1− τ)δ ≥ 2γq(1− q)

as required.



Appendix C

Bounding the WGI by regions

In this appendix, we show how to partition the domain of WGI into cells such that

the difference between values of the WGI of points in the same cell is bounded by

ε. Namely, we prove the following theorem.

Theorem 7.1.1. Given data distribution Dl which has a positive label probability

of ρ and a parameter ε ∈ (0, 1) it is possible to partition the domain of WGI:

{(p, q)|0 ≤ p ≤ 1,max (0, ρ+ p− 1) ≤ q ≤ min (ρ, p)} into O
(
ε−2
)

cells, such

that the if (p1, q1) and (p2, q2) belong to the same cell:

|WGI(p1, q1)−WGI(p2, q2)| ≤ ε .

C.1 Partitioning the WGI to monotone regions

Consider the domain of WGI which is

R = {(p, q)|p ∈ (0, 1), q ∈ [max (0, p+ ρ− 1),min (ρ, p)]} .

Note that the values of p = 0 and p = 1 are not included. We discuss and add them

in Section C.7. We partition R to two sub-domains using the line q = ρp, namely,

Ra = {(p, q)|p ∈ (0, 1), q ∈ [ρp,min (ρ, p)]}

46
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and

Rb = {(p, q)|p ∈ (0, 1), q ∈ [max(0, p+ ρ− 1), ρp]} ,

as illustrated in Figure C.1.

We show that the function WGI is monotone in each of those domains.

Lemma C.1.1. Given data distribution Dl which has a positive class weight of ρ,

the WGI function:

WGI(p, q) = 4

(
ρ− q2

p
− (ρ− q)2

1− p

)
is monotone in both p and q in both Ra and Rb. Specifically, in Ra it is increasing

in p and decreasing in q and in Rb it is decreasing in p and increasing in q.

Proof. Since we are interested only in monotonicity, we can consider simply the

function g(p, q) = − q2

p −
(ρ−q)2

1−p . In order to show that g(p, q) is monotone, we

first consider where its derivatives vanishes. The derivative with respect to q is

∂g(p, q)

∂q
=− 2q

p
+

2(ρ− q)
(1− p)

=
2(ρp− q)
p(1− p)

This implies that the derivative vanishes at q = ρp which is the boundary of the

sub-domainsRa andRb, and hence g(p, q) is monotone in q in each of the domains.

Also, in Ra, since q > pρ, the derivative is negative and in Rb, since q ≤ pρ, it is

positive.

Next we consider the derivative with respect to p,

∂g(p, q)

∂p
=
q2

p2
− (ρ− q)2

(1− p)2
=

(q − ρp)(q(1− 2p) + ρp)

p2(1− p)2

This implies that the derivative vanishes at q = ρp and q = ρp
2p−1 . The line q = ρp

is a boundary of our regions and so we consider only the other curve.

For p ∈ (0, 0.5) we have 1 − 2p > 0. This implies that q(1 − 2p) + ρp > 0.

Since q > ρp in Ra it implies that g(p, q) is increasing there, and similarly, since

q ≤ pρ, it is decreasing in Rb.

For p ∈ (0.5, 1) we have −1 < 1 − 2p < 0. For Rb, since q ≤ ρp we have

that q(1 − 2p) + ρp > 0 and hence g(p, q) is decreasing in p. For Ra, we have
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p

q

Ra

Rb

0.51− ρ ρ

ρ

Figure C.1: The domain R and the sub-domains Ra and Rb (for ρ ≥ 0.5)

p

q

1− ρ ρ

ρ
Ra,r

Ra,l

Rb,r

Rb,l

Figure C.2: WGI: partitioned into regions for ρ ≥ 0.5

q ≤ p+ ρ− 1. This implies that q(1− 2p) + ρp ≤ (1− p)(2p− 1 + ρ) which is

non-negative since p ∈ (0.5, 1). Therefore q(p, q) is increasing in Ra.

Finally, for p = 0.5 we have that ∂g(p,q)∂p = (q−ρ/2)(ρ/2)
1/16 which is positive in Ra

and negative in Rb as required.

Figure C.1 show pictorially the regions Ra and Rb.

C.2 Overview of the partition to cells

We partitioned the domain R of WGI to two sub-domains Ra and Rb. According

to Theorem C.1.1 in each of the sub-domains the WGI is monotone in p and q.

We will partition each sub-domain in two thus creating four regions with linear

boundaries which are monotone in p and q. Finally we partition each of the four

regions further into cells in order to bound the WGI difference as required.
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We first consider the difference in the value of WGI between two points:

|WGI(p1, q1)−WGI(p2, q2)| = 4

∣∣∣∣q2
2

p2
+

(ρ− q2)2

1− p2
− q2

1

p1
− (ρ− q1)2

1− p1

∣∣∣∣
≤ 4

∣∣∣∣q2
2

p2
− q2

1

p1

∣∣∣∣+ 4

∣∣∣∣(ρ− q2)2

1− p2
− (ρ− q1)2

1− p1

∣∣∣∣
= 4∆1 + 4∆2 (C.1)

where ∆1 =
∣∣∣ q22p2 − q21

p1

∣∣∣ and ∆2 =
∣∣∣ (ρ−q2)2

1−p2 −
(ρ−q1)2

1−p1

∣∣∣.
We are going to consider the case where ρ ≥ 0.5. The symmetric case of

ρ < 0.5 can be reduced to this case by switching the labels and deriving the same

bound. For the definition of the cells we use the parameters ε ∈ (0, 1) which

controls the cell’s size.

We next present an analysis for each of four sub-domains, and show that in each

both ∆1 = O(ε) and ∆2 = O(ε). In addition each sub-domain will be partitioned

in to O(ε−2) cells.

C.3 First region: Rb,l

LetRb,l = {(p, q)|0 < p ≤ 1− ρ, 0 ≤ q ≤ ρp}. ClearlyRb,l ⊆ Rb, and by Lemma C.1.1

we know that WGI is decreasing in p and increasing in q in Rb,l.

We are now ready to define the cells. The cells will have two parameters pc ∈

(0, 1− ρ− ε] and α ∈ [ε, 1]. Let

cellRb,l(pc, α) = {(p, q)|pc ≤ p ≤ pc + ε, (α− ε)ρp ≤ q ≤ αρp} .

The cells would have pc = iε, for 0 ≤ i ≤ 1−ρ
ε − 1 and α = jε, for 1 ≤ j ≤ 1/ε.

This implies that there are O(ε−2) cells in Rb,l. Since in Rb,l we have ∂WGI
∂q ≥ 0,

there are p1, p2 ∈ (0, 1 − ρ], such that the maximum WGI value in cellRb,l(pc, α)

is obtained at a point (p1, q1) = (p1, αρp1) and the minimum value at (p2, q2) =

(p2, (α− ε)ρp2).
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We bound ∆1 as follows:

∆1 =

∣∣∣∣q2
2

p2
− q2

1

p1

∣∣∣∣ =

∣∣∣∣(α− ε)2ρ2p2
2

p2
− α2ρ2p2

1

p1

∣∣∣∣
≤ρ2(α2

≤ε︷ ︸︸ ︷
|p2 − p1|+εp2

≤1︷ ︸︸ ︷
|ε− 1|) ≤ ρ2(α2ε+ εp2) ≤ 2ε (C.2)

and ∆2 as follows,

∆2 =

∣∣∣∣(ρ− q2)2

1− p2
− (ρ− q1)2

1− p1

∣∣∣∣ =

∣∣∣∣(ρ− (α− ε)ρp2)2

1− p2
− (ρ− αρp1)2

1− p1

∣∣∣∣
=ρ2

∣∣∣∣(1− (α− ε)p2)2

1− p2
− (1− αp1)2

1− p1

∣∣∣∣
=ρ2

∣∣∣∣((1− p2) + ((1− α) + ε)p2)2

1− p2
− ((1− p1) + (1− α)p1)2

1− p1

∣∣∣∣
≤ρ2

|p2 − p1|+ 2(1− α)|p2 − p1|+ 2p2ε+ (1− α)2

∣∣∣∣ p2
2

1− p2
− p2

1

1− p1

∣∣∣∣+
p2

2ε(

≤2︷ ︸︸ ︷
1− α+ ε)

1− p2


≤5ε+ 2ε

p2

1− p2
+ ρ2

∣∣∣∣p2
2 − p2

1 + p2
1p2 − p1p

2
2

(1− p1)(1− p2)

∣∣∣∣
≤7ε+ ρ2

≤2︷ ︸︸ ︷
(p1 + p2) |p2 − p1|
(1− p1)(1− p2)

+ ρ2

≤1︷︸︸︷
p1p2 |p2 − p1|

(1− p1)(1− p2)

≤7ε+ 3ε
ρ2

(1− p1)(1− p2)

=10ε (C.3)

where we used the fact that ρ ≤ 1 and p ≤ 1 − ρ ≤ ρ ≤ 1 − p (or p
1−p ≤ 1 or

ρ
1−p ≤ 1).

Combining the bounds in (C.1), (C.2) and (C.3) the error for in each cell inRb,l

is bounded by 4(2ε+ 10ε) = 48ε.

C.4 Second region: Rb,r

Let Rb,r = {(p, q)|1− ρ ≤ p < 1, p+ ρ− 1 ≤ q ≤ ρp}. Clearly Rb,r ⊆ Rb, and

by Lemma C.1.1 we know that WGI is decreasing in p and increasing in q in Rb,r.
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We are now ready to define the cells. The cells will have two parameters pc ∈

[1− ρ, 1− ε) and α ∈ [ε, 1]. Let

cellRb,r(pc, α) ={(p, q) : pc ≤ p ≤ pc + ε,

(α− ε)ρp+ (1− α+ ε)(p+ ρ− 1) ≤ q ≤ αρp+ (1− α)(p+ ρ− 1)} .

The cells would have pc = iε, for (1 − ρ)/ε ≤ i ≤ 1/ε − 1 and α = jε, for

1 ≤ j ≤ 1/ε. This implies that there are O(ε−2) cells in Rb,r. Since in Rb,r we

have ∂WGI
∂q ≥ 0, there are p1, p2 ∈ [1 − ρ, 1), such that the maximum WGI value

in cellRb,r(pc, α) is obtained at a point (p1, q1) = (p1, αρp1 +(1−α)(p1 +ρ−1))

and the minimum value at (p2, q2) = (p2, (α− ε)ρp2 + (1− α+ ε)(p2 + ρ− 1))

We bound ∆1 as follows:

∆1 =

∣∣∣∣q2
2

p2
− q2

1

p1

∣∣∣∣
=

∣∣∣∣((α− ε)ρp2 + (1− α+ ε)(p2 + ρ− 1))2

p2
− (αρp1 + (1− α)(p1 + ρ− 1))2

p1

∣∣∣∣
≤α2ρ2 |p2 − p1|+ ε

≤2︷ ︸︸ ︷
|ε− 2α| ρ2p2 + 2

≤0.25︷ ︸︸ ︷
α(1− α) ρ |p2 − p1|

+ 2ε

≤1︷ ︸︸ ︷
|2α− ε− 1| ρ

≤1︷ ︸︸ ︷
|p2 + ρ− 1|+

(1− α)2

∣∣∣∣(p2 + ρ− 1)2

p2
− (p1 + ρ− 1)2

p1

∣∣∣∣+
ε

≤2︷ ︸︸ ︷
|2− 2α+ ε|(p2 + ρ− 1)2

p2

≤5.5ε+

C.5︷ ︸︸ ︷∣∣∣∣(p2 + ρ− 1)2

p2
− (p1 + ρ− 1)2

p1

∣∣∣∣+
C.6︷ ︸︸ ︷

2ε(p2 + ρ− 1)2

p2
≤ 12.5ε

(C.4)

Where we used the following expressions:∣∣∣∣(p2 + ρ− 1)2

p2
− (p1 + ρ− 1)2

p1

∣∣∣∣ ≤ |p2 − p1|+ (ρ− 1)2 |p1 − p2|
p1p2

≤ 2ε (C.5)
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2ε(p2 + ρ− 1)2

p2
≤2ε

p2 + 2

≤0.5︷ ︸︸ ︷
|ρ− 1|+(ρ− 1)2

p2


≤2ε

2 +

≤0.5︷ ︸︸ ︷
(1− ρ)

1− ρ
p2


≤5ε (C.6)

where we used the fact that p ≥ 1− ρ (or 1−ρ
p ≤ 1).

For ∆2 we have

∆2 =

∣∣∣∣(ρ− q2)2

1− p2
− (ρ− q1)2

1− p1

∣∣∣∣
=

∣∣∣∣(ρ− (α− ε)ρp2 − (1− α+ ε)(p2 + ρ− 1))2

1− p2
− (ρ− αρp1 − (1− α)(p1 + ρ− 1))2

1− p1

∣∣∣∣
≤ |p1 − p2|


≤1︷︸︸︷
ρ2α2 +2ρ

≤0.25︷ ︸︸ ︷
α(1− α) +

≤1︷ ︸︸ ︷
(1− α)2


+

≤1︷ ︸︸ ︷
(1− p2)

ρ2ε

≤2︷ ︸︸ ︷
|ε− 2α|+2ρε

≤1︷ ︸︸ ︷
|2α− 1− ε|+ε

≤2︷ ︸︸ ︷
|2− 2α+ ε|


≤8.5ε (C.7)

Combining the bounds in (C.1), (C.4) and (C.7) the error for in each cell inRb,l

is bounded by 4(12.5ε+ 8.5ε) = 84ε.

C.5 Third region Ra,l

LetRa,l = {(p, q)|0 < p ≤ ρ, ρp ≤ q ≤ p}. ClearlyRa,l ⊆ Ra, and by Lemma C.1.1

we know that WGI is increasing in p and decreasing in q in Ra,l.

We are now ready to define the cells. The cells will have two parameters pc ∈

(0, ρ− ε] and α ∈ [ε, 1]. Let

cellRa,l(pc, α) = {(p, q)|pc ≤ p ≤ pc + ε, (α− ε)p+ (1− α+ ε)ρp ≤ q ≤ αp+ (1− α)ρp} .

The cells would have pc = iε, for 0 ≤ i ≤ ρ/ε − 1 and α = jε, for 1 ≤ j ≤ 1/ε.

This implies that there are O(ε−2) cells in Ra,l. Since in Ra,l we have ∂WGI
∂q ≤ 0,
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there are p1, p2 ∈ (0, ρ], such that the maximum WGI value in cellRa,l(pc, α) is

obtained at a point (p1, q1) = (p1, (α− ε)p1 + (1− α+ ε)ρp1) and the minimum

value at (p2, q2) = (p2, αp2 + (1− α)ρp2)

We bound ∆1 as follows,

∆1 =

∣∣∣∣q2
2

p2
− q2

1

p1

∣∣∣∣ =

∣∣∣∣(αp2 + (1− α)ρp2)2

p2
− ((α− ε)p1 + (1− α+ ε)ρp1)2

p1

∣∣∣∣
≤ |p2 − p1| |ρ+ (1− ρ)α|2 + 2εp1 |ρ+ (1− ρ)α| |ρ− 1|+ ε2p1(ρ− 1)2

≤4ε (C.8)

Where we used:

|ρ+ α(1− ρ)| ≤ |ρ|+ α |1− ρ|
α≤1
≤ |ρ|+ |1− ρ| 0≤ρ≤1

= ρ+ 1− ρ = 1

and bound ∆2 as follows,

∆2 =

∣∣∣∣(ρ− q2)2

1− p2
− (ρ− q1)2

1− p1

∣∣∣∣
=

∣∣∣∣(ρ− αp2 − (1− α)ρp2)2

1− p2
− (ρ− (α− ε)p1 − (1− (α− ε))ρp1)2

1− p1

∣∣∣∣
≤ρ2 |p1 − p2|+ 2α |ρ(ρ− 1)| |p2 − p1|+ α2(1− ρ)2

∣∣∣∣ p2
2

1− p2
− p2

1

1− p1

∣∣∣∣+
2εp1(1− ρ) |ρ− αp1 − (1− α)ρp1|

1− p1
+
ε2p2

1(1− ρ)2

1− p1

≤8.5ε (C.9)

Combining the bounds in (C.1), (C.8) and (C.9) the error for in each cell in

Ra,l is bounded by 4(4ε+ 8.5ε) = 50ε.

C.6 Fourth region Ra,r

LetRa,r = {(p, q)|ρ ≤ p < 1, ρp ≤ q ≤ ρ}. ClearlyRa,r ⊆ Ra, and by Lemma C.1.1

we know that WGI is increasing in p and decreasing in q in Ra,r.

We are now ready to define the cells. The cells will have two parameters pc ∈

[1− ρ, 1− ε) and α ∈ [ε, 1]. Let

cellRa,r(pc, α) = {(p, q)|pc ≤ p ≤ pc + ε, (α− ε)ρ+ (1− α+ ε)ρp ≤ q ≤ αρ+ (1− α)ρp} .



Chapter C.7 WGI is continuous in p = 0 and p = 1 54

The cells would have pc = iε, for ρ/ε ≤ i ≤ 1/ε− 1 and α = jε, for 1 ≤ j ≤ 1/ε.

This implies that there are O(ε−2) cells in Ra,r. Since in Ra,r we have ∂WGI
∂q ≤ 0,

there are p1, p2 ∈ [1− ρ, 1), such that the maximum WGI value in cellRa,r(pc, α)

is obtained at a point (p1, q1) = (p1, (α− ε)ρ+ (1−α+ ε)ρp1) and the minimum

value at (p2, q2) = (p2, αρ+ (1− α)ρp2)

We bound ∆1 as follows,

∆1 =

∣∣∣∣q2
2

p2
− q2

1

p1

∣∣∣∣ =

∣∣∣∣(αρ+ (1− α)ρp2)2

p2
− ((α− ε)ρ+ (1− α+ ε)ρp1)2

p1

∣∣∣∣
≤ρ2 (|p2 − p1|+ 2α |p1 − p2|+ 2ε |1− p1|)

+ ρ2

∣∣∣∣α2(1− p2)2

p2
− α2(1− p1)2

p1
− ε(ε− 2α)(1− p1)2

p1

∣∣∣∣
≤8ε (C.10)

and ∆2 as follows,

∆2 =

∣∣∣∣(ρ− q2)2

1− p2
− (ρ− q1)2

1− p1

∣∣∣∣
=

∣∣∣∣(ρ− αρ− (1− α)ρp2)2

1− p2
− (ρ− (α− ε)ρ− (1− (α− ε))ρp1)2

1− p1

∣∣∣∣
≤ρ2(1− α)2 |p1 − p2|+ ρ2ε |2− 2α+ ε| (1− p1)

≤3ε (C.11)

Combining the bounds in (C.1), (C.10) and (C.11) the error for in each cell in

Ra,r is bounded by 4(8ε+ 3ε) = 44ε.

C.7 WGI is continuous in p = 0 and p = 1

We show that the value of WGI is continuous at both extreme points p = 0 and

p = 1 for point (p, q) ∈ R. Namely, we show that its value is 4ρ(1− ρ). This will

allow us to extend the sub-domains from p ∈ (0, 1) to p ∈ [0, 1]. Recall that,

WGI(p, q) = 4

(
ρ− q2

p
− (ρ− q)2

1− p

)
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Lemma C.7.1. WGI(p, q) (7.1) is continuous in p = 0.

Proof. By definition of WGI 7.1, we know thatWGI(0, q) = 4ρ(1−ρ). We show

that this is also the limit when p approaches 0.

lim
p→0+

4

(
ρ− q2

p
− (ρ− q)2

1− p

)
= 4

(
ρ− lim

p→0+

q2

p
− lim
p→0+

(ρ− q)2

1− p

)
First, since p and q are non negative and q ≤ p we have 0 ≤ q2

p ≤ q. Also if

p is going to 0, so is q therefore limp→0 q = 0. According to the squeeze theorem,

we get limp→0+
q2

p = 0. Second, we expand the term (ρ−q)2
1−p = ρ2

1−p −
2ρq
1−p + q2

1−p

and calculate the limit for every sub-term separately (ρ2,0 and 0 correspondingly).

Therefore:

lim
p→0+

ρ2

1− p
− 2ρq

1− p
+

q2

1− p
= ρ2

Finally the limit at p→ 0+ is 4ρ(1− ρ).

Lemma C.7.2. WGI(p, q) (7.1) is continuous in p = 1.

Proof. By definition of WGI 7.1, we know thatWGI(1, q) = 4ρ(1−ρ). We show

that this is also the limit when p approaches 1.

lim
p→1−

4

(
ρ− q2

p
− (ρ− q)2

1− p

)
= 4

(
ρ− lim

p→1−

q2

p
− lim
p→1−

(ρ− q)2

1− p

)
First we notice that limp→1− p+ ρ− 1 = ρ and limp→1−min(p, ρ) = ρ.

According to the squeeze theorem and p + ρ − 1 ≤ q ≤ min(p, ρ) we get

limp→1− q = ρ.

Next, since all terms are positive (ρ−q)2
1−p ≥ 0. Since p+ ρ− 1 ≤ q → ρ− q ≤

1 − p and thus (ρ−q)2
1−p ≤ ρ − q. Since 0 ≤ (ρ−q)2

1−p and limp→1− ρ− q = ρ −

ρ = 0 we apply the squeeze theorem and get that: limp→1−
(ρ−q)2

1−p = 0. Finally,

4
(
ρ− limp→1−

q2

p − limp→1−
(ρ−q)2

1−p

)
= 4(ρ− ρ2) as required.
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C.8 Proof conclusion

We finish proving the following Theorem:

Theorem 7.1.1. Given data distribution Dl which has a positive label probability

of ρ and a parameter ε ∈ (0, 1) it is possible to partition the domain of WGI:

{(p, q)|0 ≤ p ≤ 1,max (0, ρ+ p− 1) ≤ q ≤ min (ρ, p)} into O
(
ε−2
)

cells, such

that the if (p1, q1) and (p2, q2) belong to the same cell:

|WGI(p1, q1)−WGI(p2, q2)| ≤ ε .

In section C.1, we described 4 mutually exclusive regions that cover the domain

of WGI. Let ε̄ ∈ (0, 1), then for each region we showed in sections C.3,C.4,C.5

and C.6 a partition of each region to O(ε̄−2) mutually exclusive cells that cover

the domain of the region, such that if (p1, q1) and (p2, q2) are within the cell then

‖WGI(p1, q1)−WGI(p2, q2)‖ ≤ 100ε̄.

If combined, these partitions partition the domain of WGI into 4 · O(ε̄−2) =

O(ε̄−2) cells. Next, according to the continuity of WGI for p = 0 and p = 1, as

showed in section C.7, the partition can extended from p ∈ (0, 1) to p = [0, 1] and

cover the full domain of WGI. Finally, we set ε̄ = 0.01ε, clearly we O(ε−2) =

O(ε̄−2) which concludes the proof.

C.9 Solution for the dependent case

In this section we are going to provide a minimal solution for the WGI in the

dependent case.

Lemma C.9.1. Let ~a = D>v X and ~b = (Dv � y)>X , and assume ~b = λ~a. The

solutions for min (WGIw) are w1,2 = ± ~a
‖~a‖

Proof. Recall that according to 7.1:

WGIw = WGI(Pw, Qw) = 4

(
ρ− Q2

w

Pw
− (ρ−Qw)2

1− Pw

)
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and that Pw = ~a>w+1
2 and Qw =

~b>w+ρ
2 . Denote x = ~a>w and therefore ~b>w =

λ~a>w = λx we find the solution for:

g(x) =4ρ−
4
(
λx+ρ

2

)2

x+1
2

−
4
(
ρ− λx+ρ

2

)2

1− x+1
2

= 4ρ− 2 (ρ+ λx)2

1 + x
− 2 (ρ− λx)2

1− x

=4ρ−
4
(
ρ2 + λ(λ− 2ρ)x2

)
1− x2

We substitute z = x2 and derive:

∂g

∂z
= −4 · λ(λ− 2ρ)(1− z) + (ρ2 + λ(λ− 2ρ)z)

(1− z)2
= −4 · (λ− ρ)2

(1− z)2

by the chain rule:

∂g

∂x
=
∂g

∂z
· ∂z
∂x

=
−8x(λ− ρ)2

(1− x2)2

First we note that x = 0 is an extreme point. Next, since (λ−ρ)2

(1−x2)2
> 0, we can see

that if x > 0 we see that g is decreasing, and if x < 0 we see that g is increasing.

Therefore, the minimal points are at the edges of the feasible interval of x.

Since x = ~a>w and ‖w‖ ≤ 1, according to · operator we have: −‖~a‖ ≤ x ≤

‖~a‖. If w = ~a
‖~a‖ then x = ‖a‖, and if w = − ~a

‖~a‖ then x = −‖a‖. Therefore,

w1,2 = ± ~a
‖~a‖ are the solutions for this case. Clearly, both solutions attain the same

value of WGI.



Appendix D

Maximizing Information Gain for

Pw and Qw

In this appendix we characterize various optimization problems that search for a

feasible stochastic linear classifiers. We have a few optimization problems de-

pending on the information we assume about Pw and Qw. The solutions of these

of optimizations are used in our algorithms. We will assume that the vectors ~a and

~b are linearly independent throughout the appendix (since the dependent case can

be directly found without using an optimization as was shown in Appendix C.9).

We first discuss the basic problem where the value of both Pw and Qw are

given (Appendix D.1). In Appendix D.2 we then show, that the optimal solution

within a cell (as define in Appendix C) is found in one of the corners of that cell.

The solution is described in Appendix D.1 and D.2 is used in algorithm FixedPQ.

Next, in Appendix D.3 we solve the optimization used in FindPSearchQ for

finding a feasible stochastic linear classifier where only the value of Pw is given.

Finally, in Appendix D.4, we show that the set of feasible stochastic linear

classifiers restricts the domain of WGI where solutions can be found.

58
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D.1 Values of Pw and Qw are given

In this section we assume that the values of both Pw and Qw are given, and we

would like to compute whether there exists a feasible w with that give rise to those

values, namely, ‖w‖ ≤ 1. Such a w implies a feasible stochastic linear classifier.

Let the values be: Pw = p and Qw = q. The following lemma characterizes the

solution.

Lemma D.1.1. Let ~a = D>v X and ~b = (Dv � y)>X , and assume that they are

linearly independent. For the quadratic optimization problem:

w∗ = arg min ‖w‖22

Pw = p

Qw = q

We have that,

w∗ =
(2q − ρ)(~a ·~b)− (2p− 1)‖~b‖2

‖~a‖2‖~b‖2 − (~a ·~b)2
~a+

(2p− 1)(~a ·~b)− (2q − ρ)‖~a‖2

‖~a‖2‖~b‖2 − (~a ·~b)2
~b

We will use Lemma D.1.1 in the following way. If for a given (p, q) we have

that resultingw∗ has ‖w∗‖ ≤ 1, then we found a feasible stochastic linear classifier.

Otherwise, we can conclude that there is no feasible stochastic linear classifier for

(p, q), since w∗ minimizes the norm.

Proof. Recall that

Pw = 0.5 ·D>v Xw + 0.5 = p and Qw = 0.5 · (Dv � y)>Xw + 0.5ρ = q

We define ~a>w = 2p− 1 = p̄ and~b>w = 2q − ρ = q̄. With this notation we have

min 0.5

d∑
i=1

w2
i

~a> · w − p̄ = 0

~b> · w − q̄ = 0



Chapter D.2 Values of Pw and Qw are within specific ranges 60

We solve the optimization using the Lagrange multipliers:

L(w, λ1, λ2) = 0.5

d∑
i=1

w2
i + λ1(~a>w − p̄) + λ2(~b>w − q̄)

Considering the derivatives of the Lagrangian, we have

∂L

∂wi
= wi + λ1~ai + λ2

~bi = 0 (D.1)

which implies that ~w = −λ1~a− λ2
~b. Also,

∂L

∂λ1
= ~a>w − p̄ = 0 (D.2)

Using that ~w = −λ1~a − λ2
~b we have that −λ1‖~a‖2 − λ2(~a · ~b) − p̄ = 0 which

implies that λ1 = −λ2(~a·~b)+p̄
‖~a‖2 .1 We consider the other derivative,

∂L

∂λ2
= ~b>w − q̄ = 0 (D.3)

Similarly, this implies that −λ1(~a ·~b) − λ2‖~b‖2 − q̄ = 0. Solving for λ1 and λ2

and w∗ we get,

λ2 =
p̄(~a ·~b)− q̄‖~a‖2

‖~a‖2‖~b‖2 − (~a ·~b)2

λ1 =
q̄(~a ·~b)− p̄‖~b‖2

‖~a‖2‖~b‖2 − (~a ·~b)2

w∗ =
q̄(~a ·~b)− p̄‖~b‖2

‖~a‖2‖~b‖2 − (~a ·~b)2
~a+

p̄(~a ·~b)− q̄‖~a‖2

‖~a‖2‖~b‖2 − (~a ·~b)2
~b (D.4)

Notice that this solution is valid only when the denominator is not 0. Therefore, it

is valid if the ~a and~b vectors are not in the same direction, i.e., ∀λ : ~a 6= λ~b.

D.2 Values of Pw and Qw are within specific ranges

In this section we consider finding a feasible stochastic linear classifier inside a

certain cell of values of Pw and Qw (see Appendix C). The cell has the parameters
1 We note that ‖~a‖ > 0 since we assume a coordinate with a fixed positive value for every sample,

to allow for a bias coordinate.
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pc and α, in addition to ε ∈ (0, 1). Let U(Pw, ρ) and L(Pw, ρ) be linear functions

which bound the values of Qw in the cell from above and below, respectively.

The exact linear function depend on the sub-domain we are considering, namely

the upper and lower boundaries of the region. Formally we solve the following

quadratic optimization problem:

min ‖w‖22

p ≤ Pw ≤ p+ ε

(α− ε)U(Pw, ρ) + (1− α+ ε)L(Pw, ρ) ≤ Qw ≤ αU(Pw, ρ) + (1− α)L(Pw, ρ)

Since we minimize the norm of w, if there exists a feasible stochastic linear clas-

sifier in the cell, the result of this optimization would be feasible. If there is no

feasible stochastic linear classifier in this cell, the result of this optimization would

be a non feasible w (either ‖w‖ > 1 or no solution at all).

Lemma D.2.1. Let ~a = D>v X and ~b = (Dv � y)>X , and assume they are lin-

early independent. Let ε ∈ (0, 1), α ∈ [ε, 1] and p ∈ [0, 1 − ε]. Let U(Pw, ρ) and

L(Pw, ρ) be linear functions, such that:

∀Pw ∈ [p, p+ ε] :


L(Pw, ρ) < U(Pw, ρ) p ∈ (0, 1)

L(Pw, ρ) = U(Pw, ρ) p = 0 or p = 1

Then the solution for:

min ‖w‖22

p ≤ Pw ≤ p+ ε

(α− ε)U(Pw, ρ) + (1− α+ ε)L(Pw, ρ) ≤ Qw ≤ αU(Pw, ρ) + (1− α)L(Pw, ρ)

coincides with a solution of

min ‖w‖22

Pw = p′

Qw = q′
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for p′ ∈ {p, p+ε} and q′ ∈ {(α−ε)U(Pw, ρ)+(1−α+ε)L(Pw, ρ), αU(Pw, ρ)+

(1− α)L(Pw, ρ)}

We note that in order to compute the actual value, one could use the solution of

Lemma D.1.1 in order to evaluate each of the four combinations for (p′, q′). The

above lemma guarantees that optimal solution is indeed one of them.

Proof. The above optimization is equivalent to the following optimization prob-

lem:

min 0.5

d∑
i=1

w2
i

hI︷ ︸︸ ︷
p− Pw ≤ 0

hII︷ ︸︸ ︷
Pw − (p+ ε) ≤ 0

hIII︷ ︸︸ ︷
(α− ε)U(Pw, ρ) + (1− α+ ε)L(Pw, ρ)−Qw ≤ 0

hIV︷ ︸︸ ︷
Qw − αU(Pw, ρ)− (1− α)L(Pw, ρ) ≤ 0

Since Pw, Qw, U and L are all linear functions of w with the constants X , y, Dl

and ρ, this formulation corresponds to an optimization problem with a quadratic

target and linear constraints. We solve using the Lagrange multipliers:

L(w, λ1, λ2, µ1, µ2) = 0.5 ·
d∑
i=1

w2
i + λ1hI + λ2hII + µ1hIII + µ2hIV

We want to minimize L s.t λ1, λ2, µ1, µ2 ≥ 0.

First we consider the pair hI and hII ; if both constraints are summed the result

is,

p− Pw + Pw − (p+ ε) = −ε < 0

Therefore at least one of the constraints is strictly negative (otherwise their sum

cannot be negative). SinceL is to be minimized, for everyw the solution (w, λ1, λ2...),
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is going to select at least one of λ1 > 0 or λ2 > 0 in order to use the negative term

and reach a smaller value of L. According to the complementary slackness this

means that either Pw = p or Pw = p+ ε (of course we cannot have both).

Next, we consider constraints hIII and hIV ; we denote with ∆ the sum be-

tween these two constraints:

∆ =(α− ε)U(Pw, ρ) + (1− α+ ε)L(Pw, ρ)−Qw +Qw − αU(Pw, ρ)− (1− α)L(Pw, ρ)

=ε (L(Pw, ρ)− U(Pw, ρ))

Since ε > 0 we only need to consider the term (L(Pw, ρ)− U(Pw, ρ)). We have

three cases: Pw = 0, Pw = 1 and 0 < Pw < 1.

For the cases Pw = 0 and Pw = 1, according to the definition of U and L

(L(0, ρ)− U(0, ρ)) = 0 or (L(1, ρ)− U(1, ρ)) = 0 correspondingly. For both

∆ = 0, and both hIII and hIV collapse to Qw = 0 or ρ. Therefore the solution is

attained either at (0, 0) for when Pw = 0 or at (1, ρ) for when Pw = 1.

Next, since for 0 < Pw < 1, L(Pw, ρ) − U(Pw, ρ) < 0 and ε > 0 therefore

∆ < 0. Similarly to the Pw constraints, according to the complementary slackness,

this means that either hIII or hIV is tight.

Therefore each minimal norm solution occurs when exactly one of hI or hII is

tight, and when one of hIII or hIV is tight. In each of those four cases, the solution

occurs in one of the corners of the cell, which in turn is the same as solving the

optimization problem for constant values of Pw and Qw for each of the corners of

the cell and taking the best solution.

D.3 Given value Pw search over Qw

This section takes a different approach then the previous ones. We search for a

feasible stochastic linear classifier given a value for only Pw. Instead of minimizing

the norm of the classifier, we search for Qw values that minimize the WGI under

the constraint that the solution is feasible.
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The following lemma characterizes the solution when we minimize directly

WGI for a given Pw. (Note that when we fix the value of Pw the function WGI is

convex.)

Lemma D.3.1. Let ~a = D>v X and ~b = (Dv � y)>X , and assume that they are

linearly independent. Let ~̄b = ~b− (~a·~b)
‖~a‖2~a. Then for:

w∗ = arg min WGI(p,Qw)

Pw = p

then the two solutions are,

w∗ =
2p− 1

‖~a‖2
~a±

√
‖~a‖2 − (2p− 1)2

‖~a‖‖~̄b‖
~̄b

Proof. The first observation we have is that for a fixed Pw = p, q = ρp is a

maximum for WGI, and since the second derivative of WGI is negative, we get

that WGI attains a minimal value when Qw is either maximized or minimized.

Therefore we substitute the original problem with the following two optimization

problems

Qmax = arg max Qw and Qmin = arg minQw

Pw = p Pw = p

‖w‖2 ≤ 1 ‖w‖2 ≤ 1

where the first constraint is used to fix Pw and the second constraint is used

to bound the norm of w. Now, we will translate the maximization while using the

previous expressions for ~a,~b and set p̄ = 2p− 1.

max~b>w

~a>w − p̄ = 0

‖w‖2 ≤ 1

We rewrite~b = α~a+ ~̄b as a sum of:
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1. α · ~a which is~b’s projection over ~a.

2. ~̄b which is a vector that is orthogonal to a, i.e., (a · b̄) = 0. Since a and b are

linearly independent we have ~̄b 6= 0.

We write w as:

w = µ1~a+ µ2
~̄b+ ~̄w

where ~̄w is orthogonal to ~a and ~̄b. The optimization becomes:

max αµ1‖~a‖2 + µ2‖~̄b‖2

µ1‖~a‖2 − p̄ = 0

µ2
1‖~a‖2 + µ2

2‖~̄b‖2 + ‖ ~̄w‖2 ≤ 1

When we substitute µ1 = p̄
‖~a‖2 we get:

max αp̄+ µ2‖~̄b‖2

p̄2

‖~a‖2
+ µ2

2‖~̄b‖2 + ‖ ~̄w‖2 ≤ 1

Since αp̄ is a constant and ‖~̄b‖2 is positive, the optimization is equivalent to:

max µ2

µ2
2‖~̄b‖2 + ‖ ~̄w‖2 ≤ 1− p̄2

‖~a‖2

Notice that since only µ2 is a variable that contributes to the max, we would like

to make it as large as possible under the constraint. Therefore the optimal solution

would be attained when the w̄ = 0, and the constraint is strictly equal. Thus the

expression of µ2 would be:

µ2
2‖~̄b‖2 = 1− p̄2

‖~a‖2
⇒ µ2 = ±

√
‖~a‖2 − p̄2

‖~a‖‖~̄b‖

The maximal solution for the optimization is achieved with a positive µ2 in the

above expression:

µ2 =

√
‖~a‖2 − p̄2

‖~a‖‖~̄b‖
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Finally the solution for w is,

w =
p̄

‖~a‖2
~a+

√
‖~a‖2 − p̄2

‖~a‖‖~̄b‖
~̄b

Notice that for the minimization problem minQw we simply select the negative

value of µ2, and get,

w =
p̄

‖~a‖2
~a−

√
‖~a‖2 − p̄2

‖~a‖‖~̄b‖
~̄b

This implies that the solution is either one of:

w∗1,2 =
2p− 1

‖~a‖2
~a±

√
‖~a‖2 − (2p− 1)2

‖~a‖‖~̄b‖
~̄b

D.4 Feasible Ranges for Pw and Qw

In all of our problems we have constraints such as Pw = p and Qw = q (or their

range variants). However we should note that not all possible values of p and q are

applicable for a given data:

Lemma D.4.1. Let ~a = D>v X and ~b = (Dv � y)>X and let w be a feasible

stochastic linear classifier. Then:

0.5− 0.5‖~a‖ ≤ Pw ≤ 0.5 + 0.5‖~a‖

0.5ρ− 0.5‖~b‖ ≤ Qw ≤ 0.5ρ+ 0.5‖~b‖

Proof. First:

− ‖~a‖‖w‖ ≤ ~a> · w ≤ ‖~a‖‖w‖ → −‖~a‖ ≤ ~a> · w ≤ ‖~a‖

− ‖~b‖‖w‖ ≤ ~b> · w ≤ ‖~b‖‖w‖ → −‖~b‖ ≤ ~b> · w ≤ ‖~b‖

where the left-hand side is a property of ·, and the right-hand is because w is feasi-

ble. Applying the above inequalities in eq 6.4: Pw = 0.5~a> · w + 0.5 and eq 6.5:

Qw = 0.5~b> · w + 0.5ρ concludes the proof.



Appendix E

Approximation Algorithms

This section details the three algorithms discussed in theorem 7.0.2:

Theorem 7.0.2. Let S be a sample, Dv be a distribution over S, and ε be an

approximation parameter. Let ~a = D>v X and~b = (Dv � y)>X . Then:

1. For the case where ~a and ~b are linearly independent, algorithms FixedPQ

and FixedPSearchQ guarantee an ε-approximation forWGI using a stochas-

tic linear classifier. Algorithm FixedPQ runs in timeO(Nd)+O
(
ε−2 log

(
ε−1
))

,

and algorithm FixedPSearchQ runs in time O(Nd) +O
(
d
ε

)
.

2. For the case where ~a and ~b are linearly dependent, i.e., ~b = λ~a, algorithm

DependentWGI runs in time O(Nd), and achieves the optimal result for

WGI using a stochastic linear classifier.

For each algorithm we provide pseudo code, correctness proof and a complex-

ity analysis: Algorithm FixedPQ is in Appendix E.1, Algorithm FixedPSearchQ

is in Appendix E.2 and Algorithm DependentWGI is in Appendix E.3.

As mentioned all three algorithms depend on ~a the weighted average of the

data, and ~b the weighted average of the positive class. We note here that both ~a

and ~b, along with other static related computations such as ‖~a‖, ‖~b‖ are treated as

global variables which are computed once in the beginning of each algorithm. We
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also note that the constant C = 100 used in the pseudo code corresponds to the

bound from Appendix C.

E.1 FixedPQ Approximate minimal Gini Index in cells

of Pw, Qw

In this section we describe Algorithm FixedPQ. After computing the expressions

as described earlier, we generate a list candidates that contains pairs (p, q) which

are corners of the trapezoid cells:

Initially we generate a set of equally spaces Pw values from the interval

[max (0, 0.5(1− ‖~a‖)), min (1, 0.5(1 + ‖~a‖))]. This interval is the intersection

of the domain of WGI and the feasible range of w as described in Appendix D.4.

The set of Pw values also includes the values for ρ and 1−ρ in order to ensure that

the candidates partition the domain according to the regions defined in Appendix

C.

Next, for each Pw value we define equally spaced values in ranges:

1. [max (0, p+ ρ− 1, 0.5(ρ− ‖~b‖)), min (ρp, 0.5(ρ+ ‖~b‖))]

2. [max (ρp, 0.5(ρ− ‖~b‖)),min (ρ, p, 0.5(ρ+ ‖~b‖))]

Again, these ranges take into consideration both the sub-domains of the WGI and

the feasible ranges of the stochastic linear classifier.

The equally spaced values are generated using the GetRange function, and

we always partition into C
ε values in order to achieve an approximation of ε (see

correctness below). This results in O(ε−1) values of Pw, and for each of those we

have two times O(ε−1) for the Qw values below and above the line Qw = ρPw

which separates the regions. Thus, the total number of candidates is O(ε−2).

The list candidates now contains pairs of (Pw, Qw) which are sorted accord-

ing to WGI in an ascending order. For each point made of Pw and Qw values will

try to fit a stochastic linear classifier: First we use the function
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GetCandidateWeightsTerms to get the scalars α and β. Since we also know

‖~a‖, ‖~b‖ and (~a ·~b) we measure the feasibility of the classifier w before computing

it. Once we find a feasible classifier, we compute it explicitly and return it.

Algorithm correctness Denote w∗ the optimal feasible solution with respect to

WGI:WGIw∗ = min{w|‖w‖≤1}WGIw. LetCells be the union of non-intersecting

trapezoid cells parametrized by step size ε/C. We denote c∗ ∈ Cells the cell which

contains w∗. Denote Wc the feasible solutions proposed to cell c ∈ Cells by the

optimization in Appendix D.2 (since w∗ is feasible, we know that at least one ver-

tex is feasible). Specifically for c∗, we denote the best proposed solution as w1:

w1 = arg min
w∈Wc∗

(WGI(w))

Since both w∗, w1 ∈ c∗ according to the bound we get WGIw∗ ≤ WGIw1 ≤

WGIw∗ + ε.

Next, we defineWCells as the union of the solutions from all the cells: WCells =⋃
c∈CellsWc. WCells is the collection of all the classifiers that would have been

created from evaluating every point in candidates. Since Wc∗ ⊂ WCells we have

w1 ∈WCells. Let w2 be the minimal solution from all the solutions in WCells:

w2 = arg min
w∈WCells

(WGIw)

In particular, WGIw∗ ≤ WGIw2 ≤ WGIw1 ≤ WGIw∗ + ε, and we notice

that w2 is actually the result returned by the algorithm. We therefore conclude that

the algorithm returns an ε approximation to the optimal WGI.

Time complexity We start by computing ρ which consists of a dot-product over

vectors of dimension N and takes time O(N). Next, we calculate ~a, ~b, by mul-

tiplying an N dimensional vector by an N × O(d) matrix, which is done in time

O(Nd). Computing the expressions that depend on ~a and~b is done once and takes

time O(d).
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Algorithm FixedPQ(X - dataset, Dv - data distribution, y - labels, ε -

approximation range)

1 Store globally: ρ← Dv · y,~a> ← Dt
vX,

~b> ← (Dv � y)>X

2 Compute once and store globally: ‖~a‖, ‖~b‖, (~a ·~b)

3 candidates← new List()

4 foreach p ∈GetRange (max (0, 0.5(1− ‖~a‖)),

min (1, 0.5(1 + ‖~a‖)), Cε )
⋃
{ρ, 1− ρ} do

5 foreach q ∈GetRange (max (0, p+ ρ− 1, 0.5(ρ− ‖~b‖)),

min (ρp, 0.5(ρ+ ‖~b‖)), Cε ) do

6 candidates.Insert((p, q))

end

foreach q ∈GetRange (max (ρp, 0.5(ρ− ‖~b‖)),

min (ρ, p, 0.5(ρ+ ‖~b‖)), Cε ) do

7 candidates.Insert((p, q))

end

end

8 candidates← candidates.Sort(ascending=True, by = WGI(p, q))

9 foreach p, q ∈ candidates do

10 (α, β)← GetCandidateWeightsTerms(p, q)

11 if α2 · ‖~a‖2 + 2αβ · (~a ·~b) + β2 · ‖~b‖2 ≤ 1 then

12 return
(
α · ~a+ β ·~b,WGI(p, q)

)
end

end

13 return ”Error - Impossible”;

Procedure GetCandidateWeightsTerms(p, q)

1 p̄← 2p− 1 , q̄ ← 2q − ρ

2 return
(

q̄·(~a·~b)−p̄·‖~b‖2

‖~a‖2·‖~b‖2−(~a·~b)2
, p̄·(~a·~b)−q̄·‖~a‖2

‖~a‖2·‖~b‖2−(~a·~b)2

)
Procedure GetRange(lower, upper, steps)

1 return {p| equally spaced points in [lower,upper] with

step= upper - lower
steps }

Algorithm 2: Approximating optimal WGI with 2 ranges
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We create a list candidates, consisting of O(ε−2) pairs (p, q) in time O(ε−2).

Next, we compute the WGI for each candidate (p, q) in O(1) time, and we sort

them using the WGI values in time O
(
ε−2 log (ε−2)

)
= O

(
ε−2 · log (ε−1)

)
.

Finally we try to match a classifier for each point: we iterate over (sorted)

candidates, and we call the function GetCandidateWeightsTerms which runs

in time O(1) since it is using the pre-calculated expressions. There are at most

O
(
ε−2
)

items in the list. Therefore this step costs O
(
ε−2
)
. Once a solution is

found to be feasible , only then we compute the weight vector in time O(d).

The final complexity is:

O(Nd) +O(d) +O
(
ε−2
)

+O
(
ε−2 · log (ε−1)

)
+O

(
ε−2
)

+O(d)

= O(Nd) +O
(
ε−2 · log (ε−1)

)

E.2 FixedPSearchQ Approximate minimal Gini Index

in range of Pw

In this section we describe Algorithm FixedPSearchQ. After computing the

expressions as described earlier, we generate a list candidates that contains values

p which are equally spaced values on the feasible range of Pw:

This set is generated from the interval [max (0, 0.5(1− ‖~a‖)),

min (1, 0.5(1 + ‖~a‖))]. This interval is the intersection of the domain of WGI and

the feasible range of w as described in Appendix D.4. The set of Pw values also

includes the values for ρ and 1 − ρ in order to ensure that the candidates partition

the domain according to the regions defined in Appendix C.

The equally spaced values are generated using theGetRange function, and we

partition into C
ε values in order to achieve an approximation of ε (see correctness

below). This results in O(ε−1) values of Pw.

Next, we compute ~̄b which is~b minus ~a’s projection over it. This allows for the

computation of ~u and ~v. These vectors are components of the final solution.
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Finally, for each Pw we fit two solutions which are a function of Pw, ~u and ~v.

We keep the best result ŵ and its matching WGI ĝ using the function

SetCandidateIfBetter, and return ŵ and ĝ at the end of the loop.

Algorithm correctness Given an ε parameter for the algorithm, we know that

the optimal feasible solution w∗ belongs to some range of Pw in the grid, denote

that range as C∗ = [α, β].

Denote p∗ = Pw∗ , q
∗ = Qw∗ . First we note that p∗ ∈ C∗ (by definition). Next,

we consider Cq as the Q range that would have included w∗ if we were to partition

into trapezoid cells. Since w∗ is feasible, at least one of the corners of C∗ × Cq is

feasible. There is a feasible solution that we denote as wc at α or β. Without loss

of generality assume it is α. According to the bound on the WGI in Appendix C,

this candidate solution is at most ε away from w∗. Since our algorithm considers

all the possible feasible solutions for α it also considers wc and therefore the result

of the optimization problem as presented in Appendix D.3 denoted as w1 is at least

as good as wc:

WGIw1 −WGIw∗ ≤WGIwc −WGIw∗ ≤ ε

Finally, if the algorithm returns a different solutionw2 it is only becauseWGIw2 ≤

WGIw1 , and we have

WGIw∗ ≤WGIw2 ≤WGIw1 ≤WGIw∗ + ε

namely, w2 is also an ε approximation.

Time complexity We start by computing ρ which consists of a dot-product over

vectors of dimension N and takes time O(N). Next, we calculate ~a, ~b, by mul-

tiplying an N dimensional vector by an N × O(d) matrix, which is done in time

O(Nd). Computing the expressions that depend on ~a and~b is done once and takes

time O(d).
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Algorithm FixedPSearchQ(X - dataset, Dv - data distribution, y -

labels, ε - approximation range)

1 Store globally: ρ← Dv · y,~a> ← Dt
vX,

~b> ← (Dv � y)>X

2 Compute once and store globally: ‖~a‖, ‖~b‖, (~a ·~b)

3 ~̄b← ~b− (~a·~b)
‖~a‖2 · ~a

4 ~u = 1
‖~a‖2 · ~a, ~v = 1

‖~a‖‖~̄b‖
· ~̄b

5 ŵ ← ⊥, ĝ ← ⊥

6 foreach p ∈GetRange (max (0, 0.5(1− ‖~a‖)),

min (1, 0.5(1 + ‖~a‖)), Cε )
⋃
{ρ, 1− ρ} do

7 p̄← 2p− 1

8 w1 ← p̄ · ~u+
√
‖~a‖2 − p̄2 · ~v

9 ŵ, ĝ ← SetCandidateIfBetter(w1,ŵ,ĝ,p)

10 w2 ← p̄ · ~u−
√
‖~a‖2 − p̄2 · ~v

11 ŵ, ĝ ← SetCandidateIfBetter(w2,ŵ,ĝ,p)

end

12 if ŵ = ⊥ then

13 return ”Error - Impossible”

end

14 return ŵ, ĝ

Procedure SetCandidateIfBetter(w,ŵ,ĝ,p)

1 q ← ~b>w+ρ
2

2 if WGI(p, q) ≤ ĝ then

3 return w,WGI(p, q)

end

4 else

5 return ŵ, ĝ

end

Procedure GetRange(lower, upper, steps)

1 return {p| equally spaced points in [lower,upper] with

step= upper - lower
steps }

Algorithm 3: Approximating optimal WGI with one range over Pw
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Finally the loop iterates over O(ε−1) values of p. For each such value, the

algorithm computes a weight vector and uses the method SetCandidateIfBetter

which has time complexity O(d). The total cost of all the iterations is O(dε ).

The final complexity is:

O(Nd) +O(d) +O

(
d

ε

)
= O(Nd) +O

(
d

ε

)

E.3 DependentWGI Dependent constraints case

In this section we describe Algorithm DependentWGI. Since we have an analyt-

ical solution (Appendix C.9), we simply apply it and return its result as w and the

corresponding WGI g.

Algorithm DependentWGI(X - dataset, Dv - data distribution, y -

labels)

1 Store globally: ρ← Dv · y,~a> ← Dt
vX,

~b> ← (Dv � y)>X

2 Compute once and store globally: ‖~a‖

3 Get λ s.t~b = λ~a . According to our assumption, this always happens

4 w ← ~a
‖~a‖

5 g ← 4
(
ρ− (ρ+λ‖~a‖)2

2(1+‖~a‖) −
(ρ−λ‖~a‖)2
2(1−‖~a‖)

)
6 return w, g

Algorithm 4: Approximating optimal WGI dependent case

Algorithm correctness See Appendix C.9.

Algorithm complexity We start by calculating ρ which consists of dot-product

over vectors of dimension N in time O(N). Next, we calculate ~a and ~b, by mul-

tiplying an N vector by an N × O(d) matrix in time O(Nd). Also, we calculate

‖~a‖ in time O(d). And finally, we extract λ which is O(1) without verification
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(simply, λ =
~b1
~a1

), or O(d) with verification (make sure that ∀i ∈ [1, d] : λ =
~bi
~ai

).

We compute w in time O(d) and the drop in constant time. The final complexity

is:

O(Nd) +O(d) +O(d) = O(Nd)



Appendix F

WGI not convex

In this section we are going to show that the WGI is non convex in w.

Lemma F.0.1. The function WGIw is non convex

Proof. Let x1, x2 ∈ Rd be samples s.t x1,1 = −x2,1 = 2x and ∀i ∈ [2, d] : x1,i =

x2,i (x1 and x2 are opposite in the first dimension, and the same in all other). Let

y1 = 1 be the label of x1 and let y2 = 0 be the label of x2. Also let D be the data

distribution s.t D(x1) = D(x2) = 0.5. We note that this entails that ρ = 0.5 and

that ~a1 = 0 while~b1 = x.

We define three feasible stochastic linear classifiers:

1. w0 = ~0 all zeros vector

2. w1 whose first coordinate is 1 and the rest 0: w1,1 = 1, ∀i ∈ [2, d] : w1,i = 0

3. wm whose first coordinate is 0.5 and the rest 0: w1,1 = 0.5,∀i ∈ [2, d] :

w1,i = 0.

We see that

~a>w0 = ~a>w1 = ~a>wm = 0

~b>w0 = 0, ~b>w1 = x, ~b>wm = 0.5x
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Sice WGIw = 4
(
ρ− Q2

w
Pw
− (ρ−Qw)2

1−Pw

)
by equations (6.4) and (6.5) we get:

WGIw = 4

(
ρ−

(
~b>·w+ρ

2 )2

~a>·w+1
2

−
(ρ− ~b>·w+ρ

2 )2

1− ~a>·w+1
2

)
= 4

(
ρ− (ρ+~b> · w)2

2(1 + ~a> · w)
− (ρ−~b> · w)2

2(1− ~a> · w)

)

We substitute the values of ρ, ~a> · w and~b> · w:

WGIw0 = 4

(
0.5− 0.52

2
− 0.52

2

)
= 1

WGIw1 = 4

(
0.5− (0.5 + x)2

2
− (0.5− x)2

2

)
= 4

(
0.25− x2

)
= 1− 4x2

WGIwm = 4

(
0.5− (0.5 + 0.5x)2

2
− (0.5− 0.5x)2

2

)
= 1− x2

Since wm = 0.5 · w0 + 0.5 · w1, in order to show non convexity we show that

WGIwm > 0.5 ·WGIw0 + 0.5 ·WGIw1 :

1− x2 > 0.5 · 1 + 0.5(1− 4x2) = 1− 2x2

which concludes the proof.



Appendix G

Approximate γ Margin With a

Stochastic Tree

In this appendix we show that the class of decision trees with stochastic linear clas-

sifiers has an efficient representation with a bounded error for a γ margin feasible

linear separator. This is show by the following theorem:

Theorem G.0.1. Let w be a γ margin feasible linear separator, then there exists a

stochastic tree T with feasible linear separators in the internal nodes such that the

error of the tree is bounded by ε and the depth of T is O
(
ln (ε−1)γ−2

)
.

Proof. Let y ∈ {0, 1} be a binary label. Let w be a linear separator such that

∀x : (2y − 1) · w · x ≥ γ. We denote Zi as a random variable such that:

Pr (Zi = 1) = 1+w·x
2 and Pr (Zi = −1) = 1−w·x

2 . Let S =
∑h

i=0 Zi be a

random variable which is the sum of h independent Zis. We note that E [Zi] =

1 · Pr (Zi = 1) − 1 · Pr (Zi = −1) = w · x and therefore by the expectation of a

sum E [S] =
∑h

i=0E[Zi] = h(w · x).

Let x be a positive sample, meaning w · x ≥ γ. We bound the probability of
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the sum S to be negative by using Hoeffding’s inequality:

Pr (S ≤ 0) = Pr (S − E [S] ≤ −E [S]) = Pr (S − E [S] ≤ −h(w · x))

≤ exp
−2 (h(w · x))2∑h

i=0 22
= exp

−h (w · x)2

2

Since w · x ≥ γ, we get Pr (S ≤ 0) ≤ exp −hγ
2

2 , and if we want to drive the

probability below ε we have:

Pr (S ≤ 0) ≤ exp
−hγ2

2
≤ ε→ −hγ

2

2
≤ ln ε→ h ≥ 2 ln (ε−1)γ−2

Similarly, for the negative sample for Pr (S ≥ 0) ≤ ε we also require h ≥

2 ln (ε−1)γ−2.

We now describe a stochastic decision tree T : T is a full tree of depth h ≥

2 ln (ε−1)γ−2. Each internal node contains the stochastic linear separator w and

each leaf l ∈ leaves(T ) is labeled 1 if the path from root(T ) to l contains more

left turns than right and 0 otherwise.

We notice that when predicting for sample xi using T , the decision in each

internal node is modeled by Zi. A positive sample x is classified positive according

to the expectation over the leaves:

Pr (yi = 1) =
∑

l∈leaves(T )

label(l) Pr (Reach(x, l))

We consider all the positive labels, since the negative labels contribute 0 to the

expectation:

Pr (yi = 1) =
∑

l∈leaves(T )|label(l)=1

Pr (Reach(x, l))

By the construction of T , this probability equals the probability of reaching

leaves with more left turns than right (therefore these leaves are labeled as 1).

Namely,

Pr (yi = 1) =
∑

l∈leaves(T )

label(l) Pr (Reach(x, l)) = Pr (S ≥ 0) ≥ 1− ε
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And therefore the error probability Pr (yi = 0) =≤ ε. Similarly, we can show that

the error for a negative sample is also bounded by ε. Finally this ensures that the

expected error is also smaller than ε as required.



Appendix H

Splitting criteria bounds the

classification error

In this appendix we are going to show that a permissible splitting criterion G,

upper bound twice the classification error. Reminder: a function G over [0, 1] is a

permissible splitting criterion if:

1. G is symmetric about 0.5. Thus, ∀x ∈ [0, 1] : G(x) = G(1− x).

2. G is normalized: G(0.5) = 1 and G(0) = G(1) = 0.

3. G is strictly concave.

Next, we prove the following theorem:

Theorem H.0.1. Let G be a permissible splitting criterion, then for ∀x ∈ [0, 1] :

G(x) ≥ 2 min{x, 1− x} = min{2x, 2− 2x}.

Proof. First, we consider x ∈ [0, 0.5], and we notice that min{2x, 2 − 2x} = 2x.

Next, we notice that x = (1 − 2x) · 0 + 2x · 0.5 and according to concavity of G

we derive the bound for this interval of x:

G(x) = G((1− 2x) · 0 + 2x · 0.5) ≥ (1− 2x)G(0) + 2xG(0.5) = 2x
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Where the last transition is due to G(0.5) = 1 and G(0) = G(1) = 0.

Next, we consider x ∈ [0.5, 1], and we notice that min{2x, 2− 2x} = 2− 2x.

Again, we notice that x = (2 − 2x) · 0.5 + (1 − (2 − 2x)) · 1 and according to

concavity of G we derive the bound for this interval of x:

G(x) = G((2− 2x) · 0.5 + (1− (2− 2x)) · 1) ≥ (2− 2x)G(0.5) + (1− (2− 2x))G(1) = 2− 2x

Where the last transition is due to G(0.5) = 1 and G(0) = G(1) = 0.

The above two cases cover the interval x ∈ [0, 1] and therefore we can conclude

that ∀x ∈ [0, 1] : G(x) ≥ 2 min{x, 1− x} = min{2x, 2− 2x}.



 

 תקציר

אנחנו בה (, boostingזו אנחנו בוחנים את בעיית למידת עצי החלטה תחת מסגרת ההגברה ) בעבודה

אשר מספקת את השערת מניחים כי המסווגים בצמתים הפנימיים של העץ שייכים למחלקת השערות 
 (.Weak Learning Assumptionהלמידה החלשה )

 
ות המספקת את מחלקת ההשערות של מסווגים לינאריים סטוכסטיים, כמחלקת השערחוקרים אנחנו 

לים למזעור הג'יני אינדקס אנחנו מספקים אלגוריתמים יעיעבור מחלקה זו את השערת הלמידה החלשה. 
(Gini Indexשהוא חסם על השגיאה א )שה ללכן, תחת הנחת הלמידה חהבעיה אינה קמורה. פילו ש

ללמידה של עצי החלטה המשתמשים במסווגים  בעל חסמי שגיאהו יעיליםם מיאנחנו מספקים אלגורית
  .לינאריים סטוכטיים

 
נתונים לבסוף אנחנו בוחנים את האלגוריתם גם עבור מקרים בהם הנתונים הם סינטטיים וגם עבור 

ביותר ממאפיין אחד של הנתונים בכל רגע נתון, היתרון במחלקה הנ"ל היא היכולת להתחשב אמיתיים. 
 Support –צעת כנגד הביצועים של מפריד לינארי לכן אנחנו משווים את הביצועים של השיטה המו

Vector Machine ה המבוסס "גדי החלטות" נל לינארי וכנגד עץ החלטעם קר(decision stumps ומראים )

 גבוה עם גבול החלטה מורכב המסווג המוצע עובד טוב יותר מהשניים האחרים. כי עבור נתונים ממימד



 אוניברסיטת תל אביב

 הפקולטה למדעים מדויקים

 על שם ריימונד ובברלי סאקלר

 בית הספר למדעי המחשב
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