
The Raymond and Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

Machine Learning Algorithms

and Robustness

Thesis submitted for the degree of Doctor of Philosophy

by

Mariano Schain

This work was carried out under the supervision of

Professor Yishay Mansour

Submitted to the Senate of Tel Aviv University

January 2015



Abstract

The advent of the Internet introduced many business opportunities and related

challenges, many of which can be framed as learning problems: browsing-users’ behavior

and preferences, bidding patterns, classification of user-generated content, and many

more. Learning algorithms are based on a model of reality (the environment in which

they operate and are tested), and their performance depends on the degree of agreement

of their assumed model with reality. The Robustness of an algorithm is its sensitivity

to discrepancies between the assumed model and reality. This research investigates key

aspects of robustness as related to the following specific learning settings.

One instance of such needed robustness is modeling and optimization in multi-agent

settings (in which a poor model of reality might lead to meager decisions). The first

aim of this thesis in that context is building learning agents, in particular for the Trad-

ing Agent Competition (TAC) - A synthetic environment for evaluating trading agent’s

strategies. We base our trading agents on Machine-Learning model-light methods that

tend to refrain from assuming a statistical model for the generation of observations,

and as such reduce the risk of model mismatch and are expected to better tolerate

adversarial environments. Such methods are usually also simpler to implement and are

therefore more robust in that sense. We compare some of the fundamental qualities of

our model-light agents to those of agents built using other techniques which may ex-

ploit the model-specific parameters and structure of the TAC simulated environment.

By taking part in the TAC/Ad-Auctions competition (adding more parametric com-

ponents to our agents throughout the years, eventually winning the 2013 competition)

we are able to quantify the value of using parametric methods. We establish the ro-

bustness of model-light methods by showing the diminishing importance of modeling

accuracy (showing that for our top performing agent, a perfect knowledge of the model

parameters results in insignificant optimization improvements).

This thesis also considers robustness as a mean to assess the applicability to real-

world settings of TAC-like competition insights regarding agent strategies and mech-

anisms. By changing the game environment (that is, the simulation parameters) of



the (unaware) competing agents, we demonstrate that top performing agents are (sur-

prisingly) robust to changes in game setting. Our positive findings suggest that the

(inherently simplistic) TAC-like games may be used to draw general conclusions about

real-life situations. Finally, the thesis considers the Ad-Exchange setting of the Internet

brand-advertising ecosystem. Taking the perspective of the Ad-Network (and the chal-

lenges it faces as it bids for display ads opportunities announced by an Ad-Exchange in

order to carry out targeted advertising campaigns) we designed and implemented a new

TAC game launched during the summer of 2014. The strategies employed by agents

implemented for TAC-AdX competitions provide insights regarding winning strategies

for this pivotal setting of the Internet’s economy.

Another instance of robustness investigated in this thesis is the Domain Adaptation

problem, in which the learning algorithm is expected to perform (generalize) well in

one (target) domain but may only be trained using data from a significantly differ-

ent (source) domain. Such situations abound in practice due to inherent limitations,

cost considerations, or convenience (e.g., speech recognition, machine vision, sentiment

analysis in natural language processing, and many other settings), hence the impor-

tance of quantifying the related performance penalty (through generalization bounds)

and providing algorithmic methods to adapt existing algorithms to address the domain

adaptation problem. For domain adaptation, we use the robust-optimization approach

and algorithmic-robustness properties to derive related generalization bounds and de-

sign new domain-adaptation variants of classical machine learning algorithms (SVM)

for classification and regression. Naturally, such algorithms and bounds depend on sta-

tistical properties of the discrepancies between the source and target domains (which

can also be regarded as quantifying domain-specific prior knowledge regarding source-

target similarity) and we introduce a related measure. Our approach is generic in the

sense that it may be similarly applied to other Machine Learning algorithms, optionally

using other statistical similarity measures.

Finally, the thesis considers Social Learning - methods to accomplish, through col-

laboration, a computation that depends on the aggregate of private information acces-

sible to self interested agents. Specifically, we investigate sequential processes based on

market scoring rules, where each agent updates the current state of the computation

based on his private signal. Such settings (e.g., Prediction Markets, where options

regarding the occurrence of a future event are traded, and the option’s outstanding



price is the state of the common computation) may be regarded as parameter estima-

tion platforms, where the resulting computation represents the wisdom of the crowd

aggregate of the agents’ private signals. Inspired by trusted recommendation chains,

where private observations (e.g., regarding the quality of a product) are used to make

one-on-one recommendations among trusted agents, we introduce a model of simple

history independent agents (that is, agents of limited strategy space, having no access

to past states) and provide an analysis of the performance of the resulting estimators

pertaining to different equilibrium and socially optimal strategy profiles. The perfor-

mance of those estimators is compared to that of the optimal (Bayes) estimator having

access to the update history and private signals, thereby quantifying the penalty of

history unavailability.



Contents

1 Machine Learning -

A Robustness Perspective 1

1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 On-line Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Bayesian Methods for Classification . . . . . . . . . . . . . . . . . . . . . 12

1.4 Robustness Through Regularization . . . . . . . . . . . . . . . . . . . . 15

1.5 Overview of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Part I - Autonomous Bidding Agents . . . . . . . . . . . . . . . . 17

1.5.2 Part II - Robust Domain Adaptation . . . . . . . . . . . . . . . . 18

1.5.3 Part III - Multiagent Learning . . . . . . . . . . . . . . . . . . . 18

1.5.4 Published Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I Autonomous Bidding Agents 21

2 The Trading Agents Competition 23

2.1 The TAC Ad-Auctions Game . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Characteristics of TAC Games . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 A Short Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 A TAC-AA Top-Performing Agent - A Model-Light Approach 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 High-Level Agent’s Architecture and Strategy . . . . . . . . . . . . . . . 33

3.3 A simple Model-Light Agent for TAC-AA 2010 . . . . . . . . . . . . . . 36

3.3.1 Modeler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



3.4 Tau Agent for TAC-AA 2011 and Beyond . . . . . . . . . . . . . . . . . 38

3.4.1 Modeling CPC, Position and Bid Relation . . . . . . . . . . . . . 39

3.4.2 Hidden Game Parameters . . . . . . . . . . . . . . . . . . . . . . 40

3.4.3 Particle Filters for Users Population Distribution Over States . . 42

3.4.4 Optimizer’s Query Allocator . . . . . . . . . . . . . . . . . . . . 49

3.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Limitations of Machine Learning Models . . . . . . . . . . . . . . . . . . 53

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 An Empirical Study of Agent Robustness 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Robustness of TAC-AA Agents . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Experiment 1 - Users Model . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Experiment 2 - Click-Through Rate . . . . . . . . . . . . . . . . 61

4.2.3 Experiment 3 - Conversion Rate . . . . . . . . . . . . . . . . . . 62

4.2.4 Experiment 4 - Single Ad . . . . . . . . . . . . . . . . . . . . . . 63

4.2.5 Experiment 5 - Population Size . . . . . . . . . . . . . . . . . . . 63

4.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Agents Behavioral Identification . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Strategic Fingerprint . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Relation to Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3 A Short Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 AdX - A New TAC Game 71

5.1 Motivation, The AdX Scenario . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Game Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 A Brief Description . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Game Entities and Flow . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Users and Market Segments . . . . . . . . . . . . . . . . . . . . . 83

5.3.2 Publishers’ Web Sites . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.3 Ad Exchange and User Classification . . . . . . . . . . . . . . . . 86

5.3.4 Advertising Campaigns . . . . . . . . . . . . . . . . . . . . . . . 88



5.3.5 Ad Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Game Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Daily Sequence of Actions and Events . . . . . . . . . . . . . . . 94

5.4.2 Mesages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Elements of Ad Network Strategy . . . . . . . . . . . . . . . . . . . . . . 98

5.5.1 Bidding for the User Classification Service level . . . . . . . . . . 98

5.5.2 Bidding for the Campaign Opportunity . . . . . . . . . . . . . . 98

5.5.3 Ad Exchange Bid Bundle . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6.3 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 AdX Game Competitions and Conclusion . . . . . . . . . . . . . . . . . 108

II Robust Domain Adaptation 113

6 The Domain Adaptation Problem 115

6.1 Train-Test Discrepancy - Motivation . . . . . . . . . . . . . . . . . . . . 115

6.2 Train-Test Discrepancy - Learning Settings . . . . . . . . . . . . . . . . 117

6.2.1 Covariate Shift: PY |X = QY |X . . . . . . . . . . . . . . . . . . . 118

6.2.2 Prior Shift: PX|Y = QX|Y . . . . . . . . . . . . . . . . . . . . . . 119

6.2.3 Other Related Settings: PX = QX and Beyond . . . . . . . . . . 120

6.2.4 Domain Adaptation with Unlabeled Target Data . . . . . . . . . 122

6.3 Domain Adaptation Theory and Algorithms . . . . . . . . . . . . . . . . 124

7 Robust Optimization and Algorithmic Robustness 131

7.1 Robuts Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Algorithmic Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8 Robust Domain Adaptation 139

8.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.1.1 λ-shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2 Adaptation Bounds using Robustness . . . . . . . . . . . . . . . . . . . 143

8.3 Robust Domain Adaptation SVM for Classification . . . . . . . . . . . . 144



8.3.1 λ-shift SVM Adaptation . . . . . . . . . . . . . . . . . . . . . . . 145

8.3.2 Optimistic SVM Adaptation . . . . . . . . . . . . . . . . . . . . 148

8.3.3 Pessimistic SVM Adaptation . . . . . . . . . . . . . . . . . . . . 149

8.4 Robust Domain Adaptation for Regression . . . . . . . . . . . . . . . . . 150

8.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.6 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . . 153

III Multiagent Learning 155

9 Distributed Information Aggregation and Prediction 157

9.1 Social Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.2 Endogenous and Exogenous Settings . . . . . . . . . . . . . . . . . . . . 158

9.3 Information Cascading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.4 Ingredients of Agent’s Strategic Behavior . . . . . . . . . . . . . . . . . 160

9.5 Prediction Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.6 A Prediction Market as an Estimator . . . . . . . . . . . . . . . . . . . . 165

10 History Independent Learning 169

10.1 Model and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.1.1 The Unknown Bias Generative Model . . . . . . . . . . . . . . . 170

10.1.2 Social Learning of the Unknown Bias Generative Model . . . . . 171

10.1.3 Estimator Performance Metrics . . . . . . . . . . . . . . . . . . . 173

10.1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10.2 Estimator’s Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10.2.1 Non-Strategic Agents . . . . . . . . . . . . . . . . . . . . . . . . 180

10.3 Strategic Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

10.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

10.4.1 Distribution Over the Number of Agents . . . . . . . . . . . . . . 188

10.4.2 Single Unaware Agent . . . . . . . . . . . . . . . . . . . . . . . . 189

10.4.3 Single Aware Agent . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 193

10.5.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

10.5.2 Related Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

10.5.3 Closing Remarks and Future Work . . . . . . . . . . . . . . . . . 197



IV Summary 199

Bibliography 204



List of Tables

4.1 The results of the benchmark competition and experiments 1 - 4 from

Section 4.2. The numbers next to the agent name indicate the year in

which this agent participated in the TAC-AA finals. . . . . . . . . . . . 59

5.1 AdX Game Parameters and Standard Values . . . . . . . . . . . . . . . 107

5.2 User Population Probabilities, in 0.0001 units . . . . . . . . . . . . . . . 108

5.3 Publisher’s audience orientation, access device ratios and popularity, for

news, shopping, and web information services . . . . . . . . . . . . . . . 109

x



List of Figures

2.1 The Ad-Auctions game flow dynamics . . . . . . . . . . . . . . . . . . . 26

2.2 Generic TAC game infrastructure . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Schematic TAC game daily flow . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Schematic TAC agent’s Architecture . . . . . . . . . . . . . . . . . . . . 29

3.1 High level tau agent’s Architecture for TAC-AA . . . . . . . . . . . . . 34

3.2 The estimation of CPC (left) and position (right) as a function of the bid 40

3.3 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 A K-Nearest Neighbor estimator trained off-line to provide the input

observation (total number of impressions) to the particle filter. . . . . . 45

3.5 The estimated total number of impressions using K-NN (red line), com-

pared to the actual number (blue line) throughout the 60 simulated days

of a game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Expected number of F2 queries is NIS
3 +NF2 . . . . . . . . . . . . . . . . 46

3.7 Modeler’s Particle Filter Architecture. . . . . . . . . . . . . . . . . . . . 48

3.8 Particle Filters’ estimates for the F2 state (top) and IS state (bottom).

The horizontal axis is the game time (logical day), and the vertical axis

is the number of users in the state. . . . . . . . . . . . . . . . . . . . . 49

3.9 Schematic forms of U(m) and m(u). . . . . . . . . . . . . . . . . . . . . 50

4.1 The results of experiment 2, where the advertiser effect is modified by

±0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 The results of experiment 3, where the conversion rate is modified by

±0.04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 The results of experiment 5, where the users population size varies from

2000 to 20000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



4.4 The Strategic Fingerprints of TAC-AA 11 finalists, projected on the 2

most principal components. The different point styles correspond to

different capacities: high capacity is marked with full squares, medium

capacity is marked with empty circles and low capacity is marked with

crosses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 The AdX Setting: Publishers (potentially using SSPs) may allocate user

impressions to advertisers according to pre-agreed contracts or through

the Ad Exchange in real-time (RTB). Advertisers respond to real-time

impression opportunities (potentially using DSPs) with a bid that may

depend on the related user, whose attributes are provided by a Cookie

Matching Service (CMS) provider that trackes users across publishers. 73

5.2 AdX game setting: From the supply side, visits of users (characterized

by their age, gender, and income level) to publisher’s web sites result in

impression opportunities that are auctioned by the Ad Exchange. From

the demand side, the Ad Networks bid daily to win advertising campaigns

(characterized by their reach and targeted audience). The Ad Networks

also bid daily for the cost and level of a user classification service that

determines the ability of the Ad Network to identify the market segment

of the potential user to be impressed. Bids for the impression opportu-

nities are submitted by competing Ad Networks in order to execute their

contracted Advertising Campaigns. . . . . . . . . . . . . . . . . . . . . 76

5.3 AdX game entities and flow: Users visits to Publisher’s web sites re-

sult in impression opportunities that are auctioned by the Ad Exchange.

Bids for the impression opportunities are submitted by competing Ad

Networks in order to execute their contracted Advertising Campaigns.

The Ad Networks also bid daily to win advertising campaigns and for

the cost and level of a user classification service that determines the

ability of the Ad Network to identify the market segment of the poten-

tial user to be impressed. The competing agents base their bids on daily

reports detailing their specific contract execution figures and overall user

and web sites statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Users attributes and market segments . . . . . . . . . . . . . . . . . . . 79



5.5 Publishers Orientation: A publisher’s web site is characterized by the

distribution of visiting user’s attribute values (Age is illustrated above) . 79

5.6 Ad Network Decisions in the AdX game: In real-time (approximated by

the Bid Bundle scheme) every impression opportunity is mapped to a

bid amount and a campaign allocation. Once a day, a bid for the UCS

level and the outstanding auctioned advertising campaign. . . . . . . . 80

5.7 AdX Game Main Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . 81

5.8 Message flow in the AdX game. The number in parenthesis indicates

the day referenced in the message content. For example, the content

of the Daily Notification message sent on day n announces the winning

AdNetwork for the campaign to begin on day n+ 1, and the UCS level

and Quality Rating to be in effect for the AdNet during day n+ 1. Note

also that sending the AdNet Bids message may be deferred until after

the reception of the Simulation Status message. . . . . . . . . . . . . . . 82

5.9 The Effective Reach Ratio (ERR) as a function of the effective number of

unique impressions achieved by the ad network, for a contract requiring

a reach CR = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.10 AdX game daily flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.11 Simulation: Major components and interactions. . . . . . . . . . . . . . 103

5.12 Demand: Major components and interactions. . . . . . . . . . . . . . . . 104

5.13 Supply and AdX: Major components and interactions. . . . . . . . . . . 105

6.1 A schematic Domain Adaptation Algorithm A. Inputs are a source do-

main Q labeled sample set S and a target-domain P unlabeled sample

set T . Output is hA ∈ H where H is the hypothesis class from which A

chooses the output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.1 Separators performance w.r.t. experiment data . . . . . . . . . . . . . . 152

8.2 Performance of λ-shift SVM optimal separator . . . . . . . . . . . . . . 152



10.1 Performance metrics for Exponential Moving Average (EMA) method

versus Bayes optimal benchmark for estimating (PT ) the unknown bias

b of a coin. T is the total number of updates and γ is the averaging

constant of EMA. The mean squared error (MSE) in the second column

is over realizations of the signals V1, . . . , VT . The expectation in the third

column is assuming a uniform prior of b ∈ [0, 1] and initial prediction

P0 = 1
2 . The values in this table come from Theorems 18,21,22, and 25. 194

10.2 Bayes Update vs. Exponential Moving Average, uniform [0, 1] prior,

p0 = 1/2, ~V = V1, . . . , VT , where Vt is the private signal to agent t.

Agent t is the t’th agent to act. Note the similarity of rows 3 and 4.

Agents that do not know their index cannot do incremental Bayes update.195



Chapter 1

Machine Learning -

A Robustness Perspective

Learning, ”the acquisition of knowledge or skills through experience, study, or by being

taught1” is crucial for the survival and prosperity of humans, as individuals, as a society,

and as a species. A baby learns to signal regarding his immediate necessities, a toddler

learns to speak and understand a language, a boy learns to avoid danger, an adult learns

to drive. The vast number of situations and the inherently non-deterministic nature

suggests that learning is unavoidable. 2 We therefore learn, by example, by transfer.3

Our long term and short term memory is constantly aggregated and reorganized to sup-

port the different needs and criteria (e.g., time, risk) of the myriad situations requiring

decision making, be it intuitive or deeply thought upon. The constantly changing en-

vironment (due to our actions, statistical nature, or otherwise) must be considered as

learning takes place. To some degree, what worked well in the past (or in a somewhat

different setting) might not work as well when faced again. In that sense, to achieve

its ultimate goal, learning should be Robust - durable, long-lasting, resilient, solid.

Machine Learning, the application of computational methods underlying

experience-based decision making, has similar conceptual goals and requirements. Not

all settings require machine learning. Sorting problems in a static environment, for

example, have dedicated efficient algorithms, merely computer language translations

of recipes that could be otherwise interpreted and executed by humans (if time, for

1Oxford Dictionary.
2Anyway, a codex mapping situations to the ‘right’ actions would be impractical.
3That is, associating and reflecting upon different, although conceptually similar situations.

1



2 CHAPTER 1. MACHINE LEARNING - A ROBUSTNESS PERSPECTIVE

example, was not a concern). In many settings, however, such algorithms are hard to

devise. Vague relations between the representation of inputs (e.g., a picture’s bitmap)

to the concepts underlying the required output decisions (e.g., “Dog or Cat?”), inherent

uncertainty in data, in the actual model, and in the environment in general, makes it

extremely hard to design such recipe-like algorithms. This is where machine learning

methods save the day, aiming at mimicking the generalization consequences of human

learning (and sometimes the related underlying biological structures), considering and

being robust to different underlying uncertainties.

Machine learning was successfully applied during the last few decades to enable

autonomous decision making by robots, medical diagnosis, network optimization, and

many other modern tasks. The recent prevalence of the Internet and the related scale

and abundance of data from an exponentially growing number of sensors brings new

opportunities for applying machine learning. Some, such as those used for search

results, advertising, and content matching, already established as the cornerstone of

the Internet economy, and others, such as recommendation systems based on semantic

analysis, are promising to revolutionize our daily life experience through related services

that become more and more personalized.

This work is mainly concerned with robustness aspects of machine learning meth-

ods. In the rest of this introductory chapter, a short overview of the essence of machine

learning and some of the key characteristics of two of its disciplines, namely, supervised

and on-line learning,4 are reviewed. This is followed by a thematic exposition of the

fundamental related methods and algorithms, as practices aimed at achieving robust-

ness to the different uncertainties faced in the various settings. The chapter concludes

with a short overview of the specific research reported in the three parts of this thesis.

1.1 Supervised Learning

This section briefly summarizes the key concepts and fundamental results in supervised

learning. The reader is referred to [90] for a thorough exposition of the topic.

We are interested in learning a relation between the values of some input variables

(from an input space X) and an output value (from an output space Y ). Specifically, for

a deterministic input-output relation, we are interested in approximating an unknown

4Other methods, less relevant to this thesis, mainly Clustering and Ranking are not covered.



1.1. SUPERVISED LEARNING 3

function f : X → Y . A setting in which the output space Y is discrete is referred to as

Classification, alternatively, in a Regression setting, the output space is continuous.

Learning is based on a finite training set S of examples

S = {(xi, yi) : xi ∈ X, yi = f(xi) ∈ Y, i = 1 . . .m} ,

assumed to be drawn i.i.d. from an (unknown) underlying distribution D over the

input space, and the result (the output of the learning algorithm) is a hypothesis h ∈ H

from a predefined hypothesis class H. The resulting hypothesis may then be used to

associate an approximation ŷ = h(x) for y = f(x) to any x ∈ X.

A loss function l : Y × Y → R+ is usually associated to the setting and is used to

measure the performance of a learned hypothesis h, where

L(h, (x, y)) , l(h(x), y) , (1.1)

is the loss of h on an input-output pair (x, y). The overall performance of a hypothesis

h is then defined as its expected loss, i.e.,

LD(h) , E(x,y)∼Dl(h(x), y) .

This expected loss is also termed the Risk or the Generalization Error (since it measures

the loss over the general input-output space, rather than on the training set) of the

hypothesis h. For example, in the Linear Regression setting (over Euclidean input

and output spaces y ∈ R and x ∈ Rn, respectively) an underlying linear input-output

relation is used and therefore the output of a learning algorithm in this setting is some

w ∈ Rn, characterizing a member of H = {h(x) = wTx : w ∈ Rn}.

A learning algorithm aims at finding a hypothesis h of small generalization error.

This of course depends on the hypothesis class H available to the algorithm. The target

and benchmark L∗D,H for the performance of a supervised learning algorithm is the best

achievable expected loss, i.e., by a hypothesis h∗D of the class H,

L∗D,H , min
h∈H
LD(h) , LD(h∗D) . (1.2)

When the true underlying relation f is a member of H, then h∗D ∈ H, and L∗D,H = 0.

In the more general case, where f belongs to some class F different from H, and f 6∈ H



4 CHAPTER 1. MACHINE LEARNING - A ROBUSTNESS PERSPECTIVE

(this is the unrealizable setting), the optimal expected error might be non-zero.

In the Probably Approximately Correct (PAC) learning framework, a learning algo-

rithm is required to output with high confidence5 an approximately optimal hypothesis.

More precisely, the output hA(S) of a learning algorithm A based on a training sam-

ple S is required to be approximately correct (being ε-far from optimal loss) with high

probability (at least 1− δ, over the realization of S). Namely,

PrS∼Dm [|LD(hA(S))− L∗D,H | ≤ ε] ≥ 1− δ , (1.3)

for any underlying f ∈ F and any distribution D. Such a learning algorithm A that

runs in time polynomial in 1
ε and 1

δ is said to efficiently learn F .

A crucial step in the methodology of designing a supervised learning algorithm is

the choice of the underlying input-output relation to model (that is, the selection of

the features used to characterize the input and output space - thereby the class F of

possible input-output relations) and the related hypothesis space H for the algorithm

to chose its output from.

In practice, the choice of hypothesis class H is a modeling decision. In the linear

regression setting for example, some w ∈ Rn characterizes each member of H, and

the learning algorithm aims to find an optimal value for the parameter w. Alterna-

tively, non-parametric (sometimes also designated model-free) learning algorithms do

not assume an explicit underlying parametrization of the input-output relation. Such

algorithms (e.g., SVM and Nearest Neighbor, presented later in this section) utilize

hypothesis classes whose elements are explicit (possibly weighted) combinations of the

training samples.

Now, the essence of a supervised learning algorithm is the method it uses, given

the training set S, to choose a member h out of the underlying hypothesis class H.

Empirical Risk Minimization (ERM) is a natural method, which outputs a hypothesis

h∗S that minimizes the empirical risk, i.e.,

L̂S(h) =
1

m

m∑
i=1

L(h, (xi, yi)) .

5That is, with high probability, viewing the learning algorithm’s output hypothesis as a random
variable, over the realization of the sample set S and its own coin tosses.



1.1. SUPERVISED LEARNING 5

That is,

hERM(S) = h∗S , arg min
h∈H
L̂S(h) . (1.4)

Considering again, for example, linear regression, where the loss function used is

the quadratic loss function l(y1, y2) = (y1− y2)2, the empirical loss to be minimized by

ERM is

wERM , arg min
w∈Rn

1

m

m∑
i=1

(wTxi − yi)2 . (1.5)

The applicability of the ERM method for PAC-learning is theoretically justified by

the following fundamental result, a uniform learning bound (that is, applicable to all

members of the hypothesis class H) relating the empirical risk and generalization error

of hypotheses from a finite class H.

Theorem 1 (Th. 2.2 of [90]). Let H be a finite hypothesis class and let S be a finite

set of m examples drawn i.i.d. over D. Then, for any δ > 0, with probability at least

1− δ (over the realization of S ∼ Dm) the following holds for all h ∈ H

LD(h) ≤ L̂S(h) +

√
log |H|+ log 2

δ

2m
. (1.6)

The bound (1.6) of Theorem 1 can be further improved when the realizable (i.e.,

f ∈ H) setting is assumed. Also, similar bounds exist for the case of infinite (and

even uncountable) hypothesis classes H. In that case, the log |H| in the bound (1.6)

is replaced by the V C-Dimension (see Chapter 3 of [90]), a combinatorial measure for

the effective size of H.

Now, consider again the ERM algorithm. For any ε > 0, by taking a sample set S

of size m such that the rightmost term of the bound (1.6) is smaller than ε
2 (that is,

(m > 2
ε2

log 2|H|
δ ) we have with probability at least 1− δ (by applying Theorem 1 twice

and by the definition of ERM)

LD(h∗S) ≤ L̂S(h∗S) +
ε

2
≤ L̂S(h∗D) +

ε

2
≤ LD(h∗D) + ε .

This establishes that with probability at least 1 − δ the ERM algorithm results in a

hypothesis with generalization error at most ε far from optimal, as required by (1.3).

Furthermore, an efficient number (polynomial in 1
ε and 1

δ ) of training samples is needed.

In many settings and for a variety of loss functions, however, solving the optimiza-



6 CHAPTER 1. MACHINE LEARNING - A ROBUSTNESS PERSPECTIVE

tion problem (1.4) might be infeasible. For example, in classification settings, where

the 0-1 loss6 is a natural choice, (1.4) is an intractable combinatorial problem in many

natural cases. A common practice in such situations (as employed, for example, by

the SVM algorithm detailed next) is to replace the optimization objective (that is, the

loss function) with an upper bounding convex surrogate, rendering the optimization

problem tractable.7 The Hinge loss

lHinge(hw,b, (x, y)) = max{1− y(wTx+ b), 0} ,

is one such popular surrogate loss for classification settings using the 0-1 loss and linear

separators as hypotheses (i.e., where each member hw,b of the hypothesis class H is a

linear separator hw,b(x) = 1[wT x+b>0]).

The ERM method relies on the training set S being representative of the (unknown)

underlying distribution D, over which the algorithm’s output is to be tested. A too

small sample set, compared to the complexity of H, might result in over-fitting, where a

returned hypothesis has low empirical risk L̂S(h) and high true risk LD(h). Indeed, by

(1.6), the larger the complexity8 of the hypothesis class H, the larger the potential gap

between training set’ and actual risk. Intuitively, this is due to a richer set of hypotheses

from which the algorithm can choose one that fits unrepresentative samples in S. Many

supervised learning algorithms therefore add a regularization term (penalizing complex

hypotheses) to the empirical risk as the minimization objective, which now resembles

the actual generalization bound - the right-hand side of (1.6).

The Support Vector Machine (SVM) algorithm for linear classification optimizes the

Hinge loss and an additional complexity term as follows:

hSVM = arg min
w∈Rn,b∈R

m∑
i=1

lHinge(hw,b, (xi, yi)) + λ‖w‖22 , (1.7)

where again λ is a parameter controlling the trade-off between the surrogate objective

and the regularization term ‖w‖22. An equivalent formulation of (1.7) is the following

6The 0-1 loss l01(y1, y2) is 0 if y1 = y2 and 1 otherwise.
7Nevertheless, even when employing such a modified optimization objective, the performance bench-

mark (1.2) remains.
8 The complexity of H is log |H| for a finite H, and the VC-Dimension, for infinite H.



1.1. SUPERVISED LEARNING 7

quadratic program

min
w,b,ξ

m∑
i=1

ξi + λ‖w‖2

subject to

yi(w
Txi + b) ≥ 1− ξi ∀i = 1..m

ξi ≥ 0 ∀i = 1..m

This alternative formulation can also be derived by optimizing hSVM for maximal

geometrical margin, the distance of the linear separator from the closest sample in S.

Ridge and Lasso regression are two regularized variants of linear regression, that add

to the objective
∑m

i=1(hTxi−yi)2 the regularization terms λ‖h‖22 and λ‖h‖1 respectively:

hRidge = arg min
h∈Rn

m∑
i=1

(hTxi − yi)2 + λ‖h‖22 (1.8)

hLasso = arg min
h∈Rn

m∑
i=1

(hTxi − yi)2 + λ‖h‖1 . (1.9)

Note that in both cases above the objective to be minimized is a convex function, and

therefore can be computed efficiently.

The K-Nearest Neighbor (KNN) is another popular algorithm in which the algo-

rithms output maps x (e.g., for the case of real output space X = R) to the average of

the K nearest samples in S that are closest to x in a given metric (usually Euclidean).

ŶK(x) ,
1

K

∑
(xi,yi)∈NK(x)

yi ,

where NK(x) is the subset of S containing the K samples neighborhood of x (i.e., K

closest).

Due to the unbounded complexity of the hypothesis class H used by KNN (e.g.,

the class of Voronoi diagrams, for K = 1), the bound of (1.6) is inapplicable in this

setting. Nevertheless, generalization bounds exist for KNN if a stochastic setting is

assumed. In a stochastic setting, the input-output relation is probabilistic rather than

deterministic, and is represented by a conditional probability distribution of the output

space value y being associated to the input space value x. In a stochastic binary



8 CHAPTER 1. MACHINE LEARNING - A ROBUSTNESS PERSPECTIVE

classification setting, for example, the input-output relation is fully characterized by

µ(x) = Pr[Y = 1|X = x]. The Bayes Classifier

hBayes(x) , arg max
y∈Y

Pr(y|x) (1.10)

is optimal for a stochastic input-output relation, and its inherent risk (the Bayes error,

denoted L∗D) is the best one can hope for in stochastic settings.

Finally, for binary classification, and under a smoothness assumption9 regarding

µ(x), the following is a generalization bound for the 1-NN algorithm (a similar bound

exist for the more general case of KNN):

Theorem 2 (Th. 19.3 of [111]). Let h1NN be the rule yielded by the 1NN algorithm

using m i.i.d. samples in a stochastic binary classification setting characterized by a

c-Lipschitz µ(x). Then,

ES∼Dm [LD(h1NN )] ≤ 2L∗D + 4c
√
dm

−1
d+1 , (1.11)

where the c-Lipschitz condition requires that ∀x1, x2 ∈ X, |µ(x1)−µ(x2)| ≤ c‖x1−x2‖,

and the input space is X = Rd.

Note that although the form of the bound (1.11) resembles that of the bound (1.6)

of Theorem 1, there are two significant differences. First, the bound (1.6) holds with

high probability while (1.11) only holds on average over the realization of the training

sample S. Furthermore, a polynomial number of samples is required in (1.6) to achieve

approximately optimal error with high confidence by an empirical error minimizer,

however an exponential number of samples (as a function of the dimension of the

input space X) is required10 for the 1NN algorithm to yield a rule with approximately

twice the optimal error (specifically, m > (4c
√
d

ε )d+1 samples are required to have the

rightmost term of (1.11) be smaller than ε).

1.2 On-line Learning

In On-line Learning settings, the learning algorithm is required to make a decision

upon each observation (e.g., when playing a game). That is, instead of accumulating a

9Smoothness, in the sense that two close inputs have similar probability of being labeled 1.
10This is The curse of dimensionality.



1.2. ON-LINE LEARNING 9

training set S and batch processing its elements to come up with an hypothesis h ∈ H

as detailed above, the learning algorithm sequentially (i.e., at times t = 1, 2, ..., T ) takes

action at ∈ A from an action space A and gets as feedback a loss function lt : A→ R.

Again, only a short overview of the main concepts and key results is given here. See

[40] for a comprehensive treatment of on-line learning in the context of prediction and

specifically [37] for a thorough review of Multi Armed Bandits settings.

Now, the goal of the learning algorithm is to maintain a small as possible cumulative

loss

LT ,
T∑
t=1

lt(at) . (1.12)

This rather general formulation captures many on-line learning settings, mainly de-

pending on the domain of the feedback loss function (e.g., containing only the chosen

action at - the Multi Armed Bandit setting, or all the actions in A - the full informa-

tion setting), the nature of the way the loss feedback is generated (e.g., by a stochastic

process, or by an adversary - aware of the algorithm’s choices history, or not), the

properties of the loss function (e.g., convex or not11), and the size and structure of the

action space A (affecting the feasibility of algorithms that perform computations for

each possible member of A).

This on-line framework captures the sequential (that is, on-line) version12 of any

supervised learning setting as presented in the previous section by using the hypothesis

space H as the action space A, using the loss function lt(h) , L(h, (xt, yt)), and for

every sample (xt, yt) challenge the on-line learning algorithm with xt (while keeping yt

undisclosed). Indeed, this on-line formulation coincides with on-line versions of popular

supervised learning algorithms (such as linear regression and logistic regression) that

use the Stochastic Gradient Descent (SGD) method to minimize the risk (1.4). The

usage of SGD is justified since the loss function used in those settings is convex, ensuring

convergence to the global optimum.

The on-line learning setting may also be viewed as an extension of supervised learn-

ing to situations where the distributional assumption regarding the sample generation

process (specifically, that they are i.i.d.) does not hold. Since in such situations the

sample distribution is no longer fixed (actually, training and testing phases are now

11The search of optimal action in settings with non-convex loss functions are harder to address in
general.

12An on-line framework may be preferable due to its relative simplicity and efficiency, especially when
dealing with massive amounts of data.



10 CHAPTER 1. MACHINE LEARNING - A ROBUSTNESS PERSPECTIVE

mixed!), the notion of generalization is replaced with the cumulative loss (1.12) or the

more indicative regret, quantifying the performance of the online learning algorithm

compared to that of the best constant action in hindsight, i.e.,

RT , LT −min
a∈A

T∑
t=1

lt(a) . (1.13)

Such accumulated loss and regret metrics depend by definition on the properties of

the loss function, which is usually chosen to be of bounded range in [0, 1]. Algorithms

that achieve an average regret per observation that vanishes (limT→∞
RT
T = 0) are

called no-regret algorithms. Actually, any no-regret on-line learning algorithm can

be transformed to a supervised batch learning algorithm using the On-line to Batch

(OTB) conversion as follows.13 As before, let {ht}mt=1 be the sequence of actions taken

by the online learning algorithm when given sequentially the xt values of the sample set

S = {(xt, yt)}mt=1 (whose samples were generated i.i.d. according to some distribution

D) and incurring bounded loss lt(h) , L(h, (xt, yt)) ≤M . Let the resulting hypothesis

of the OTB algorithm be hOTB(S) = 1
T

∑T
t=1 ht. Then it can be shown (e.g., Theorem

7.13 of [90]) that for every δ > 0, with probability at least 1 − δ (over the realization

of the sample set S), the following bound holds

L(hOTB(S)) ≤ LF (h∗F ) +
RT
T

+ 2M

√
2 log 2

δ

T
.

That is, the performance of hOTB(S) approaches the optimal achievable, requiring a

manageable number of samples to achieve high accuracy and confidence, as defined in

the PAC framework for batch supervised learning.

Another on-line learning abstraction captured by the above model is the Prediction

using Experts model. In this setting, the on-line learning algorithm has access at every

time step t to the advice (predictions) {yi,t}Ni=1 of N experts, and in each time step

t acts by predicting ŷt. Thereafter, the actual outcome yt is revealed, and associated

losses li,t = l(yi,t, yt), lt = l(ŷt, yt) are incurred to each expert and to the learning

algorithm, respectively.

In the realizable binary classification setting (where there exists an underlying hy-

pothesis h∗ from a finite class H such that yt = h∗(xt)) with 0-1 loss, for example, each

13Assuming a convex hypothesis set H, and a loss function l(·, ·) that is convex in its first argument.



1.2. ON-LINE LEARNING 11

hypothesis h may be regarded as an expert, predicting yi,t = h(xt). A natural approach

for an on-line learning algorithm in this setting is to maintain a subset Vt ⊂ H of all

experts consistent with all past observed examples. Indeed, the Halving algorithm (so

called since upon every mistake the size of Vt is at least halved, resulting in the mistake

bound) that reacts to the challenge xt by predicting according to the majority vote

ŷt = arg maxy∈{0,1} |{h ∈ Vt : h(xt) = y}| is guaranteed to make at most log2(|H|)

mistakes (thereby no-regret).

No-regret deterministic learning algorithms for the expert setting exist also for

the non-realizable setting. One such algorithm for the binary classification setting, a

generalization of the Halving algorithm, is the Weighted Majority (WM) algorithm.

The WM algorithm maintains a weight wi,t for each expert i that is initialized to 1 and

multiplicatively decreased by a constant β whenever the expert prediction is wrong.

At each time step t the WM algorithm predicts according to the weighted majority

vote (hence the name) ŷt = arg maxy∈{0,1}
∑

i:yi,t=y
wi,t. No-regret generalizations of

the WM algorithm exist for other non-realizable setting. The Exponential Weighted

Average (see Section 7.2.4 in [90]) is one such algorithm for bounded loss functions

l(·, ·) that are convex in their first argument.

In a non-realizable setting, for the 0-1 loss (being non-convex), such no-regret guar-

antee does not hold. Actually, since the values of yt might be adversarially chosen, the

regret of any deterministic on-line algorithm in this setting can be made O(T ). There-

fore, randomization by the algorithm is crucially required to achieve no-regret.14 The

Randomized Weighted Majority (RWM) algorithm introduced by [80] is an example

of such a no-regret algorithm. The algorithm acts at every time step t by randomly

choosing the prediction of one of the experts according to the probability distribution

induced by a set of weights {wi,t}Ni=1 maintained for each expert and updated every

time step t as in the WM algorithm. Specifically, the resulting probability distribution

pt = (p1,t, . . . , pN,t) ∈ ∆N over the experts at time step t is the following

pi,t =
e−µLi,t−1∑N
j=1 e

−µLj,t−1
(1.14)

where µ > 0 is a tunable learning parameter and Lj,t−1 is the accumulated loss (that is,

the number of mistakes) of expert j along the first t− 1 time steps. The regret of the

14Since the regret now is a random variable, the no-regret condition is with high probability, ap-
proaching 1 as T →∞.



12 CHAPTER 1. MACHINE LEARNING - A ROBUSTNESS PERSPECTIVE

RWM algorithm can be shown to be bounded (for any loss sequence!) RT ≤ 2
√
T logN ,

therefore it is no regret. This O(
√
T ) regret performance is optimal in a sense, since

for N = 2 no learning algorithm can achieve average regret lower than
√

T
8 , even when

the adversary is stochastic (see Theorem 7.5 in [90]). A more general lower bound (for

N experts) of Ω(
√
T logN) can be proven, matching the upper bound.

An even more demanding on-line setting is the Multi Armed Bandit setting, where

the on-line learning algorithm only gets lt(at) as feedback (the loss related to the chosen

action), instead of the entire loss function lt : A → R. To address the extra freedom

granted to the environment in this setting, successful strategies of on-line learning al-

gorithms for the MAB setting combine Exploration (that is, a search for beneficial

actions) with Exploitation (performing actions identified to be beneficial). Two preva-

lent algorithms employing such strategies are UCB [15] for the stochastic case (where

the outcomes of each arm are i.i.d. from a predefined but unknown probability dis-

tribution) and EXP3.P [16] for the more general adversarial setting. Both achieving

no-regret by cleverly mixing exploration and exploitation. UCB uses the Optimism

in face of uncertainty heuristic (a design principle suggesting that among the set of

plausible environments consistent with observed data, the most favorable is assumed

for making a decision), and performs exploration by assigning favorable expected loss

ranges to experts (bandit arms) less sampled. EXP3.P achieves O(
√
TN ln N

δ ) regret

with high probability (at least 1− δ over its own internal randomization) by choosing

weights that are a mix of (1.14) and a uniform distribution over the experts (for ex-

ploration) 15. Finally, no-regret algorithms exist also for settings in which an infinite

number of arms are modeled. However, structure relating the losses of different arms

has to be assumed (since only a finite number of arms can be sampled). In Online

Convex Optimization for example, the decision space A is assumed to be a compact

subset of Rn, and variation limitations (such as bounded gradients) are assumed on

the convex loss functions lt : A→ R.

1.3 Bayesian Methods for Classification

In practice, the input-output relation sought after by a supervised learning algorithm

might not be genuinely represented in the training set. This might be due to mea-

15Also, the past accumulated losses in (1.14) are replaced by estimates, as required for arms not
sampled.



1.3. BAYESIAN METHODS FOR CLASSIFICATION 13

surement imperfections (e.g., noise, sensitivity, range) or data loss and corruption of

statistical nature,16 occurring in other preliminary stages of the data processing and

preparation.

Bayesian methods are applied in parametric learning settings where the input-

output relation (specifically, its stochastic nature, e.g., sampling noise) is modeled

using a parameterized conditional probability distribution Prθ(y|x). In the most gen-

eral setting of Bayesian Reasoning, a prior probability distribution Pr(θ) over possible

values of the parameter θ is assumed, and a posterior probability distribution Pr(θ|S)

is estimated from the training data S. This derived posterior induces a conditional

distribution for the input-output relation17

Pr(y|x) =

∫
dθPr(θ|S)Prθ(y|x) . (1.15)

Alternatively, instead of estimating a posterior probability distribution, still assuming

a parametrized stochastic input-output relation, a specific value of the parameter θ̂(S)

that best fits the training data S may be derived. In this case, the related Prθ̂(y|x) is

immediate and the application of (1.15) is skipped. Either way, the resulting conditional

distribution Pr(y|x) is combined with a loss function l(·, ·) to define the expected risk

R(ŷ|x) = Ey|x[l(ŷ, y)] , (1.16)

of a classifier making the decision y when given input x. Finally, given an input x, the

Bayes Classifier in this setting returns the output of minimal expected risk. Namely,

hBayes(x) , arg min
ŷ
R(ŷ|x) . (1.17)

In a sense, the classifier (1.17) is the best one can hope for in a stochastic setting.

Note however, that Bayes error is usually not achievable (even if the conditional label

probability is known upfront), since it might be that hBayes 6∈ H.

Now, the Bayes rule and the data i.i.d. assumption may be used for estimating a

posterior distribution Pr(y|x) over the parameter space given the data S = {(xi, yi)}mi=1

(or some fixed, optimal value θ̂) to be used in (1.16) and ultimately in (1.17), as follows

16Data may be affected also intentionally, due to rounding or discretization, for example.
17Assuming a continuous parameter space. A similar formula applies discrete θ.



14 CHAPTER 1. MACHINE LEARNING - A ROBUSTNESS PERSPECTIVE

Pr(θ|S) =
Π(x,y)∈SPr((x, y)|θ)Pr(θ)

Π(x,y)∈SPr((x, y))
. (1.18)

Two methods that return a specific θ̂ estimate rather than a posterior distribu-

tion are Maximum Likelihood (ML) and Maximum A posteriori (MAP). Both methods

aim for the parameter value that best explains the i.i.d sampled data, and return the

parameters θ̂ML and θ̂MAP, respectively:

θ̂ML , arg max
θ
Pr(S|θ) = arg max

θ

∑
(x,y)∈S

logPr(x, y|θ) (1.19)

θ̂MAP , arg max
θ
Pr(θ|S) = arg max

θ

(
logPr(θ) +

∑
(x,y)∈S

logPr(x, y|θ)
)
. (1.20)

The key difference between the two methods is that the MAP model specifies a prior

probability Pr(θ), whereas the ML method does not assume an underlying statistical

nature in the generation of θ.

To allow for feasible characterization of the estimated conditional distribution

Pr(θ|S) in (1.18) or the θ̂ estimates in (1.19) and (1.20), some structure on the sta-

tistical nature of the input-output relation has to be assumed (Note that in the most

general case, for a discrete setting, individual estimates of Pr((x, y)|θ) are required for

any combination of the values of x, y, and θ).

Naive Bayes is a generative model that assumes independence of the individual

attributes of the input x given the class y. i.e., Pr(x|y) = Πd
j=1Pr(xj |y). Under this

assumption, (1.19) simplifies to

θ̂ML = arg max
θ

∑
(x,y)∈S

[ d∑
j=1

logPr(xj |y, θ) + logPr(y|θ)
]
,

exponentially reducing the number of parameters to be estimated. Similar savings are

achieved for (1.18) and (1.20).

A different (more general) simplifying assumption, for a continuous input space,

is made in the Full Bayes model. Here, the attributes of x are assumed to follow a

multivariate Gaussian distribution given the class y (that is, with mean and covariance

matrix depending on the specific class y). Under this simplification, for example, a

closed form for θ̂ML
18 can be derived.

18The parameter θ̂ML in this case actually comprises of the mean µ̂ML and covariance matrix Σ̂ML.



1.4. ROBUSTNESS THROUGH REGULARIZATION 15

1.4 Robustness Through Regularization

The optimization formulas (1.7), (1.8), and (1.9), for hSVM, hRidge, and hLasso respec-

tively, all share a common structure, balancing (through a trade-off regularization pa-

rameter λ) between an empirical error of a potential hypothesis from H and its size. As

noted above, for a given sample set, a large hypothesis set H available to the learning

algorithm might result in over-fitting, denoted estimation error (that is, an empirical

error that is not representative of the true underlying risk). On the other hand, limiting

the hypothesis class H available to the algorithm to choose from introduces inherent

approximation error (also called inductive bias), i.e., the excess risk due to precluding

the learning algorithm from using the true underlying hypothesis f 6∈ H. Therefore,

the parameter λ used in regularization-based algorithms as in (1.8), (1.9), and (1.7),

can be interpreted as controlling the trade-off between the improved estimation error

(achievable by using regularization) and the potential bias introduced.

It is important to note that the restriction of the learning algorithm to choose its

output from a hypothesis class H that is a strict subset of the set of possible input-

output relations F is crucial for PAC learnability, whereas otherwise, for rich enough

classes F , by the no free lunch theorem (see e.g., The Statistical No Free Lunch Theorem

in Section 5.1 of [111]), there is no learning algorithm that can satisfy the requirement

(1.3) above for any accuracy and confidence levels.

Regularization is key for achieving robustness in the on-line learning setting as well.

A key challenge to the on-line learner, distinguishing it from classical supervised batch

learning is the potential change, upon every sample, in the environment generating

the samples (whereas in batch learning the samples are assume to be i.i.d. from some

distribution). As already noted in section 1.2, In the predicting using experts setting for

classification, any deterministic algorithm is subject to a malicious opponent19 that can

adapt and choose the sequence yt to result in O(T ) regret (1.13). As already indicated,

robustness to such adversarial environment is achieved by introducing randomization

to the on-line learning algorithm, as in the RWM algorithm (1.14), for example.

Actually, the RWM action rule (1.14) is the solution of the Follow The Regularized

Leader update rule

pt = arg min
p∈∆N

µ

N∑
i=1

piLi,t−1 +R(p) , (1.21)

19In an unrealizable setting, no longer tied by a predetermined h∗ governing the input-output relation.



16 CHAPTER 1. MACHINE LEARNING - A ROBUSTNESS PERSPECTIVE

where the convex regularization term R(·) added to the empirically observed past loss∑N
i=1 piLi,t−1 of some candidate weighted action p, is the negative entropy R(p) =

−
∑N

i=1 pi log 1
pi

. Again, as in Section 1.4 above, robustness is achieved by optimizing

through regularization, since in the absence of the regularization term, the optimiza-

tion (1.21) reduces to choosing the best past expert, a strategy shown to be highly

vulnerable.

1.5 Overview of The Thesis

Evidently, learning algorithms are based on a model of the environment in which they

operate, and their performance depends on the degree of agreement of their assumed

model with reality. This thesis mainly investigates key aspects of robustness - the sen-

sitivity of a learning algorithm to discrepancies between the assumed model and reality

- as related to three specific learning settings: The applicability of model-light methods

(i.e., prone to simple models, if at all) to agent-design for the Trading Agent Com-

petition (TAC - a simulated environment for confronting trading agents’ strategies),

Robust algorithms to cope with domain discrepancy (that is, the Domain Adaptation

setting, where the algorithm’s output hypothesis is required to operate in an environ-

ment that is different from the one in which it was trained), and finally, collaborative

social learning as a platform for parameter estimation that given a very simple strategy

space comparably performs at equilibrium as the optimal estimator.

The model-free KNN and RWM algorithms, introduced in Sections 1.1 and 1.2

respectively, are used to implement TAC agents for the Ad Auctions game, eventually

winning the competition. The robustness achieved through regularization, as detailed in

Section 1.4, is used to design a robust domain adaptation algorithm (a variant of SVM,

introduced in Section 1.1) and associated generalization bounds. The thesis concludes

with an analysis of the equilibrium resulting from a model for social computation

through information propagation using simple (that is, history-independent, thereby

robust) strategies, and the comparison of the performance of the related estimator to

the optimal achievable using the Bayesian approach introduced in Section 1.3.



1.5. OVERVIEW OF THE THESIS 17

1.5.1 Part I - Autonomous Bidding Agents

In the first part of the work, Autonomous Bidding Agents, the strategies of software

agents implementing algorithms for optimizing execution of marketing campaigns is

considered. Such agents, becoming ubiquitous in the Internet economy, bid for the

opportunities to have ads displayed to users engaged in Internet search or browsing.

The bids of the agents depend on many factors - the attributes and purchasing behavior

of the users, the characteristics of the browsed web site, the targets of the outstanding

advertising campaigns, the behavior and characteristics of competing advertisers and

their targets, and many more.

The complex structure of the setting and its game-like nature make the evaluation

of related strategies very hard to conduct. Therefore, synthetic platforms, such as the

Trading Agent Competition (TAC) described in chapter 2, where research teams regu-

larly compete by facing their strategies against each other’s, are controlled environments

that serve to evaluate and analyze related algorithms.

First, a model-light approach to the design and implementation of a top-performing

trading agent in a dedicated TAC game (TAC-AA) is described in chapter 3. It is shown

that such an agent can enjoy many of the robustness and simplicity benefits of being

model free while still achieving top scores. The applicability of strategies used in TAC

games to the more demanding and uncontrolled real-world setting is then considered

in chapter 4 through a study of the robustness of some of the most successful TAC-AA

agents to unexpected changes in the simulated environment. The analysis shows that

the top-performing agents are among the most robust. This encourages the possibility

of technology transfer of successful TAC strategies to the real world, and is somewhat

surprising since it could be expected that top performance is achieved by a (potentially

fragile) practice of tailoring the algorithms to specific game parameters.

Finally, a new TAC game, Ad Exchange (TAC-AdX) is introduced in chapter 5,

where its implementation and competitions based on its description are described.

TAC-AdX simulates the prevalent model for display-advertising in the Internet through

a central exchange that coordinates ad supply (by publishers, that is, web sites) and

demand (by advertisers) through real-time bidding in dedicated auctions. TAC-AdX

was designed in an attempt to capture some of the key trade-offs faced by real-world

advertisers. Specifically, the way the advertiser’s ability to successfully execute adver-

tising campaigns (i.e., by achieving targeting ad reach goals) and related costs effects



18 CHAPTER 1. MACHINE LEARNING - A ROBUSTNESS PERSPECTIVE

their ability to win future campaign contracts (through some rating) and their related

revenues. Reports from first competitions of the TAC-AdX game show key mechanisms

(analogous to strategies that may be implemented in the real world in similar settings)

employed by such trading agents. Furthermore, The TAC-AdX game may serve as

a platform to compare the many alternative mechanisms available for implementing

key components of the (real-world) Ad Exchange scenario, mainly the type of auction

performed by the Ad Exchange, the reserve price setting by the publishers, and the

pricing of information regarding users’ attributes by dedicated third-parties.

1.5.2 Part II - Robust Domain Adaptation

In the second part of this thesis, a generalization bound and related learning algorithm

are derived for the Domain Adaptation setting. In domain adaptation, introduced

in chapter 6, the underlying uncertainty faced by the supervised learning algorithm

is regarding the stationarity of the underlying domain - the probability distribution

governing the input-output relation. Specifically, the training samples may be from

one domain (the source domain), while the algorithm’s output hypothesis might be

tested in a different domain (the target domain). Naturally, the source and target

domains have to be somehow related to make learning possible if at all.

This thesis addresses the domain adaptation problem using the Robust Optimiza-

tion paradigm, where the assumed prior relation between the source and target domains

(parametrized through a newly introduced λ-shift distance) serves as the input range

over which robust optimization occurs. Specifically, Algorithmically Robust SVM vari-

ants for classification and regression are described in chapter 8, in which the prior

uncertainty regarding domain discrepancy translates into the optimization constraints.

The Algorithmic Robustness framework and characterization (presented, together with

the Robust Optimization paradigm, in chapter 7) is further used to derive related do-

main adaptation generalization bounds.

1.5.3 Part III - Multiagent Learning

The performance of estimators stemming from social learning platforms is investigated

in the last part of this thesis. In social learning, a set of self interested agents collaborate

to perform some computation that depends on the aggregate of the privately held

information by each. The agents may have stake in the result of the computation



1.5. OVERVIEW OF THE THESIS 19

(e.g., voting), or in the probability of some external event that their signals depends

upon (e.g. events effecting the value of a stock, in stock market trading) which the

computation is assumed to approximate.

Focusing on the latter case, where agents sequentially update the outstanding value

of a computation regarding the probability of an external event, the result of the com-

putation may be interpreted as an estimator for the probability of the event occurring,

aggregating the private signals of the agents. The mean square error is generally used to

quantify the performance of such estimators. The self interested agents are elicited to

participate (and truthfully use their private signal) through a market scoring rule that

offers an expected positive payoff to agents that improve the quality of the computation.

The elements of the social learning setting and Prediction Markets (as a specific

example) are introduced in chapter 9, where we show that the sum of the expected

total payoff of the participating agents and the performance of the resulting estimator

(a generalization of the mean square error) is constant, thereby quantifying the inherent

cost-accuracy trade-off in such settings.

In chapter 10, aiming to capture trusted recommendation chains settings (where pri-

vate observations - e.g., regarding the quality of a product - are used to make one-on-one

recommendations among trusted agents), we introduce a simple model for sequential

social learning where agents are history independent (that is, they are unaware of past

actions, or their own arrival order, but know the total number of agents T ). Inherently,

the strategy space of such history-independent agents is limited to operate on their

private signal and the observed state of the computation only. We consider a simple

space of strategies that update the current state to a linear convex combinations of

those two quantities (effectively consisting of moving averages), and investigate the so-

cially optimal and equilibrium strategies for settings using the quadratic scoring rule

in which the update strategy is dictated and where strategic agents are free to choose

their strategy, respectively.

The performance of the resulting estimators (e.g., expected error, probability of

bias), essentially indicating the convergence rate as a function of the total number

of agents T , is analyzed and compared to the performance of the optimal (Bayes)

estimator having full access to all the agent’s private signals, thereby quantifying the

performance loss incurred due to performing a sequential history-independent social

computation instead. Similar analysis is also carried for some model extensions, in



20 CHAPTER 1. MACHINE LEARNING - A ROBUSTNESS PERSPECTIVE

particular where a distribution over the total number of agents is assumed.

1.5.4 Published Papers

• Chapter 3 is mainly based on [109]: A Model-Free Approach for a TAC-AA

Trading Agent. Schain, Mariano and Hertz, Shai and Mansour, Yishay. Lecture

Notes in Business Information Processing 2012, and Trading Agents Design and

Analysis (TADA) Workshop 2012.

• Chapter 4 expands upon [66]: An Empirical Study of Trading Agent Robustness.

Hertz, Shai, and Schain, Mariano and Mansour, Yishay. Proceedings of the 2013

International Conference on Autonomous Agents and Multi-agent Systems.

• Chapter 5 is mainly based on [110]: Ad Exchange - Proposal for a New Trading

Agent Competition Game. Schain, Mariano and Mansour, Yishay. 14th Interna-

tional Workshop on Agent-Mediated Electronic Commerce and Trading Agents

Design and Analysis 2012.

• Chapter 8 is mainly based on [84]: Robust domain adaptation. Mansour, Yishay

and Schain, Mariano. Annals of Mathematics and Artificial Intelligence, pages

1-16, 2013. Springer.



Part I

Autonomous Bidding Agents

21



22



Chapter 2

The Trading Agents Competition

As autonomous bidding agents became more and more prevalent in the Internet eco-

nomic arena, the related mechanisms and strategies implemented by the involved enti-

ties gained the interest of academic researchers (and the industry, of course).

The choice of mechanisms for a trading setting (e.g., for pricing and allocating

goods among interested potential buyers) is a market-design problem that has been

researched extensively for centuries, mainly in the economic community. Internet-based

trading, however, introduced new aspects (mainly the existence of digital reproducible

goods, trading scales, and computational abilities and limitations) that called for a

computer science perspective and as such attracted researchers in related (or perhaps

newly created, e.g., algorithmic mechanism design) fields. Similarly, computational

abilities (such as speed, accuracy, and scale) available to autonomous trading agents

called for algorithmic analysis of trading methods and gave rise to the development of

adaptive strategies that use massive data for their decision making.

While the search for optimal mechanisms (a search that has been successful in some

basic settings) aims at universal properties (that is, properties that hold regardless of

agent’ strategies) such as dominance of truthful actions, the performance of a trading

agent’s strategy inherently depends on the strategies of its competitors and therefore

can’t be universally optimal. Furthermore, the increasing structure and complexity of

real settings adds to the challenge of analyzing and evaluating trading agent’s strategies.

This was a key motivation [121] for the introduction of the Trading Agent Competition

(TAC) [122] in which a community of researchers and industry professionals implement

trading agents for a predefined set of well-specified common settings (TAC games)

and meets yearly to confront their agents and analyze the results. By focusing on a

23



24 CHAPTER 2. THE TRADING AGENTS COMPETITION

common synthetic setting that abstracts the essence of some real trading scenario (but

of manageable complexity and structure) researchers may evaluate and compare their

solution approaches to the trading agent’s problem. This also gives hope for technology

transfer - the applicability of the strategies that perform well in the game setting to

the original real scenario.

Since the year 2000, several TAC games were introduced and related competitions

took place. The first TAC game TAC-travel [62] introduced an online travel shopping

problem in which competing agents (implementing the strategy of travel agents) trade

travel goods (such as hotel rooms and flights) in dedicated markets to assemble trip

itineraries, as requested by customers. Subsequent games are TAC-SCM [105] - a

supply chain management scenario, CAT [93] - a market-design game, TAC-AA [70]

- a sponsored search (Ad Auctions) setting, and most recently PowerTAC [72] - an

energy trading platform, and TAC-ADX [110] - an Ad Exchange based Internet display-

advertising scenario. The TAC-Ad Auctions game is now presented in some detail

(see [7] for the complete specification and [70] for a detailed account of the game

design). This will serve later in this chapter to illustrate common aspects of TAC

games (structural and conceptual) and also as a reference for future chapters in which

the tau agent for the TAC-AA game and related key aspects of the game are discussed.

2.1 The TAC Ad-Auctions Game

Sponsored Search is the main business model for search service providers such as Google

- where advertisers pay, through an auction mechanism, for their ads to be displayed

alongside the neutral (organic) search results. The Ad-Auctions game is a simulated

Sponsored Search environment in which the competing agents implement the strategies

of advertising merchants - they try to sell items from a limited inventory by bidding for

keywords. Specifically, the advertisers bid for their ads to be displayed alongside search

results of queries containing the keywords, performed by a set of user populations. The

population of searching/clicking/purchasing users and the associated keywords auc-

tions are simulated by the game server. In what follows, we refer to the functionality of

managing user queries and related auctions, ad display, and clicks as the simulated pub-

lisher. As described below, to be successful, bidding agents should assess the marginal

value of winning a keyword’s impression, which in turn depends on their inventory level



2.1. THE TAC AD-AUCTIONS GAME 25

and the purchasing state of mind of the users.

Each simulated user, making at most one query per simulated day, has a predeter-

mined preference to one of three manufactures and one of three product types, thus

there are 9 different users populations (in the standard game setting, there are 10000

users in each simulated population). Users queries (a total of 16 types) are characterized

each by the (possibly missing and not necessarily the preferred ones) manufacturer and

product type. The specific query type made by a user depends on his state, reflecting

his tendency to search, click, and make a purchase.1 All users start at a Non-Searching

(NS) state, from which they transition with a predefined probability2 to an Informa-

tional Search (IS) state. In this state, users submit queries and click ads, but do not

convert (that is, do not make a purchase, do not transact). From the Information

Searching state, users may transition to any of the Focused Searching states (F0, F1,

F2). The focused states reflect the users different search sophistication, or its degree

of knowledge about its internal preference, ranging from null query in focus level F0 to

detailed search in focus level F2. Users may transition from a low level Focused Search

to a higher one, and may also transact. After a user transacts, he may return to the

Non Searching state and start the process all over again. The user’s state transition

probabilities (except the purchase transaction) are governed by a Markovian model

that is known to all competing agents through the game specification. To model bursts

of search behavior, the transition probability from the Non Searching state to the In-

formation Searching state may be increased significantly, with probability Pburst. A

burst can last up to three days, after which the transition probability returns to its

former state.

Each simulated user query results in a publisher’s created impression - a list of ads

ranked according to the results of a Generalized Second Price (GSP) auction among

the advertisers’ submitted bids (the auction result determines also the price to be paid

to the publisher upon a user click on their ad, this price is termed CPC - Cost Per

Click). The highest ranked ads may be designated (depending on the bid amounts) as

promoted slots - having higher click probability. The user views the ads sequentially

and may click on one ad or more, with probability determined by a Click-Through Rate

(CTR). The CTR for every query is determined by three factors: the advertiser effect

(a baseline value randomly chosen by the server for each competing advertiser at game

1The user’s state is therefore referred to as his state of mind.
2All such predefined parameters are detailed in the game specification.



26 CHAPTER 2. THE TRADING AGENTS COMPETITION

start); whether the ad is placed in a promoted slot or not; and whether the ad targeting

(which is designated in conjunction with the bid submitted by the advertiser) matches

the users product preference.

Upon an ad click,3 a user may convert (purchase the product offered by the adver-

tiser) with a probability (designated Conversion Rate - CVR, the fraction of actual sales

out of the total clicked ads) that depends on three factors: the users state (higher focus

levels convert at higher rates), whether the advertiser’s product preference matches the

users product preference (each advertiser also has a designated preferred product, de-

noted it’s specialty product), and the outstanding usage degree of the advertiser’s sales

capacity - a soft constraint that introduces Inter-query dependencies as follows: Each

competing agent is assigned one of three discrete capacity levels (Low, Medium and

High) at the beginning of the game session. An advertiser that sells over his capacity

(during a moving window of five days) suffers a decrease of users conversion probabil-

ity, which in turn reduces the Return on Investment (ROI), since the CPC remains the

same. Finally, the advertiser collects a predetermined revenue for each conversion.

User 

Publisher/Auctioneer 

Query 

Advertiser 

Auction 

Impression Page View 
Click Conversion 

Bid, Ad, Limit 

Query Reports 

Sales Reports 

3 

3 2a 

2b 

2c 

1 

Figure 2.1: The Ad-Auctions game flow dynamics

The competing agents implementing the advertisers’ strategies interact with the

3If an impression is not clicked, the probability that a user impressed by a certain ad will continue
to view the next ad is determined by a hidden continuation parameter for each query type.



2.2. CHARACTERISTICS OF TAC GAMES 27

game server that simulates the user populations and the publisher actions. The game

flow and dynamics (as illustrated in Figure 2.1) are such that each advertising agent

provides a daily bid bundle consisting of bids, limits and ad specifications to the pub-

lisher. The publisher uses the advertisers bid bundles during the following simulated

day to run an auction for every search query performed by a user. The users may

click on ads and purchase products from the winning advertisers: For every user query

in which the advertiser got his ad displayed (an impression) and the user clicked and

further made a purchase (convert), the advertiser collects a fixed revenue. Now, the

advertiser’s revenue is significantly higher upon a purchase of a product by its preferred

manufacturer (each advertiser also has a preferred manufacturer, denoted it’s specialty

manufacturer - this and the advertiser’s specialty component are randomly allocated

and indicated to each competing agent at game start).

Reports regarding past performance are provided daily to the advertisers so they can

adjust their future actions accordingly. The advertiser problem is therefore to maximize

his accumulated net revenue (during the 60 simulated days) by providing optimal bid

bundles considering the potential costs and revenues for each query (affected mainly

by the user populations size and state, and by the competing agents bids).

2.2 Characteristics of TAC Games

TAC games share similarities in many aspects. In terms of infrastructure, they all

implement a game server that simulates the setting and interacts with remote and

independent competing agents. The server also provides a web based interface for

administration, log access, and game viewing. The schematic TAC infrastructure is

illustrated in Figure 2.2.

TAC games also share the theme of a daily cycle in which reports are sent from the

server4 to the competitors regarding the previously completed simulation and then while

the server simulates the current day the competing agents calculate their decisions5 -

to be sent back to the server upon the end of the simulation. This schematic cycle is

illustrated in Figure 2.3:

Conceptually, by their very nature, the TAC games present to competing agents a

4In the Ad Auctions game for example, the server notifications include average position, clicks,
revenue, and cost for each query.

5Again, in the Ad Auctions game, the advertiser’s decisions are the bid and ad to use for each query,
and related spend limits.



28 CHAPTER 2. THE TRADING AGENTS COMPETITION

Figure 2.2: Generic TAC game infrastructure

game-theoretic challenge, and this is where they depart from some other presumably

similar but actually remotely related competitions [4, 5, 116] that rather pose a decision-

theoretic problem. Moreover, other games such as [18, 32, 104] that do present a game

theoretic challenge to competing agents (that is, the performance of a competing agent

depends on the strategies of the competitors and therefore may not be evaluated in

isolation) are significantly simpler in terms of the strategy space - Mainly, their setting

requires a single decision by the competitors (e.g., a bid in an auction, an action

in a simple game, etc.). As a result, such games lack a key characteristic of TAC

games - multiple and interdependent decision venues. In the Ad Auctions game, for

example, the daily decision of the advertiser is comprised of bids for each separately

auctioned keyword (resulting in sales of inventory items and related revenue, depending

on the keyword-specific applicable click and conversion rates). The consequences of

such keyword auctions, however, may influence the other keywords related revenue

since overselling due to high bids on one of the keywords might result (due to the

capacity constraints) in a reduced CVR for the others.

The problem faced by competing agents in TAC games is therefore of a game theo-

retic nature. To be successful, agents should implement adaptive strategies that address

inherent trade-offs in the game based on feedback from a dynamic market. In that sense,

maybe the closest line of competitions to TAC is RoboCup [74]. Now, another distinc-

tive property of TAC games is that agents have incomplete information regarding the

game played (let alone their competitors strategies). In the Ad Auctions game, for

example, some of the parameters of the game are given in the game specification, while

others are randomly chosen at the beginning of each game from a known distribution.



2.2. CHARACTERISTICS OF TAC GAMES 29

Figure 2.3: Schematic TAC game daily flow

Hence, agents should apply statistical modeling techniques6 (in addition to strategic

reasoning) as the basis of their search for optimal action decisions.

Figure 2.4: Schematic TAC agent’s Architecture

As a consequence, the generic architecture of a top performing TAC agent (as

illustrated in Figure 2.4) includes a modeling component that estimates the game state

and an optimization component that uses the state estimates to come up with the

optimal decisions (considering the inherent uncertainty in the game) to get the game

6In the Ad Auctions game, one example is the estimation of the distribution of user populations
over states, which has crucial influence on the profitability of bidding on a query since (for example)
in a certain state users may click (incurring costs) but never convert.



30 CHAPTER 2. THE TRADING AGENTS COMPETITION

to a desirable state. Note that such state estimates by the modeling component may be

regarding past states (based on reported observations) but also regarding future states

given hypothetical decisions. Note also that the estimated game state may include the

estimated state of competing agents in addition to those associated to stochastic hidden

game parameters. In the Ad Auctions game, for example, the modeling component of

our tau agent estimates (among many other things - as detailed later in Section 3.4.2)

the hidden CTR of queries and the resulting costs and revenues as a function of the bid

level on a query, and the TacTex agent for the 2010 TAC AA competition (as reported

in [101]) employs modeling of competing agents strategies.

Finally, The random nature of the setting in TAC games also implies that TAC

competitions are conducted as a sequence of several simulated games in order to average

out the effect of random occurrences on the results of a specific game execution.

2.3 A Short Discussion

Since its introduction in the beginning of the millennium, the TAC series of compe-

titions became a hub for research teams interested in the many aspects of designing

trading agents for complex dynamic market settings. Post-competition reports are typ-

ical, both from agent teams and game designers (see e.g., [69] for an analysis of the

first Ad Auctions competition, also conducting a game-theoretic analysis and suggest-

ing a modified auction mechanism for optimal publisher revenue). As evident in the

review of the competitions’ first few years [121], it provided (and continues to do so)

a controlled environment in which agents’ strategies and a variety of market mecha-

nisms7 may be applied and evaluated in a transparent and repeatable manner. This

is facilitated by the voluntary TAC agents repository [9] and the availability of game

server sources, allowing any interested party to locally run competitions (and also make

modifications to the game server implementation, as required by research goals) and

observe the results. Indeed, as detailed in the next three chapters (and based on the

TAC infrastructure), a top performing agent for the Ad Auctions game is implemented,

the Ad Auctions game server is modified as part of research regarding the applicability

of insights gained in the Ad Auctions game to real settings, and a new TAC game for

an Ad Exchange setting is introduced.

7For example, Posted Prices, Simultaneous Ascending Auctions, and Double Auctions - all in the
original TAC Travel game



Chapter 3

A TAC-AA Top-Performing

Agent - A Model-Light Approach

We describe a model-light approach to bidding in the Ad-Auctions Trading Agents

Competition: First, a simple and robust yet high-performing agent using a Regret Min-

imization optimization algorithm for the 2010 competition, followed by our top per-

forming agent for subsequent competitions in 2011, 2012 and 2013, still using simplified

modeling and optimization methods. This chapter is based mainly on [109].

3.1 Introduction

During the past few decades, the Internet transformed from an academic information-

sharing tool into a world-wide business platform in which people and companies of all

sizes conduct an ever-growing portion of their activities. It has become evident that the

competitive advantage of many of the Internet companies relies on their ability to apply

machine learning algorithms (for example, learning user preferences to improve user

experience, learning user interests to increase the effectiveness of web advertisements,

and so on). In the Google AdWords setting, for example, advertisers bid on keywords1

with the goal of maximizing the net revenue resulting from purchases made by users

who clicked the displayed advertisements (offset by the payments to Google for the

clicks, as determined by the outcome of the bidding mechanism). Learning algorithms

that allow agents to bid such that profits are optimized constitute significant ingredients

of the competitiveness of agents.

1The bidding activity is usually implemented by automated trading agents.

31



32CHAPTER 3. A TAC-AA TOP-PERFORMING AGENT - AMODEL-LIGHT APPROACH

Optimization, however, relies on a model of the environment (nature). Therefore, to

be successful, agents first have to establish a good approximation of the state of nature.

In contrast to parametric methods that are tailored to the specific (usually statistical,

but also structural) attributes of a model of nature, in the model-light approach minimal

assumptions are made regarding the model of nature. As such, model-light algorithms

are usually simpler and more robust to model errors or changes. However, ignoring the

parameters and structure of a valid model might limit the achievable performance of

an algorithm (compared to algorithms that make use of the model). This is the very

trade-off considered in our work - we explore the extent of using model-light methods

while maintaining a limited performance hit.

In this chapter, a model-light approach to implement a bidding agent for TAC-Ad

Auctions [70] is described. Specifically, we research the usage of model-light methods

to address the main challenge of the advertiser: to control - by setting the bids - its

revenues and costs which are determined by the states of the user populations, the

behavior of competing advertisers, and a predetermined capacity constraint.

A conceptually similar model-free approach which uses a simulation-based iterative

best-response technique is detailed in [119]. Other previous approaches to the TAC-

AA bidding optimization problem (e.g., [99]) rely on the game description to accurately

estimate the game parameters, model the user populations state and competitors ac-

tions. Both [28, 99] formulate the bidding optimization problem as a combinatorial

(intractable) optimization problem and heuristically search for the best solution. Al-

though such methods do achieve top scores in the given game, they might be sensitive

to modeling errors, both parametric (estimation errors) and structural (wrong model

used).

Our first attempt, for the TAC-AA 2010 competition, almost entirely ignored the

game description and based its (almost trivial) modeling and estimation on simple

moving averages. Our optimization scheme used a regret minimization algorithm to

perform a fractional allocation of the available capacity. This very simple scheme that

only performed top-aiming bids on a subset of the available queries resulted in a very

simple agent that was implemented very fast and performed quite well - among the 13

competitors it achieved 6th position in the semifinals (therefore qualifying for the final

8 competitors) and 7th in the finals, scoring ∼ 30% behind the top performers.

For the 2011 competition, following [99], we implemented particle filters to model



3.2. HIGH-LEVEL AGENT’S ARCHITECTURE AND STRATEGY 33

the states of the user populations. Our implementation however, following the model-

light approach, did not use the methods of [99] (which are highly tailored to the game

specification) to compute the particle filter input but used a Nearest Neighbor (NN)

estimator instead. The NN estimator was trained on historical games data (data from

100 games provides ∼ 200000 samples) and achieved ∼ 30% relative estimation error2.

However, using dedicated techniques we were able to keep the overall modeling accuracy

(and the overall agent performance) comparable with the model-heavy methods. The

implementation of our top-performing agent also remains model-light in the sense that

we do not attempt to model the competing agents behavior for estimating costs and

associated game parameters.

We implement a simple and effective bid optimization algorithm by heuristically

assuming convexity of the target revenue as a function of the keyword bid levels and

applying the equimarginal principle. Specifically, our optimizer was implemented to

search for the equimarginal utility bid (see [28] for motivation, and also Section 3.4.4).

Using simple linear models for estimating cost-bid relation allowed for an efficient im-

plementation of the optimization as a simple one-dimensional search. Furthermore, to

mitigate the risk of under-utilized capacity resulting from over-estimation of the sales

potential in a user population we introduced a tunable regularization factor that favors

allocations across a high number of queries (i.e., allocations of high perplexity).

All the above resulted in a top performing agent, achieving the third place in the

final rounds of the TAC-AA 2011 and 2012 competitions, scoring within 3% of the

winner, and winning the 2013 competition.

3.2 High-Level Agent’s Architecture and Strategy

As illustrated in Figure 3.1 below, a refinement of Figure 2.4, we partition our agent

(named tau) to two main components: A Modeler responsible to provide effects of

bidding decisions by assessing and predicting the state of the changing environment

and hidden game parameters (this includes the user population and competitors state,

reserve prices, continuation probability, baseline click-through rates, and baseline con-

version rates), and an Optimizer that uses the services provided by the modeler to

come up with optimal actions (the daily bid bundles).

2Relative error measures the ratio between the deviation of the estimated value from the actual
value to the actual value.



34CHAPTER 3. A TAC-AA TOP-PERFORMING AGENT - AMODEL-LIGHT APPROACH

Figure 3.1: High level tau agent’s Architecture for TAC-AA

We call the daily bid for a query and the related outcomes (auction position, cost per

click, number of conversions, number of clicks, daily cost, daily revenue, and utility) the

result set. The relation of result set items is illustrated within the modeler component

in Figure 3.1: Given our bid, the competitors bidding strategy (their bids and limits)

determines the position and cost per click in query auctions. Given the position in

an auction, the game state and parameters (specifically, the number of users in every

state, the continuation probability, click through rate, and conversion rate) determine

the total number of clicks and conversions (and the total revenue, since the revenue

per conversion is known). Multiplying the CPC and total number of clicks results in the

daily cost, and the difference between total revenue and cost is the utility achieved.

It is therefore evident that for the modeler to achieve its goal it has to consider3

the relation between the bid and the resulting position and CPC (by modeling the

competitors’ strategies, or any other method, using the daily reports) and estimate

the game state and hidden parameters. As will be shown later, the relation between

the items in the result set is monotone and estimating any of them fixes (to some

degree) the others. Therefore, conceptually, the optimizer may query the modeler

“what if” regarding any of the items and get back the full set. As detailed in the

following sections, an almost trivial modeler was implemented for the tau2010 agent,

which was later replaced (for the TAC-AA 2011, 2012, and 2013 competitions) by a

significantly enhanced modeler that assesses users state and estimates hidden game

3The two shaded rectangles of Figure 3.1.



3.2. HIGH-LEVEL AGENT’S ARCHITECTURE AND STRATEGY 35

parameters (while - along the lines of our model-light approach - keeping as much of

its mechanisms independent of the game specification).

The Optimizer implementation of all our tau agents are based on a common Ca-

pacity Quota Manager (CQM) to determine the target daily number of items to be sold

(detailed below). Subsequently, a query allocator component sets the number of items

to be sold through each query (and the related decision - the bid level and spend limit

for each query). As detailed in later sections, a simple allocator over a restricted ac-

tions space was implemented for the tau2010 agent, which was later replaced (for the

TAC-AA 2011, 2012, and 2013 competitions) by an enhanced (yet simple) optimization

scheme over a significantly richer action space.

The CQM for all tau agents implements the following daily capacity allocation

scheme: Let Q̃t and St be respectively the target daily capacity allocated for day t (by

the CQM) and the actual units sold during day t (as reported by the game server).

Note that since the actual simulation of day t is concurrent with the analysis period of

day t, the actual units sold St during day t is not known to the agent and is therefore

estimated to be Ŝt (details below). Now, to remove the interdependency of queries

(specifically, the effect of selling through one query on the conversion rate - and hence

the utility - of other queries, as dictated by the capacity constraint) the CQM algorithm

aims at total sales of at most a γ-increase of the 5-day capacity C (the slight addition

over the capacity is a tunable operation parameter to allow for operation over the

capacity at a range that will not hurt the conversion rates significantly). All in all, the

target daily capacity allocated by the CQM for the following day Q̃t+1 is set such that

it complements the estimate of units sold during the previous days St−3, St−2, St−1, and

Ŝt to (1 + γ)C, specifically:

Q̃t+1 = max{ C
10
, (1 + γ)C − Ŝt −

3∑
i=1

St−i} , (3.1)

where in addition, the allocation is never less than a minimal amount C
10 which

is half the average daily sales required to achieve the capacity quota. Finally, the

estimate for today sales Ŝt is the average of the quota allocated for today Q̃t and the

actual allocation by the allocator component4 Q̌t.

4Note that the actual allocation for day t was set at day t− 1.



36CHAPTER 3. A TAC-AA TOP-PERFORMING AGENT - AMODEL-LIGHT APPROACH

3.3 A simple Model-Light Agent for TAC-AA 2010

Aiming for an agent as model-free as possible, we used a simple RWM regret minimiza-

tion scheme in an On-line full-information setting (as detailed in Section 1.2) for the

optimization component of our first TAC-AA agent, competing in 2010. The optimizer

key decision - how much of the available capacity to allocate to each search keyword,

merely fractionally allocated the capacity according to the weights maintained by the

RWM algorithm as detailed below. This very simple method, combined with an almost

trivial modeler, surprisingly performed in the top half of the competition scoreboard,

earning only ∼ 30% below the top scoring agent.

3.3.1 Modeler

Our first agent, taking part in the TAC-AA 2010 tournament, completely ignored the

user populations model and the game parameters in its modeler. It only maintained a

look-ahead (for day t+ 1, on day t) estimation of the overall conversion rate and click

through rate v̂t+1
q and ĉt+1

q respectively, for each query q by adjusting using the actual

figure reported for day t− 1 and using a tunable learning rate parameter τ :

v̂t+1
q = v̂tq + τ(vt−1

q − v̂tq) , ĉt+1
q = ĉtq + τ(ct−1

q − ĉtq) .

3.3.2 Optimizer

Using the generic CQM, for the allocator of the optimizer we significantly reduced the

action space by only bidding high on queries. Furthermore, we only bid for queries

that have either our agents’ preferred component or manufacturer or both (a total of

seven queries - five targeted queries are associated with targeted ads and two other

queries associated with generic ads) - This is since such queries carry the highest profit

potential for our agent and therefore are best suitable to our high bid strategy. As a

result, setting the capacity allocation of each query, subject to the overall daily quota

set by (3.1), was the only remaining daily decision do be made.

We use a regret minimization scheme (see Section 1.2 and e.g., [40]) to fractionally

allocate the overall capacity across queries: Noting that our problem may be interpreted

as a setting of learning from expert advice using regret minimization algorithms [34],

our query quota allocation is based on the Randomized Weighted Majority (RWM)



3.3. A SIMPLE MODEL-LIGHT AGENT FOR TAC-AA 2010 37

algorithm [80]. That is, the different queries are the experts, the gains are the observed

profits gained by bidding at each of the queries, and the portion of the overall daily

quota to be allocated to each query is the weight wti of expert (query) i on iteration

(day) t. Specifically, we apply a regret minimization scheme by fractionally allocating

the available daily capacity Q̃t+1 based on a running average of the per-unit sold utility

of each query: Let utq be the utility (i.e., costs subtracted from revenue) per unit sold

reported for query q for day t. Upon receiving reports for day t − 1 on day t, a daily

score for each query q is set st−1
q = eηu

t−1
q , where η is a predefined tunable learning rate

parameter. Using yet another tunable learning rate parameter α, the overall (adjusted)

score of query q for day t− 1 is updated according to:

ŝt+1
q = ŝtq + α(st−1

q − ŝtq) .

The portion of the estimated available capacity for day t + 1 allocated to query q

is the query’s portion of the total score. Therefore, the following units quantity mt+1
q

will be allocated to query q for day t+ 1:

mt+1
q =

ŝt+1
q∑
q ŝ

t+1
q

Q̃t+1 .

Finally, using ĉt+1
q and v̂t+1

q (the estimates of the cost per click and the conversion

rate for each query, respectively), we set the daily budget spend limit parameter lt+1
q

of each query q accordingly5:

lt+1
q =

mt+1
q ĉt+1

q

v̂t+1
q

,

and the bid bt+1
q of query q for day t+ 1 is set using bt+1

q = ĉt+1
q + δpt−1

q , where pt−1
q is

the reported average position of our bid for query q in day t−1 and δ is randomly chosen

such that our position is kept high (the bid increases if our position deteriorates).

3.3.3 Results

Upon qualifying for participation during May 19th and 20th 20106, our tau agent scored

the sixth highest score out of 15 participants in the semifinal rounds that took place

5 It is set to control the number of units to be actually sold for each query on day t+ 1, such that
the budget is exhausted upon selling the allocated amount of units.

6Qualification rounds usually take place in advance of a competition to ensure that agents behave
well. That is, score reasonably while not hurting the operation of the game server or other competitors.



38CHAPTER 3. A TAC-AA TOP-PERFORMING AGENT - AMODEL-LIGHT APPROACH

on June 7th 2010 and made it to the finals. Out of the 8 agents that took part in the

finals on June 8th 2010, our tau agent reached the 7th place scoring about 40% less than

the winner TacTex [101]. Although an encouraging result overall, above the median of

all competing agents, it became evident that in order to score as the top performing

agents the action space of our agent should be significantly expanded, as detailed in

the remainder of this chapter.

3.4 Tau Agent for TAC-AA 2011 and Beyond

Our target for the 2011 competition was to improve our agent’s performance as much as

possible while still employing model-light methods. Inspired by the methods and results

reported in [28] and [99] we concluded that usage of a good model of the user populations

is essential for top performance. We therefore implemented particle filters to model the

user populations states. Particle filters, (see [52] for a timely tutorial) are a family of

Monte-Carlo methods to recover the Maximum Likelihood estimate of the hidden states

of a Markov Chain based on related (that is, statistically dependent) observations. In

our case (as suggested by[99]), the hidden state is the distribution of users across states

and the related observations are the total number of impressions in a day. Those

observations, however, are not directly reported and have to be deduced. Contrary to

the methods presented in [99], that rely on specification-tailored computations of the

total impressions, our particle filter estimates this quantity using the KNN model-free

method. Now, based on the estimates of the users populations distribution across states,

the essential quantity to be assessed for each query is the number of users submitting

the query while at a purchasing state, and the number of users that may submit a query

but never convert. As will become evident shortly, those two quantities (specifically,

their ratio) are the key metric in evaluating the potential profitability of bidding on a

query7.

In addition to the user’s distribution across states (the Game State - see Figure 3.1),

the modeler also maintains estimates of the hidden game parameters for each query

(reserve prices, baseline click through and continuation probabilities), and a monotone

(and therefore two-way) mapping of bids to resulting costs and ad positions. As it

turns out, a simple linear relation between bids and costs suffices (as an alternative to

7Users that click but never convert may result in significant loss to the advertiser



3.4. TAU AGENT FOR TAC-AA 2011 AND BEYOND 39

modeling the competitors’ bids strategies) to achieve top scores.

The Query Allocator of the agent’s optimizer relies on the following key relation

between the marginal utility of a unit sold and the total number of units sold (as a

function of modeler-provided values of game state and hidden parameters)

U(m) = m

(
R− CPC(b(m))

CVR
(1 +

mn

mb
)

)
, (3.2)

where m is the number of units sold to the users, R is the revenue associated to a unit

sold, U(m) is the total profit from selling m units, b(m) is the bid level that results in

m units sold, CPC(·) is the mapping of the bid level to the cost per click, CVR is the

conversion rate and mb and mn are (respectively) the maximal (potential) number of

buying impressions and the maximal number of non-buying impressions estimated by

the modeler’s particle filter. Indeed, the sales for a query are achieved by mb · CTR

clicks from the ’buying’ population and (since the users are simulated in a random

order) mn · CTR clicks from the ‘non-buying’ population. Therefore, mb · CTR · CVR

sales requires (mb +mn)CTR clicks and the number of clicks required to achieve a sale

is 1
CVR(1 + mn

mb
). We conclude that when m units are sold, the cost of making a sale is

CPC(b(m))
CVR (1+mn

mb
) and the relation (3.2) follows. Note that since b(m) (the bid resulting

in at least m sales) is a step function, U(m) is piecewise linear in m. Moreover, the

slope of U(m) negatively depends on CPC(b(m)) and is therefore decreasing in m.

Making the relaxing assumption that the relation (3.2) is concave, the Query Allo-

cator then uses the equimarginal principle to replace a multidimensional search over all

bids combinations (e.g., as suggested in [28]) by a simple one dimensional search for the

highest marginal utility level (equal over all queries) that achieves the daily quota of

the optimizer’s CQM (see Figure 3.9). To reduce variability and address the inherent

uncertainty, our utility level optimization is regularized by the number of queries that

take part in the bid (i.e., we give preference to utility levels that result in the daily

quota spread over queries).

In what follows, each of the agent’s components is described in detail.

3.4.1 Modeling CPC, Position and Bid Relation

The resulting cost and ad position given an advertiser’s bid on a query depends on

the bids (and spend limits) of the competing advertisers. Instead of modeling the



40CHAPTER 3. A TAC-AA TOP-PERFORMING AGENT - AMODEL-LIGHT APPROACH

Bid

CPC

Max CPC

Min CPC

Min Bid Bid

Position

5

1

Min Bid

Figure 3.2: The estimation of CPC (left) and position (right) as a function of the bid

competitor’s strategies, we make the simplifying assumptions that the game is in a

stationary state (that is, the competitors strategies are fixed and do not evolve) and

the CPC and the bid are linearly related. Therefore, we only need to maintain the

ratio and the upper and lower thresholds (i.e., the bid threshold beneath which our ad

is not shown at all, and the bid threshold above which our ad is the first ad shown).

The ratio estimation as well as the lower and upper thresholds are initialized based

on previous games and are updated after each query report. Namely, when a bid lower

than our minimal bid results in showing our ad we lower our minimal bid towards

it. When a bid higher than our maximal bid doesn’t result in our bid shown first we

raise our maximal bid. The ratio estimation is updated by averaging with the previous

estimate.

For the estimation of the resulting position given a bid we maintain num bidders,

an estimate of the number of bidders for each query. The number is initialized to

the maximal value (i.e., 5) and updated after each query report by averaging with

the previous estimate (this time a weighted average that prefers the latest estimate).

As with the bid-cost relation, we assumed an underlying stationary system and linear

relation and used the minimal bid and the maximal bid estimates. Figure 3.2 illustrates

the CPC and position relations with the bid. Note that although the CPC and position

are highly correlated, each quantity (specifically, it’s relation to the bid) is separately

estimated.

3.4.2 Hidden Game Parameters

In the TAC-AA game, the probability that a user clicks on an ad (the ad specified by

the advertiser that won the query auction) is determined by a baseline CTR that is



3.4. TAU AGENT FOR TAC-AA 2011 AND BEYOND 41

unknown to the competitors (the game specification defines a known range for each

query class - Level 2, Level 1 and Level 0 queries, pertaining respectively to the user’s

search focus levels F2, F1 and F0 described in Section 2.1 - from which the baseline CTR

is uniformly sampled at the beginning of the game). The conversion probability, on the

other hand, only depends on a known baseline CVR, the capacity utilization level, and

the matching between the user’s preferred component and the component element of the

query. Therefore, assuming that the capacity utilization level is controlled, for a given

user and query, the conversion rate may be directly calculated. Another hidden game

parameter is the continuation probability, which is uniformly sampled form a specified

range (a different range for each query class, but contrary to the baseline CTR the same

value is used for all advertisers). The last two hidden game parameters that the modeler

estimates are the reserve prices - one for regular slots (again, uniformly sampled from

a known specified range, one for each query class) and another for promoted slots (the

number of promoted ad slots, 0, 1, or 2, is communicated to the competing advertisers at

game start). Estimates of the values of those hidden parameters are used to quantify

the relation between the position of an ad and the resulting number of clicks and

impressions (and subsequently, also the cost, revenue and utility to be expected upon a

bid - the Result set dependencies of Figure 3.1). The exact method of estimating each

of the hidden parameters is now detailed:

The CTR for every query q is determined by three factors: the parameter eaq (a

baseline value randomly chosen by the server for each competing advertiser a at game

start), whether the ad is placed in a promoted slot or not (fpro), and whether the ad

targeting matches the user population (ftarget).

For games that have at least one promoted slot, we find eaq together with the two

reserve prices ρreg and ρpro by considering the following three relations:

ρpro = ρreg + 0.5 , cpcr =
ρreg
(eaq)

χ
, cpcp =

ρpro
(eaq)

χ
,

where cpcr and cpcp are the minimal cost per click observed on regular slots and pro-

moted slots, respectively. The first (left) relation is a simplifying assumption since by

the game specification we always have ρreg ≤ ρpro ≤ ρreg + 0.5. The second and third

are due to the generalized second price auction, the minimal price that an advertiser

would have to bid in order to to get his ad shown is the squashed8 reserve price for the

8 In a pay-per-click setting, squashing the bid - multiplying it by the related click probability -



42CHAPTER 3. A TAC-AA TOP-PERFORMING AGENT - AMODEL-LIGHT APPROACH

minimal regular or promoted position, respectively. The squashing parameter χ is given

at game start so we can easily solve the three unknown variables and get estimates for

both reserve prices and for eaq = (2(cpcp− cpcr))−
1
χ . As this value is an approximation,

it is averaged with the previous approximation whenever recomputed. Now, given the

bid level we can assess whether our ad will be placed in a promoted slot or not. This

allows us to use a good approximation of the true fpro. Finally, knowing our ad type

and the relevant population type we set ftarget and get the desired approximation of

the click through rate. Now, for an estimate of the continuation probability we use the

reported position and clicks and the modeler assessment of total impression imps (see

Section 8.1) to solve

impseff = imps · [γ(1− CTR · CV R)]position−1 , CTR =
clicks

impseff
, (3.3)

where the only unknowns are γ and impseff (the effective number of impressions - the

number of users that actually considered clicking our ad, after passing higher positioned

higher ads and continue without clicking or converting).

For games with no promoted slots we calculate the CTR and continuation probabil-

ity iteratively, by first applying (3.3) assuming the previous CTR (this give an updated

γ estimate) and subsequently re-applying (3.3), now with the updated γ, to get an

updated CTR estimate.

3.4.3 Particle Filters for Users Population Distribution Over States

As indicated above and from (3.2), mq
b(d) and mq

n(d) (specifically, their ratio9) are key

in evaluating the utility of selling a unit by bidding on query q and as a consequence

a key service used by the bid optimization algorithm. In this section, we describe the

usage of particle filters to estimate nps(d), the number of users in state s for population

p on day d (recall that there are 9 user populations, one for each combination of

manufacturer and product type) for all states s and 9 populations p. Given estimates for

nps, calculating mq
n and mq

b for all 16 queries q = (M,C) combinations of manufacturer

M and component C (either M or C may be φ) is easy, using the following relations that

are a direct consequence of the users behavior as described in the game specification:

normalizes the bids according to the expected revenue to the publisher.
9In 3.2 we omitted notation for the specific query q and day d. For clarity, in what follows we omit

from the notation the dependence on the day d unless required to avoid ambiguity.



3.4. TAU AGENT FOR TAC-AA 2011 AND BEYOND 43

For each level-2 query q = (M,C) we have

m
(M,C)
b = n

(M,C)
F2 , and m(M,C)

n =
1

3
n

(M,C)
IS ,

for each level-1 query q = (M,φ) or q = (φ,C) we have

m
(M,φ)
b =

1

2
(n

(M,C1)
F1 + n

(M,C2)
F1 + n

(M,C3)
F1 )

m(M,φ)
n =

1

6
(n

(M,C1)
IS + n

(M,C2)
IS + n

(M,C3)
IS )

m
(φ,C)
b =

1

2
(n

(M1,C)
F1 + n

(M2,C)
F1 + n

(M3,C)
F1 )

m(φ,C)
n =

1

6
(n

(M1,C)
IS + n

(M2,C)
IS + n

(M3,C)
IS )

and finally, for the (only) level-0 query (φ, φ) we have (summing over the 9 populations):

m
(φ,φ)
b =

∑
p

npF0, and m(φ,φ)
n =

1

3

∑
p

npIS

We maintain a particle filter for each of the 9 populations p, each providing esti-

mates of nps for all states s. Before moving on to describe our specific particle filter

implementation we provide a short overview of the particle filtering scheme as used in

this context.

3.4.3.1 The Particle Filtering Method

Particle Filtering is a Monte-Carlo (simulation-based) method for estimating the Maxi-

mum Likelihood hidden sequence of states given a related series of observations. Specif-

ically, given the transition model p(xk|xk−1) of a Markov Chain of hidden states xk,

and a series of observations yk characterized by p(yk|xk) as below:

Figure 3.3: Hidden Markov Model

we recover the (computationally intractable in general) Maximum Likelihood series

of hidden states by generating a population of N particles (where the value of each



44CHAPTER 3. A TAC-AA TOP-PERFORMING AGENT - AMODEL-LIGHT APPROACH

particle sik, i = 1 . . . N represents a possible value of the hidden state xk at time k) and

evolving each particle’s value and weight according to the observations such that the

population of particles collectively represent the posterior quantity of interest

sik ∼ p(xk|y1, y2, . . . yk) (3.4)

This is achieved using the Sampling-Importance Re-sampling (SIR) variant of par-

ticle filtering [14], by the following sequence of actions applied iteratively upon each

new observation yk:

First, each particle’s value sik−1 is advanced to a new value sik according to the

Markov model p(xk|xk−1). Thereafter, a weight wik is associated to each particle i such

that wik is proportional to p(yk|sik) (the weight of a particle represents the plausibility of

the observation given that the actual value of the hidden sate was the particle’s value).

Finally, using Importance Sampling [51] the population of particles is re-sampled by

the weights to result in a new population that adheres to 3.4. As a result, an estimate

of the hidden state xk is made available by taking an average of their values sik.

3.4.3.2 Applying Particle Filtering

In our setting, the state xk of a particle represents a distribution of the user

population10 over the possible states. That is, the state xk is actually a vector

(xNS, xIS, xF0, xF1, xF2, xTR)k.

As mentioned above, the distribution represented by the particle filter is the

weighted average of the distributions of its particles, and the weight assigned to each

particle reflects the plausibility of an observed quantity yk given its represented distri-

bution. In our case, as suggested by [99], the observation yk (due to lack of a relevant

directly observed quantity) is an estimate of the total number of impressions that oc-

curred upon level-2 queries by users of the corresponding population.

The particle filter algorithm is therefore the following: we maintain a separate set

of particles for each day yesterday, today, and tomorrow. When a new day starts, the

particle set for yesterday is discarded, and the previous particle set for today is used

for creating the new particle set for yesterday by reweighing and re-sampling it (upon

receiving the query report and having an estimate of the total number of impressions).

10we maintain a dedicated particle filter for each of the 9 user populations



3.4. TAU AGENT FOR TAC-AA 2011 AND BEYOND 45

The new particle sets for today and tomorrow are created by advancing the new particle

set for yesterday once and twice respectively. All this creates an updated estimate of

nps(d−1), nps(d) and nps(d+1) at every day d of the game, allowing the modeler to have

estimates for mq
b and mq

n for days d− 1, d, and d+ 1.

In what follows we review in more detail the particle filter update steps and related

implementation concerns. Of special interest (w.r.t. our model free approach) is the

usage of Nearest Neighbor learning to estimate the particle filter input (in contrast to

the direct calculation described by [99]).

Figure 3.4: A K-Nearest Neighbor estimator trained off-line to provide the input
observation (total number of impressions) to the particle filter.

3.4.3.3 Using KNN for Total Impressions Estimation

The input (observation) of the particle filter is the total number of level 2 queries

impressions during a simulated day. This quantity is not directly provided to the

agent, however. Therefore, a dedicated algorithm (presented by the TacTex team in

[99]) may be used to find a value that is consistent with the reported data.

Instead of using TacTex’s algorithm, we use a Nearest Neighbor estimator that uses

training samples from past games logs (associating reported average position for each

of the competitors and the position and number of impressions of the agent, to the

sought after total number of level 2 impressions) to train a weka-based [64] K-Nearest-

Neighbor estimator that is then used to provide (on-line, given the reported data) an

estimation of the total number of impressions to the particle filter. This scheme is



46CHAPTER 3. A TAC-AA TOP-PERFORMING AGENT - AMODEL-LIGHT APPROACH

illustrated in Figure 3.4:

Using 200000 samples with K = 3 resulted in an average relative error of 30%

(compared to the ’exact’ computation of the total number of impressions - see Figure

3.5). However, as indicated below, this minimal influence on the overall performance

of the particle filter (and subsequently, no significant effect on the overall agent’s per-

formance).

Figure 3.5: The estimated total number of impressions using K-NN (red line), com-
pared to the actual number (blue line) throughout the 60 simulated days of a game.

3.4.3.4 Reweighting

Given an observation of T estimated total impression, the weight w(P |T ) assigned to

a particle representing a users distribution

P = (NNS, NIS, NF0, NF1, NF2, NTR)

is computed as the probability of a total of T −NF2 successes in NIS binomial exper-

iments, each with success probability 1
3 (this is because each of the NF2 users results

in an impression for the related L2 query, and with probability 1
3 each of the NIS users

results in an impression for the related L2 query - see Figure 3.6).

Figure 3.6: Expected number of F2 queries is NIS
3 +NF2



3.4. TAU AGENT FOR TAC-AA 2011 AND BEYOND 47

In practice, we use the normal probability approximation for the distribution with

expected value NIS
3 and variance 2NIS

9 and set

w(P |T ) , Pr(T |P ) = φ(
3(T −NF2)−NIS√

2NIS
) , (3.5)

where φ(·) is the normal probability density. Upon re-weighting, the weights are nor-

malized such that they sum to 1.

In some situations it may happen that the probability (3.5) is negligible for all

particles. This may be caused by estimation errors of the total number of impressions

(the particle filter observation) or by competitors behavior: if all advertisers reach their

spending limit within the day then the total number of impressions is no longer equal

to the total number of users in searching states, a condition that violates a fundamental

assumption of the derivation of (3.5). A naive computation of (3.5) in such cases results

in zeroing of the weights of all the particles, a situation that should be avoided to enable

the subsequent resampling (that depends on the weights summing to 1). Therefore,

the reweighing algorithm avoids a direct computation of (3.5) and instead computes

for each particle the ratio of its probability to the maximal particle’s probability (and

subsequently normalize such that the weights sum to 1).

3.4.3.5 Resampling

Given a re-weighted particle set (the baseline set), re-sampling involves creating a new

particle set in which the number of times each particle appears in the new set (the re-

sampled set) is relative to its weight in the baseline set. Once re sampled, the weights

are discarded and weighted averages over the baseline set are equivalent to uniformly

averaging over the re-sampled set. We implement selective re-sampling (only reweigh

and re-sample a randomly chosen portion of the particles11, leaving the rest of the

particles unchanged regardless of the observation). This allows for quick readjustment

in case of estimation errors.

3.4.3.6 Advancing Particles

Advancing a set of particles consists of advancing each particle of the set, simulat-

ing the daily change of state of the users. A particle representing a users distribution

11The portion of the particles that is kept unchanged depends on our level of confidence in the
observation



48CHAPTER 3. A TAC-AA TOP-PERFORMING AGENT - AMODEL-LIGHT APPROACH

Figure 3.7: Modeler’s Particle Filter Architecture.

P = (NNS, NIS, NF0, NF1, NF2, NTR) is advanced by applying a transition model (which

defines the state transition probabilities) to the represented user population, resulting

in an advanced users distribution P a = (Na
NS, N

a
IS, N

a
F0, N

a
F1, N

a
F2, N

a
TR). The transition

model is given as part of the game specification, and is constant except for the transi-

tions from focused searching states to the transacted state (which depend on capacity

usage levels, and therefore is no longer Markovian). Furthermore, the transition prob-

abilities depend on the presence of a burst (effecting the probability of transitioning

from NS to IS, an effect may last for a few simulated days) and therefore each particle

also maintains a burst-status which is used to select the appropriate transition model

to use.

The particle advance algorithm is the following: First the appropriate transition

model (burst or regular) is selected - this is a random choice (the probability of a

burst depends on the current burst status). Second, the users NS of each state S are

transitioned according to the transition model (we use successive binomial sampling to

implement a multinomial random generator, and we compute the conversion probability

based on estimates of the number of bidders for each query). Finally, Na
S (the advanced

population of state S) is set as the aggregation of all users transitioned to state S. The

overall Particle Filter part of the modeler’s architecture is illustrated in Figure 3.7:

Modeler architecture: particles are advanced using the transition model (TM) which is

regularly updated with the recent estimates of the number of bidders for each query.

Also, a K-Nearest Neighbor estimator that was trained off-line is used to provide the



3.4. TAU AGENT FOR TAC-AA 2011 AND BEYOND 49

input (total number of impressions) to the particle filter. The estimates of users at

states are used to assess for each query q the total potential queries mq,b, mq,n in

converting states and non-converting state (respectively).

3.4.3.7 Performance

Empirical evidence (that is, several competitions in which both methods of estimating

the total impressions for the particle filtering input were employed) suggests that using

the Nearest Neighbor method for Particle Filter input (instead of exact computation

based on game specification) has negligible effect on the agents performance overall.12

The estimates of the particle filter regarding the number of users in two of the states

are illustrated in Figure 3.8, where the red lines are the estimates based on the KNN-

estimated inputs and the blue lines are the true figures.

Figure 3.8: Particle Filters’ estimates for the F2 state (top) and IS state (bottom).
The horizontal axis is the game time (logical day), and the vertical axis is the number
of users in the state.

3.4.4 Optimizer’s Query Allocator

Consider the relation (3.2) of the total utility U(m) resulting from selling m units

through some fixed query q13. First note that not every value of m is sale-able. This

12This is based on scores variation similar to those resulting from the stochastic nature of the setting.
Statistical significance tests were not performed, however.

13To simplify the notation, the query is omitted when not essential.



50CHAPTER 3. A TAC-AA TOP-PERFORMING AGENT - AMODEL-LIGHT APPROACH

is because the number of units sold depends on the resulting position in the auction

and there are only 5 positions possible (pertaining to 5 bid ranges and resulting in only

5 possible values of m). Nevertheless, since the estimated relation of bid to position

is inherently inaccurate (see Section 3.4.1), we relax the discretization and assume a

monotone continuous piecewise linear relation b(m) and its inverse m(b). Similarly,

CPC(b(m)) (the cost per click when selling m items) is assumed to be piecewise lin-

ear m and we conclude with an approximated shape of U(m), which is schematically

illustrated in the left part of Figure 3.9:

Figure 3.9: Schematic forms of U(m) and m(u).

For low values of m the cost of selling is low and therefore the marginal utility

(derived from (3.2))

u(m) = R− CPC(b(m))

CVR
(1 +

mn

mb
) (3.6)

is high. Upon crossing a threshold, the marginal utility drops and therefore the total

utility may drop (but increase with m thereafter). Note the somewhat convex shape

(as m grows the marginal utility might become negative). Again, u(m) may be ap-

proximated as a piecewise linear function of m with increasing slopes (since b(m) is

monotone in m). Its inverse m(u) may be therefore approximated to have a somewhat

concave shape14, as illustrated in the right part of Figure 3.9.

Now, the optimizer’s Query Allocator’s task is to find at every day t an optimal

(highest profits) bid bundle for day t+1 that achieves the daily allocation Q̃t+1 of (3.1).

Using (3.6) the optimizer may derive the result set (specifically the bid b and number

of conversions m) pertaining to a target marginal utility u. This may be done by first

solving (3.6) to recover the CPC (the rest of the variables are known or estimated by

the modeler), then using the monotone relations maintained by the modeler to find the

associated bid and target position, and finally using the game parameters maintained

14Note that a decrease in the utility per unit sold occurs when the related cost per unit sold increases
(reflecting a better ad position for the query), which leads to a higher number of conversions. Therefore
m(u) decreases with u.



3.4. TAU AGENT FOR TAC-AA 2011 AND BEYOND 51

by the modeler to get an estimate of the total impressions, clicks, and conversions15.

We can now formalize the optimizer problem of finding the optimal bid bundle

subject to the capacity constraint as the following program:

max
{bq}

∑
q

Uq(mq(bq)) , subject to
∑
q

mq(bq) ≤ Q̃ , (3.7)

where mq(bq) is the assumed number of units to be sold when bidding bq on query q,

and Q̃ is the daily sales quota as set by (3.1). Now, making the simplifying assumption

that Uq(·) are concave16 for every q, it is easy to see that for an optimal solution {m∗q}

of (3.7) all the marginal utilities u(m∗q) are equal.

Therefore, the optimization problem (3.7) is solved by a simple linear search for the

maximal marginal utility u∗ for which the resulting total sales achieve the quota:

{(mq(u∗)} such that u∗ = max∑
mq(u)≥Q̃

u ,

Our simple search for the optimal utility17 starts at a predefined constant high

utility level uh and decreases it repeatedly (in ∆ sized steps) until our total estimated

sales reaches the target daily allocated quota (or until a predefined constant low

utility ul is reached - this is to avoid the risk of negative utility, and to ensure that

our algorithm stops even in cases where the total potential sales are lower than the

allocation).

The optimization’s algorithm pseudocode alongside an illustration of this simple

search method follows:

15 Using the modeler assessment of total impressions, the estimation of the continuation probability,
and the estimates of click and conversion probabilities to calculate (respectively) the effective number
of impressions, total clicks, and the number of conversions when bidding for the target position.

16As discussed before, Uq(m) is of course not concave, since Uq(m) has a discontinuity precisely at
the discontinuity points of b(m).

17This could also be done faster using binary search.



52CHAPTER 3. A TAC-AA TOP-PERFORMING AGENT - AMODEL-LIGHT APPROACH

u← uh

while (
∑

qmq(u) ≤ Q̃) AND (u ≥ ul) do

u← u−∆

end while

return {bq(u)}

Algorithm 1: Optimize (Q̃, {mq(·)}, {bq(·)})

Finally, regularization was added to preclude quota underutilization:18 The regu-

larization is based on the perplexity of the allocation.19 Denote by m(u) ∈ ∆16 the

normalized vector of units allocated to the queries. The perplexity of m increases with

the number of queries taking part in the allocation represented by m (and the other

way around). Now, in the regularized optimization algorithm we discount the estimated

sales for a given utility level using a logistic function of the allocation perplexity. Specif-

ically, by a factor 1
1+β·e−p(m) . We used a parameter β to tune the regularization degree,

where a high β represents a high preference to spreading the allocation across queries.

Now, as u decreases, mq(u), the perplexity p(m(u)), and the regularization factor in-

creases. Therefore, our regularized algorithm (which is identical to Algorithm 1, but

with (1 + β · e−p(m(u))) multiplying Q̃ in the while condition) will result in the highest

uniform utility level that achieves a regularized quota (higher - since the regularization

factor is smaller than 1).

3.4.5 Results

The additions to our tau agent proved effective. Our agent reached 3rd place in the

2011 TAC-AA competition finals, scoring within 2% below the winning agent (TacTex

winning again, although in 2010 the winner’s margin was 10%, significantly higher).

The tau agent for the 2012 TAC-AA competition included minor enhancements, mainly

tuning some of the agent’s parameters based on logs from the 2011 competition. The

agent did very well in the semifinal rounds, reaching the top position. However, in the

final rounds (where only the best 8 scoring agents from the semifinal rounds participate)

18resulting from a combination of sales estimation errors and allocation to very few queries
19The perplexity of a probability distribution d ∈ ∆n is defined as p(d) = 2H(d), where H(·) is the

entropy



3.5. LIMITATIONS OF MACHINE LEARNING MODELS 53

it reached 3rd place (again, scoring within 2% below the winning agent, this time

Mertacor) as in the 2011 competition. The significant difference in ranking between the

semifinals and finals is typical of such settings in which the quality of a strategy depends

on the strategies of the other competitors. In the case of the TAC-AA competition,

an agent that did not make it to the final rounds might be influencing more one agent

than another, and once removed the ranking of scores of the remaining agents could

significantly change. Therefore, the results of the TAC-AA 2012 competition further

reinforces the game nature of the setting and the notion of a winning strategy which

is only relevant with respect to the strategies of competing agents. This conclusion is

further supported by the results of the TAC-AA 2013 competition, in which (assuming

minor modifications to the other competing agents, tau was again minimally tuned) the

top three positions were shared by the same top three agents from the 2012 finals, this

time with our tau agent finally winning. Indeed, since the scores of the top performing

agents (both in 2012 and in 2013) were so close, it might very well be that minor

tuning and readjustments (although not resulting in significant score increase) made

a difference with respect to the rankings, resulting in very similarly-performing agents

switching the top position in consecutive years.

3.5 Limitations of Machine Learning Models

TAC-AA agents employ different Machine Learning techniques trying to estimate dif-

ferent game parameters and states. With the goal of assessing the benefit that agents

can obtain from improving their Machine Learning components, we modified the game

server so it will send to one of the agents some of the unobservable parameters the

agents try to learn, so this agent has a perfect knowledge of them. Our results indi-

cate that even though Machine Learning models are inherently inaccurate, eliminating

their error rates completely has only a minor effect on the performance of the agent.

Therefore, we can speculate that improving these models is not likely to increase the

agents’ score. We can deduce that the global performance of a learning system might

not improve significantly even if all errors are eliminated. This is an excellent example

where even significant improvements in the accuracy of the ML components would have

a diminishing effect on the overall performance of the system.

Using our top performing tau agent, we modified the game server to send two types



54CHAPTER 3. A TAC-AA TOP-PERFORMING AGENT - AMODEL-LIGHT APPROACH

of information to our agent:

1. Parameters - The exact values of several unobservable parameters: advertiser’s effect

(eqa), continuation parameter and reserve prices.

2. Users distribution - The number of users in each state, for each query type.

We tested the effect this information had on our agent’s performance in a compe-

tition against the agents mentioned in Section 4.2. This information obviates the need

for certain ML models, and in fact simulates the use of perfect models. Hence, these

tests enable us to assess the additional profit one could hope to gain by improving these

ML models.

In the first experiment we modified our agent to receive only the parameters from

the server. These parameters enable it to make better assessment of Cost Per Click

(CPC), Click-Through Rates (CTR) and effective number of impressions.

In our original agent, these parameters were estimated using iterative maximization

methods, with an error rate of about 15%. Therefore, this information is a major

estimation improvement. However, the average score of this agent was improved only

by 1%, an improvement which is not statistically significant.

In the second experiment we modified our agent to receive only the users distribution

from the server. Thus, the modified agent had perfect knowledge of the users’ state in

each time. In our original agent, this task was carried out using K-Nearest Neighbor

approach, which was the input to a Particle Filtering model. The error rate of the

K-NN model was 25%.

The score improved by 2%, which is not statistically significant (p = 0.2). This

result implies that despite the high error rate of the K-NN model, the particle filter

model creates good enough estimations of the users’ state, which cannot be improved

drastically.

Finally we modified our agent to receive both types of information. This agent had

all of the information it needs in the game, except for the bid bundles of its opponents.

In this setting, the agent’s average score was improved by 5%, an improvement

which is statistically significant (p < 0.05). This result is somewhat surprising when

considering the minor effect that each set of information had by itself. It seems that

improving only one model has little contribution, but having perfect models in both

domains is more significant.

The results of these three experiments suggest that improving the accuracy of the



3.6. CONCLUSION 55

ML models employed in TAC-AA has a limited contribution to the final result. Pre-

sumably, the high error rate of the ML models does not lead to impaired performance,

and this error rate is somehow overcome during the optimization process of the agent.

3.6 Conclusion

Using a very simple model-light approach to implement our first TAC-AA agent (that

is, minimal modeling of the game actual parameters and competitors behavior) resulted

in a relatively high performing agent. Furthermore, due to its simplicity, the agent was

implemented in a very short time and required minimal fixes and debugging. This agent

used a very limited action space (only bidding to win the first position in a favorable

subset of the available queries). To reach the top-scores, however, a key component

(and state) of the game - the distribution of simulated users across searching states -

had to be modeled. The user’s distribution was modeled in our tau agent (as in other

competing agents) using a particle filter method. Our agent, however, managed to

implement the particle filter while avoiding a tailored reverse-engineering of the game

specification and using instead the model free nearest neighbors learning algorithm for

the estimation of the particle’s filter inputs. Our top performing agent also avoided

modeling the competitors by simple estimators for the cost and resulting position upon

a certain bidding level. Our tau agent eventually won the 2013 TAC-AA competition

after reaching third position in both the 2011 and 2012 TAC-AA competitions. We

further showed, by modifying appropriately the TAC-AA game server, that no real

benefit is expected from improving our simple learning models. This is probably due

to the inherent unpredictability of the TAC-AA setting.



56



Chapter 4

An Empirical Study of Agent

Robustness

We study the empirical behavior of trading agents participating in the Ad-Auction

game of the Trading Agent Competition (TAC-AA). Aiming to understand the appli-

cability of optimal trading strategies in synthesized environments to real-life settings,

we investigate the robustness of the agents to deviations from the game’s specified en-

vironment. Our results indicate that most agents, especially the top-scoring ones, are

surprisingly robust. In addition, using the game logs, we derive for each agent a strate-

gic fingerprint and show that it almost uniquely identifies it. An extended abstract of

this chapter appeared in [66].

4.1 Introduction

As mentioned in Section 3.1, online advertising through sponsored search results has

become a multibillion dollar business in the past years (see also [53, 77, 118]). In

this form of advertising, query specific advertisements are placed alongside organic

search-engine results. Sponsored search has been the object of a considerable amount

of research, both from the publisher and the advertiser’s perspectives.

The Ad-Auction (AA) game in the yearly Trading Agent Competition (TAC), as

described in Section 2.1, presents a sponsored search scenario that employs an ad

auction mechanism and a structured model of users [70]. Competitors in this game

implement retailers that aim to maximize their profit through the use of sponsored

search advertising. This setting facilitates research of agent strategies in a multi-agent

57



58 CHAPTER 4. AN EMPIRICAL STUDY OF AGENT ROBUSTNESS

competitive environment. Furthermore, it can be used to draw more general conclusions

about ad-auction mechanisms and sponsored search [69]. Ad Auctions games have been

held since 2009, and in the course of time the agents improved their performance by

employing complex techniques and strategies [27, 98, 101].

The main goal of the work reported in this chapter was to understand the applicabil-

ity of TAC-AA to real world settings. The game specifies a synthetic environment, and

the agents are developed to take advantages of various features of this environment. It

is reasonable to expect, in that case, deteriorated agents’ performance when confronted

(unaware) with a different environment. Moreover, if agents strategies are over-fitted

to TAC-AA, then the agents with higher TAC-AA performance are expected to suffer

a bigger degradation. To be successful in real settings, trading agents should tolerate

higher levels of uncertainty (compared to the synthetic and simplified TAC-AA sce-

nario). Therefore, robustness of TAC-AA’s top-performing agents to game variations

serves as evidence for the applicability of TAC-AA agent’s strategies to real environ-

ments.

Consequently, our goal was to test whether the agents (especially the top-performing

ones) can adapt to a different environment and still perform well, as expected from

agents in a real world. To that end, we modified the game parameters and tested the

effect of this modification on the performance of some recent TAC-AA agents. Although

(as expected) most of the agents are tailored to the specific game parameters, we show

that the top performing agents perform well even when the parameters are changed and

exhibit robustness. This result suggests that TAC-AA may indeed serve as a test-bed

for addressing real-life scenarios, and that techniques used by top performing agents

may potentially be applied in the real world.

Another objective of our research is to define a strategic fingerprint of a TAC-

AA agent and characterize its behavior. To achieve this objective, we define several

observable attributes that are calculated from the game logs for each agent in each

game, and we incorporate them into an attribute vector we call a strategic fingerprint.

We show that this strategic fingerprint identifies agents, and is also well correlated with

their profit. Therefore, this fingerprint can be used to design better TAC-AA agents.

In addition, it reflects the vulnerability of simple log anonymization, and demonstrates

that it can be overcome using simple ML tools.



4.2. ROBUSTNESS OF TAC-AA AGENTS 59

Table 4.1: The results of the benchmark competition and experiments 1 - 4 from
Section 4.2. The numbers next to the agent name indicate the year in which this agent
participated in the TAC-AA finals.

Agent Benchmark Ex. 1.1 Ex. 1.2 Ex. 2.1 Ex. 2.2 Ex. 3.1 Ex. 3.2 Ex. 4

TacTex10 58,146 67,627 61,294 50,903 62,544 53,578 61,866 36,737

tau11 58,124 64,187 61,107 52,175 61,983 54,406 61,013 49,339

TacTex(2)10 57,929 67,078 61,369 49,639 63,164 54,063 62,656 37,880

Mertacor11 55,716 40,710 53,576 44,349 51,653 51,930 51,546 54,033

Schlemazl10 55,413 62,766 60,952 51,323 59,553 53,145 59,246 47,139

Crocodile11 50,735 51,456 50,521 44,682 54,700 45,593 53,369 40,386

tau10 49,699 49,381 49,145 43,330 52,735 44,271 50,617 39,292

EpflAgent10 45,886 34,648 47,564 38,933 51,042 41,565 49,330 40,836

Median 55,565 57,111 56,032 47,161 57,127 52,538 56,308 40,611

4.2 Robustness of TAC-AA Agents

In order to assess the robustness of TAC-AA agents, we ran several experiments in

which we varied some of the game hidden parameters (i.e., parameters which are not

revealed to the agents at the beginning of each game), and ran a standard 48-game

competition in each new setting. The agents tested are agents from the TAC repository,

who competed in the Ad Auction finals in 2010 and 2011. To complete the set to the

required eight agents, we used two copies of one agent, TacTex (this also enabled us to

estimate the effect of the game randomness on an agent’s profit).

Since this combination of agents never participated in a public TAC-AA competi-

tion, a benchmark competition was first held. The results of this competition as well

as the results of our first four experiments are detailed in Table 4.1.

For each experiment, we compared the score of each agent to its score in the bench-

mark competition, and noted the difference in the agent’s position. We ran t-tests

with 0.95 confidence level to find the statistical significance of this difference. We also

compared the median score in each experiment to the median score of the benchmark

competition, in order to understand the general effect of the changes we made.

Our results show that most agents, especially the top performing ones, are robust

to changes in the game parameters, although they overfit to TAC-AA parameters to

some extent.



60 CHAPTER 4. AN EMPIRICAL STUDY OF AGENT ROBUSTNESS

4.2.1 Experiment 1 - Users Model

In the following experiments we modified the users model, i.e., we changed the transition

probabilities in the users state machine, in order to differentiate between agents who

rely heavily on the exact game parameters and agents that do not.

Ex. 1.1: We increased the transition probability from Non Searching mode (NS) to

Informational Searching mode (IS) by a factor of 5 (from 0.01 to 0.05).

We hypothesized that this change will have a strong general effect, i.e., that it will

increase the median score of the competition, since it increases the number of users

which see ads, click on them and convert. We also expected that it will affect all agents

similarly, and expected only a mild change in the relative positioning of the agents.

The median score of this competition was 57,111, which is significantly higher than

the median of the benchmark competition. In addition, this change had a very differ-

ent effect on different agents: while it increased the score of the top-performing agents,

TacTex, tau11 and Schlemazl by 10-15%, it decreased the score of EpflAgent and Mer-

tacor by about 25%. These differences were found statistically significant (p < 0.01).

The other two agents maintained their old score - tau10 and Crocodile.

35000 

40000 

45000 

50000 

55000 

60000 

65000 

0.1- 0 0.1 

Tau 11 

TacTex 10 

TacTex(2) 10 

Mertacor 11 

Schlemazl 10 

Crocodile 11 

Tau 10 

EpflAgent 10 

Figure 4.1: The results of experiment 2,
where the advertiser effect is modified by
±0.1 .

35000 

40000 

45000 

50000 

55000 

60000 

65000 

0.4- 0 0.4 

Tau 11 

TacTex 10 

TacTex(2) 10 

Mertacor 11 

Schlemazl 10 

Crocodile 11 

Tau 10 

EpflAgent 10 

Figure 4.2: The results of experiment 3,
where the conversion rate is modified by
±0.04 .

Ex. 1.2: We slightly modified the users’ transition matrix, but this time we changed

the transition probability between the different focus level searching modes. Hence, the

overall number of searching users did not drastically change, but the distribution of the

users between the different focus levels changed.

We hypothesized that this change will differentiate between agents who heavily rely



4.2. ROBUSTNESS OF TAC-AA AGENTS 61

on the TAC-AA parameters and agents whose users models are more adaptive.

The median score of this competition was slightly higher than the median of the

benchmark competition. This experiment had a milder effect on most agents. It sig-

nificantly increased only the score of Schlemazl (by 10%, p = 0.04), while the scores of

TacTex, tau11 and EpflAgent increased by about 5%, which was not found statistically

significant. It also slightly decreased the score of Mertacor (by 4%, p > 0.1), as well as

the scores of tau10 and Crocodile.

Combining the results of the two experiments, we can conclude that most agents

are quite immune to changes in the users model. Specifically, TacTex, tau11 and

Schlemazl seem less dependent on the exact values of the user transition probabilities,

while Mertacor seems dependent on these values.

4.2.2 Experiment 2 - Click-Through Rate

In order to change the users’ click-through rate, we modified the range from which

the advertisers’ effect (eaq) is drawn. This parameter is the baseline probability that

a user will click a generic ad of advertiser a, shown in query q. This probability can

be modified by a targeting factor, for a targeted ad, and a promotion factor, for a

promoted advertisement slot.

We ran two experiments - one in which we increased the expectation of eaq by 0.1 for

all focus levels1 (Ex. 2.1), and another in which we decreased it by the same amount

(Ex. 2.2). We expected that increasing this parameter will increase the overall revenues

and vice-versa, since increased advertiser effect will result in more clicks and therefore

more conversions.

The results of these experiments are shown in Table 4.1, as well as in Figure 4.1. As

expected, decreasing the advertisers’ effect reduced the median score (by 15%), while

increasing this effect raised the median score (by 3%). This effect was similar for most

agents, except for Mertacor. The effect on all agents was found statistically significant

(p < 0.001).

When examining the graph in Figure 4.1, we can clearly see that most agents

exhibit a similar performance in some sense - their score in the benchmark competition

1The values of these parameters are originally drawn uniformly at random from the ranges [0.2, 0.3],
[0.3, 0.4] and [0.4, 0.5] for focus levels F0, F1 and F2, respectively.



62 CHAPTER 4. AN EMPIRICAL STUDY OF AGENT ROBUSTNESS

exceeds the average of the low and high CTR experiments. This excess is due to

overfitting the agents to the game parameters. As expected, we can see that almost all

agents are optimized to the game parameters. However, the degree of this optimization

varies drastically between agents. The most overfit agent is Mertacor - its score in the

benchmark competition is higher by 14% than the its average score in the two CTR

experiments. TacTex and tau11 show some overfitting (an increase of about 2%), and

the other agents show very little overfitting.

Thus, we can conclude that most agents are robust against changes in the click-

through rate, despite a slight overfitting to the game parameters. This result is not so

surprising when keeping in mind that this rate is not known to the agents and that

they estimate it during the game.

4.2.3 Experiment 3 - Conversion Rate

In these experiments we modified directly the Conversion Rate by 0.04,2 in both direc-

tions (Ex. 3.1 & Ex. 3.2). The original parameter is known in advance to the agents,

so we can assume that they all rely on it in their optimization.

We expected that changing this parameter will have a direct and similar effect on

all agents, i.e., that an increased conversion rate will lead to higher scores.

The results of these experiments are shown in Table 4.1 and in Figure 4.2. As

expected, decreasing the conversion rate reduced the median score (by 5.5%), while

increasing it raised the median score (by 1.5%). This effect was similar for most agents,

except for Mertacor whose score dropped in both scenarios by about 7%, an effect which

was found statistically significant (p < 0.01).

As in the previous experiment, this setting also allows us to measure the overfitting

of the agents to the exact value of CVR, by comparing the agent’s benchmark score to

the average of its scores in the two experiments.

In this experiment we see that most agents do not exhibit overfitting to the exact

CVR. The only agents whose score exceeds the average significantly are Mertacor (by

7%) and tau10 (by 4.5%). This result is surprising since in TAC-AA the exact value

of the CVR is a constant known to the agents, and so we expected that agents will be

optimized to it.

2The original conversion rates are 0.11, 0.23 and 0.36 for focus levels F0, F1 and F2, respectively.



4.2. ROBUSTNESS OF TAC-AA AGENTS 63

4.2.4 Experiment 4 - Single Ad

In this experiment we reduced the number of advertising slots from 5 to 1, to simulate

a banner-based advertising. This change is rather dramatic, and we expected that it

will reduce drastically the median score. We also hypothesized that all agents will be

affected in a similar way, since they all are optimized to multi-ad setting, where an

agent can manipulate its position in order to optimize its sales and CPC. In the banner

setting this flexibility is considerably diminished.

As we expected, the scores of all the agents dropped, and the median score was

lower by 27%. However, the agents were not similarly affected - while the score of

Mertacor was reduced only by 3% (p > 0.2), the score of other agents (tau10, tau11,

Schlemazl and Crocodile) dropped by about 15% and the score of TacTex dropped by

35%. The latter changes were found statistically significant (p < 0.01).

This experiment differentiates between agents who aim at lower positions and agents

who aim at higher positions. The former agents are more affected by the elimination

of these spots. Unlike the previous experiments, Mertacor was the most robust to this

change, presumably since it aims at higher positions at all settings.

4.2.5 Experiment 5 - Population Size

In this set of experiments we varied the number of users in each product population,

from 2000 to 20000. The population size in the original competition is 10,000 and is

known to be fixed. Many agents employ Particle Filtering in order to estimate the users

distribution, and knowing the exact population size is a precondition for this technique.

The results of these experiments are shown in Figure 4.3. Due to the capacity

limit in TAC-AA, increasing the number of users does not increase the score signifi-

cantly. However, reducing the number of users damages the performance of all agents

drastically. The median score for increasing the number of users was approximately

unchanged, while for decreasing the median score deteriorated quickly from -15% for

8000 users until a decrease of more than 80% for 2000 users. These decreases were

found statistically significant (p < 0.04).

It is no surprise that the TAC-AA agents are not robust against changes in the

population size. This size is known in advance and it’s an important factor in the

optimization process. Furthermore, it is reasonable to assume that most agents try to

estimate the number of users in each state, and this estimation is based on a constant



64 CHAPTER 4. AN EMPIRICAL STUDY OF AGENT ROBUSTNESS

population size.

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

80000 

2000 4000 6000 8000 10000 12000 14000 16000 18000 

TacTex 10 

TacTex(2) 10 

Tau 11 

Schlemazl 10 

Tau 10 

Crocodile 11 

Mertacor 11 

EpflAgent 10 

Figure 4.3: The results of experiment 5, where the users population size varies from
2000 to 20000.

4.2.6 Conclusion

Our experiments show that most of the TAC-AA agents adapt well to different settings,

despite being optimized to the exact game parameters. The top performing agents of

TAC-AA - TacTex, Schlemazl and tau11 - are rather robust to most changes, but

when the setting is changed drastically, as in experiments 4 and 5, their performance

deteriorates.

This robustness result is somewhat surprising, since one could expect that the top

performing agents in the TAC-AA would be more optimized to the exact game param-

eters and thus will be more affected by changes in these parameters (as is the case of

Mertacor). However, the experiments show that most agents are less over-fit to the

game parameters than expected.



4.3. AGENTS BEHAVIORAL IDENTIFICATION 65

4.3 Agents Behavioral Identification

Using machine learning methods, we show that carefully chosen behavioral features

may be used to identify a competing agent and to predict its profit.

4.3.1 Strategic Fingerprint

In order to characterize an agent’s strategic behavior, we use several attributes ex-

tracted from the games’ logs, to form strategic fingerprint vectors. These vectors iden-

tify the agents, as each agent’s strategic fingerprint vectors are in a different region in

space. In addition, these strategic fingerprints are a good predictor of an agent’s profit

in a game.

Queries are naturally grouped into the three focus levels, and we further split them

into specialty and non-specialty groups. Therefore, we use 5 distinct groups: F2 & F1

specialty queries, and F2, F1 & F0 non-specialty queries. The attributes we use are:

1. Query distribution of impressions, clicks and conversions: We average

across all days the relative part of impressions, clicks and conversions that the agent

got from each of the abovementioned focus-specialty groups. Namely, for each focus-

specialty group g, we compute:

imps percentg =
1

60
·

60∑
d=1

∑
q∈g imps

d
q

|g|
∑

q imps
d
q

clicks percentg =
1

60
·

60∑
d=1

∑
q∈g clicks

d
q

|g|
∑

q clicks
d
q

convs percentg =
1

60
·

60∑
d=1

∑
q∈g convs

d
q

|g|
∑

q convs
d
q

Since we measure only the percentage of impressions, clicks and conversions for each

focus-specialty group, this attribute reflects only the way an agent distributes its budget

across queries, and not the actual number of impressions, clicks and conversions. For

example, using this attribute we can see whether an agent places ads only on his

specialty products, or also on other, less profitable ads.

2. Average ad position: The average position of the agent’s ads within each

focus-specialty group, only for the days in which the agent’s ad was shown.

For each query q in a focus-specialty group g the set Dq holds the days in which the



66 CHAPTER 4. AN EMPIRICAL STUDY OF AGENT ROBUSTNESS

agent’s ad was shown in response to the query. We compute:

posg =
∑
q∈g

∑
d∈Dq pos

d
q

5 · |g| · |Dq|

This attribute tells us if the agent aims at higher or lower positions, and if it aims at

different positions for different focus-specialty groups. For example, we can observe

agents who try to get their ad shown first for their specialty products, but try to get

lower positions for other queries.

3. Proportion of active days: The number of days in which the agent’s ad was

shown for each query, and then average within each focus-specialty group. For each

focus-specialty group g (and Dq as defined above) we compute:

daysg =

∑
q∈g |Dq|
|g| · 60

This attribute can be combined with the above-mentioned attributes to deduce the

emphasis an agent puts on a certain focus-specialty group.

4. The standard deviation of the agent’s daily profit: This attribute is

oblivious to the relative part of the profit that comes from each focus-specialty group,

but rather looks at the daily total revenues and total costs to compute a single attribute.

We scale this attribute by the empirical maximal standard deviation observed across

all games in order to normalize. Hence, this attribute is not directly related to the

agent’s profit, but rather to its stability.

Apparently, the strategic fingerprint vectors of each agent in various games lie in

a typical range. To find these ranges we analyzed the logs of the TAC-AA 2011 finals

and created a strategic fingerprint vector for each agent in each game.

To visually illustrate the strategic ranges of different agents, we used Principal Com-

ponents Analysis (PCA) and projected the agents’ vectors on the first 2 components.

The result is shown in Figure 4.4, and we can see that each agent maintains a slightly

different zone. However, there is no clear distinction between different capacities for

each agent. We can conclude that the agents maintain similar behavior for all capac-

ity values, and therefore the strategic fingerprint does not hold information about the

agent’s capacity.

To demonstrate agent identification using its strategic fingerprint, we used a simple



4.3. AGENTS BEHAVIORAL IDENTIFICATION 67

3-Nearest Neighbor model that classifies agents based on their strategic fingerprints.

The error rate of this model was 5.9%. Most of the errors of the model are due to a

specific agent, Mertacor, whose strategic range is rather wide, while the other agents

are more accurately classified.

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

−2 −1 0 1 2

−
3

−
2

−
1

0
1

comp 1

co
m

p 
2

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●● ●

●●
●

●●
●●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

tau
TacTex
Mertacor
Hermes
Crocodile
Schlemazl
AA−HEU
PoleCAT

Figure 4.4: The Strategic Fingerprints of TAC-AA 11 finalists, projected on the 2 most
principal components. The different point styles correspond to different capacities: high
capacity is marked with full squares, medium capacity is marked with empty circles
and low capacity is marked with crosses.

4.3.2 Relation to Profit

We also used the strategic fingerprints of the TAC-AA 2011 Finals in order to find

the relation between strategic fingerprints and agents’ performance. The measure

we used to evaluate our prediction is an average relative error rate, computed as:

average(|actual profit−predictionactual profit |).



68 CHAPTER 4. AN EMPIRICAL STUDY OF AGENT ROBUSTNESS

The benchmarks to which we compare our results are two simple predictors - one

that always outputs the agent’s average score (has 19% relative error rate), and one

that given an agent name and its capacity predicts the corresponding average (has

10.8% relative error rate). It should be noted that our model is oblivious to both the

agent name and its capacity. In addition, it has no knowledge of the actual number

of impressions, clicks and conversions that the agent was subjected to, nor its actual

profit. It only has information about the emphasis it puts on different query groups

and about its stability.

A simple 3-Nearest Neighbor model to predict an agent’s profit from its strategic

fingerprint had relative error rate of 14.7%, while a linear model had 12.5% relative

error rate. Using Boosting with regression trees the relative error rate was reduced to

9.7%.

4.3.3 A Short Discussion

We can conclude that our strategic fingerprints model well the behavior of TAC-AA

agents. Each agent has a typical range of strategic fingerprint vectors, and these vectors

are well related to its performance in the game. The strategic fingerprint vectors can

also be used to identify agents with high precision.

During the game, the exact values of other agents’ strategic fingerprint are hidden

from each agent. However, an agent can try to deduce them (e.g., by a k-Nearest

Neighbors approach) in order to identify its opponents. This technique might also be

applied in retrospect to identify agents from the game logs. This identification may be

used in the real world, to overcome log anonymization.

Related methods of using behavioral features to differentiate TAC-AA agents were

presented in [69] where the features (some very similar to the ones used here) and

related distance metrics serve to cluster the agents and reason regarding the agent’s

profits and overall performance. Such methods, however, only differentiate groups of

agents (using hierarchical clustering), and the methods presented here may therefore

be viewed as complementing them in a sense.

Finally, since the strategic fingerprint reflects the agent’s performance in the game,

it could possibly be used for agent optimization, e.g., in a gradient descent method.

However, further research is needed in order to assess the contribution of such opti-

mization to the agent’s performance.



4.4. CONCLUSION 69

4.4 Conclusion

We show that most of the TAC-AA agents are robust to environmental changes, despite

their optimization to the exact TAC-AA setting. This robustness is “good news”, and

it is a very important ingredient if one wishes to relate the agents back to a real world

scenario.

In addition, we present a behavioral model of TAC-AA agents that can be used

to identify an agent with high probability and to predict its profit in a game. Future

research could investigate the connection between this characterization and the agent’s

robustness. In addition, this model could possibly be used in an optimization process

of a TAC-AA agent.



70



Chapter 5

AdX - A New TAC Game

A new game, TAC-AdX, is presented. The game simulates elements of the Ad Ex-

change scenario, and competing agents implement the strategies of advertisers tasked

with acquiring and executing advertising campaigns. As other TAC games, this multi-

agent platform serves as a controlled environment to assess agents’ strategies and the

mechanisms employed by the different elements in the setting. The AdX scenario is

presented first, followed by a detailed description of the game and the elements of a

competing agent’s strategy. Thereafter, key architectural and configuration aspects of

the game implementation are discussed. The chapter concludes with an account of the

first few AdX competitions held during 2014 and related insights.

5.1 Motivation, The AdX Scenario

Similarly to traditional communication platforms such as radio and television, online

advertising is the most significant business paradigm of the Internet. Most business

models for Internet-based services depend on online advertising revenues to enable the

huge investments that are needed in order to provide their services at attractive (or

no) cost to users.

The Internet as an advertising platform is used by advertisers during the different

stages of the purchase funnel: Display ads (the ads displayed alongside web content) are

mostly used to strengthen brands by creating awareness and interest, while sponsored

search ads (the ads displayed alongside search results) are mainly used to directly induce

sales of products or services. This difference also results in different pricing schemes

for the ads: while advertisers pay a cost per click (CPC) for sponsored search, the

71



72 CHAPTER 5. ADX - A NEW TAC GAME

display ads are usually priced per thousand impressions - Cost Per Mille (CPM). The

effectiveness of both schemes however (from the advertiser’s perspective) relies on the

ability to target the right audience.

While the effectiveness of sponsored search advertising is straightforward to measure

(direct effect on sales), the situation is more challenging for brand advertising where

brand awareness and purchase intentions may only be indirectly deduced. Nevertheless,

brand advertising accounts for a significant portion of the Internet advertising activity.

It is therefore not surprising that with the advent of some key enabling technologies1,

the ecosystem has evolved from direct advertiser-publisher interaction for setting up-

front the price of the impressions inventory, to an interconnected network of entities

in which the inventory prices are dynamically set. Many of those entities, schemati-

cally partitioned to the Ad Exchange, the publisher’s supply side platforms, and the

advertiser’s demand side platforms (all introduced below, adding value to the advertis-

ers, publishers, or both) are essential to our AdX setting modeled. Some other entities,

such as ad delivery servers and content distribution systems, take part in the display ad

ecosystem but are less relevant to our AdX setting modeled, and are therefore omitted

from the game.

As the number of interactions between advertisers and publishers increased, Sup-

ply Side Platforms (SSPs) were introduced to assist the publishers to optimize their

inventory allocation decisions (e.g., by dynamically assigning each ad impression op-

portunity to one of several contracted advertisers). Ad Exchanges were introduced in

turn to increase ad value to publishers, offering liquidity of inventory (e.g., impression

opportunities that did not fit any ongoing pre-contracted campaign) and value dis-

covery (i.e., impressions that may be sold for higher value than the contracted price)

through a platform that enabled interested advertisers (or ad networks and agencies

acting on their behalf) to bid for impression opportunities. Similarly to SSPs and Ad

Exchanges, Demand Side Platforms (DSPs) were introduced to assist the ad agencies

and networks in optimizing their decisions (e.g., budget allocation of the advertising

campaigns across publishers and ad exchanges, and impression opportunities bid levels)

such that market targeting goals are met. Finally, audience classification is key both for

publishers and advertisers (the former may get higher prices for impressions in which

the audience attributes are specified, the latter uses the audience attributes to ensure

1Mainly user classification services and real-time bidding.



5.1. MOTIVATION, THE ADX SCENARIO 73

proper targeting). Therefore, user classification services are also provided by dedicated

entities based on cookie matching technologies. The resulting setting is schematically

illustrated in Figure 5.1.

Figure 5.1: The AdX Setting: Publishers (potentially using SSPs) may allocate user
impressions to advertisers according to pre-agreed contracts or through the Ad Ex-
change in real-time (RTB). Advertisers respond to real-time impression opportunities
(potentially using DSPs) with a bid that may depend on the related user, whose at-
tributes are provided by a Cookie Matching Service (CMS) provider that trackes users
across publishers.

As noted, the Ad Exchange (AdX) is a pivotal entity in the display ad ecosystem. It

interacts with most interested entities (sometimes including cookie matching services),

provides added value both to the publishers and the advertising agencies, and is best

positioned to extract value from the aggregated information that flows through it as

bidding takes place (e.g., the true value of ad impressions to different advertisers, the

orientation of the audience of different publishers, etc.).

Naturally, this has spawned research activity aimed at analyzing and establishing

the methods used by the different entities involved (as surveyed in [91]): e.g, the auc-

tion mechanism at the AdX [83], the reserve price decision by the publisher (or more

generally, the decision whether to submit an impression opportunity to an AdX or

consume a prepaid inventory) [19], and, in a somewhat different setting, the bid price

decision by the ad network [56].

The purpose of designing the AdX game is multi-fold. Being a multi-agent system

and as with the other TAC games, the AdX game is a platform for evaluating the

effects of the implementation choices of different mechanisms on the situation dynamics.

This mainly includes (among many others, to be detailed later on) the method in

which advertising campaigns are allocated and the payments (to the chosen agencies

that execute the campaigns) are determined, the information available to agencies

(and related cost) as they calculate their bids upon impression opportunities, and the



74 CHAPTER 5. ADX - A NEW TAC GAME

mechanism implemented by the Ad Exchange for calculating the winner, cost and the

method to set reserve prices by the publisher upon impression opportunities.

Crucially, the AdX game is designed to bring forward the question of the value of

information. Specifically, the amount agents implementing the ad network strategy

should pay for information regarding the attributes of the user related to an impression

opportunity. To that end, the AdX game includes a User Classification Service that

competing agents periodically bid for. Determining the value of such information (in

practice, say for bidding purposes) is challenging, mainly since the instantaneous value

of such information depends on the profile of active campaigns to be executed (fulfill-

ment level, remaining time and number of impressions, scarcity of targeted population,

to name a few) while the information service level and cost is set for the aggregated

number of impression opportunities during a whole period and for all campaigns.

Ultimately, the AdX game provides a controlled environment for evaluating Ad

Network strategies through competitions. Such a simplified environment, having signif-

icantly fewer parameters (compared to reality) yet capturing the essence of challenges

faced by Ad Networks, constitutes a test-bed for designing Ad Network strategies.

Moreover, by the nature of the setting being a multiagent game, the performance of

agent strategies depend on the strategies of the other competing agents and as such the

AdX game is essentially a platform for evaluating performance sensitivity to changes

in strategy (both of the agent being designed and its competitors) without the costs

associated to such task in reality. Nevertheless, to maintain relevance and make the

game as realistic as possible, many game parameters are based on real data, combin-

ing information from U.S Census Bureau [38], web traffic data provider Alexa, and

audience measurement company Quantcast.

All in all, taking the ad network perspective, the competing agents in the AdX game

implement the strategies of Ad Networks. They periodically bid to win advertising

campaigns and execute the campaigns by bidding for impression opportunities at the

Ad Exchange. The advertising campaigns are characterized by duration, target user

population, and reach and each campaign is allocated to the agent offering to execute

it at the lowest effective budget (the reach of an advertising campaign is the number of

unique users of the required market segment that are exposed to the campaign, and the

effective budget is a score that considers the offered budget and a quality rating that is

updated based on the ability of the agent to successfully execute campaigns). This gives



5.2. GAME OVERVIEW 75

rise to a fundamental conflict faced by ad networks which are required to balance the

long term profitability goal (attracting advertisers by providing sustainable high quality

targeting) with the short term campaign profitability goal (which depends on its ability

to win properly targeted impression at low cost, compared to the agreed upon budget).

Furthermore, since an ad network may conduct several campaigns simultaneously, a

key challenge for the ad network in this setting is the choice of advertising campaign

to serve for each impression opportunity. The AdX game is designed around those

conflicts and challenges, while simulating many of the methods and mechanisms of

the other entities involved, mainly the reserve price optimization by publishers (a too

high reserve price might result in unsold impressions and therefore unrealized potential

profits), an approximation of the the real-time bidding at the Ad Exchange, and an

auction for user classification service level as a way to reveal the actual value of such

information.

5.2 Game Overview

A high level description of the game model, elements, and flow is provided. Those are

described in more detail in subsequent sections.

5.2.1 A Brief Description

In the AdX game each competitor implements a software agent that performs the

bidding strategy of an Ad Network (AdNet), while a game server simulates the behavior

of users, web sites, advertisers, and an Ad Exchange. Advertising campaigns are created

by advertisers to promote their brands, and the AdNet’s role is to carry out such

advertising campaigns. Each campaign targets a designated subset (Market Segment)

of the Internet user’s population and has a predefined required number of impressions

(Reach) and duration. Each campaign is auctioned among the competing AdNets, and

is allocated to the AdNet that bids to execute the campaign at the lowest cost2 to the

advertiser (Budget).

An AdNet carries out a campaign by bidding for impression opportunities at the Ad

Exchange (AdX ). Each impression opportunity is the result of an Internet User (User)

visiting a Web Site (Publisher), and is allocated by the AdX to the highest bidding

2With some restrictions, to be detailed later.



76 CHAPTER 5. ADX - A NEW TAC GAME

AdNet. Upon the termination of a campaign, the AdNet gets paid by the Advertiser

an amount that depends on the Budget and the actual Reach achieved. The Quality

Rating of the AdNet - its ability to execute a campaign as contracted - is also updated

and used in the campaign allocation auction. Deducting from the amount paid by

the advertiser the price paid through the AdX for the user’s impressions results in the

AdNet’s net income related to the campaign.

Figure 5.2: AdX game setting: From the supply side, visits of users (characterized
by their age, gender, and income level) to publisher’s web sites result in impression
opportunities that are auctioned by the Ad Exchange. From the demand side, the
Ad Networks bid daily to win advertising campaigns (characterized by their reach and
targeted audience). The Ad Networks also bid daily for the cost and level of a user clas-
sification service that determines the ability of the Ad Network to identify the market
segment of the potential user to be impressed. Bids for the impression opportunities are
submitted by competing Ad Networks in order to execute their contracted Advertising
Campaigns.

The game server simulates up to 60 days.3 A new campaign is announced and

auctioned every day (therefore, a competing AdNet may be executing several campaigns

simultaneously!). Each day, every user visits one or more Publisher’s web sites (The

sites visited are randomly chosen according to the user’s attributes and the Publishers’

predefined orientation), and the resulting impression opportunities are handled by the

AdX and assigned to AdNet’s campaigns. The ability of an AdNet to access the user

attributes related to an impression opportunity (such attributes highly influence the

3This figure, and many other game parameters are configurable through a configuration file



5.2. GAME OVERVIEW 77

relevance of the impression to a campaign and as a result its value to the AdNet and

the related bid) is determined by the current User Classification Service (UCS ) level of

the AdNet. The AdNets bid daily for the UCS level. Upon game termination, the total

score of each competing AdNet is the sum of campaign related net income deducted by

the accumulated UCS cost. The game entities and relations are illustrated in Figure 5.2

which also illustrates the key challenge faced by a competing Ad Network: In the short-

term the Ad Network wishes to make a high net profit by winning advertising campaigns

and executing them at an AdX cost that is significantly lower (to allow for UCS costs

that are shared among all campaigns) than the related campaign budget. In the long-

term, however, AdX execution costs may be high (due to competition over certain user

populations with other Ad Networks executing other campaigns) in order to maintain

a high quality rating that is essential to win future advertising campaigns.

5.2.2 Game Entities and Flow

As typical in the Trading Agent Competition4 and architecturally similar to the TAC

Ad Auctions5 (TAC-AA) game [70], the game consists of a sequence of periods (each

lasting one day) in which the competing Ad Networks aim to win user impressions in

order to fulfill their contracted advertising campaigns. Every simulated day the agent

bids to win advertising campaign contracts and submits a bidding strategy to the Ad

Exchange. The Game server simulates the daily activity of a population of users who

visit web sites, each visit resulting in an impression opportunity announced to the Ad

Exchange. Upon every impression opportunity the game server (simulating the Ad

Exchange functionality) conducts an auction based on the agent’s submitted bidding

strategies and the impression is allocated accordingly.

At the beginning of the game each competing Ad Network is assigned an advertising

campaign, and additional advertising campaigns are auctioned daily among the Ad

Networks. Each advertising campaign auctioned results in a contract in which the

winning Ad Network commits to win a fixed number of targeted user impressions at a

price per impression (the amount to be earned by the Ad Network) that is set through

the daily auction. The actual bid for a user impression may also depend on the access

device used by the user to access the web sites (desktop or mobile) and the type of ad

4See www.sics.se/tac.
5See aa.tradingagents.org/



78 CHAPTER 5. ADX - A NEW TAC GAME

chosen by the publisher (video or text).

A performance rating is maintained for each Ad Network. The performance rating

is taken into account in the daily advertising campaign auction (it influences the ability

to win new advertising campaigns and the associated revenue) and is updated upon the

expiration of each campaign based on the success level of the Ad Network in fulfilling

the contract. Therefore, in order to maximize its profits (the ultimate goal of the

game), it is key for the Ad Network to balance the performance rating and the actual

costs of bidding for impression opportunities at the Ad Exchange. The game setting is

illustrated in Figure 5.3 and further detailed:

Figure 5.3: AdX game entities and flow: Users visits to Publisher’s web sites result in
impression opportunities that are auctioned by the Ad Exchange. Bids for the impres-
sion opportunities are submitted by competing Ad Networks in order to execute their
contracted Advertising Campaigns. The Ad Networks also bid daily to win advertising
campaigns and for the cost and level of a user classification service that determines
the ability of the Ad Network to identify the market segment of the potential user to
be impressed. The competing agents base their bids on daily reports detailing their
specific contract execution figures and overall user and web sites statistics.

• Audience: Users and Market Segments: The user population visiting the publish-

ers’ web sites is based on Age, Gender, and Income, where each attribute has a



5.2. GAME OVERVIEW 79

small set of possible values (e.g., male and female for Gender, 25-34, 35-44, . . . for

Age ). Furthermore, each user’s attribute value belongs to one of two ranges (e.g.,

Young and Old for the Age attribute, as illustrated in Figure 5.4) and a Market

Segment is a subset of the population that belong to specific ranges for one two

or all the three attributes (e.g., Young users of High income, denoted YH). Each

day every user may visit one or more web sites: After each visit of a user to a

web site, a continuation parameter determines whether the user continues to visit

web sites or stops until the next day.

Figure 5.4: Users attributes and market segments

• Publishers: The web sites submitting impression opportunities to the Ad Ex-

change upon users’ visits differ by the service they provide to the users: News,

Shopping, Social interaction, Media consumption (e.g., music, video, books, etc.),

and Games. Accordingly, each web site has a predefined orientation level toward

the audience attributes, which is reflected in the probability of a user with certain

attributes visiting each web site.

Figure 5.5: Publishers Orientation: A publisher’s web site is characterized by the
distribution of visiting user’s attribute values (Age is illustrated above)

With every user visit, the publisher submits one or more Ad Requests (each

reflecting an impression opportunity) to the AdX, accompanied with a user iden-

tification reference and a reserve price (the requested minimal price to be paid

by a winning Ad Network).

• Ad Exchange: Upon an Ad Request from a publisher, the AdX solicits the com-

peting Ad Networks to bid for the potential impression. Together with the Bid



80 CHAPTER 5. ADX - A NEW TAC GAME

Request indication, the AdX passes the related publisher and user details. The

amount of user details disclosed to each Ad Network depends on the Ad Network’s

User Classification Service (UCS) level, as determined through a dedicated daily

auction. The AdX implements the mechanism for selecting the winning bid and

related price and facilitates the display of the ad from the allocated campaign.

To allow for efficient implementation of the Real Time Bidding that takes place

in reality (that is, the AdX announcing each impression opportunity to the Ad

Networks), the competing Ad Networks communicate to the AdX a bidding map

(called a Bid Bundle) ahead of time. The Bid Bundle maps the potential context

of an impression opportunity (the user’s market segment, the publisher, the access

device and ad type) to a bid amount and a distribution over the Ad Network’s ac-

tive advertising campaigns. During each simulated day, impression opportunities

are auctioned and allocated to the winning Ad-Networks’ campaigns according

to the submitted bidding strategies.

• User Classification Service: Using cookie matching technologies, the user classifi-

cation service provider allows the ad networks to target the required audience for

their contracted advertising campaigns. The price of the service and its accuracy

are set by a dedicated daily auction.

Figure 5.6: Ad Network Decisions in the AdX game: In real-time (approximated by the
Bid Bundle scheme) every impression opportunity is mapped to a bid amount and a
campaign allocation. Once a day, a bid for the UCS level and the outstanding auctioned
advertising campaign.



5.2. GAME OVERVIEW 81

Finally, Ad Networks are implemented (each) by a competing agent. The competing

agents bid daily for new advertising campaign’s budget and for user classification service

level. The Ad Networks may update their daily submitted bid bundles to the AdX based

on daily reports that include web sites’ popularity statistics and campaigns’ revenues

and costs. Figure 5.6 illustrates the decisions made by an Ad Network.

This concludes the review of the AdX game entities and related mechanisms. See

Figure 5.7 for an illustration of the different mechanisms as applicable to the game

entities.

In later sections complete details of the mechanisms is provided, covering the many

details that were omitted in this short overview: The method in which the Ad Networks’

Quality Rating is updated upon campaign termination, the effect of the quality rating

on the campaign allocation auction, minimum and maximum budgets in the campaign

allocation auction, the way user classification service levels and related prices are set,

the daily impression and budget spending limits used in the AdX impression oppor-

tunity auctions, the algorithm implemented by publishers for setting reserve prices on

impression opportunities and ad types, and the way real web sites statistics are used

in the simulation of the user’s choice of access device and visits to publishers web sites.

Figure 5.7: AdX Game Main Mechanisms.

Finally, the game’s daily flow (illustrated in Figure 5.8) is the following: The first

message received on day 0 is a campaign-allocation message - each agent gets allocated a

random campaign (of random targeted audience and reach, scheduled to start on day 1)

to carry out. The first message received by agents on a typical day n (where n > 1) is a

report regarding their allocated campaigns (accumulated statistics - up to and including



82 CHAPTER 5. ADX - A NEW TAC GAME

day n−1 of achieved impressions and related costs). A campaign-opportunity message

follows with details regarding the targeted audience, reach, and duration of a campaign

that is scheduled to start on day n+ 2. An agent may respond with a bid-message that

includes both the agent’s bid regarding the budget of the campaign announced and the

agent’s bid with respect to the UCS. The results of the campaign and UCS auctions

and the updated quality score (those to be in effect starting day n+ 1) are reported on

a typical day n > 0 by the game server to the AdNets in a daily-notification-message

that is sent before the campaign-opportunity message. Finally, after an additional

set of reports sent by the server to the AdNets (a bank-status message, a publisher-

report with web-site statistics, and an AdNet report with AdX bidding statistics, both

regarding day n− 1) the server simulates the users behavior of day n and during that

time the agents may calculate their bid bundles to the AdX (the bid bundle includes

the campaign allocation probability and bid amount to be used upon an impression

opportunity, as a function of the impression attributes: the market segment the user

may belong to, the access device used - mobile or desktop - and the ad type - video

or text). The bid-bundle message is then sent by each AdNet to the game server upon

request (a simulation-status-message).

Figure 5.8: Message flow in the AdX game. The number in parenthesis indicates the day
referenced in the message content. For example, the content of the Daily Notification
message sent on day n announces the winning AdNetwork for the campaign to begin on
day n+ 1, and the UCS level and Quality Rating to be in effect for the AdNet during
day n+ 1. Note also that sending the AdNet Bids message may be deferred until after
the reception of the Simulation Status message.



5.3. THE MODEL 83

5.3 The Model

The game model and related mechanisms and entities are now described in detail:

Those simulated by the game server (users, publishers, ad exchange, and advertising

campaigns) and those to be implemented by the competing agents.

5.3.1 Users and Market Segments

In reality, the Internet economy is based on showing ads to a population of users that

browse the Internet. As evident from interaction protocols such as [68], ad targeting

algorithms use the users’ reported attributes for their decisions (mainly since a key

requirement faced by algorithms for executing advertising campaigns is to reach a

designated target market segment). Therefore, to model such a population in a realistic

manner we are required first to choose a representative subset of users features and then

to generate a population sample that statistically resembles the real users population.

For the first, three attributes are chosen to characterize an AdX game user - Age

(One of six possible ranges: 18-24, 25-34, 35-44, 45-54,55-64,65+), Gender (One of

the two values: Male, Female), and Income (One of four ranges: $0-$30K, $30-$60K,

$60-$100K, $100K+), and for the second U.S. Census Bureau data ([38]) is used. A

population of 10000 users (the total audience) is created at the beginning of each game

by sampling according to publicly known probabilities that are detailed in a table in

the game specification. The table consists of an entry for each of the 48 user types,

indicating the number of users - out of the default total 10000 - of that type.

Market segmentation (the structure used to designate a subset of the population)

is essential for efficiently specifying the targeting of advertising campaigns (see for

example [57], which uses user demographics, but also interests, activities, and the

social graph). For the AdX game, a set of partitions of the users population is defined

by partitioning each attribute range to two (that is, the user’s Age range to Younger =

{18− 24, 25− 34, 35− 44} and Older = {45− 54, 55− 64, 65+} and the user’s income

range to Low = {$0− $30K, $30− $60K} and High = {$60− $100K, $100K+}). The

partitions are illustrated in Figure 5.4. Now, a market segment is any intersection of

partitions (at most one partition per attribute). For example, if we designate each

partition by its initial letter (e.g., Female by F and Younger by Y) we get the following

12 market segments of double partitions: FY, FO, MY, MO, YL, YH, OL, OH, FL,



84 CHAPTER 5. ADX - A NEW TAC GAME

FH, ML, MH. Market segments of single partitions (e.g., M) or triple partitions (e.g.,

MYH) are also valid (and there are 6 and 8 such segments, respectively). Note that in

general (and specifically in this case) the segments may overlap (i.e., a user may belong

to multiple segments).

5.3.2 Publishers’ Web Sites

Publishers’ web sites differ by the demographic statistics of their visiting users and the

governing statistics regarding the access devices used by those users and the type of ads

displayed. This section details the model used to implement the different publishers, the

mechanism used to set the reserve prices, and the way those are combined to simulate

the users’ visits and resulting impression opportunities announced to the ad exchange.

5.3.2.1 Web Site Characteristics

To model user’s visits to web sites we use real data from Alexa [3] and Quantcast

[6]. Using Alexa, we set age, gender, and income statistics for each of six leading

web sites in News, Shopping, and Information business categories.6 This demographic

distribution of user attributes at a web site is interpreted as the conditional probability

of a user to have a certain attribute value given a visit to the web site. Specifically,

we denote the user orientation characteristics of web site w as PAge(·|w), PGender(·|w),

and PIncome(·|w). Using QuantCast data (merely the user visiting rate to web sites) we

set the relative popularity PW (w) of each web site w.

Two more modeling aspects of the publisher’s web sites are the user’s choice of

access device (whether using a desktop computer or a mobile device to browse the

internet), and the publisher’s choice of the ad type (that is, a static/text banner or

a video clip). The value to an advertiser of impression a user through video (vs.

e.g., text), may be significantly higher (and is modeled into the advertising campaign

characteristics, as detailed in Section 5.3.4) although some restrictions (e.g., availability,

bandwidth, user attention, etc.) might preclude the constant usage of one method over

the other. Similarly, advertising campaigns may indicate higher value to impressions

on a user browsing through a mobile device (vs. the desktop). Therefore, each web

site w is further characterized by the Access Device probability PDevice(·|w) (over the

6We use different business categories assuming that the underlying demographic statistics are es-
sentially different in different categories.



5.3. THE MODEL 85

set {Desktop, Mobile} of access device types used by visiting users) and by the Ad Type

probability PAdtype(·|w) (over the set {Video or Text} of ad types that may be presented

to visiting users). All the web sites characteristics are disclosed to the competing agents

upfront (through tables in the game specification and dedicated messages at game start)

except the Ad-Type probability - The only one under full control of the web site.7

5.3.2.2 Reserve Prices

A reserve price in an auction is an amount set by the auctioneer such that bids below

it are ignored. In a second price auction, the reserve price also serves as the price

to be paid by the winner in case the winner’s bid is the only one above it. The use

of reserve prices to optimize the auctioneer’s revenue is justified empirically [95] and

theoretically [92]. Naturally, the impact of the reserve price on the auctioneer’s revenue

(and the growing size of the related industries) spawned extensive research in the area

of reserve price optimization, resulting in several published (e.g., [39, 89]) and surely

many privately kept methods. For the AdX game, a simple adaptive gradient ascent

algorithms is implemented (as detailed below), and the effect of more sophisticated

algorithms on agents strategy and behavior is left for future versions of the game.

A reserve price is set by each publisher for each impression opportunity using an

adaptive method that maintains during day t an average reserve price bt(u, a) for each

user type u and impression type a (where a is one of the four combinations of Mobile /

Desktop and Video / Text). The actual reserve price rit(u, a) of an impression i during

simulation day t of user of type u and ad type a is randomly set

rit(u, a) = bt(u, a) + εi , (5.1)

where the perturbation εi is normally distributed with zero mean and predetermined

(game parameter) variance.

Initially, for the first simulation day, b1(u, a) is chosen uniformly between 0 and a

predefined game parameter. In subsequent days, the baseline average reserve price is

adaptively set in the direction of the reserve price that maximized the average observed

7And therefore may be adaptively set by the web site during a game! In the current implementation
of the game, however, the publisher simply uses a random selection.



86 CHAPTER 5. ADX - A NEW TAC GAME

profits bmax
t (u, a):8

bt+1(u, a) = ηbt(u, a) + (1− η)bmax
t (u, a) , (5.2)

where the the learning rate η is a preset constant game parameter.

5.3.2.3 Simulation of User’s Visits

At the beginning of each game, out of the total eighteen available web sites, six are

randomly chosen (two from each category) to be used in the game simulation. Now,

the assuming (by design) independent attribute values given a visit to a web site and

applying the Bayes rule, we can formulate the probability of a user of attributes Age =

a, Gender = g, and Income = i, to visit web site w as follows:

Pr([a, g, i] visits w) , Pr(w|[a, g, i]) =
Pr([a, g, i]|w)PW (w)

Pr([a, g, i]
) (5.3)

∝ PAge(a|w)PGender(g|w)PIncome(i|w)PW (w) , (5.4)

inducing for any user of type [a, g, i] a distribution over web sites,. This induced

distribution is used to simulate a web site visit (or more) for every user every simulated

day. Now, every simulated day, upon visiting a web site, a user may continue visiting

web sites that day with a predefined probability (a game parameter) up to a maximum

of visits per day (yet another game parameter). Finally, Upon every visit of a user to

a web site, one or more impression opportunities are announced to the Ad Exchange.9

5.3.3 Ad Exchange and User Classification

The Ad Exchange is a pivotal entity handling transactions at a very high rate. As

such, the mechanisms implemented by the Ad Exchange are required to be fast (that

is, efficiently implementable, usually implying simplicity). Furthermore, since the AdX

mechanism determine the revenue of all other involved entities (and also it’s own rev-

enue, usually through commissions, which is not modeled in the AdX game) attention

is also paid to the mechanism’s effect on strategic behavior of the involved elements.

8Taking into account the estimated probability of at least one bid reaching or passing the reserve
price. In case of no won impressions bmax

t (u, a) is set to 0.
9 The number of impression opportunities is uniformly chosen from a range that is set upfront as a

game parameter. Since Ad Networks are rewarded by unique impressions, the multiple appearance of
the same ad in a web page is avoided by excluding the winning agent from subsequent auctions related
to the same web page visit.



5.3. THE MODEL 87

Design considerations for the AdX auction are researched in [56, 83, 91, 113], some also

considering the more general case in which the bidding Ad Networks act as interme-

diaries (e.g., Ad Words). As common in the industry, we implement a second price

auction for AdX announced impressions: for each announced impression opportunity,

the Ad Exchange operates a second-price auction among the Ad Networks, where each

Ad Network’s reported bid (and associated campaign, in case the bid wins) depends on

the context accompanying the bid request: the publisher, the ad type (either Video or

Text}) and access device used (either Mobile or Desktop}), and the user (specifically,

its market segment). Note that matching depends on the User Classification Service

level in effect for the Ad Network. Actually, to approximate real-time bidding while

keeping the messaging load of the game reasonable, the Ad Exchange consults the daily

bidding strategy submitted by each competing agents instead of interacting with each

agent upon every impression opportunity.

The mechanics of the second price auction are such that if the highest (that is,

winning) bid is below the reserve price indicated by the publisher for the impression

then the impression opportunity is lost. Otherwise, the impression is allocated to the

highest bidder, at a cost being the second highest bidder or the reserve price, whichever

is higher. Finally, the campaign to which a won impression is allocated (i.e., the specific

ad to be displayed) is the one associated to the winning Ad Network’s bid.

The Ad Network’s knowledge of the context associated to an impression opportunity

(especially the user’s attributes) is of key importance regarding its ability to fulfill the

targeting requirement of its advertising campaigns. Furthermore, publishers may prefer

that bidders are aware of the user’s attributes as such bidders will be willing to bid more

(resulting in higher revenue to the publisher) for potential impressions that they are sure

to match their targeted audience. This potential higher revenue however might be offset

by a thin market phenomena (resulting from full information regarding the context

of an impression) - where very few bidders compete over thin market segments (and

ending up paying the reserve price, which might be significantly lower than the value to

advertisers10). The tendency of publishers to facilitate the transfer of user information

to the advertisers (e.g., through cookie matching technologies) is further hindered by

the potential information leakage and further exploitation of the information by the

advertisers to lower their costs at the expense of the publishers (e.g., the ability of the

10The value to advertisers is supposedly thier bid, with the second price auction being Incentive
Compatible. This however does not necessarily hold for repeated auctions such as in the AdX scenario



88 CHAPTER 5. ADX - A NEW TAC GAME

advertiser to target the same user through a cheaper publisher). Such situations and

concerns are analyzed in [59].

To address the question of the value to the advertiser of knowing the user informa-

tion associated to a potential impression, we implement a periodic competition among

Ad Networks for the services of a User Classification Service (UCS) entity. This reflects

the situation in which the user reference (i.e., cookie) provided by the Ad Exchange

has to be matched to a real user, using a dedicated third-party service provider. The

competition is in the form of a Generalized Second Price (GSP) auction (as detailed

below) and results in each Ad Network assigned a service level that is the probability

of the user’s attributes being available at the time of making the decision regarding

the bid and campaign allocation for an impression opportunity. The auction for UCS

is done daily (specifically, every day n the competing Ad Networks bid for the service

level to be in effect during day n+2) since the value of such information to Ad Networks

may depend on its related state (that is, its active campaigns, quality rating, etc.).

Specifically, in the GSP auction for UCS, the highest bidder will get revelation of

user’s attributes 100% of the time, the second a lower probability (a game parameter

PUserRevelation), the third P 2
UserRevelation, and so on. In the case where user attributes are

not to be revealed, an “unknown attributes” value is used by the Ad Network as user’s

context to decide the bid and the campaign allocation. The outcome of the auction

(quality and cost of the service to the ad networks) is determined in the following

manner: Denote by ci1 , .., cim the ordering of the bids of the ad networks from high to

low. As a result of the auction, the ad network n in the kth position will receive the

true value of a user’s attributes with probability pk = P k−1
UserRevelation, and will pay for

the service the amount of,

Kn = pk · cik+1
. (5.5)

The normalization by pk above ensures that the actual price paid is the average price

for correct user classification.

5.3.4 Advertising Campaigns

To be successful, Ad Networks first have to win advertising campaigns. Thereafter, Ad

Networks have to execute their acquired campaigns according to the related charac-

teristics (e.g., target audience and reach), in a manner that balances their long term



5.3. THE MODEL 89

ability to win future campaigns (that is, maintain a high quality score by fully execut-

ing) and their short term earning (as determined by the cost of the ad impressions at

the Ad Exchange). This section details the way campaigns are generated for competing

Ad Networks to bid upon, how allocated to Ad Networks, and the effect of campaign

execution results on the quality rating and earnings of the Ad Networks.

5.3.4.1 Campaign Generation

Naturally, due to their inherent financial impact, the characteristics of effective ad-

vertising campaigns were extensively researched (see e.g., [120]). There is no doubt

however, that the defining the campaign’s targeted audience over time (that is, the

campaign length, size, and attributes of the targeted population) is of key importance.

When it comes to digital media (that is, advertising through display ads in web sites

and mobile apps) the impact of an impression may also be effected by the medium - the

access device used and the ad type. We therefore characterize a marketing campaign

in the AdeX game by the required reach CR (the size of total audience impressed -

the total effective number of daily-unique user impressions), the duration in days CL,

the targeted market segment CS , an ad type preference factor CV (A unique Video

impression is counted as CV effective impressions. A Text impression is counted as

one effective impression), and access device preference factor CM (A unique Mobile

impression is counted as CM effective impressions. A Desktop impression is counted as

one effective impression11).

A marketing campaign’s contract C is auctioned daily among the competing Ad

Networks. Special care is taken to ensure the game balance between demand (the

number and type of impressions required to fulfill the allocated campaigns) and sup-

ply (the number of potential impressions to browsing users). Therefore, the cam-

paign parameters are set as follows: CL is uniformly chosen to be one of CCampaignL1,

CCampaignL2, CCampaignL3. CS is uniformly chosen over the 26 possible market segment

combinations (see Section 5.3.1). Finally, a reach level CRL is uniformly chosen over

CCampaignLowReach, CCampaignMediumReach, CCampaignHighReach and CR is set

CR = CRL · |CS | · CL ,

11A user that is impressed more than once during a period is counted according to the highest
effective value of the impressions.



90 CHAPTER 5. ADX - A NEW TAC GAME

where |CS | is the average size of the chosen target segment CS .

5.3.4.2 Campaign Allocation

Every simulated day, each Ad Network n optionally bids Bn for the total budget of the

daily auctioned campaign. As detailed below, before applying a second price auction

among the bidding Ad Networks each bid Bn is squashed using the outstanding qual-

ity rating of the Ad Network (resulting in an effective bid for each Ad Network) and

only effective bids that are not too low (to preclude networks from submitting unreal-

istic offers) and not too high (essentially acting as a reserve price - the maximum an

advertiser is willing to pay an Ad Network for executing a campaign) are qualified.12

This squashing scheme might make it very hard to Ad Networks that were ’unlucky’

in executing past campaigns (and as a result have a low quality rating) to win newly

auctioned campaigns. Therefore, to allow a ‘second chance’ to such Ad Networks the

allocation of a campaign may be randomly allocated (instead of using a second price

auction - with some probability that is a game parameter that is set upfront and known

to all) among the qualified Ad Networks. If not randomly allocated, the campaign is

allocated to the Ad Network of highest quality per dollar ratio. That is, the campaign

is allocated to the Ad Network with highest effective bid en = Qn
Bn

, where Qn is the

quality rating of Ad Network n as defined later on by (5.9).

As noted above, reserve maximal and minimal cost per impression (game parameters

RCampaignMax and RCampaignMin respectively) are used in all campaign auctions, the

former to bound the price to be paid by advertisers for campaigns of little demand

and the latter to preclude Ad Networks from committing to execute campaigns at

unreasonable loss while denying other Ad Networks a chance to execute the campaign.

The quality rating is taken into account in the reserve prices by only considering bids

that satisfy BnQn > CRRCampaignMin and Bn
Qn

< CRRCampaignMax (thereby giving the

advantage to Ad Networks of higher quality rating in both directions). The campaign’s

budget CB is set to the maximum campaign budget the winning Ad Network could

have had bid and still win: CB = Qwin
bsecond

where Qwin is the quality rating of the winning

Ad Network and bsecond = max{esecond,
1

RCampaignCR
} is the highest of the effective bid

of the Ad Network reaching the auction’s second place and the reserve effective value.

12Note that squashing is also performed in sponsored search ads auctions, for different reasons: merely
to normalize the bids from ’pay per click’ to ’pay per impression’, which better reflects the auctioneer’s
revenue.



5.3. THE MODEL 91

5.3.4.3 Campaign Execution

For an impression on user u, let C(u) be the contract chosen by the ad network for

the potential impression on u and let DC(u) be C(u)M if u is using a mobile device

and 1 otherwise. Similarly, let TC(u) be C(u)V if u is being impressed by video and 1

otherwise.

The effective number of unique impressions w.r.t. contract C achieved by Ad Net-

work n is

In(C) =
∑

u:C(u)=C and CS∈s(u)

DC(u) · TC(u) , (5.6)

where s(u) indicates the actual13 set of segments to which user u belongs, and the sum

is over all daily-unique impressions on users u that belong to segment s.

Now, to discourage Ad Networks from deviating from the required reach levels of

the contract, a nonlinear relation is defined between the effective number of unique

impressions In(C) achieved and the related Ad Network’s payment as follows: First,

the effective reach ratio ERRn(C) of contract C is set

ERRn(C) =
2

a

[
arctan(a

In(C)

CR
− b)− arctan(−b)

]
, (5.7)

where a and b are set14 such that when In(C) = CR we have ERRn(C) = 1 and

the marginal effective reach per unique impression is 1
CR

(that is, when the effective

number of impressions achieved is exactly the contracts’ required reach we have an

effective reach ration equaling 1 and the benefit of each additional impression is the

campaign’s average reach amount per impression). This monotone relation is illustrated

in Figure 5.9.

Now, the payment En(C) to Ad Network n for impressions on users allocated to

contract C is set

En(C) = ERRn(C) · CB . (5.8)

Note that by the form of (5.7), achieving a significantly lower number of impressions

than required results in loss of un-proportional portion of the revenue to the Ad Net-

13Note that the ad network may not have complete information to exactly compute In(C). The
game server computes this value, mimicking a marketing survey that may take place in reality upon
the conclusion of a campaign. After all, the actual segment to which the user belongs carries the true
marketing value for the advertiser!

14For any nonzero k, take the unique b satisfying arctan(k)−arctan(−b)
1+b

= 1
1+k2

, and set a = b+ k. We
use k = 1 resulting in a = 4.08577 and b = 3.08577.



92 CHAPTER 5. ADX - A NEW TAC GAME

Figure 5.9: The Effective Reach Ratio (ERR) as a function of the effective number
of unique impressions achieved by the ad network, for a contract requiring a reach
CR = 500.

work (reflecting unrelated fixed costs to the advertiser that are now wasted due to

the inability of the Ad Network to execute). Similarly, achieving a significantly higher

reach than requested results in un-proportionally lower portion of additional revenue to

the Ad Network (since the advertiser might not have prepared to make use and benefit

from the unplanned increased number of impressions, e.g., due to lack of inventory).

At the expiration of every contract, the quality rating Qn of the relevant Ad Network

is updated using η = LRating learning rate:

Qnew
n = (1− η)Qn + ηERRn(C) . (5.9)

5.3.5 Ad Networks

The last modeled element in the AdX game is the Ad Network, whose strategy is imple-

mented by the competing agents. As will become evident from the description below,

the resulting strategy space is huge, making the problem of designing and analyzing

such strategies both challenging and interesting.



5.3. THE MODEL 93

5.3.5.1 Decisions

The Ad Networks, bid daily for advertising campaign contracts and for user classifica-

tion service level. To overcome the intensive communication rate required to implement

real-time bidding in our game, every Ad Network n submits to the AdX upfront a daily

bid bundle. The bid bundle is used by the AdX throughout the day to map bid re-

quests to ad networks’ bid/contract pairs by indicating the following information for

each market segment s,15 site w, access device, and ad type combination:

• Contract weight pn: The weight associated to the contract induces a probability

distribution over all the contracts associated with entries that match a certain

impression opportunity. An impression opportunity matches an entry if the user

to be impressed belongs to the market segment of the entry. The “unknown”

segment entry matches impressions for which the user classification service fails

to recover the user attributes.

• Bid bn: The bid level, upon assignment of the impression opportunity to contract

C.

The way the game server simulates the daily real-time bidding on behalf of the Ad

Networks is as follows: Upon a bid request as a result of user u visiting web site w,

the matching Bid Bundle entries are set according to actual user attributes and the

user classification service level in effect (multiple segments may apply - resulting in

more than one matching bid-bundle entry). The contract Cn to use for Ad Network

n is randomly selected according to probability induced by pn and the bid amount is

set according to the chosen entry’s bn. The daily bid bundle of an Ad Network may

also indicate for each assigned campaign a budget constraint on the daily spending

for impressions and an impressions-won constraint (and also similar total campaign

constraints). Once the spending or impressions limit is reached for contract C no more

bids are placed on behalf Ad Network n w.r.t. contract C.

Now, set cn(u) to be the price paid by Ad Network n for an impression won on user

u (the outcome of the second-price auction conducted by the AdX). The net earnings

15an “unknown” segment is also included - to be used when the user classification service fails to
reveal the visiting user’s segment.



94 CHAPTER 5. ADX - A NEW TAC GAME

Nn(C) of ad network n on contract C are therefore:

Nn(C) = En(C)−
∑

u:C(u)=C

cn(u) , (5.10)

where En(C), Ad Network’s n income related to contract C, is according to (5.8).

Upon game termination each ad network score is its net accumulated profits (5.10)

over all executed contracts, less the cost of the user classification service over all periods.

The overall score of Ad Network n is therefore

Nn =
∑
C

Nn(C)−
∑
d

Kn(d) , (5.11)

where Kn(d) is the price paid by Ad Network n for the user classification service on

day d as set by (5.5).

5.4 Game Flow

The game consists of at most TGamedays
16 simulated days in which up to 8 competing ad

networks aim to maximize their total accumulated profits (5.11). Throughout the game

each ad network executes one or more campaigns (the first one is allocated, the others

have to be won), where its competitiveness in winning campaign contracts (reflected by

a squashing value applied to its bids) depends on the targeting effectiveness achieved

by executing its past campaigns (5.9).

5.4.1 Daily Sequence of Actions and Events

To achieve its goals, each Ad Network bids daily for users’ impression opportunities

and selects for each potentially won impression which of its contracts to serve. The ad

networks base their decisions on daily reports. In what follows, the daiy sequence of

actions and events is detailed for a typical day d (from the point of view of an agent

implementing the Ad Network functionality). Note that a day in game-time is executed

in TDayseconds real-time seconds. The messaging sequence of Figure 5.8 is illustrated as

part of the conceptual sequence of actions of Figure 5.10: Day d starts with the server

sending to the Ad Network the reports (5.4.2.2) regarding results of simulating day d−1.

16TGamedays and other similarly named constants are game parameters that are fixed in advance and
known to the competitors.



5.4. GAME FLOW 95

Notifications (5.4.2.3) about the campaign contract and user classification service level

to be in effect during day d + 1 are sent next, followed by details (5.4.2.4) regarding

the campaign to start on day d + 2. Based on the information, the Ad Network may

conduct an analysis toward decisions regarding its bidding strategy during day d + 1

while the server simulates the impressions and related AdX auctions of day d. After

the daily simulation ends, the server polls each of the competing agents for the daily

decisions (5.4.2.5) and the cycle repeats.

Figure 5.10: AdX game daily flow

5.4.2 Mesages

The game server and the competing agents implementing the Ad Network strategies

run in potentially remote locations and communicate through dedicated game-specific

messages. Such messages comprise of reports by the game server regarding the results

of past days simulations, announces by the game server regarding campaign oppor-

tunities and notifications regarding the results of related auctions, and decisions by

competing Ad Networks regarding their bids for announced campaigns and impression

opportunities at the Ad Exchange. This section details the types and sequencing of



96 CHAPTER 5. ADX - A NEW TAC GAME

messages during the different phases of the game.

5.4.2.1 The First Days

During day 0 the agents are notified regarding their first campaign contract (each Ad

Network is allocated one campaign) to start on day 1. All initial campaigns have

CCampaignL2 duration, CCampaignMediumReach reach level, and double partition target

segment CS . The Budget of each initial campaigns is set to 1$ CPM. During day 1

the user classification service is provided to all agents at no cost and at accuracy level

(ZUCSaccuracy). As in subsequent days, during day 0 the campaign opportunity for day

2 is announced, and the competing agents respond with their related decisions (Bid

Bundles for the simulation of day 1, bids for the campaign opportunity that was just

announced, and UCS bids for the user classification service level to be in effect during

day 2).

5.4.2.2 Reports

After the game server simulates the users visits to publisher’s web sites during day d−1

and related AdX auctions, each agent n receives during day d reports summarizing the

status as of the preceding day d− 1.

• Publishers-Report: A public report that details user visiting statistics for each

web site (popularity and orientation frequencies, out of total user visits during

the day), and impressions statistics by campaign.

• AdNet-Report: A private report that details the Ad Network bidding totals for

each bid-bundle entry17: bids, wins, and cost.

• Campaigns-Report: A private report that details accumulated statistics for each

AdNet’s campaign: targeted impressions, non-targeted impressions, and cost.

• Bank Status: A private report with the balance of the recipient.

5.4.2.3 Notifications

A Daily-Notification message is sent on day d to notify the Ad Networks regarding the

results of the following developments of fay d− 1:

17For convenience, the key includes the campaign id.



5.4. GAME FLOW 97

• Campaign-Auction-Result: The Ad Networks are announced regarding the winner

of the campaign auctioned on day d− 1. The campaign is scheduled to start on

day d+ 1 and last until day d+CL. The winner is also announced regarding the

resulting budget CB (this figure is not disclosed to non-winners).

• UCS-Auction-Result: The Ad Networks are notified (each) regarding their user

classification service level and cost to be in effect during day d + 1 as auctioned

according to the bids submitted during day d− 1.

• Quality-Rating-Update: Each Ad Network is notified regarding its updated

Quality-Rating, as a result of campaigns ending during day d − 1. This rat-

ing is in effect for the Campaign-Opportunity auctions to take place during day

d.

5.4.2.4 Campaign Opportunity

The details of the advertising campaign to start on day d + 2 are provided to the Ad

Networks. The Ad Networks’ bids (to be sent to the game server during day d as

detailed below in Section 5.4.2.5) will be considered and the winner will be announced

(as detailed above in Section 5.4.2.3) during day d+ 1.

As the last simulation day approaches, campaigns whose end day are beyond the

last day are not announced. Whenever this happens an empty campaign is indicated

in the Campaign-Opportunity message.

5.4.2.5 Ad Networks Decisions

After the Ad Networks consider the reports, notifications, and opportunities, each sub-

mits the related decisions to the game server: The bid for the advertising campaign

opportunity just announced (see Section 5.4.2.4) together with the the bid user classifi-

cation service level to be in effect during day d+2. The results of the user classification

service level auction will be reported during day d+ 1 (as in Section 5.4.2.3). Finally,

each Ad Network submits a Bid-Bundle message reflecting its bidding strategy to be

used by the Ad Exchange upon impression opportunities resulting from users visits to

web sites during day d + 1. The strategy is conveyed in a bid bundle that maps the

context of the impression opportunity to a bid level and a distribution over campaign

contracts, as detailed in section 5.3.5.1.



98 CHAPTER 5. ADX - A NEW TAC GAME

5.5 Elements of Ad Network Strategy

The Ad Network daily decisions (as illustrated in Figure 5.6) reflect the consideration

of many inter-related aspects, which (for convenience) are grouped by the decision most

effected in the following sections:

5.5.1 Bidding for the User Classification Service level

The value of the user classification service to the Ad Network is a fundamental aspect of

the game. The benefit of having a certain UCS level depends of course on the (number,

attributes, and status of) active campaigns the competing Ad Network has. Foe exam-

ple, no UCS is required when there are no active campaigns, and minimal UCS may be

needed for a campaign targeting a large fraction of the whole population (in that case

an ‘unknown’ match of a user is actually targeted with high probability). For cam-

paigns targeting a scarce audience, on the other hand, and especially if the campaign is

about to end while the contracted reach is yet to be achieved, the value of accurate user

classification might be well above the direct benefit to the revenue from the campaign

at hand since poor performance in executing the campaign results in reduced quality

rating that can have detrimental effect on future earnings of the Ad Network (hence,

this may be more important during earlier stages of the game, especially during the

first few days while Ad Networks execute the pre-allocated campaigns). The choice of

the Ad Network to try and achieve a certain UCS level is based also on the associated

cost, which should be estimated by the Ad Network taking into account the state of its

competitions and an assessment of their bidding strategies (as reflected by their past

actions in the data available to the competing Ad Network through the daily reports).

5.5.2 Bidding for the Campaign Opportunity

Naturally, the decision whether to try and win a campaign opportunity depends on

the prospect benefits from the campaign, which in turn is effected by the state of the

other active campaigns (specifically their targeted populations and reach levels) which

dictates the future competition (and therefore related cost) over user impressions. In

this regard, longer campaigns targeting larger populations may be more attractive, and

short campaigns might be harder to fulfill (and therefore probably less attractive due

to potential effect on the quality rating). Furthermore, the overall benefit of winning



5.5. ELEMENTS OF AD NETWORK STRATEGY 99

a campaign should consider the associated cost of the UCS - which is shared by all

active campaigns and might be non-trivial to allocate. Finally, the actual bid for the

campaign budget should take into account the Quality Rating levels and (as before)

the bidding strategies of the competitors.

5.5.3 Ad Exchange Bid Bundle

The Bid Bundle associates the context of a user’s impression opportunity to an Ad

Network’s bid and campaign assignment probability (over the active campaigns of the

bidding Ad Network). The bid level (again) may depend on the state (allocated cam-

paigns) and bidding strategies of the competitors, but also on the reserve price set by

the publisher. Specifically, the Ad Network should probably consider the specified and

reported publisher’s orientation and users statistics to assess the competition levels

over certain impressions and set the bids accordingly. The Ad Network may also set

daily count and spending limits - those depend on campaign’s reach levels but may also

consider the longer-term effect of over or under fulfillment of the campaign.

5.5.3.1 The AdNet Problem

The AdX bidding strategy may be formulated in a simplified and abstract way as

follows: An Ad-Network commits to a set of m contract with advertisers. A contract i ∈

{1, . . .m} is characterized by a concave utility funtion that associates a financial benefit

ui(x) to the event of allocating x matching impressions to the advertising campaign

associated to contract i.

The n impression opportunities are announced to the Ad Network by the Ad-

Exchange sequentially. Each impression opportunity j ∈ {1 . . . , n} is characterized

by a binary vector aj = (a1j , a2j . . . amj)
t ∈ {0, 1}m where aij is interpreted as the

relevance of impression j to contract i. We further assume that aj are generated i.i.d

with respect to the time index j.

The advertiser decision for each impression opportunity aj is an allocation xj =

(x1j , x2j . . . xmj)
t, where xij is interpreted as the (eventual) probability of assigning

impression j to advertising campaign i. We therefore have that the probability of

winning impression j, is pj ,
∑m

i=1 xij .

The allocation decision directly translates to a bid level decision as follows: We

assume a stationary probability of winning F (b) as a function of the bid b. For now,



100 CHAPTER 5. ADX - A NEW TAC GAME

we assume that F is given. Assuming that F is strictly monotone in the range [0, B]

(hence, invertible) we can associate every bid b ≤ B with a probability of winning p

such that b = F−1(p). Now, assuming a first price auction at the AdX, the average

cost to the ad network when bidding with a probability of winning p is c(p) , pF−1(p).

We assume (as customary in the literature) that c(p) is convex.

Given the impressions A = (a1,a2, . . . ,an), the cost function c(·) and the utility

functions {ui(·)}mi=1, the ad network problem is to find an optimal (maximal net income)

allocation X = (x1,x2, . . . ,xn) of impressions to contracted campaigns:

max
X

m∑
i=1

ui(ri)−
n∑
j=1

c(pj) (5.12)

subject to

n∑
j=1

xijaij = ri i ∈ {1, . . . ,m} (5.13)

m∑
i=1

xij = pj ji ∈ {1, . . . , n] (5.14)

pj ≤ 1 j ∈ {1, . . . , n} (5.15)

xij ≥ 0 j ∈ {1, . . . , n}, i ∈ {1, . . . ,m} (5.16)

One might be tempted to formulate the ad network problem as an instance of the

Adwords Problem [50] or the more general Online Stochastic Packing problem [55].

Those works describe a general method for solving an online allocation problem that

is formulated as an LP. They do so by first learning the optimal strategy (solving an

LP) based on a fraction of the samples, and then applying it to the rest of the samples.

Our model deviates from their setting since the objective is no longer a linear function

of the inputs and their method can’t be directly applied. Moreover, in the hard-limit

budget constraint of their models is generalized in ours by a concave utility function.

A more relevant model was introduced in [19] where the Publisher’s Problem is

considered: Similar to our setting, the publisher has a set of contracted advertisers and

is committed to allocate to each advertiser a portion of its periodic impressions (still,

each contract has a hard-limit budget constraint). The publisher’s decision at time j

is twofold: the Ad Exchange impression acceptance probability sj (or equivalently, the



5.6. IMPLEMENTATION 101

reserve price rj - if another, unrelated, advertiser wins the auction then the publisher is

paid rj and no contracted advertiser gets the impression) and the eventual probabilities

of allocating the impression to the pre-contracted advertisers in case the reserve price

was set too high (i.e., all bids at the AdX were below the reserve price). Again, a

probability of acceptance 1 − F (r) is assumed for a reserve price r, where F (·) is the

c.d.f. of highest bids at the AdX.

Given the impressions relevance to advertisers Q = (q1,q2, . . . ,qn) ∈ <n, contract

capacities ratios ρ = (ρ1, . . . , ρm) and the concave revenue function r(·), the Publisher’s

Problem is to find an optimal (maximal revenue and advertisers value) allocation of

impressions to contracted advertisers, and reserve price acceptance probability sj :

max
s,X

n∑
j=1

r(sj) + xtjqj (5.17)

subject to

n∑
j=1

xj = Nρ (5.18)

m∑
i=1

xij + sj ≤ 1 j ∈ {1, . . . , n} (5.19)

sj ≥ 0 j ∈ {1, . . . , n} (5.20)

xij ≥ 0 j ∈ {1, . . . , n}, i ∈ {1, . . . ,m} (5.21)

Where r(s) = sF−1(1 − s) is the expected revenue to the publisher from the AdX

when setting the reserve price to be accepted with probability s. Note that in a sense

this problem is more general than the AdNet problem since the relevance q of the

impression is not restricted to binary values. In another way, this problem is simpler

than the AdNet problem since the concave utilities in the AdNet problem are replaced

here with linear functions.

5.6 Implementation

The competing AdNetwork agents communicate with the game server over the Internet.

The server communication details (address, ports, and additional agent information



102 CHAPTER 5. ADX - A NEW TAC GAME

such as the agent name and password) are detailed in a dedicated configuration file

used at agent runtime. Once an agent is registered at the server (using the server’s web

interface), it may join and take part in games (using the server’s game interface). The

game status may be observed in a dedicated GUI that is accessible through the web

interface of the game server, which also enables access to game results, history, and

related logs.

The implementation of the AdX game, available through the git repository [8], is

based on the JAVA implementation of the TAC Ad Auctions game [7] which in turn

mainly depends on the SICS infrastructure for TAC, a framework that was originally

developed for the SCM game [11]. The AdX game reuses as much as possible of the Ad

Auctions game mechanisms and high level architecture, many mechanisms (e.g., remote

messaging, web based GUI for game and competition administration, and configuration

scheme) minimally adapted (if at all).

5.6.1 Architecture

The key entity of the AdX game implementation is the Simulation. A simulation in-

stance is created to execute a single game among a set of predefined competing agents

(therefore, a competition consists of a sequence of instantiations of a simulation) and

is terminated upon game completion. Figure 5.11 illustrates the internal structure of

a simulation instance: A Users component that implements the users population, with

users’ attributes generated according to the distributions configured in the game server’s

configuration file, and (similarly configured) a Publishers component that implements

the web sites and their related user orientation statistics. A simulation also includes

an Agent Messaging component that acts as an interaction proxy to the competing

Ad Network agents, an Internal Message Bus that enables local one-to-many commu-

nications by implementing a publisher-subscriber pattern, and an Activity Scheduling

component that coordinates the activities of the two agents implementing the game -

the Demand Agent and the Supply and AdX Agent. Both agents are described in detail

in later sections.

Scheduling of activities in the simulation is done by a timed thread that wakes

up every logical day (lasting a configurable period of 10 real seconds) and calls back

to the callNextTimeUnit handler of the simulation instance. The simulation instance

in turn calls back to the nextTimeUnit handler of each registered game agent instance



5.6. IMPLEMENTATION 103

Figure 5.11: Simulation: Major components and interactions.

(implementing the TimeListener interface). The activation of agents is done however in

two phases. First, the simulation agent spawns the actions of the demand agent through

a call to its preNextTimeUnit callback, giving the Demand agent the opportunity to

handle campaigns creation and allocation (among other things to be detailed below),

and only then the NextTimeUnit of registered agents is called, giving the AdX and

Supply agent the opportunity to simulate the user’s population visits to publisher’s web

sites and related AdX auctions (and other related activities as detailed below). Before

activating the game agents, the simulation instance sends the Bank Status message

(implicitly indicating the start of a new day to the competing Ad Networks). After

all agents completed their daily actions the Simulation Status message is sent by the

simulation instance to the competing Ad Networks (this will trigger the competing

agents sending of their daily decisions back to the game agents).

5.6.1.1 Demand

The demand agent implements all aspects of the daily campaigns (creation, alloca-

tion, tracking, etc.), the Users Classification Service manager, and the Ad Network’s

Quality Manager. It interacts with the competing Ad Networks (i.e., sending related

notification and reports, receiving bids) and with the other system components (e.g.,

getting notifications upon user impressions) through different messaging and callback

mechanisms, as illustrated in the diagram of Figure 5.12: During simulation day n,



104 CHAPTER 5. ADX - A NEW TAC GAME

Figure 5.12: Demand: Major components and interactions.

the campaign to start at day n + 2 is created and announced to the competing Ad

Networks’ agents. The AdNetworks respond later (that same day) with related bids.

The campaign that was announced the previous day (starting at dat n + 1) is auc-

tioned and the results are notified to the Ad Networks’ agents. Similarly for the Users

Classification Service, the service level to be in effect on day n+ 1 is auctioned during

simulation day n (based on bids received earlier that same day) and notified to the the

competing Ad Networks’ agents.

During the simulation, user impressions and the associated campaign allocation

are notified to the demand agent through a dedicated impress message of an internal

messaging bus (which also serves the demand agent to notify other entities regarding

Ad Network’s campaign revenue and UCS levels and costs). Finally, upon a campaign’s

last, day the resulting reach ratio (5.7) and income (5.8) are calculated and informed

respectively: internally to the Quality Manager and through the message bus to the

bank entity. The Quality Manager updates the quality rating of the Ad Network

accordingly using (5.9) - this rating is used thereafter to squash the campaign bids of

the Ad Networks.

5.6.1.2 Supply and AdX

In its daily routine, the AdX Users Manager iterates over all users and performs the

following for each: First (indicated by A in Figure 5.13), a user query is generated by



5.6. IMPLEMENTATION 105

Figure 5.13: Supply and AdX: Major components and interactions.

the User Query Manager. The query represents a user visit to a publishers’ web site

(that is, an impression opportunity) and is randomly generated according to the web

site’s orientation configuration of (5.4) as detailed later in this section. The bids of

the Ad Networks for the impression opportunity are then collected (B in Figure 5.13)

from the Bids Manager - this is done by consulting the applicable BidBundles received

from the Ad Networks. The user attributes of query* (the query used to fetch the

bid of each Ad Network) may be masked, according to the User Classification Service

level in effect of the Ad Network. A second-price auction is then performed based on

the Ad Networks bids and a reserve price that is fetched from the related Publisher’s

reserve price manager (C in Figure 5.13). Finally (D in Figure 5.13)), the result of

the auction (the winning advertiser’s campaign and cost) is communicated back to

the reserve price manager (this will be used to later update the reserve price baseline

according to (5.2)) and posted in the internal message bus for the demand agent to

update campaign statistics accordingly (potentially resulting in the campaign limits

being reached, triggering a further message bus notification to the Bids Manager). The

auction’s result message is also triggered by the Reports Manager which updates the

associated Adnet and Publisher’s reports accordingly. The daily consolidated reports

(containing information about the previous day) are sent to the competing Ad Network

at the beginning of the daily routine.

In what follows, some key aspects of the design and implementation of each of the

modules mentioned above are detailed. The User Query Manager, implemented in



106 CHAPTER 5. ADX - A NEW TAC GAME

the tau.tac.adx.users package, creates upfront a sampler for each user (a sampler is an

object that allows to randomly choose an item from a weighted list of items). The

items of each users’ sampler are the set of the user’s possible queries18 and the weight

of each item (primarily characterized by the web site to be visited) is determined by

the user’s conditinal probabilities (5.4) as configured in the server configuration file and

maintained by a dedicated Publishers instance of the simulation.

The User Bids Manager, implemented by a AdxBidManagerImpl class in the

tau.tac.adx.auction.manager package provides the bid of each publisher given a user’s

query by maintaining for each Ad Network the bidding map from the most recent Bid

Bundle received. Recall that to simulate real-time bidding, and to avoid the associated

messaging load, the competing Ad Networks pass a daily Bid Bundle that contains a

mapping of the potential context of an impression opportunity (the publisher’s web

site, the user’s market segments, the access device and the ad type) to a related bid

and campaign allocation. Each Ad Network’s bid is generated by a sampler over the

Ad Network’s Bid Bundle entires that match the query (with the item’s weight as

specified in the entry), where a match is declared when the market segments indicated

in the Bid Bundle entry are all contained in the market segments set of the query

(and all other query attributes of the entry, i.e., publisher’s web site, access device,

and ad type, are identical). Note that before passing the query to the User Bids

Manager, the original query is masked (resulting in passing query*) according to the

User Classification Service level applicable to the Ad Network and with some probability

an empty set of market segments may be passed (a match in that case would be for

entries having the empty market segment set - the “unknown” market segment). The

Users Bids Manager also maintains a daily list of excluded campaigns. Campaigns

are added to this list upon indication through the message bus that the limits for a

campaign were reached (spend limits or impression limits, daily limits or total campaign

limits) and bid bundle entires with campaigns for the list are ignored.

The Publishers Reserve Price Manager implements (5.1) upon every user query

by perturbing the maintained baseline reserve associated to each possible impression

context (publisher, access device, and ad type). The baselines are updated daily using

(5.2) based on the cached auction results indicated. The AdX auction run by the AdX

Auction component (mainly implemented by an instance of the SimpleAdxAuctioneer

18Recall that a query represents a user visit to a web site and is also characterized by the access
device used and the ad type.



5.6. IMPLEMENTATION 107

class of the tau.tac.adx.sim package) uses the Ad Network’s bids provided by the Users

Bid Manager and the reserve price from the Publishers Reserve Price Manager to run

a second-price auction.

5.6.2 Parameters

The execution of the AdX game depends on several parameters that are pre-configured

(in a dedicated configuration file) and known to the competing agents. Defining such

parameters gives flexibility and allows tailored execution of the game (changing the

default value of some parameters, however, should be done in conjunction with other

parameters, e.g., to maintain game balance). The value of parameters, however, may

influence the agent’s strategies (e.g., for training) and therfore must be set ahead of time

(to allow for proper design and training). Table 5.1 details the many game parameters

and their standard values.

Table 5.1: AdX Game Parameters and Standard Values

Parameter Symbol Std. Setting

User Continuation Probability PContinue 0.3

Random Campaign Allocation Probability PRandomCampaign 0.36

Max User Daily Impressions NContinueMax 6

Publisher’s Initial Reserve Price RReserveInit 0.005

Reserve Price Variance RVariance 0.02

Reserve Price Learning Rate RLearnRate 0.2

Short Campaign Duration (Days) CCampaignL1 3

Medium Campaign Duration (Days) CCampaignL2 5

Long Campaign Duration (Days) CCampaignL3 10

Low Campaign Reach Factor CCampaignLowReach 0.2

Medium Campaign Reach Factor CCampaignMediumReach 0.5

High Campaign Reach Factor CCampaignHighReach 0.8

Max Campaign Cost Per Impression RCampaignMax 0.001

Min Campaign Cost Per Impression RCampaignMin 0.0001

Quality Rating Learning Rate LRating 0.6

Game Length TGamedays 60

Real Time Seconds per Simulated Day TDayseconds 10

User Classification Service Revelation Probability PUserRevelation 0.9

Initial Days Classification Service Accuracy ZUCSaccuracy 0.9



108 CHAPTER 5. ADX - A NEW TAC GAME

5.6.3 Real Data

The game setting also depends on the user population distribution (Table 5.2) and the

web site’s orientation (Table 5.3), which are based on real figures from [38], [3]. Note

that in Table 5.2 the income is in $1000 units and the probabilities are in 0.0001 units.

Table 5.2: User Population Probabilities, in 0.0001 units

Age Gender Income Probability Age Gender Income Probability

18-24 M 0-30 526 25-34 M 0-30 371

35-44 M 0-30 263 45-54 M 0-30 290

55-64 M 0-30 284 65+ M 0-30 461

18-24 F 0-30 546 25-34 F 0-30 460

35-44 F 0-30 403 45-54 F 0-30 457

55-64 F 0-30 450 65+ F 0-30 827

18-24 M 30-60 71 25-34 M 30-60 322

35-44 M 30-60 283 45-54 M 30-60 280

55-64 M 30-60 245 65+ M 30-60 235

18-24 F 30-60 52 25-34 F 30-60 264

35-44 F 30-60 255 45-54 F 30-60 275

55-64 F 30-60 228 65+ F 30-60 164

18-24 M 60-100 11 25-34 M 60-100 140

35-44 M 60-100 185 45-54 M 60-100 197

55-64 M 60-100 157 65+ M 60-100 103

18-24 F 60-100 6 25-34 F 60-100 75

35-44 F 60-100 104 45-54 F 60-100 122

55-64 F 60-100 109 65+ F 60-100 53

18-24 M 100+ 5 25-34 M 100+ 51

35-44 M 100+ 125 45-54 M 100+ 163

55-64 M 100+ 121 65+ M 100+ 67

18-24 F 100+ 3 25-34 F 100+ 21

35-44 F 100+ 47 45-54 F 100+ 57

55-64 F 100+ 48 65+ F 100+ 18

5.7 AdX Game Competitions and Conclusion

The performance of an agent implementing the Ad Network strategy may vary across

games. This may be due to inter-game adaptations done by competing agents (as part of

a higher-level strategy) but also because of the stochastic nature of the game simulation.

Therefore, a competition comprising of several games is required in order to assess the



5.7. ADX GAME COMPETITIONS AND CONCLUSION 109

Table 5.3: Publisher’s audience orientation, access device ratios and popularity, for
news, shopping, and web information services

Name 18-24 25-34 35-44 45-54 55-64 0-30 30-60 60-100 Male Mobile Pop.

Yahoo 12.2 17.1 16.7 18.4 16.4 53 27 13 49.6 26 16

CNN 10.2 16.1 16.7 19.4 17.4 48 27 16 48.6 24 2.2

NY Times 9.2 15.1 16.7 19.4 17.4 47 26 17 47.6 23 3.1

Hfngtn 10.2 16.1 16.7 19.4 17.4 47 27 17 46.6 22 8.1

MSN 10.2 16.1 16.7 19.4 17.4 49 27 16 47.6 25 18.2

Fox 9.2 15.1 16.7 19.4 18.4 46 26 18 48.6 24 3.1

Amazon 9.2 15.1 16.7 19.4 18.4 50 27 15 47.6 21 12.8

Ebay 9.2 16.1 15.7 19.4 17.4 50 27 15 48.6 22 8.5

Wal-Mart 7.2 15.1 16.7 20.4 18.4 47 28 19 45.6 18 3.8

Target 9.2 17.1 17.7 18.4 17.4 45 27 19 45.6 19 2.0

BestBuy 10.2 14.1 16.7 20.4 17.4 46.5 26 18 47.6 20 1.6

Sears 9.2 12.1 16.7 20.4 18.4 45 25 20 46.6 19 1.6

WebMD 9.2 15.1 15.7 19.4 18.4 46 26.5 18.5 45.6 24 2.5

EHow 10.2 15.1 15.7 19.4 17.4 50 27 15 47.6 28 2.5

Ask 10.2 13.1 15.7 20.4 18.4 50 28 15 48.6 28 5.0

TripAdvisor 8.2 16.1 17.7 20.4 17.4 46.5 26 17.5 46.6 30 1.6

CNet 12.2 15.1 15.7 18.4 17.4 48 26.5 16.5 50.6 27 1.7

Weather 9.2 15.1 16.7 20.4 18.4 45.5 26.5 18.5 47.6 31 5.8

quality of competing agents. A competition is scheduled through a dedicated web

interface of the game server in which its duration (number of games, interval between

games) and participating agents are set.19 Usually, aiming at statistical significance,

competitions last 40 games or even more (this of course may depend on the variance

of the game performance and score differences of the competing agents).

The first AdX game competiton took place on May 5th and 6th as part of the

AMEC/TADA 2014 workshop [2] (part of AAMAS [1]), where the agent from Shang-

hai Jiao Tong University won the first place [117] out of eight competing agents by

teams from other universities.20 A subsequent competition was held as part of a CS

workshop dedicated to the AdX game that was held in Tel Aviv University during

the fall semester of 2013.21 In the workshop, six teams of students designed and im-

19A web interface may also be used to access interim and final results of the competition, detailing
for each agent its per-game scores and other related metrics

20Tel Aviv University (3 agents), University of Liverpool, University of Edinburgh, University of
Michigan, and Brown University.

21The competition took place upon the end of the workshop, in May 2014.



110 CHAPTER 5. ADX - A NEW TAC GAME

plemented the Ad Network strategy for an agent of the AdX game. The concluding

competition was held as part of the workshop during May 2014 and the teams reported

their work [10]. The reports by the teams and the phenomena observed reinforce the

relevance and applicability of the AdX game, both as a test-bed for related Ad Network

strategies and as a research platform for the choice of the different mechanisms sim-

ulated (e.g., empirically evaluate the effect of replacing the reserve price optimization

method detailed in Section 5.3.2.2 by the one proposed in [89]).

More specifically, the teams reported the importance of establishing a high quality

rating early in the game, during the inherent fierce competition over users impressions

as competing agents aim at fulfilling the pre-assigned campaigns. Failing to properly

execute those first campaigns results in a low quality rating that is hard to overcome,

even in the presence of randomly allocated campaign. Moreover, towards the end of a

game, remaining as one of the few competing agents with a permissible quality rating,

gives a great opportunity to leverage the situation (reminiscent of a monopoly) and

increase profits considerably. This resulting partition of the game to a strong opening

period in which credibility is established (even at the cost of sacrificing profits), followed

by a middle game epoch of survival, and an end game situation in which the few

remaining competitors are highly rewarded seems natural and suggest that the AdX

setting may be poised for technology transfer (in the sense that key insights and related

algorithms regarding agents strategies, such as those just mentioned, may be relevant

in real scenarios).

The UCS bidding strategies reported mainly aim at learning from past reports

the bid level needed for getting a required service level and then consider the agent’s

campaign’s state (e.g., needed amounts of impressions and remaining days) to choose

the level to aim for. Interestingly, the agents did not directly analyze the economic

benefits of the UCS service level (probably due to the campaigns interdependence, since

the UCS cost has to be allocated across all ongoing campaign to carry a meaningful

analysis). Finally, for the AdX bid bundles, the main factor most agents took into

account was the expected competition level (resulting from the attributes of the overall

campaigns allocated to other competitors, such as the reach and days left) and adjust

their bids accordingly.

All in all, the AdX game provides a test bed for assessing the effects and performance

of the many different mechanisms used by the different entities in the AdX setting. Not



5.7. ADX GAME COMPETITIONS AND CONCLUSION 111

in isolation of course, but with respect to the implementations of the other entities’

mechanisms and algorithms. A key purpose of the game is for this to be facilitated in the

future by the availability of different implementations of the different strategies (that

is, of competing agents, but also, for example, of modular components for alternative

reserve price optimization mechanisms at the publishers), and used by researchers as a

tool to empirically evaluate related mechanisms and algorithms in a controlled context

and environment.



112



Part II

Robust Domain Adaptation

113



114



Chapter 6

The Domain Adaptation Problem

This background chapter presents the domain-adaptation problem and related learning

settings, followed by a short review of the theory and algorithms relevant to the main

result to be presented in Chapter 8.

6.1 Train-Test Discrepancy - Motivation

A key assumption underlying the generalization bounds and results of Supervised

Learning theory1 is that the performance of the learning algorithm is evaluated in

a ‘test environment’ that is statistically identical to the ‘training environment’ (the

source of the training samples). Furthermore, this assumption of test and training

environments being the same allowed for methods that are agnostic of such statistical

properties altogether! That is, generalization is possible even without estimating the

probability distribution over which samples are drawn. Nevertheless, in many practical

situations, due to a variety of reasons, such an assumption might not hold.

For example, a gender classification algorithm could be first trained using a set of

portraits of persons from one geographical area (say the USA) and its resulting classifier

may be later required to classify portraits of persons from a different country. Another

example is Spam email filtering - where a trained and deployed classifier might face

changes in the wording used in Spam emails (compared to the words used for training)

by malicious senders trying to avoid detection or in case it was trained for a certain set

of users while used by others.

The reason for not re-training may be the availability or associated cost of labeling

1And as a result, a crucial justification for Empirical Risk Minimization (ERM) algorithms

115



116 CHAPTER 6. THE DOMAIN ADAPTATION PROBLEM

a new training set, or lack of time. To overcome a lack of labeled training data (mainly

due to the cost of labeling), the training set itself may be created using synthetic

data (in which the sample’s label is known upfront). Such an approach is used, for

example, for detecting humans in crowded scenes by training using simulated (yet

realistic) video game scenes. The resulting detectors however are required to perform

well when fed with real scenes. Yet another such media classification setting is voice

recognition. Consider the task of identifying spoken words. The conditions during

training (including background conditions such as noise but also inherent conditions of

the speaker that may depend on the time of day, tiredness, state of mind, etc.) might

significantly differ from the conditions where and when the actual classifier is used (we

might even want to use it for other speakers!) and should be accounted for.

Now, email Spam detection mentioned earlier is just one of a long list of Natural

Language Processing such settings: A sentiment analysis classifier that is trained to

detect positive or negative hotel reviews and then applied to restaurant reviews, A Part

of Speech (POS) tagger trained on a corpus of medical documents to be later used to

tag over a different domain, and the list goes on.

Considering all the above-mentioned settings, two key questions stand out:

• How will the difference between the training and testing environments affect the

performance of the learning algorithm ?

• How can we adapt the learning algorithm to achieve better test performance ?

Addressing each of the above questions may be valuable. Knowing the impact

of not re-training or having methods to adapt existing algorithms2 can assist in the

decision whether to train again (that is, to invest in the process of labeling target-

domain samples) or not. Indeed, methods to bound the generalization performance

in such settings3 as well as algorithms accounting for the train-test differences were

offered in the last few years (see the following two reviews [102, 114]). A model for

the train-test discrepancy problem and a review of related algorithms is presented in

the next section. Within that context, the subsequent section introduces the specific

domain-adaptation problem treated in our work and related theoretical results.

2Based on partial information or prior knowledge regarding the target domain.
3And also some impossibility results, to be described.



6.2. TRAIN-TEST DISCREPANCY - LEARNING SETTINGS 117

6.2 Train-Test Discrepancy - Learning Settings

In the Supervised Learning setting we are given a sample (training) set S =

{(xi, yi)}i=1···m, where the samples are generated i.i.d. from a distribution Q(x, y).

As discussed in Section 1.1, a learning algorithm in this setting is required to come up

with a hypothesis (that is, a mapping h that given only the attributes x of a test item

(x, y) provides a prediction ŷ = h(x), for the actual label y) of small expected loss

LQ(h) = E(x,y)∼Ql(h(x), y) ,

where l(·, ·) is a predefined loss function.4 Indeed, by Theorem 1, ERM algorithms that

given sample set S minimize the empirical loss

L̂S(h) =
1

m

m∑
i=1

l(h(xi), yi)

need a manageable number of training samples to result with high probability in a

hypothesis of small error.5 Furthermore, ERM algorithms are model-free as they avoid

the need to estimate the model Q(x, y) as a step in computing the hypothesis h.

Those key properties of ERM algorithms highly depend on the assumption that

the test items (x, y) are drawn from the same source distribution Q(x, y). Otherwise,

in general, learning is impossible without modeling and assessing the relation between

the training Q(x, y) and testing P (x, y) sample distributions. This is easily verified

by considering a binary classification setting in which the intersection of the supports

of QX(x) and PX(x) is empty. Any training set used by a learning algorithm in this

setting is irrelevant since the sought-after test mapping PY |X(y|x) may be arbitrary,

and not related in any way to the observed samples that follow QY |X(y|x).6

In practice, there are many reasons causing the difference between the training

domain Q(x, y) and test domain P (x, y), each requiring a different model and resulting

in a dedicated algorithmic approach. A short review of the different models follow,

4For example, the zero-one loss l(x, y) = 0 if x equals y and otherwise 1, widely used in binary
classification settings.

5More precisely, with 1− δ probability, the resulting hypothesis has error that is ε close to the best
possible among all h ∈ H.

6Technically, there exists a hypothesis class H such that for any learning algorithm in this setting
and for every ε > 0, there exists a test distribution P such that with positive probability its output
h ∈ H has at least ε expected error. Therefore, it is not PAC-learnable.



118 CHAPTER 6. THE DOMAIN ADAPTATION PROBLEM

mainly considering change7 in the elements QX(x), QY |X(y|x), QY (y) and QX|Y (x|y)

of the breakdown Q(x, y) = QY |X(y|x)QX(x) = QX|Y (x|y)QY (y).

6.2.1 Covariate Shift: PY |X = QY |X

A setting in which the conditionalQY |X(y|x) remains unchanged (that is, for all x and y,

PY |X(y|x) = QY |X(y|x)) is called Covariate Shift. In this setting, a difference between

the source and target probabilities may exist in the covariate probabilities QX(x) and

PX(x) (where for some x, PX(x) 6= QX(x)). This typically occurs in situations where

there is a casual relationship Q(y|x) that is independent of the way x was generated.

Anticipation of the future occurrence of a medical situation given current habits, for

example, may be suitable for covariate shift modeling (e.g., when the habits of sampled

individuals differ in the source and target domains due to different circumstances).

Another example of a covariate shift setting is the estimation of a demographic label

y (such as age) based on face image attributes x of a person (with test environment

having different conditions, say lighting, that are independent of x).

Being also one of the simplest forms of train-test discrepancy, many algorithms

were suggested to cope with covariate shift (see for example [31, 115]), all applying

the common importance weighting technique. In importance weighting, a non-negative

weight wi is assigned to each sample (xi, yi) of the training set S. The weighted sample

set is designated Sw. The weight wi may be interpreted as the relative cost of the

output hypothesis making an error on this sample. Hence, the weighted empirical error

of a hypothesis h on the weighted sample Sw is

L̂Sw(h) =
m∑
i=1

wil(h(xi), yi) .

Any supervised learning algorithm may then be applied to a re-sampled training set in

which the multiplicity of a sample (xi, yi) is relative to wi.

To illustrate the so called importance-weighting method, consider the following ex-

ample of regression. Assume our aim is to estimate the relation y = f(x) by using a

hypothesis class H = {fθ : θ ∈ Rn+1}, where n is fixed and for θ = (θ0, θ1, θ2, . . . , θn) we

have fθ(x) = θ0 +θ1x+θ2x
2 + . . .+θnx

n8. Now, for the quadratic loss l(ŷ, y) = (ŷ−y)2,

7That is, the difference, in Q vs. P
8For example, For a linear relation f(x) = ax+ b the parameters are θ = (a, b) and for a quadratic

relation f(x) = ax2 + bx+ c the parameters are θ = (a, b, c).



6.2. TRAIN-TEST DISCREPANCY - LEARNING SETTINGS 119

a weighted regression algorithm given a sample set S with weights wi should minimize

θ∗ = arg min
θ

1

m

m∑
i=1

wi(fθ(xi)− yi)2 .

Similarly, we can get importance-weighted versions of many other supervised learning

algorithms such as SVM, Boosting, Decision Trees, and Logistic Regression.

Now, a common choice for the weights is

wi =
P (xi, yi)

Q(xi, yi)
=
PX(xi)

QX(xi)
.

This choice is motivated by the empirical weighted loss being an unbiased estimate of

the target loss (see e.g., Proposition 1 in [46]):

ES∼QmL̂Sw(h) = LP (h) = E(x,y)∼P l(h(x), y) ,

further motivating Importance-Weighted ERM algorithms that minimize the empirical

weighted loss

h∗ = arg min
h∈H
L̂Sw(h) .

In practice, however, the weights wi are rarely given and have to be estimated.

Nevertheless, even when the weights are perfectly known, the importance weighting

method might miserably fail (see e.g., Figure 1 in [44]) when the hypothesis class H does

not include f , the true underlying relation y = f(x). Learning bounds relating L̂Sw(h)

and LP (h) are presented in [44] for both bounded and unbounded loss functions. The

effects of having to estimate the weights wi (assuming availability of unlabeled samples

from the target domain, to estimate PX) and the related stability of some popular

learning algorithms facing estimation error is analyzed in [46].

6.2.2 Prior Shift: PX|Y = QX|Y

In a Prior Shift setting we assume a casual relation QX|Y (x|y) that remains unchanged

while the difference between the source and target probabilities is in the prior prob-

ability QY (y) (that is, for all x and y, PX|Y (x|y) = QX|Y (x|y) and for some y,

PY (y) 6= QY (y)). Prior shift typically occurs in Imbalanced Data situations, where

the training set samples are filtered to increase the portion of samples with rare values



120 CHAPTER 6. THE DOMAIN ADAPTATION PROBLEM

of y (e.g., a reasonable practice when the whole purpose of the learning task is the

prediction of rare events, which would not make it into the training set otherwise).

Compensating for prior shift is easy in the imbalanced data case9 by associating a

sample weight

wi =
P (xi, yi)

Q(xi, yi)
=
PY (yi)

QY (yi)
,

and employing ERM. Alternatively, some learning algorithms directly use the condi-

tional label probability PY |X (e.g., Logistic Regression), which may be recovered using

the observed QY |X by

PY |X(y|x) =
QX|Y (x|y)PY (y)

PX(x)
=
QY |X(y|x)w(y)QX(x)

PX(x)
=

QY |X(y|x)w(y)∑
y, QY |X(y,|x)w(y,)

,

where the importance weight at y is defined w(y) , PY (y)
QY (y) . Note that in both cases

(using ERM, or P (y|x) directly) access to the original PY (y) or an estimate is essen-

tial.10

6.2.3 Other Related Settings: PX = QX and Beyond

The PX = QX setting and other related models of train-test discrepancy are presented

in this section. Later on, in the subsequent section, the general case11 of train-test dis-

crepancy adaptation when unlabeled target domain samples are available is addressed.

An adaptation setting in which the covariates probabilities remain unchanged (that

is, for all x, PX(x) = QX(x) and for some x and y the labeling function differs

QY |X(y|x) 6= PY |X(y|x)) can be treated as a special case of transfer learning. In Trans-

fer Learning (also called multi-task learning, see [97] for a somewhat recent survey)

there are multiple tasks i = 1, . . . , n, each characterized by an unknown (and sought

for) labeling function Pri(y|x), but sharing a common input space and distribution

Pr(x). Transfer Learning algorithms aggregate (thereby transfer) relevant observa-

tions across tasks by exploiting modeled inter-task relations. Therefore, when labeled

target-domain data is available (i.e., the so called semi-supervised domain adaptation

setting) the adaptation problem is an instance of two-tasks transfer learning (where one

task is the source domain and the other is the target domain) and related algorithms

9Note that the target distribution in this setting is the original pre-filtered P .
10A method to cope with unknown PY (y) in a discrete label setting is presented in [41].
11That is, when no assumptions are made regarding the discrepancy of P (x, y) and Q(x, y) in terms

of the covariate or conditional breakdown.



6.2. TRAIN-TEST DISCREPANCY - LEARNING SETTINGS 121

may be applied.

Closely related to the transfer learning model are settings in which relatively large

training data sets are available for a set of source domains together with a relatively

small training set for the target domain. Algorithms that combine the source domain

data (either directly, or through experts - learning algorithms, each trained on the

data of a specific source domain) to result in a hypothesis for the target domain were

proposed for this setting, both for classification [47, 103] and regression [100], with the

latter reporting usage of such methods for predicting resulting auction prices in the

TAC-Travel [62] and TAC-SCM [105] games.

Another related model is Mixture Shift. In a mixture shift setting the data source

is a probabilistic mixture of several domains, all sharing the same labeling function

(i.e., each having a different distribution over the sampled x values), and the mixing

proportions vary between the training and target scenarios. A learning algorithm in

this setting is also given a set of well-performing hypotheses, one for each domain, and is

required to output a combination of the given hypotheses to perform well in the target

mixture. Such a setting is presented and analyzed in [82], where a simple adaptation

algorithm is proposed and the existence of an optimal combining rule is established.

Yet another related setting is Active Learning [43]. In this setting the train-test

discrepancy is controlled, as the learning algorithm has the power to choose the at-

tributes x of each training sample. Inherently, active learning results in covariate shift,

and although the somewhat different objective12 some solution approaches are similar

in their use of sample re-weighting through importance sampling [71].

Finally, the above mentioned imbalanced data settings (where the observed source

training set is a filtered version an original, yet inaccessible sampled target domain) may

be all framed as a special case of Sample Selection Bias. Sample selection bias situations

are common in population surveys where the sampling procedure causes a bias (e.g., a

survey conducted by phone calls ignores people that don’t have a phone), where training

data is discarded for ‘cleaning’ purposes, and in several other settings. Noting that this

is basically a domain shift situation (since the actual testing is performed in the original

- unfiltered - domain), typical bias correction methods to address sample selection bias

perform importance weighting (see e.g., [46]). Note however that in general, sample

selection bias (and many other domain adaptation settings) do not necessarily fall in

12Active learning aims at generating a training set, rather than directly resulting in a hypothesis of
minimal generalization error



122 CHAPTER 6. THE DOMAIN ADAPTATION PROBLEM

one of the special cases detailed in this section (e.g., covariate shift, prior shift). We

therefore turn now to a precise definition and review of the general case for domain

adaptation in the presence of unlabeled target data.

6.2.4 Domain Adaptation with Unlabeled Target Data

In the general case of domain adaptation, the learning algorithm might be facing an

arbitrary change in the original training domain Q(x, y) compared to the test domain

P (x, y). We refer to Q as the source distribution and to P as the target distribution.

Since generalization for the target domain given only source domain samples is impos-

sible in general, the model also assumes availability of unlabeled data from the target

domain (indeed, in many applications, the actual labeling is the main cost factor in

obtaining a training set and abundance of unlabeled data from the target domain is

typical).

The learning algorithm is therefore provided with a labeled-samples set S of source

domain samples drawn i.i.d. from Q, and unlabeled samples set T of target domain

samples drawn i.i.d. from P . The learning algorithm is then required to output a

predictor h from a predefined set of predictors H such that h performs well (that is, h

has small average prediction error) in the target domain.

The setting is now formalized: Let X be the input space and Y be the output

space.13 The (unknown) input-output relation may be captured by a deterministic

target function f : X → Y or by a probability distribution f : X → ∆Y .14 A do-

main D(x, y), a distribution over the input-output space is characterized by the pair

(DX , fD), where we denote by DX the marginal of D(x, y) over the input coordinates,

and fD is either a deterministic function or a conditional probability distribution as

indicated above.

Let the input-output space be Z = X × Y , and let H be a hypothesis class of

functions h : X → Y , used to learn f . For a bounded non-negative loss function

l : Y ×Y → [0,M ], we define the point-wise loss of h with respect to a labeled example

z = (x, y),

l(h, z) , l(h(x), y) .

13In a binary classification scenario, for example, Y is the label set {−1, 1}.
14 The stochastic output is represented by the conditional probability of a y ∈ Y given x ∈ X, which

we also denote by f to simplify notation.



6.2. TRAIN-TEST DISCREPANCY - LEARNING SETTINGS 123

We also define the expected loss of a hypothesis h ∈ H with respect to a domain D as

LD(h) , Ez∼D[l(h, z)] . (6.1)

We also define the relative loss of non deterministic labeling functions f1, f2 : X → ∆Y

with respect to an input domain DX as follows:

LDX (f1, f2) , Ex∼DXE(y1,y2)∼(f1(x),f2(x))[l(y1, y2)] . (6.2)

This captures deterministic labeling as a special case and we can define for a hypothesis

h ∈ H the expected loss as

LDX (h, f) , Ex∼DXEy∼f(x)[l(h(x), y)] . (6.3)

As a special case, for a domain D = (DX , fD) we have the following alternative formu-

lation for the expected loss of a hypothesis,

LD(h) = LDX (h, fD) . (6.4)

Note that in the special case of a deterministic relation y = fD(x) we have

LD(h, fD) , Ex∼DX [l(h(x), fD(x))] .

Also, for a hypothesis class H, we denote by h∗D the optimal hypothesis (that is, of

minimal expected loss) w.r.t a domain D:

h∗D , arg min
h∈H
LD(h) .

We denote by S = {si}i=1..m the set of m labeled samples si = (xi, yi) drawn i.i.d.

from the source domain Q. We denote by T = {tj}j=1..n the set of n unlabeled examples

drawn i.i.d. from PX . Now, applying (6.1) for the uniform distribution induced by a

finite sample set S ⊂ Z we have the following empirical loss of a hypothesis h ∈ H,

LS(h) ,
1

|S|
∑
s∈S

l(h, s).

Finally, as illustrated in Figure 6.1, an adaptation learning algorithm A uses the



124 CHAPTER 6. THE DOMAIN ADAPTATION PROBLEM

labeled source-sample set S and the unlabeled target-sample set T to return a hypoth-

esis hA ∈ H. Since in the domain adaptation problem we are interested in LP (hA),

using ERM (that is, setting hA = h∗S) is no longer justified by the PAC bound (1) that

ensures with high probability that for a large enough (yet feasible) training sample S,

LQ(h∗S) and LQ(h∗Q) are close.

Figure 6.1: A schematic Domain Adaptation Algorithm A. Inputs are a source domain
Q labeled sample set S and a target-domain P unlabeled sample set T . Output is
hA ∈ H where H is the hypothesis class from which A chooses the output.

As a result, there is a need to relate the adaptation learning algorithm’s perfor-

mance LP (hA) (and specifically for ERM, LP (h∗S)) to that of the optimal achievable

LP (h∗P ). Both quantities are inaccessible in general since the labeled samples are from

a potentially unrelated domain Q. Therefore, to allow for adaptation, the relation

between the sorce and target domains has to be modeled. Modeling the discrepancy

between source and target domains and providing related generalization bounds was a

key motivation in the line of work that is reviewed in the next section.

6.3 Domain Adaptation Theory and Algorithms

It is natural to expect that the ability of the learning algorithm to generalize using

unlabeled target samples will depend significantly on the similarity of the source and

target distributions QX and PX .

The L1 norm15

L1(D1, D2) , sup
a
|D1(a)−D2(a)| , (6.5)

also called total variation, is a natural choice for quantifying the discrepancy between

two distributions. The following holds:

Proposition 3. For a non-negative, symmetric, and M bounded loss function l that

satisfies the triangle inequality, for all source and target domains Q and P respectively,

15The supremum in the definition that follows is taken over all measurable sets a of the probability
space implied by D1 and D2.



6.3. DOMAIN ADAPTATION THEORY AND ALGORITHMS 125

for all h ∈ H

LP (h)− LQ(h) ≤ML1(QX , PX) + min{LQX (fQ, fP ),LPX (fQ, fP )} (6.6)

Proof. Recall that LP (h) = LPX (h, fP ) and LQ(h) = LQX (h, fQ). Now,

LP (h)− LQ(h) ≤ |LQX (h, fP )− LQX (h, fQ)|+ |LPX (h, fP )− LQX (h, fP )|

≤ LQX (fP , fQ) +ML1(QX , PX)

By alternatively adding and subtracting LPX (h, fQ) we also get

LP (h)− LQ(h) ≤ LPX (fP , fQ) +ML1(QX , PX)

and (6.6) follows by taking the lower of the two bounds.

As a special case, for binary classification in a covariate shift setting we have the

following adaptation bound for all h ∈ H

LP (h)− LQ(h) ≤ L1(QX , PX) . (6.7)

As a means to introduce notation and intuition, consider the following simple proof

of the above special case (6.7) of the bound (6.6). We assume the deterministic labeling

f and denote by h∆f the domain set on which h ∈ H and f differ. We now have

LP (h)−LQ(h) = Ex∼PX [1h(x)6=f(x)]−Ex∼QX [1h(x)6=f(x)] = PX(h∆f)−QX(h∆f) ≤ L1(QX , PX)

We conclude that if PX and QX are statistically indistinguishable (have a small

total variation distance, i.e., a small L1 norm distance), then simply learning with

respect to the source labeled data may be (as in the above setting) a very beneficial

strategy.

The bound above is, however, impractical. Although the L1 norm has some desirable

properties such as scale invariance, in many settings it can not be estimated from

finite samples [21] and is therefore of limited practical value. Moreover, in the domain

adaptation setting, it is easy to construct scenarios in which L1(P,Q) is significant,

yet adaptation is trivial, and in general, one can get a good domain adaptation even



126 CHAPTER 6. THE DOMAIN ADAPTATION PROBLEM

in cases when the two distributions are statistically very far in L1 sense, or even have

disjoint support.

To illustrate the over sensitivity of the L1 norm, consider the following example

(again, assuming covariate shift and deterministic labeling): Let the domain X be

{ i
2m}

2m−1
i=0 with QX uniform on { im}

m−1
i=0 and PX uniform on {2i+1

2m }
m−1
i=0 . Although the

total variation is 1, the L1 norm of PX and QX is irrelevant for the task of adaptation for

binary classification using the class of threshold functions H = {ht = 1x≤t : t ∈ [0, 1]}.

Indeed, any two hypotheses ht1 and ht2 disagree in an interval It1,t2 . The probability

of such an interval represents the potential loss of a hypothesis output by a learning

algorithm (hA) compared to the best achievable using a member of H. Now, for all

t1, t2, we have |PX(It1,t2)−QX(It1,t2)| ≤ 1
m meaning that adaptation is easy since the

change from domain Q to P does not influence our potential loss for any algorithms

and any underlying labeling.

It is therefore evident that a discrepancy measure relevant to adaptation should

account for the class H as well. Such a measure, merely limiting the maximization in

(6.5) to relevant subsets of A ⊆ 2X

dA(P,Q) , sup
a∈A
|P (a)−Q(a)| , (6.8)

was first proposed in [73] and later applied to domain adaptation for binary classification

by [22] with the choice of A = H∆H , {h1∆h2 : h1, h2 ∈ H}, where h1∆h2 is the

symmetric difference operator - the set of domain points over which h1 and h2 differ.

The similarity measure (6.8) captures the 0-1 loss and was used to derive the following

generalization bound for domain adaptation

Theorem 4. [22] Let H be a hypothesis class of VC-dimension d, and S and T unla-

beled sample sets of size m each, drawn from the source domain Q and target domain

P , respectively. Then, for any δ ∈ (0, 1), with probability at least 1− δ (over the choice

of the samples), for every h ∈ H:

LP (h)−LQ(h) ≤ dH∆H(S, T )+min
h,∈H

{
LP (h,)+LQ(h,)

}
+4

√
2d log(2m) + log(2

δ )

m
(6.9)

Note the terms bounding the adaptaion regret LP (h) − LQ(h) above: The first is

an empirical dA distance, which is (with high probability) close to the source-target



6.3. DOMAIN ADAPTATION THEORY AND ALGORITHMS 127

discrepancy dH∆H(Q,P ) (this is by combining simple applications of Hoeffding’s in-

equality (see Theorem D.1 in [90]) to Pr(|Q(a)−S(a)| > ε) and Pr(|P (a)−T (a)| > ε))

but might be infeasible to calculate in general. The second term is inaccessible but

hints that the existence of a joint hypothesis of small error in both domains is a condi-

tion for adaptability (this was shown to be an insufficient condition in [23]). The last

term (the residual of approximating the true discrepancy via the samples) vanishes for

a fixed required confidence δ as the sample size is increased. Actually, the bound (6.9)

can be stated in terms of the original discrepancy for all h ∈ H as follows:

LP (h)− LQ(h) ≤ dH∆H(Q,P ) + min
h,∈H

(
LP (h,) + LQ(h,)

)
. (6.10)

The dA distance (6.8) was extended by [81], addressing general loss functions and

allowing settings beyond binary classification, such as regression

discL(P,Q) , max
h1,h2∈H

|LP (h1, h2)− LQ(h1, h2)| . (6.11)

They show that for bounded loss functions this discrepancy measure may also be

estimated from finite samples (this time using the sharper Rademacher Complexity

bounds - see e.g., Chapter 3 of [90]). Specifically, for bounded loss functions of the

form lq(y, y
,) , |y − y,|q, they prove (Corollary 7 in [81]) that with high probability

(over the sampling S and T ) the difference between discLq(Q,P ) and discLq(S, T ) is

bounded by 4q(R̂S(H)− R̂T (H)) and a term that efficiently vanishes as the size of S

and T is increased. This leads to a generalization bound for domain adaptation with

symmetric loss functions obeying the triangle inequality, on the difference between the

target loss of a hypothesis LP (h) and its source-optimality LQ(h, h∗Q):

Theorem 5. [81] For any h ∈ H,

LP (h)− LQ(h, h∗Q) ≤ discL(P,Q) + LP (h∗P ) + LQ(h∗P , h
∗
Q) (6.12)

Note that for the deterministic consistent case in a covariate shift setting (i.e.,

P (y|x) = Q(y|x) = 1y=f(x) and f ∈ H), the left hand side of both bounds (6.10) and

(6.12) is LP (h) − LQ(h) and the only term remaining in the right hand side is the

source-target domain’s discrepancy. This reinforces the usage of the discrepancy as a

domain-adaptability measure.



128 CHAPTER 6. THE DOMAIN ADAPTATION PROBLEM

The nature of the generalization bounds (6.10) and (6.12) is that they relate the

expected error on the target domain to an observable quantity (related to the error) on

the source domain. From this perspective they should be viewed more as studying what

guarantee we can give, when we learn with respect to the source domain and later are

tested with respect to the target domain, rather than giving constructive algorithmic

tools (with the exception of [33], which uses a proxy of the dA-distance as a criterion

for the applicability of domain adaptation). Nevertheless, such bounds may serve as

theoretical justification for domain adaptation algorithms that aim to minimize the

generalization bounds. Indeed, reweighing algorithms that optimize the discrepancy

distance were presented in [81] and subsequently, for regression in [45]. However, in

general, minimization of discrepancy distance does not insure an improved performance,

since the reweighing might result in overfitting (see e.g., example 8 in[23]). Moreover,

[23] show (although not constructively, using the probabilistic method) that for binary

classification, small dH∆H discrepancy (even in covariate shift settings) is not sufficient

to allow for domain adaptation. This implies that for domain adaptation to be possible,

both terms in the right hand side of (6.10) should be small. Therefore, re-weighting QP

to reduce the discrepancy dH∆H(QP , P ) might result in overfittiong, that is, increasing

the other term minh,∈H LP (h,) + LQP (h,) which is not accessible.

Domain Adaptation (DA) algorithms that utilize unlabeled target data were first

presented by [33] (that is, beyond importance-sampling re-weighting methods based on

Sample Selection Bias algorithms such as those presented by [30, 67, 115]16). Their

method uses unlabeled samples of both domains to identify pivot features (frequently

occurring in both domains) and re-weight input-space features based on their correla-

tion with the pivot features. Other feature-based DA algorithms (where a new feature

space is sought to better represent the inter domain similarity) based on metric learn-

ing were presented in [75, 106]. Similar to [33], the work in [88] iteratively updates

a predictor, based on re-weighted features. The predictor is updated by gradually la-

beling target-domain instances (thereby adding them to the train set) based on their

confidence level with regard to the current predictor. Two other conceptually simi-

lar such self-labeling iterative algorithms are DASVM [36], which gradually labels and

adds to the training set target samples (and removes source samples) based on the

sample’s margin with respect to the iteratively learned classifier, and SLDAB [63], an

16As mentioned before, such reweighting methods are instable in general.



6.3. DOMAIN ADAPTATION THEORY AND ALGORITHMS 129

AdaBoost variant that simultaneously maintains per-iteration distributions over the

source and (iteratively self labeled) target sets while maintaining a low discrepancy

distance between the distributions. The domain adaptation algorithm presented in [24]

also recovers the labels of the target data set, this time using a nearest neighbor method

(based on the labeled source-domain data). A proper learning algorithm then results

by applying any standard learning method using the now-labeled target training set.

The method of [24] for domain adaptation relies, however, on the following two as-

sumptions (in addition to covariate shift) regarding the labeling function and difference

between the source and target distributions17: First, the labeling function is assumed

to be of low variation with high probability18 (this is related to algorithmic robustness,

as detailed next in Chapter 7). Second, a lower bound is assumed on the ratio of source

and target probabilities infPX(a) 6=0
QX(a)
PX(a) over relevant subset a of the domain19. In

[25] it is shown that for settings in which those assumptions hold, a nearest neighbor

algorithm that only relies on source-domain samples will have arbitrary small error20

(although requiring a number of samples that is exponential in the dimension of the

domain), and that proper learning (that is, when the algorithm is required to return a

classifier h from a predefined class H) is impossible in general without utilizing target

domain samples.

The impossibility results of [25] however, only apply to binary classification. Indeed,

for the case of regression, a bound on the pointwise loss of the hypothesis returned by

a kernel-based regularization algorithm is provided in [45]. The bound includes a term

that depends on global properties of the loss function (again, lipschitzness is assumed)

and another that depends on the discrepancy distance discL(S, T ) as defined in (6.11),

motivating the approach of reweighting S such that SwX = arg infD discL(D,T ) and

then learning using the labled sample set Sw. Note that minimizing the discrepancy

is intractable in general. However, an efficient method for the case of bounded linear

functions (H being class of linear operators hw(x) = wtx where ‖w‖ ≤ Λ) is presented

in [45]. See [85] for a systematic review of domain adaptation methods and the usage

17The authors also prove that both assumptions are necessary. That is, domain adaptation is impos-
sible if any of the two assumptions is relaxed while the other remains.

18This is denoted Probabilistic Lipschitzness and implies that with high probability (over the selection
of a domain sample x) the labeling function is λ−Lipschitz, that is, for all y, |l(x)− l(y)| ≤ λ‖x− y‖

19This may be regarded as bounding a multiplicative form of the L1 norm in general, or the discrep-
ancy distance 6.8

20This is intuitive - if the labeling does not change much in the vicinity of target sampled points, and
if (due to the lower bound on the ratio) the vicinity of all target points is eventually sampled, then a
nearest neighbor labeling will be correct with high probability.



130 CHAPTER 6. THE DOMAIN ADAPTATION PROBLEM

of unlabeled target domain samples.

The Semi Supervised Learning (SSL) setting in which abundance of unlabeled data is

available in conjunction with few labeled samples (although of the same domain21) is of

special interest due to its resemblance to the domain adaptation setting. SSL algorithms

usually assume low probability in the vicinity of the underlying decision boundary (or

informally, that points in a high density cluster are similarly labeled, denoted the

clustering assumption). SSL algorithms exploit this property and implement schemes

to propagate the labels from S to T (see e.g., [127]). Similar methods are applied for

domain adaptation for settings in which the the clustering assumption holds (see [124]).

The domain adaptation method [84] to be presented later in Chapter 8 may be con-

ceptually regarded as based on a clustering assumption, although the labeling continuity

property is defined differently, using the algorithmic robustness framework. Further-

more, the domain adaptation algorithm optimizes the source-loss subject to constraints

that relate the source and target domain distributions, but contrary to re-weighting or

iterative self-labeling methods that directly aim at making the distributions similar, the

algorithm takes a robust optimization approach and optimizes subject to constraints

that represent a worst case target-labeling given the source and target unlabeled sam-

ples. It turns out that the resulting algorithm can be interpreted as performing a

re-weighting of the source samples (although indirectly). The essence of algorithmic

robustness and robust optimization is presented next.

21 Not to be confused with Semi Supervised Domain Adaptation in which few labeled samples from
the target domain are also available.



Chapter 7

Robust Optimization and

Algorithmic Robustness

This background chapter introduces the concepts of Robust Optimization and Algo-

rithmic Robustness, both essential for the derivation of the main result to be presented

in Chapter 8.

7.1 Robuts Optimization

Many settings in science and engineering may be formulated as optimization problems.

That is, in a very abstract form, given a set of predefined knowledge (this may be

due, e.g., to observations or modeling assumptions), find among a related set of alter-

natives one that best fits the predefined knowledge. In mathematical terms, such an

optimization problem is specified as

arg min
h∈H(S)

f(h, S) , (7.1)

where S represents the predefined knowledge, and f(·, ·) is a function that scores the

(miss)fit of a potential solution h ∈ H(S) to the a-priori knowledge S.

Specifically, fitting a regression line using the least squares method is an instance of

the above setting in which S is the set of sampled points {(xi, yi)}ni=1 and we are looking

for the linear mapping characterized by w and b that minimizes the empirical sum of

distances f((w, b), S) =
∑n

i=1(yi − wxi − b)2. Another ubiquitous instance is linear

programming, where the objective is to find arg minx c
tx subject to linear constraints

131



132CHAPTER 7. ROBUST OPTIMIZATION AND ALGORITHMIC ROBUSTNESS

Ax ≥ b and x ≥ 0 (This standard form of a minimization linear program is equivalent

to a maximization linear program in the following standard form: find arg maxx c
tx

subject to linear constraints Ax ≤ b and x ≥ 0). Here, the vectors c and b and the

matrix A plays the role of the a-priori knowledge S (e.g., in a production optimization

setting, c may pertain to assumed revenue per unit sold of each product type, b to

available resources, and A to the required amount of each resource to produce each

product type), and the feasible set of the constraints is H.1

Many Machine Learning settings and algorithms can be formulated as (7.1), which

can be efficiently solved in many cases, especially for convex loss function.2 SVM (See

Section 1.1) for example looks for the linear separator w of bounded norm B that

minimizes the empirical loss 1
n

∑n
i=1 l(w

txi, yi), where the loss function is the hinge loss

l(r, y) = max{0, 1 − ry}. From a more general perspective, many machine learning

algorithms aim for the optimal member h ∈ H minimizing the average average loss

arg min
h∈H

EZ [f(h, z)] , (7.2)

where Z is the (unknown) probability distribution generating some future random test

instance. Since Z is unknown, it is accessed through a training set S = {zi = (xi, yi)}ni=1

and the resulting optimization problem of minimizing the empirical loss becomes (7.1).

This statistical casting of Machine Learning suggest that the optimization may be

also done iteratively, through Stochastic Gradient Descent methods, where the value

of the optimal h is updated by considering one sample at every iteration. We may

refer to such Stochastic Optimization methods as addressing the uncertainty in the

true target to be optimized EZ [f(h, z)] (i.e., the uncertainty in Z) by optimizing a

related objective (7.1) and relying on probabilistic assumptions regarding the relation

of S and Z to ensure consistency. Therefore, stochastic optimization methods for

machine learning address uncertainty using probabilistic assumptions and immunize

the learning algorithm from failure in a probabilistic sense (and this is the nature of

PAC learning bounds (1). Uncertainty, however, might result in instability. Indeed,

stochastic optimization algorithms can be very sensitive to perturbations in the sampled

data (due, e.g., to noise) or to modeling deviation due to uncertainties in the parameters

1Note the dependence of H in S in this case.
2The ability to efficiently solve such optimization problems depends of course also on the structure

of the feasible set.



7.1. ROBUTS OPTIMIZATION 133

S of (7.1), sometimes even rendering the algorithms useless [26].

As opposed to stochastic optimization, the Robust Optimization approach to uncer-

tainty in the parameters of (7.2) and (7.1) is deterministic in nature and the learning

algorithm is immunized against failure for every realization (hence the name, robust)

of the uncertain parameters as long as they remain in a specified set ∆:

arg min
h∈H(S)

max
S∈∆

f(h, S) , (7.3)

thereby providing worst case guarantees. Therefore, the robust variant of empirical risk

minimization has the form

arg min
h∈H

max
δi∈∆

1

n

n∑
i=1

l(h, zi + δi) , (7.4)

adversarially protecting the learning algorithm from any sampling accuracy deviations

of at most ∆.

A robust versions of SVM for the case of uncertainty in the attributes xi, for ex-

ample, is formulated as follows:

min
w,b,ξ

C
n∑
i=1

ξi +
1

2
‖w‖2 (7.5)

subject to

yi(w
Txi + b) ≥ 1− ξi + ‖Σ

1
2
i w‖2 ∀i = 1..n (7.6)

ξi ≥ 0 ∀i = 1..n (7.7)

This regularization of the constraints pertains to an additive uncertainty model xtrue
i =

xi +ui, where the uncertainty set Ui of ui is an ellipsoid characterized by Σi as follows:

Ui = {u : utΣiu ≤ 1}. Alternatively, when the uncertainty in the attributes is coupled,

reflected in a global3 uncertainty set ∆ = {(u1, . . . , un) :
∑n

i=1‖ui‖2 ≤ C}, then (as

shown in [125]) the related robust optimization program

min
w,b

max
u∈∆

n∑
i=1

max{1− yi[wt(xi − ui) + b], 0}

3As opposed to the local uncertainty of each attribute xi separately, as expressed in the constraints
7.6



134CHAPTER 7. ROBUST OPTIMIZATION AND ALGORITHMIC ROBUSTNESS

is equivalent to the regularized SVM formulation

min
w,b

C‖w‖+

n∑
i=1

max{1− yi[wtxi + b], 0}.

This connection between robust optimization and regularization justifies the notion of

robustness that is usually associated to the usage of regularization in machine learning

algorithms. It also shows the flexibility of robust optimization methods, that may be

used to capture non-adversarial settings as well (due to the assumed coupling of loca-

tion deviations, which are reminiscent of stochastic uncertainty), yielding as a special

case the familiar stochastic optimization formulation. Efficient convex optimization

algorithms exist to solve the above formulations (and other robust versions of SVM,

modeling other sources of uncertainty). See [125] for more details.

The Robust Optimization approach to Domain Adaptation, as introduced in our

Robust Domain Adaptation algorithm [84], considers the source-target domain discrep-

ancy as if it was parameter uncertainty in the Robust Optimization terminology. Con-

ceptually, we suggest a template method for converting a stochastic optimization-based

machine learning algorithm (7.2)4 to a domain adaptation algorithm (7.3) by adding

uncertainty related constraints for S that reflect the source-target domain discrepancy,

and the additional optimization step over worst-case realizations of S.

Specifically, since only unlabeled samples are available in the target domain, the

uncertainty is regarding the statistical properties of the target lables (e.g., the proba-

bility of the label of a sample being positive, given its unlabeled attributes). Since such

statistical properties are available for the source-domain training set, we may quantify

the allowable change between source and target through some distance measure and

define the constraining uncertainty set in the resulting robust optimization program

to include only target labellings that are within a predefined distance budget. This

is the purpose of the λ-shift measure of distribution disengagement to be introduced

in Chapter 8 and used to formulate our robust domain adaptation SVM. See [29] for

more on different notions and definitions of budget of uncertainty, how they are used

to choose the uncertainty sets of robust optimization programs, and related solution

methods.

4Which actually requires to solve (7.1), where the target function f is the empirical risk.



7.2. ALGORITHMIC ROBUSTNESS 135

7.2 Algorithmic Robustness

Robust Optimization, as discussed, addresses uncertainty in the input parameters to an

optimization problem and ensures optimality of the resulting optimum in a worst-case

deterministic sense. From a more general algorithmic perspective, Algorithmic Robust-

ness was introduced by [126] as a measure of the sensitivity of a learning algorithm to

changes in its training data. Conceptually, a robust algorithm will output a hypothesis

that has limited variation in the vicinity of the training samples, thereby (intuitively)

precluding over-fitting.

Before presenting the precise definition of algorithmic robustness, consider a regres-

sion algorithm that tries to fit a polynomial to a set of samples as a motivating setting

that illustrates the danger of high variation in the vicinity of training samples. A sample

set of any size may be perfectly fit by a polynomial, however of large degree and hence

of high variation. Such a high degree polynomial will perform poorly when the actual

model is of low dimension or if the training data was somewhat inaccurate. Motivated

by the connection between robust optimization and regularization as presented in the

previous section, we may use regularization to induce the regression learning algorithm

to prefer polynomials of low degree and achieve algorithms of better generalization ca-

pabilities. Similarly, the notion of algorithmic robustness is related to the ability of an

algorithm to generalize. Indeed, a similar connection (actually equivalence) between

algorithmic robustness and generalization ability is established in [126].

Specifically, the algorithmic robustness of a learning algorithm is characterized by

a parameter K and a real function ε(S) mapping a sample set S as follows:

Definition 6. [126] Algorithm A is (K, ε(·))-robust if the input-output space Z can be

partitioned to K disjoint sets {Ck}Ki=1 such that ∀S, ∀s ∈ S, ∀z such that s, z ∈ Ck,

|l(hS , s)− l(hS , z)| ≤ ε(S),

An algorithm A is (K, ε(S)) robust if there is a partition of the input-label space

Z = X × Y to K subsets such that the loss of the learned hypothesis hS
5 has ε(S)-

bounded variation in every region of the partition that contains a training sample. Note

that K in the above definition is the number of regions the input-output space Z has

to be partitioned. Note also that K and the regions do not depend on the sample set S

5recall that we denote by hS the output hypothesis of A given as input the training set S.



136CHAPTER 7. ROBUST OPTIMIZATION AND ALGORITHMIC ROBUSTNESS

and should uniformly apply to any. Consequently, a K robustness level of an algorithm

induces a partition of the input-output space to multiple regions, and in each region

the hypothesis of the robust algorithm has limited variation in its loss. For partitions

that are a Cartesian product of input and output space partitions we have that for

any training set S the algorithm outputs a hypothesis that has ε(S) variation in any

region of any sample. The robustness of popular learning algorithms (such as SVM)

was established in [126].

Intuitively, the above definition states that for a (K, ε(·))-robust algorithm, the loss

of its output hypothesis hS has ε(S) variation within each region Ck and as a result

the empirical error (on samples s ∈ S) of hS is a good approximation for the expected

error of hS . Therefore, a robust algorithm that minimizes empirical error is expected

to generalize well. Indeed, [126] prove this precise result, and bound the difference

between the empirical error and the expected error of (K, ε(·))-robust algorithms:

Theorem 7. [126] If A is a (K, ε(S))-robust algorithm then for any δ > 0, with

probability at least 1− δ,

|LQ(hS)− LS(hS)| ≤ ε(S) +M

√
2K ln 2 + 2 ln 1

δ

|S|
,

where M is an upper bound on the underlying loss function. Note the dependence

of ε on the sample set S6. Indeed, the SVM algorithm, explored later, is (K, ε)-robust,

where ε does not depend on the actual training set S but only on its size m.

The most important property of robustness that we utilize for domain adaptation

is the limited variation in the loss of the output hypothesis within each region. This

implies that the output hypothesis of a robust algorithm (and ours in particular) would

have a limited variation within each region (where in our case, the regions of the input-

output space each have a constant output-space value, e.g., a constant label7).

Now, since the overall expected loss of a candidate hypothesis is an average of the

losses in each region, bounding the loss in a region is our main tool to derive general-

ization bounds. The main difficulty that we encounter is that the regions guaranteed

by the robustness depend on the label which is not observable for the target distri-

bution sample. We use the Robust Optimization approach to address this difficulty

6The parameter ε may also depend on K, and [126] provide a uniform bound for all K.
7We assume partitions of Z that are a Cartesian product of input space regions and the set of output

labels.



7.2. ALGORITHMIC ROBUSTNESS 137

by bounding the target-domain expected loss in a region of a candidate hypothesis as

a function of its (accessible!) source-domain expected loss. This is possible due to

the limited variation of the output label of any candidate hypothesis in a region, and

the assumption of constrained target-domain label distribution discrepancy in a region.

Furthermore, the resulting domain adaptation generalization bound naturally leads to

a regularized domain adaptation algorithm that minimizes the generalization bound,

as detailed in the next chapter.



138



Chapter 8

Robust Domain Adaptation

We derive a generalization bound for domain adaptation by using the properties of

robust algorithms. Our new bound depends on λ-shift, a measure of prior knowledge

regarding the similarity of source and target domain distributions. Based on the gen-

eralization bound, we design an SVM variants for binary classification and regression

domain adaptation algorithms. Our Robust Domain Adaptation SVM algorithm is

Algorithmically Robust by design.

From the algorithmic perspective we develop SVM variants for binary classification

and regression domain adaptation algorithms. The algorithms are formulated as con-

vex optimization programs where the optimized term is based on the generalization

bound and the constraints are set to match the λ-shift level assumed. Specifically, the

optimized term includes a weighted average (by the target domain distribution) of the

bound on the loss in each region, and the constraints on the primal variables (the losses

in each region) are the worst case average errors in the regions given the source domain

empirical errors and the assumed λ-shift level. Finally, we use the dual representation

of the convex optimization program to offer a reweighing interpretation of the resulting

robust domain adaptation algorithms.

Two interesting extreme cases are the pessimistic case (assuming that there is no

relationship between the probability over labels across the source and target distribu-

tions) and the optimistic case (assuming that the probability over labels in the source

and target distributions is identical, for any region of the input domain). This will lead

us in the former case to pessimistic bounds, where we will use the worse case loss (over

the labels) for each region, and to optimistic bounds in the latter.

We use the λ-shift and the Robust Optimization approach to address the absense of

139



140 CHAPTER 8. ROBUST DOMAIN ADAPTATION

target-domain labels: the λ-shift serves as a prior assumption regarding the similarity

of the source and target domains. The λ-shift also serves to relate the sampled empiri-

cal distribution of output domain values (e.g., the conditional probability of each label

value in a given input-domain region) to a set of such distributions over label values

in the target domain. We subsequently apply robust optimization to come up with

the hypothesis that achieves the best loss over the worst-case possible target-domain

distributions over labels. In that respect, our approach may be viewed as utilizing

the domain uncertainty (captured by the λ-shift property) as the training sample un-

certainty of the Robust Optimization method. We also derive related parameterized

generalization bounds for domain adaptation.

8.1 Model

Using the terminology and notation presented in section 6.2.4, let X be the input space

and f : X → Y be the unknown target function1 (where the label set Y is {−1, 1} in

case of binary classification and a finite set {y1, . . . yr} otherwise). The input-output

space is Z = X × Y , and H is the hypothesis class used by a learning algorithm to

learn f .

A learning algorithm A has access to a labeled sample set S sampled from the

source domain Q, and an unlabeled set T sampled from PX , where P is the target

domain. The algorithm is expected to return a hypothesis hS,T ∈ H of low target loss

LP (hS,T ). Recall that an algorithm A is (K, ε(S)) robust if there is a partition of Z to K

subsets such that the loss of the learned hypothesis has ε(S)-bounded variation in every

region C of the partition that contains a training sample. In what follows, we assume

(by design) that the associated partition of Z to K regions is of the following form:

Z = ∪i,jXi × Yj , where the input space and output space partitions are X = ∪Kxi=1Xi,

Y = ∪Kyj=1Yj , and K = KxKy. This partition implies that the output hypothesis of a

(K, ε)-robust algorithm has at most an ε variation in the loss in each region of constant

label Ck = Xi × Yj .

1As noted in section 6.2.4, f may alternatively represent the conditional probability P (Y |X) in case
of stochastic labeling.



8.1. MODEL 141

8.1.1 λ-shift

Our main goal is to use the notion of robustness to overcome key difficulties in the

domain adaptation setting. The most important difficultly is that we would like to

learn with respect to a distribution P , from which we have only unlabeled samples,

while the labeled samples are given with respect to a distribution Q.

The notion of robustness would guarantee that in every region Xi × Yj the loss of

the algorithm would be similar, up to ε, regardless of the distribution (source, or target)

inside the region. However, a main difficulty still remains since the regions depend on

the (unavailable) label of the target function. Therefore, our strategy is to consider the

conditional distribution of the label in a given region Xi and the relation to its sampled

value over the given labeled sample S. For a distribution σ over Y = {y1, . . . yr} (where

r = Ky, the number of output labels) we denote the probability of every label yv by

σv. We start with a definition of the λ-shift of a given distribution σ ∈ ∆Y :

Definition 8. Distribution ρ ∈ ∆Y is λ-shift w.r.t. to σ ∈ ∆Y , denoted ρ ∈ λ(σ), if

for all yv ∈ Y we have ρv ≤ σv + λ(1− σv) and ρv ≥ σv(1− λ). If for some v we have

ρv = σv + λ(1− σv) we say that ρ is strict-λ-shift w.r.t to σ

A λ-shift therefore restricts the change of the probability of a label - the shift may

be at most a λ portion of the probability of the other labels (in case of increase) or of

the probability of the label (in case of decrease). To simplify notation, for ρ ∈ λ(σ) we

denote the upper bound of the probability ρv of a label yv by λ
v
(σ) , σv + λ(1− σv),

and the lower bound on ρv by λv(σ) , σv(1− λ).

For a non-negative function l : Y → R+ we now consider its maximal possible

average Eρ(l) ,
∑

yv
ρvl(yv) as a result of a λ-shift:

Definition 9.

Eλ,σ(l) , max
ρ∈λ(σ)

Eρ(l) .

Since the maximum is achieved when ρ is strict-λ-shift to the label yv of maximal

value of l, we have the following:

Eλ,σ(l) = max
v
{l(yv)λ

v
(σ) +

∑
v, 6=v

l(yv,)λ
v,(σ)} .

Note that for the special case of no restriction (i.e., 1−shift) we have E1,σ(l) =



142 CHAPTER 8. ROBUST DOMAIN ADAPTATION

maxj{l(yj)} and for the special case of total restriction (i.e., 0−shift) we have E0,σ(l) =

Eσ(l).

To apply the above definitions to the domain adaptation problem first note that the

labeled sample S induces in every region Xi a distribution σi on the labels: σvi , |Si,v |
|Si| ,

where |Si,v| is the number of samples labeled yv in region Xi and |Si| is the total

number of samples in region Xi. Now, we say that the target distribution P is λ-shift

of the source distribution Q w.r.t. a partition of the input space X, if in every region

Xi the conditional target distribution on the labels P (y|x ∈ Xi) is λ-shift w.r.t. the

conditional source distribution on the labels Q(y|x ∈ Xi).

We define for each region Xi a function that given a hypothesis h maps every

possible label yv to its maximal sampled empirical loss:

Definition 10.

li(h, yv) ,


maxs∈S∩Xi×yv l(h, s) if S ∩Xi × yv 6= ∅

M otherwise

Now, for a fixed h, viewing li(h, y) as a function of the label y (denote li(h, yv) by lvi )

and restricting the target distribution in each region Xi to be λ-shift of the empirical σi

we get that the average loss in region Xi is bounded by Eλ,σi(li). Specifically, we bound

the maximal average loss of a hypothesis h under the λ-shift assumption in region Xi,

denoted lλS(h,Xi), by

lλS(h,Xi) ≤ Eλ,σi(li) = max
v
{lvi λ

v
(σi) +

∑
v, 6=v

lv
,

i λ
v,(σi)} . (8.1)

Note that a distribution P can be a 0-shift of Q, even if they have disjoint support.

What will be important for us is that due to the robustness the loss of the algorithm

in any region Xi × Yv will be almost the same. Therefore, the major issue would

be how to weigh the losses w.r.t the different labels. The λ-shift captures this issue

very nicely. Assuming λ = 1 may be interpreted as a pessimistic assumption, where

there is no restriction on the weights of the labels. Assuming λ = 0 represents an

optimistic assumption for which in every region Xi the target distribution assigns the

same probability to the samples as the source distribution. In general a λ ∈ (0, 1)

represent a trade-off between the two extremes.



8.2. ADAPTATION BOUNDS USING ROBUSTNESS 143

8.2 Adaptation Bounds using Robustness

We now prove the following generalization bound for LP (hST ), where hS,T is the output

hypothesis of a (K, ε)-robust learning algorithm A which is given a set of labeled samples

S and a set of unlabeled samples T of size n.

Theorem 11. For a (K, ε)-robust algorithm A and the related partition of Z = X×Y ,

if P is λ-shift of Q w.r.t. the partition of X then ∀δ > 0, with probability at least 1− δ,

∀h ∈ H:

LP (h) ≤ ε+M

√
2K ln 2 + 2 ln 1

δ

n
+

Kx∑
i=1

T (Xi) l
λ
S(h,Xi) (8.2)

Proof. The loss of h w.r.t. P is,

LP (h) =
K∑
k=1

(P (Ck)− T (Ck))LP |Ck(h) +
K∑
i=1

T (Ck) LP |Ck(h) .

Now, for the second sum above we have

K∑
i=1

T (Ck)lP |Ck(h) =

Kx∑
i=1

Ky∑
j=1

T (Xi × Yj)LP |Xi×Yj (h)

=

Kx∑
i=1

T (Xi)

Ky∑
j=1

T (Yj |Xi)LP |Xi×Yj (h) .

By the robustness property, the loss of h in any region Xi × Yj is at most ε away

from the sampled loss at that region, so we may replace LP |Xi×Yj (h) above with

LT |Xi×Yj (h) + ε. Also, since P is λ-shift of Q w.r.t. the given partition of X, in

every region Xi we have that with probability at least 1−δ the empirical target sample

T is (λ + ε)-shift of the empirical source sample S (for a sample size that depends

polynomially on 1
ε and log 1

δ ). We therefore get

K∑
i=1

T (Ck) lP |Ck(h) ≤
Kx∑
i=1

T (Xi) l
λ
S(h,Xi) + ε .

Finally, from the bounded loss property we have LP |Ck(h) ≤M . Furthermore, as T is

sampled from P , by the Bretagnolle-Huber-Carol inequality (as in the proof of Theorem



144 CHAPTER 8. ROBUST DOMAIN ADAPTATION

3 in [126]) we have that with probability > 1− δ,

K∑
i=1

|P (Ck)− T (Ck)| ≤

√
2K ln 2 + 2 ln 1

δ

n
,

which completes the proof.

Note that although the target sample probability T (Xi×yj) of a label yj in a region

Xi is not available, given the hypothesis h and the partition {Xi}Kxi=1, the last term of

the bound
∑Kx

i=1 T (Xi)l
λ
S(h,Xi) can be evaluated from the sample sets S and T .

8.3 Robust Domain Adaptation SVM for Classification

We consider the classification problem for which the label set Y = {1,−1}. Robustness

of SVM implies the existence of a partition X = ∪Ki=1Xi for which Eq. (8.2) holds

(see [126]). Given the labeled sample set S and the unlabeled set T , our algorithms

selects a hyperplane h ∈ H that minimizes the generalization bound with an additional

appropriate regularization term. We present a robust adaptation algorithm, a general

scheme for the λ-shift case in which we assume that the target distribution is λ-shift of

the source distribution w.r.t. the partition of X. We then consider two special cases: an

optimistic variation in which we assume that in every region Xi the probability of each

label is the same in the source and target distributions (i.e., 0-shift), and a pessimistic

variation in which no relationship is assumed between the probability of the labels in

the source and target distributions (i.e., 1-shift). We also use the notation Ti = T (Xi)

for the T -sampled probability of region Xi.

To simplify notation we set S+
i = Si,1, S−i = Si,−1, and σi = σ1

i the empirical

probability of label 1 in region Xi. Using the notation l+i = li(h, 1) and l−i = li(h,−1),

the bound of Eq. (8.1) on lλS(h,Xi) for the general case is

max{l+i (σi + λ(1− σi)) + l−i (1− σi)(1− λ), l+i σi(1− λ) + l−i ((1− σi) + λσi)}.

This bound further simplifies to l+i σi + l−i (1 − σi) for the optimistic case and to

max{l+i , l
−
i } for the pessimistic case. Note that robustness of SVM implies that l(h, s)

varies at most ε over s ∈ S+
i (and similarly over s ∈ S−i ). For SVM we use the hinge

loss, l(h, (x, y)) , max{0, 1 − yh(x)}. For a separating hyperplane hw,b(x) = wTx + b



8.3. ROBUST DOMAIN ADAPTATION SVM FOR CLASSIFICATION 145

we have l(hw,b, (x, y)) = max{0, 1− y(wTx+ b)}.

8.3.1 λ-shift SVM Adaptation

We assume that for some given λ ∈ [0, 1], the target distribution P is λ-shift of the

source distribution Q w.r.t the partition of the domain X. We define a quadratic

optimization program that finds the best separating hyperplane hw,b(x) = wTx + b in

the sense that the related set of losses li (the primal variables, together with w and b)

minimizes the worst case bound of Eq. (11)2. In addition to the usual SVM constraints

on the losses li ≥ l(hw,b, s) for each sample s ∈ S (where l(·, ·) is the hinge loss),

we want to constrain the losses to satisfy li ≥ lλS(h,Xi) for each region Xi (thereby

minimizing li implies that we minimize lλS(h,Xi)). We achieve the latter condition by

using a lower bound on li which upper bounds lλS(h,Xi). Using a trade-off parameter

C results in the following convex quadratic program which receives as input 2K source

domain sample clusters and respective target-domain region probabilities (S+
i , S+

i , and

Ti, for i = 1..K):

min
w,b,l1,l2,...,lK

C
K∑
i=1

Tili +
1

2
‖w‖2 (8.3)

subject to

l+i ≥ 1− (wTxj + b) ∀j = 1..m s.t. (xj , 1) ∈ S+
i (8.4)

l−i ≥ 1 + (wTxj + b) ∀j = 1..m s.t. (xj ,−1) ∈ S−i (8.5)

li ≥ l+i (σi + λ(1− σi)) + l−i (1− σi)(1− λ) i = 1..K (8.6)

li ≥ l+i σi(1− λ) + l−i ((1− σi) + λσi) i = 1..K (8.7)

li ≥ 0, l+i ≥ 0, l−i ≥ 0 i = 1..K (8.8)

For each sample (xj , yj) ∈ S, j = 1 . . .m, we have a constraint (8.4) or (8.5)

regarding one of the two primal variables l+i or l−i (depending on the value of yj) where

i is the index of the region Xi to which xj belongs. The other constraints (8.6), (8.7),

and (8.8), bound the loss li using the λ-shift assumption.

To find the dual representation of this problem we introduce the dual variables

2Actually, it minimizes the last term of Eq. (11), which is the only part of the bound that depends
on the hypothesis h



146 CHAPTER 8. ROBUST DOMAIN ADAPTATION

α1, . . . , αm pertaining to constraints (8.4) or (8.5), β+
1 , . . . , β

+
K , and β−1 , . . . , β

−
K , per-

taining to constraints (8.6) and (8.7) respectively, and r1 . . . , rK , s+
1 , . . . , s

+
K , and

s−1 , . . . , s
−
K pertaining to the primal variables in (8.8) respectively.

The Lagrangian is,

L(w, b, l, l−, l+, α , β+, β−, r, s+, s−) =

C
K∑
i=1

Tili +
1

2
‖w‖2 +

∑
(xj ,1)∈S+

i

αj(1− (wTxj + b)− l+i )

+
∑

(xj ,−1)∈S−i

αj(1 + (wTxj + b)− l−i )

+
K∑
i=1

β+
i (l+i (σi + λ(1− σi)) + l−i ((1− σi)− λ(1− σi))− li)

+

K∑
i=1

β−i (l+i (σi − λσi) + l−i ((1− σi) + λσi)− li)

−
K∑
i=1

rili −
K∑
i=1

s+
i l

+
i −

K∑
i=1

s−i l
−
i

Applying the KKT conditions, at the optimal primal values the partial derivatives

of the Lagrangian w.r.t. the primal variables w, b, l, l+, l− are 0, and we get respectively:

w −
∑

(xj ,1)∈S+
i

αjxj −
∑

(xj ,−1)∈S−i

αjxj = 0 (8.9)

∑
(xj ,1)∈S+

i

αj −
∑

(xj ,−1)∈S−i

αj = 0 (8.10)

CTi − ri − β+
i − β

−
i = 0 (8.11)

−
∑

(xj ,1)∈S+
i

αj + β+
i (σi + λ(1− σi)) + β−i (σi(1− λ)) + s+

i = 0 (8.12)

−
∑

(xj ,−1)∈S−i

αj + β+
i (1− σi)(1− λ) + β−i (1− σi(1− λ)) + s−i = 0 (8.13)

Now, from non-negativity of the dual variables α, β+, β−, r, s+, s−, using (8.11) and

summing (8.12) and (8.13) we get

A+
i +A−i ≤ β

+
i + β−i ≤ CTi . (8.14)



8.3. ROBUST DOMAIN ADAPTATION SVM FOR CLASSIFICATION 147

(8.12) and (8.14) imply

A+
i = (CTi − ri)(σi + λ(1− σi))− λβ−i − s

+
i ≤ (σi + λ(1− σi))CTi , (8.15)

and (8.13) and (8.14) imply

A−i = (CTi − ri)(1− σi + λσi)− λβ+
i − s

−
i ≤ (1− σi + λσi)CTi , (8.16)

where we use the notation A+
i ,

∑
(xj ,1)∈S+

i
αj and A−i ,

∑
(xj ,−1)∈S−i

αj .

Finally, given nonnegative values {αj}mj=1 satisfying A+
i + A−i ≤ CTi i = 1..K,

any nonnegative assignment to {β+
i , β

−
i }Ki=1 that satisfies

A+
i ≥ β

+
i (σi + λ(1− σi)) + β−i (σi(1− λ))

A−i ≥ β
+
i (1− σi)(1− λ) + β−i (1− σi(1− λ)) ,

uniquely determines nonnegative values for the rest of the dulal variables {ri, s+
i , s

−
i }Ki=1

to satisfy (8.11), (8.12), and (8.13). The resulting dual program follows:

max
α1...αm


m∑
j=1

αj −
1

2
‖
m∑
j=1

αjyjxj‖2
 (8.17)

subject to

A+
i +A−i ≤ CTi i = 1..K (8.18)

A+
i ≤ (σi + λ(1− σi))CTi i = 1..K (8.19)

A−i ≤ (1− σi + λσi)CTi i = 1..K (8.20)

m∑
j=1

yjαj = 0 (8.21)

αj ≥ 0 j = 1..m (8.22)

A+
i =

∑
xj∈S+

i

αj , A
−
i =

∑
xj∈S−i

αj , i = 1..K (8.23)

where the constraint (8.18) follows from (8.14), the constraints (8.19) and (8.20) follows

from (8.15) and (8.16) respectively, and the constraint (8.21) is Eq. (8.10). Using Eq.

(8.9), the primal solution w is related to the dual solution by w =
∑m

j=1 αjyjxj . For



148 CHAPTER 8. ROBUST DOMAIN ADAPTATION

the primal solution b we do the following: combining again (8.12) and (8.13) and using

(8.11) we get

A+
i +A−i = CTi − (ri + s+

i + s−i ) ≤ CTi ,

with inequality when one of the dual variables ri, s
+
i , s

−
i is positive, or equivalently (by

KKT) when one of the respective primal variables l+i or l−i is 0. Since for support dual

variables (αj > 0) either (8.4) or (8.5) are satisfied with equality, we conclude that the

optimal primal b is recovered from primal constraints corresponding to dual support

variables satisfying A+
i +A−i < CTi.

The conditions of the dual program may be interpreted as reweighing of the samples

of S. The constraints above imply that A+
i +A−i ≤ CTi. Therefore, the total weight of

the samples in region Xi is bounded (up to multiplication by the trade-off parameter C)

by the weight of region Xi as sampled from the target distribution T . Furthermore, in

this general case, within each region Xi the total weights of positive labeled samples A+
i

(or total weight of negative labeled samples A−i ), is at most a λ-shift of the empirical

positive (or negative, respectively) weight of the region.

We now proceed to consider the two special cases, the optimistic case (λ = 0) and

the pessimistic case (λ = 1).

8.3.2 Optimistic SVM Adaptation

In this variation we assume that P is 0-shift of Q3. Setting λ = 0 in the primal program

(8.3) - (8.8) we the following slightly simplified program in which (8.6) and (8.7) are

replaced by li ≥ l+i σi + l−i (1− σi) and whose dual is:

max
α1,...,αm


m∑
j=1

αj −
1

2
‖
m∑
j=1

αjyjxj‖2
 (8.24)

3Note that this is not equivalent to assuming that Q = P . The source and target distributions might
substantially differ and still have the same probability in each region Xi, and even more importantly,
they can arbitrarily differ in the probability that they assign to different regions Xi.



8.3. ROBUST DOMAIN ADAPTATION SVM FOR CLASSIFICATION 149

subject to

Ai ≤ CTi i = 1..K (8.25)

A+
i = σiAi i = 1..K (8.26)

A−i = (1− σi)Ai i = 1..K (8.27)

m∑
j=1

yjαj = 0 (8.28)

αj ≥ 0 j = 1..m (8.29)

A+
i =

∑
xj∈S+

i

αj , A−i =
∑
xj∈S−i

αj , i = 1..K (8.30)

Ai = A+
i +A−i i = 1..K (8.31)

For a reweighing interpretation of the dual variables αj (pertaining to the sample

(xj , yj) in the primal solution w =
∑m

j=1 αjyjxj) note that at most σi portion of the

weight allocated to region Xi is allocated to positive samples (xj , 1) and at most 1−σi

portion of the weight is allocated to negative samples (xj ,−1). Note that this may

differ from the naive re-weighting approach that assigns the weight αj = C |Ti||Si| to

every sample (xj , yj) ∈ Si. This is because the naive re-weighting satisfies (8.25) with

equality, and is not restricted by (8.28).

8.3.3 Pessimistic SVM Adaptation

In this variation we make no assumptions on P (i.e., P is 1-shift of Q). Again, setting

λ = 1 in (8.3) - (8.8) we get a primal program in which (8.6) and (8.7) are replaced by

li ≥ l+i , and li ≥ l−i , respectively, and the resulting dual program is:

max
α1,...,αm


m∑
j=1

αj −
1

2
‖
m∑
j=1

αjyjxj‖2
 (8.32)



150 CHAPTER 8. ROBUST DOMAIN ADAPTATION

subject to

Ai =
∑
xj∈Si

αj ≤ CTi i = 1..K (8.33)

m∑
j=1

yjαj = 0 (8.34)

αj ≥ 0 j = 1..m (8.35)

Again, the primal solution is related to the dual solution by w =
∑m

j=1 αjyjxj and

the dual variables may be interpreted as reweighing of the samples of S: The weight

Ai, the total weight of the samples in region Xi, is bounded by the weight of region

Xi in the set T . In this pessimistic variation there is no restriction on A+
i or A−i and

the weight of region Xi is fully allocated to the region samples with the highest loss.

This is natural since the support of the target distribution in every region might only

include points of such worst-case loss.

8.4 Robust Domain Adaptation for Regression

In the regression setting the label set Y and the domain X are each a bounded convex

subset of R. The classification loss at a sample zj = (xj , yj) is l(h, zj) = (h(xj)− yj)2.

Robustness of regression algorithms (e.g., Lasso, see [126]) implies that we may assume

a partition Y = ∪Kyv=1Yv of the label range for which Eq. (8.2) holds, and we define

the sample subsets Svi , S ∩ Xi × Yv and Sv , S ∩ X × Yv. As before, we assume

that the target distribution is λ-shift of the empirical distribution in every region Xi.

We use the notation σvi for the empirical probability (in sample set S) of label v in

region Xi, and lvi = li(h, v) for the maximal loss of hypothesis h in Xi × Yv. To solve

the domain adaptation problem in this setting, in addition to the usual constraints on

the losses lvi ≥ l(hw,b, s) for each sample s ∈ Svi , we want to constrain the losses to

satisfy li ≥ lλS(h,Xi) for each region Xi (thereby minimizing li implies that we minimize

lλS(h,Xi)). As before, we achieve the latter condition by using a lower bound on li which

upper bounds lλS(h,Xi) by Eq. (8.1). The algorithm selects among all linear functions

hw,b(x) = wTx+b the one that minimizes the generalization bound, i.e., Eq. (8.2) with

an additional appropriate regularization term. We assume that for each region Xi the

target probability distribution on the labels ρi is λ-shift of the empirical distribution



8.4. ROBUST DOMAIN ADAPTATION FOR REGRESSION 151

σi. To simplify notation we denote the upper bound of ρvi , the probability of label yv

in region Xi by λ
v
i , λ

v
(σi), and the lower bound on ρvi by λvi , λv(σi). Finally, using

a trade-off parameter C results in the following convex quadratic program for Ridge

Regression4:

min
w,b,l1,l2,...,lK

C
K∑
i=1

Til
2
i +

1

2
‖w‖22 (8.36)

subject to

lvi ≥ yj − (wTxj + b) ∀j = 1..m s.t. (xj , yj) ∈ Svi (8.37)

lvi ≥ (wTxj + b)− yj ∀j = 1..m s.t. (xj , yj) ∈ Svi (8.38)

li ≥ lvi λ
v
i +

∑
v, 6=v

lv
,

i λ
v,

i ∀i = 1..KX , ∀v = 1..KY (8.39)

For the pessimistic case (λ = 1) the constraint (8.39) simplifies to li ≥ lvi and for

the optimistic case (λ = 0) it simplifies to li ≥
∑

v σ
v
i l
v
i .

To find the dual representation of the Ridge Regression problem in the general

case we introduce a dual variables α+
j associated with the first constraint above, α−j

associated with the second, and Bv
i associated with the last one. Setting the partial

derivatives (according to the primal variables w, b, lvi , and li) of the resulting Lagrangian

to 0 we get the following relations: w =
∑

j(α
+
j −α

−
j )xj ,

∑
j α

+
j =

∑
j α
−
j , Bi = 2CTili,

and
∑

(xj ,yj)∈Svi
(α+

j + α−j ) = λviB
v
i + λ

v
iB

v
i , where Bi =

∑
v B

v
i and Bv

i =
∑

v, 6=v B
v,
i .

Using the above relations we derive the following dual problem:

max
α,B

−1

2
‖[‖
]∑

j

(α+
j − α

−
j )xj +

∑
j

(α+
j − α

−
j )yj −

1

4C

∑
i

B2
i

Ti


subject to

4We may similarly solve for Lasso Regression: replacing (8.36) with minw,b,l1,l2,...,lK C
∑K
i=1 Til

2
i +

‖w‖1. The robustness of Ridge Regression may be established in a similar manner to the proof of Lasso
robustness in [126].



152 CHAPTER 8. ROBUST DOMAIN ADAPTATION

∑
(xj ,yj)∈Svi

(α+
j + α−j ) = λviB

v
i + λ

v
iB

v
i i = 1..Kx , v = 1..Ky

∑
j

α+
j =

∑
j

α−j ,

α+
j ≥ 0, α−j ≥ 0 j = 1..m

The primal solution is related to the dual solution by w =
∑

j(α
+
j − α

−
j )xj . Note also

that α+
j α
−
j = 0.

8.5 Experiment

To illustrate the ability of performing the domain adaptation task by using our methods

we considered a synthetic one dimensional binary classification problem. We run the λ-

shift domain adaptation SVM on a synthetic data set containing train and test samples

from significantly different domains. The experiment confirmed that for several values

of λ (not necessarily 0 or 1) the test error of the optimal (with respect to the train set)

linear separator may be improved by using the separator returned by our algorithm.

separator

av
e

ra
g

e
 h

in
g

e
 lo

ss

   setting

L=1
L=0.5
train
L=0
test

−10 −5 0 5 10

2
4

6
8

1
0

Figure 8.1: Separators performance
w.r.t. experiment data

0.0 0.2 0.4 0.6 0.8 1.0

1
.5

8
5

1
.5

9
5

1
.6

0
5

λ

b
e

st
 h

in
g

e
 lo

ss

Figure 8.2: Performance of λ-shift SVM
optimal separator

Figure 8.1 shows the resulting loss levels of the linear separators. The labeled train

samples are a mixture of three Gaussians, centered at −5, 0, and 5, producing positive,

negative, and positive labels respectively5. Standard deviation is 5 for the Gaussians

5Note that the positives and negatives are not linearly separable



8.6. CONCLUSION AND FUTURE DIRECTIONS 153

generating the positive labels and 3 for those generating negative labels. In the source

domain the probabilities of generating a sample for the first, second, or third Gaussians

are 0.4, 0.5, and 0.1, respectively, while in the target domain the probabilities are 0.1,

0.5, and 0.4. The upper curves (L = 1, L = 0.5, and L = 0) correspond to the bounds

LλS on the average loss of the separator as computed by our λ-shift SVM for λ = 1, 0.5,

and 0.

Now, the best linear separator for the train set will incur significantly higher loss

on the test set. However, the best linear separator produced by a λ-shift SVM (corre-

sponding to the lowest points of each of the three upper curves of figure 8.1) may be

closer to the optimal linear separator of the test set, and therefore perform better in

the target domain6. Indeed, as figure 8.2 shows, running the λ-shift SVM (on the same

data sets) with λ ranging between 0.2 and 0.4 results in separators having loss that is

comparable to the loss of the best test-set separator.

8.6 Conclusion and Future Directions

Assuming the λ-shift property and given a partition of the input-output space, we

showed a domain adaptation bound and related robust algorithms for classification and

regression. The algorithms were obtained by incorporating the λ-shift restriction into

standard machine learning algorithms that minimize the domain adaptation bound. A

natural question is whether similar methods may be applied to other robust algorithms

described in [126] such as Principal Component Analysis and Feed-Forward Neural

Networks to obtain additional domain adaptation algorithms.

Another interesting question is the dependence of our algorithms on the specific

input-output space partition. Although the polynomial time-complexity dependence of

our algorithms on the number of regions in the partition, the number of regions may be

exponential in the dimension of the domain. Therefore, smart partition methods (that

may utilize the λ-shift property and the available sample sets) are essential for making

our algorithms feasible in high dimensions.

Finally, the sensitivity of our algorithms to the λ-shift assumption may be fur-

ther investigated. That is, the effect of small changes in the source or target domain

6Note that the precise loss values of the λ-shift loss curve (loss bounds calculated by the λ-shift
SVM) are not important, the value of interest is the specific separator that achieves minimal loss on
the curve!



154 CHAPTER 8. ROBUST DOMAIN ADAPTATION

distributions on the actual λ-shift property and on the algorithm’s output.



Part III

Multiagent Learning

155



156



Chapter 9

Distributed Information

Aggregation and Prediction

The social learning setting is introduced, followed by related background and prelimi-

nary results to be used in the work presented in Chapter 10.

9.1 Social Learning

In a Social learning setting, a population of agents, each having access to some private

information, collaborate (hence social) to compute (that is, learn) a quantity that

depends on the aggregate of the information. The private information possessed by

each agent is conveyed through an action of the agent1 and the resulting computation

consists of the total effect of all actions. Two contemporary examples of such social

learning are the construction of instantaneous traffic load estimates based on the speed

and location reports of sensors in driver’s cellphones, and recommendation systems that

aggregate rating by individual agents.

The concept of distributed computing, motivated by parallelizing computation time,

savings in communication bandwidth, and other needs (e.g., privacy), is, of course, not

new in computer science. However, a key characteristic of social learning settings (vs.

the more traditional distributed computing scenario) is the treatment of the collaborat-

ing agents as rational economic entities. Namely, each agent has an incentive to take

part (or not) in the computation, that is not necessarily aligned with the goal of having

1Such an action depends on the specific setting, and may be explicitly announcing the value of the
private information, or some other action that depends on the private information.

157



158CHAPTER 9. DISTRIBUTED INFORMATION AGGREGATION AND PREDICTION

a result that genuinely aggregates the private information of the agents.

9.2 Endogenous and Exogenous Settings

We therefore distinguish between two conceptually different scenarios for social learn-

ing. In the Endogenous scenario, each participating agent has direct stake in the out-

come of the social computation. That is, the eventual benefit to the agent is a function

of his private type and the computation result. An example of such a setting is Resource

Allocation, where each agent has a (private) requirement for an amount of work to get

done and the social computation (given the reported work requirements by the agents)

results in an allocation of work to servers. The eventual time it takes for an agent’s

work item to complete depends on the work load of the server the item was allocated

to. Another example is a social choice scenario, where the result of an election is deter-

mined by accumulating the individual votes of agents, each having a desired outcome

of its own. Yet another example of an endogenous setting is an auction, where an agent

places a bid for an item to be auctioned, hoping to win for a price lower than its value

to him. The highest offered bid may be considered the result of the social computation

- aimed (by the auctioneer) at value discovery through the auction. All in all, in an

endogenous scenario, the benefit to the agent as a result of taking some action is not

inherent in the action but may depend on the actions of the other agents. Note that

agents can mis-report their information to improve their eventual utility (that is, act

strategically) in such situations.

In the Exogenous scenario, the focus of this work, the eventual benefit to the agents

depend on an external set of exclusive events (that is, exogenous, hence the name) and

not on the result of the social computation. The private information of the agents is

related to the probabilities of the events occurring and the social computation can be

viewed as aiming at an estimate of the events occurrence probabilities, based on the

aggregate information held by the agents. The eventual benefit to an agent in such an

exogenous setting is inherent in the action taken by the agent (that is, regardless of the

actions taken by other agents and the result of the social computation) and determined

by the actual event occurring. To make this idea more concrete, consider the bonds

market. A bond is a financial instrument in which a firm commits to pay to the bond

holder certain amounts of money at different predefined times (as long as the firm does



9.3. INFORMATION CASCADING 159

not go bankrupt). Therefore, the price of a bond reflects a probability of the firm

to bankrupt during the relevant time period.2 Now, each trader (agent) may have a

private valuation of a certain bond (depending on his own estimate of the probability

of the related firm to bankrupt during the relevant period of the bond), and may take

action (e.g., buy) in case the current outstanding price is relatively low. The resulting

social computation in this case is the final price of the bond upon all transactions, and

may be interpreted as reflecting the aggregated estimate (over all trader’s beliefs) of

the probability of the firm to bankrupt. The eventual benefit to a trader in this setting

depends of course on the action taken (the price paid) and whether the firm is actually

bankrupt or not.

9.3 Information Cascading

The above interpretation of the resulting computation as reflecting the aggregate belief

of the agents regarding the probability of the occurrence of an event (specifically, the

price of the bond as the aggregated beliefs of the traders regarding the bankruptcy

probability of the firm) is justified by considering the agents as Bayesian. That is, the

agents update their private estimate upon witnessing the actions of other agents, and

may act again and again, whenever they may perceive such actions as beneficial to them.

Eventually, no more actions take place, and the resulting estimate reflects the common

consensus that was socially achieved. Moreover, in settings such as the bonds market

where wealth is involved, successful traders making good predictions have their wealth

increased over time, while others are taken out of the market by some sort of natural

selection. In such situations, the social computation, reflecting the aggregated wisdom

of the crowd, may also be regarded as an accurate estimate of the actual underlying

probabilities of the events occurrences.

One should be careful, though, with such interpretations. A population of rational

Bayesian agents in a sequential decision making setting (that is, agents that observe

the actions of previous agents and use the Bayes rule to infer regarding those agent’s

private information) might result in an Information Cascade (also termed herding) - a

situation where the early actions of a relatively small number of agents results in all

subsequent agents ignoring their private information and instead imitating the actions

2In addition to the risk-free interest rate.



160CHAPTER 9. DISTRIBUTED INFORMATION AGGREGATION AND PREDICTION

of their predecessors.

Consider for example the following scenario from [48]. An urn has either two blue

balls and one red ball or two red balls and one blue. Agents in turn take out a ball

from the urn (and put it right back) and predict based on the observed color of the ball

and the history (past predictions are publicly available), the state of the urn (two red

balls and one blue, or the other way around). A simple analysis shows that even when

the initial state of the urn is two red balls and one blue ball, if the first two agents

happen to pick a blue ball each in turn (and therefore predict an initial state of two

blue balls and one red ball), the rest of the agents would predict the same, regardless

of their observed ball. The resulting computation is therefore utterly wrong, whereas

the aggregate of the private signals would have resulted in a correct prediction with

high probability.

Evidently, such situations, when triggered, might lead to a resulting computation

that is by no means representative of the aggregation of the population’s private signals.

A phenomenon that can’t get fixed by merely increasing the population size. However,

the risk of herding may be precluded by introducing history independent agents to the

population3 (namely, agents that ignore past actions for making their decision regarding

the action to take).

It is interesting to note that an endogenous variant of herding exists, where agents

may prefer imitating the actions of prior agents due to an eventual benefit that depends

on their action and the result of the social computation (rather than on the outcome of

some external event). This is the case of setting in which a network effect governs the

benefit related to actions taken by agents. For example, when choosing a social network

to join, the benefit to the agent depends also on the eventual size of the network (the

result of the social computation) and therefore an agent might choose to imitate the

actions of prior agents and to join a social network that was a-priori less preferred.

9.4 Ingredients of Agent’s Strategic Behavior

Market Scoring Rules are used to elicit agents to truthfully act in a way to best represent

their actual private information. This allows for the resulting computation (whether

directly as a result of the sequence of actions, or by an observing entity) to truly

3And of course, having all agents being aware of the presence of such history independent agents.



9.4. INGREDIENTS OF AGENT’S STRATEGIC BEHAVIOR 161

represent the aggregate of the agents private signals. Market scoring rules make use

of scoring rules, which have a very long history, going back to [49], [35] and [61], and

studied in much subsequent work ([107], [123], [108], see also [60]). Basically, a scoring

rule associates a real score S(i, ~p) to a probability distribution ~p ∈ ∆Ω over some finite

result space Ω, and an actual result i ∈ Ω. This may be interpreted as the benefit to

the predictor of ~p upon the actual realization of the event i. If the true underlying

distribution over Ω is some ~b, then the expected score of a prediction ~p is E
i∼~bS(i, ~p),

denoted S~b(~p). A scoring rule is termed proper if for a fixed ~b the expected score S~b(~p)

has a unique maximum at ~p = ~b. A proper scoring rule, therefore, induces a forecasting

agent believing that the true probability distribution is ~b to act by predicting his actual

belief. Two widely used market scoring rules are the Quadratic Scoring Rule (QSR)

S(i, ~p) = 1−(1−pi)2 and the Logarithmic Market Scoring Rule (LMSR) S(i, ~p) = log pi.

The abstract score resulting from the usage of a market scoring rule may represent

actual money. Now, the actual choice of an action (or lack of action) by an agent

takes place by considering a utility function that represents the desirability level of the

different wealth levels attainable. Intuitively, for rational agents, such utility functions

are strict monotone increasing. Linear utility, for example, indicates that a certain

increase in wealth results in the same increase in utility, regardless of the initial level of

wealth. Such a utility function might not be appropriate in many real situations since

it suggests, for example, that an additional certain monetary amount (say 10000$) is

equally desirable by a poor person and a rich person. A more adequate utility function

for such circumstances is logarithmic utility, suggesting that the multiplication of the

wealth by a certain amount is equally desirable at all wealth levels.

A rational agent facing choice is expected to act according to the action that max-

imizes expected resulting utility. Action is not necessarily expected (if no action is

a possibility), however, since an agent might already posses a certain level of wealth

with a related utility. If, for example, the current utility level of an agent (based on its

current wealth) is equal to the expected utility upon taking action, a risk averse agent

(having a concave utility function) will avoid taking action, a risk taker (having a con-

vex utility function) will act, and a risk neutral agent (having a linear utility function)

will be indifferent in taking action (or not). In prediction markets, presented in the

next section, agents are assumed to be risk neutral. That is, will be inclined to act (and

thereby hint regarding their private information) whenever their private information



162CHAPTER 9. DISTRIBUTED INFORMATION AGGREGATION AND PREDICTION

indicates an opportunity of eventual positive benefit.

Finally, consider game settings, where the utility to an agent resulting from his

choice of action depends also on the action taken by the other agents. To simplify

notation we assume there are only two agents taking part in the game. Denote by

uA(a, b) the utility to agent A when agents A and B take actions a and b, respectively.

We similarly denote by uB(a, b) the utility to agent B upon that same choice of actions.

Now, for a fixed action b taken by agent B, the best response action for agent A has

highest utility maxa uA(a, b). The pair of action choices (a, b) by agents A and B

respectively is said to be an equilibrium if each action by an agent is a best response to

the other agent’s action a = arg maxa′ uA(a
′
, b) and b = arg maxb′ uB(a, b

′
). That is,

given the other agent’s choice, an agent can’t improve his utility by switching actions.

9.5 Prediction Markets

A prediction market is a special case of an exogenous social learning setting in which

agents may benefit from some private information they have regarding the probability of

occurrence of some future event by trading related options4 - financial instruments that

pay a predefined amount to the holder upon realization of an event. For example, in a

prediction market for the event of a Democrat or Republican president being elected,

an agent estimating the probability of a Democrat winning at 60% would be willing

to pay at most 60 cents (ignoring transaction costs, and assuming risk neutrality) for

an option paying 1$ in case the Democrat candidate wins the elections (and nothing

otherwise). As elaborated above, the outstanding price in a prediction market may be

interpreted as representing the aggregate beliefs of the traders population regarding

the probability of the relevant event occurring.

In many aspects, this setting resembles the stock market,5 where the outstanding

prices of a security reflects the aggregate private information of traders regarding fu-

ture events effecting the financial prospects of a firm. In a prediction market, however,

trading is usually facilitated by an automated market maker6 that sets the instanta-

neous prices and allows for liquidity. As indicated below, on average such a market

4Formally, termed Arrow-Debreu securities.
5One crucial difference however is the stock market being endogenous, since the value of a stock has

direct influence on the ability of a firm to pursue business endeavors.
6Whereas in a stock market a continuous double auction is used.



9.5. PREDICTION MARKETS 163

maker suffers a loss7 (although bounded, by tailoring a liquidity parameter). There-

fore, the market maker may be viewed as having interest in the the result of the related

social computation, namely, the resulting outstanding price reflecting the aggregate

of the trader’s private signals. Indeed, prediction markets have been implemented in

varied domains to assess the probability of significant events (such as the completion

date of a strategic project) using the distributed and private information8 of relevant

stake-holders (see e.g., [96], and also[79]).

Now, the market maker seeking to estimate the true probabilities of the outcomes

of a future event needs to elicit traders to take action (that is, purchase or sell options

if they believe their estimate is higher or lower than the outstanding price, respec-

tively). Furthermore, the prediction market should reward traders that increase the

accuracy of the prediction (and penalize those that decrease it). A market scoring rule

[65] is therefore used to set such rewards, eliciting traders to take action based upon

their belief. This Arrow-Debreu securities setting is shown (see [42]) to be equivalent

to the following alternative formulation (now formally defined), more resembling the

sequential social learning scenario treated in this chapter so far.

Let the result space Ω = {1, 2, ..., N} be a set of mutually exclusive outcomes

of a future event, and let U = ∆Ω be the set of possible states of the market (i.e.,

every state is a probability distribution over Ω). The market maker sets the initial

state by posting an initial probability distribution ~p0 ∈ ∆Ω, and thereafter traders

t ∈ {1, 2, . . . , T} sequentially change the state of the market by posting probabilities

~p1, ~p2, ..., ~pT . Finally, a realization i ∈ {1, 2, ..., N} of F takes place, and each trader

t (that changed the state from the previous outstanding prediction ~pt−1 to his own

prediction ~pt) is rewarded9 using a proper scoring rule S : U × Ω→ R by the amount

S(i, ~pt)− S(i, ~pt−1). To simplify notation we use S~b(~p) to denote E
i∼~b(S(i, ~p).

Note that by the properties of proper scoring rules, if trader t believes (based on his

private information) that ~bt ∈ ∆Ω is the true underlying probability of F , his expected

reward upon changing the state of the market to ~pt ∈ ∆Ω is S~bt(~pt)− S~bt(~pt−1). Since

this expected reward is maximized by setting ~pt = ~bt, it is optimal for a trading agent in

a prediction market to post his true belief regarding F , implying that the resulting state

7Again, ignoring transaction costs, as assumed throughout this work.
8It is worthwhile noting (also considering the herding phenomenon detailed above) that the success of

such wisdom of the crowds methods relies heavily on the private signals being independent conditioned
on the exogenous event predicted.

9Note that a reward might be negative.



164CHAPTER 9. DISTRIBUTED INFORMATION AGGREGATION AND PREDICTION

truly reflects the aggregation of the genuine private signals of the traders. Similarly,

the expected cost to the market maker10 if ~b is the true underlying probability of F is

S~b(~pT )− S~b(~p0) =

T∑
t=1

(
S~b(~pt)− S~b(~pt−1)

)
. (9.1)

Now, the Bregman divergence (or Bergman loss function) with respect to a convex

differential function f ,

Df (x, y) , f(x)− [f(y) +∇f(y) · (x− y)] , (9.2)

is used by [12] to characterize proper11 market scoring rules12 as having the following

form:

Sf (i, ~p) = −Df (~ei, ~p) , (9.3)

where ~ei is a unit vector with all mass concentrated in the ith coordinate. This makes

sense since the Bregman divergence is non negative and Sf (i, ~p) is 0 when ~p = ~ei. For

example, the quadratic scoring rule

Sf (i, ~p) = 1− (1− pi)2 , (9.4)

corresponds to f(~p) = Q(~p) , 1
2 ||~p||

2, and the logarithmic scoring rule

Sf (i, ~p) = log pi , (9.5)

to f(~p) = L(~p) ,
∑

i pi log pi.

An interesting connection between prediction markets and on-line learning for pre-

diction using experts is presented in [42]. After showing the equivalence between a

market scoring rule-based prediction market and a prediction market based on Arrow-

Debreu options (i.e., by explicitly formulating the corresponding transaction in the

latter to a state update in the former), the authors reduce the on-line learning setting

to a prediction market scenario (specifically, by associating every expert with a possible

10The goal of the market marker is to learn the true probabilities, and thus, in general, would have
to subsidize the market, especially if the resulting price ~pT is close to the true underlying probability
of F .

11A market scoring rule is called proper if it elicits truthful reporting by the agent.
12The characterization actually applies in a more general setting (and is stated accordingly in such

general terms) where the state space U is different from ∆Ω, allowing for efficient pricing even for
scenarios of very large outcome spaces.



9.6. A PREDICTION MARKET AS AN ESTIMATOR 165

outcome, interpreting every reported loss vector as a market transaction, and the re-

sulting probability state of the prediction market as the weight to be used over experts

by the on-line learner). Specifically, they show that for the logarithmic market scoring

rule (LMSR), the prediction market’s pricing mechanism effectively implements the

randomized weighted majority no-regret algorithm and re-derive the no-regret bounds

for RWM using the smoothness properties of the LMSR.

Yet another application of prediction markets to learning is introduced in [13], where

a setting in which agents collaborate by sequentially updating a hypothesis solution to

a supervised learning problem is investigated. In this setting, the private information

of an agent corresponds to the machine learning algorithm used, the probability of the

event corresponds to the posted hypothesis by the agents, and the eventual outcome

corresponds to the test set of the supervised learning problem (which is unavailable

to the agents). Finally, the scoring rule of a prediction market corresponds to a loss

function in this setting, such that after all agents posted their updates, the training set

is revealed and each agent’s profit is the difference between the loss (on the test set)

of his posted hypothesis and the loss of the preceding hypothesis. As with prediction

markets (which are shown to be a special case of the setting), the resulting hypothesis

may be interpreted as the aggregate of all the methods (the private ‘know how’) used

by the agents. Therefore, this crowdsourcing learning setup allows for collaboration

among (potentially competing) agents in which every agent is compensated according

to the relative improvement achieved by his proposed hypothesis.

9.6 A Prediction Market as an Estimator

As already noted, a prediction market may be viewed as a means for the market maker

to get access to the private information available to the set of traders regarding the

probability of occurrence of some future event. The market maker, however, is expected

to suffer a loss in such a setting. Indeed, the market maker posts the first probability

~p0 (and related score S~b(~p0)), having little knowledge regarding the true underlying

probability ~b of the event. Furthermore, at the end of the trading chain, the resulting

probability in the market ~pT is assumed to reflect the aggregate of the trader’s private

knowledge, that is, an accurate estimate of ~b. It is therefore expected that the score

S~b(~pT ) be higher than the initial S~b(~p0). All in all, the expected market maker cost



166CHAPTER 9. DISTRIBUTED INFORMATION AGGREGATION AND PREDICTION

S~b(~pT )−S~b(~p0) (which by (9.1) is the sum of the payments to all participating traders)

is expected to be positive, thereby, reflecting an expected loss to the market maker,

which is effectively subsidizing the market.

In this section we quantify the relation between the expected cost to the market

maker and the quality of the resulting price ~pT as an estimator of the true underlying

probability ~b. More specifically, we establish and quantify the trade-off for the mar-

ket maker between its expected cost and the expected estimation error by showing a

conservation rule stating that the sum of those two quantities is constant. This con-

servation rule is stated in a general form, for market scoring rules and prediction error

measures that are based on Bregman loss functions.

We consider settings in which the private information of every trading agent t is a

random variable Vt. Since the trading agents use their private information to act (that

is, to change of the outstanding price from ~pt−1 to ~pt), the outstanding price ~Pt is also

a random variable (that depends on the set {Vi}ti=1). Hence, the resulting ~PT may be

regarded as an estimator of a true (yet unknown to the traders) underlying probability

~b. A common metric for measuring the performance of such estimators is the Mean

Squared Error (MSE). Specifically, for ~PT , an estimator for ~b we have that the MSE is

the sum of the estimator’s variance and squared bias:

MSE(~PT ) , E[‖~PT −~b‖2] = σ2(~PT ) + ‖β(~Pt)‖2 , (9.6)

where β(~PT ) = E[~PT −~b] is the bias of the estimator and σ2 = E[‖~PT − β(~PT )‖2] is

the variance. Note that expectations above are taken over the random nature of the

realization of the estimator ~PT , that is, over the realization of ~V = (V1, . . . , VT ).

As noted above using (9.3), any proper market scoring rules corresponds to a Breg-

man loss function (which in turn is characterized by a differential convex function f).

We can use the Bregman divergence to also generalize the MSE as follows. Let ~P ∈ ∆N

be a random prediction vector, and fix ~b ∈ ∆N (this may be, but not necessarily, the

true underlying distribution that generates the signals in ~V which ~P depends on).

Define the mean f -Bergman loss of ~P with respect to ~b as follows:

MEf (~b, ~P ) , E~V [Df (~b, ~p)]. (9.7)

We get as special cases MEQ(~b, ~P ) = E~V [‖~b − ~p‖2] (the mean square error), and



9.6. A PREDICTION MARKET AS AN ESTIMATOR 167

MEL(~b, ~P ) = E~V ,~p∼~P [KL(~b||~p)] = E~V ,~p∼~P [
∑

i bi log bi
pi

].

Turning back to scoring rules, we use the characterization (9.3) and the definition

of the Bregman loss (9.2) to get the following formulation for the expected f -Bregman

score of a resulting prediction ~p, when the true underlying distribution over the out-

comes is ~b

Sf~b
(~p) ,

N∑
i=1

biS
f
i (~p) = f(~b)−Df (~b, ~p)−

N∑
i=1

bif(~ei) . (9.8)

Now, the above definitions of Bregman-based scoring rule Sf and mean error MEf

apply to any estimator PT = θ(~V ). Noting that the only term in (9.8) that depends on

~p is the f -Bergman loss function, we get that the expected score of the estimator θ(~V )

is

E~V [Sf~b
(θ(~V ))] = f(~b)−MEf (~b, θ(~V ))−

N∑
i=1

bif(~ei) .

All in all, we have established that the sum of an estimator’s score and squared

error is constant:

Lemma 12. For a scoring rule Sf (i, ~p) = −Df (~ei, ~p) based on a convex differential

function f and a fixed b, the performance of θ(~V ) a predictor of b (where the random

variable ~V may depend on b) satisfies

MEf (~b, θ(~V )) + E~V [Sf~b
(θ(~V ))] = f(~b)−

N∑
i=1

bif(~ei) .

Note the non positivity of the right hand constant (by convexity of f).

Finally, we define the following notation for the cost to the market maker

Cf (~b, ~P0, ~PT ) , EV [Sf~b
( ~PT )− Sf~b ( ~P0)] = EV [Sf~b

( ~PT )]− Sf~b ( ~P0) ,

and get the desired result by applying Lemma 12 to our prediction market setting

Corollary 13. For a convex differential function f , for a fixed ~b and initial price ~P0

in a prediction market based on a scoring rule Sf (i, ~p) = −Df (~ei, ~p) that realizes ~PT as

an estimator for ~b:

MEf (~b, ~PT ) + Cf (~b, ~P0, ~PT ) = Df (~b, ~P0)



168CHAPTER 9. DISTRIBUTED INFORMATION AGGREGATION AND PREDICTION

The corollary follows since,

MEf (~b, ~PT ) + Cf (~b, ~P0, ~PT ) = MEf (~b, ~PT ) + E~V [Sf~b
( ~PT )]− Sf~b ( ~P0)

= f(~b)−
N∑
i=1

bif(~ei)− Sf~b ( ~P0) = Df (~b, ~P0) ,

where the second equality by Lemma 12 and the last equality by (9.8).



Chapter 10

History Independent Learning

We study a simple model of collaborative learning where agents sequentially contribute

based on their private signal but do not have access to the history, rather only to the

most recent state. We compare the optimal (Bayes) estimator for the unknown bias of

a coin given T independent Bernoulli signals, to the estimate produced by a learning

process where the signals are distributed amongst T agents. For a simple strategy space

available to the agents, we consider statistical properties of the resulting estimator in

general, for a social optimal update rule, and for the equilibrium update rule.

More specifically, we study the following scenario: some future event is to occur

with (unknown) probability b. Individual agents (sharing a common prior on b) get

independent signals, 1 with probability b and 0 otherwise. Agents arrive in a random

order and act exactly once (unaware of the past actions or their order of arrival) by

updating the outstanding estimate. The utility to the agents, determined upon the

realization of the event, using the quadratic scoring rule, is the difference between the

score of their posted estimate and the score of the estimate at their arrival.

In order to analyze the dynamics in this setting, we need to designate the class

of available agents’ strategies. We suggest that exponential moving averages is an

appropriate strategy class. Applying the exponential moving average to update the

last prediction has the effect that more recent signals (and, in particular, the private

signal of the agent) are given more weight than older signals whose effect will decay

with time. Also, to update the exponentially moving average incrementally, the agent

does not need access to the action’s history and specifically does not need to know how

many updates have been previously done.

Our setting can be considered to model a trusted recommendation chain, where the

169



170 CHAPTER 10. HISTORY INDEPENDENT LEARNING

perception regarding the quality of a product is sequentially updated through person-

to-person recommendations.1 After observing the recommendation of his predecessor,

each person in line gets the opportunity to use the product and provide to the next an

updated recommendation, based on his own experience. It is crucial to note that in

such a setting people are only considering recommendations from trusted others, and

will act truthfully since they care about their reputation by the advised person.

10.1 Model and Preliminaries

A model for a social computation that aggregates distributed signals is presented,

where the observed signals are generated according to some (unknown) value. The

interpretations of the resulting computation as an estimator of the underlying value is

discussed as well as related performance metrics and a connection to prediction market’s

prices and scores.

10.1.1 The Unknown Bias Generative Model

In our model there is a random variable B which is distributed uniformly in [0, 1], i.e.,

B ∼ U [0, 1]. The random variable B is sampled once, and its realization is b ∼ B. The

realized value b represents the underlying bias of a binary (Bernoulli) random variable

V . That is, given b ∈ [0, 1], V ∼ Bernoulli(b), with Pr[V = 1] = b = 1 − Pr[V = 0].

We denote a series of T i.i.d. such random variables by ~V[1,T ] = (V1, . . . , VT ) and their

respective realizations by ~v[1,T ] = (v1, . . . , vT ). An estimator θ(·) : {0, 1}T → R for the

unknown bias b is a function that maps an observed sequence ~v[1,T ] to some estimated

bias in [0, 1]. Two such estimators are presented next.

10.1.1.1 Bayes estimator for b

Given ~v[1,T ], a sequence of T i.i.d. realizations of a binary random variable V ∼

Bernoulli(b), the Bayes estimator θ̂(·) for b is

θ̂(~v[1,T ]) =

∑T
t=1 vt + 1

T + 2
. (10.1)

1As opposed to public recommendation systems, e.g. Amazon ratings, where each recommendation
is available to the whole population.



10.1. MODEL AND PRELIMINARIES 171

The Bayes estimator θ̂(~v) is both the mean and the mode of the posterior distribution

(assuming a uniform prior for B). Equivalently, the Bayes estimator can be computed

iteratively as follows:

θ̂(~v[1,t]) =

(
1− 1

t+ 2

)
θ̂(~v[t−1]) +

1

t+ 2
vt, for t = 1, . . . , T. (10.2)

Note that θ̂(∅) = 1
2 which is consistent with B ∼ U [0, 1].

10.1.1.2 The Exponential Moving Average Estimator for b

The Exponential Moving Average (EMA) estimator θγ(·) is parameterized by a prede-

fined constant γ:

θγ(~v[1,T ]) = (1− γ)T θγ(∅) +
T∑
t=1

(1− γ)T−tγvt, (10.3)

where θγ(∅) = 1/2. The exponential moving average “values” signals with higher indices

more than signals with lower indices, so it behaves somewhat like a moving average.

Equivalently, θγ(·) can be defined iteratively:

θγ(~v[1,t]) = (1− γ)θγ(~v[1,t−1]) + γvt for t = 1, . . . , T. (10.4)

If one compares the iterative form of the Bayes estimator θ̂(·) with the iterative

form of the exponential moving average θγ(·), they seem quite similar. The difference

being that 1/(t+ 2) in (10.2) is replaced with a fixed constant γ in (10.4).

10.1.2 Social Learning of the Unknown Bias Generative Model

A social learning process is established to learn the unknown probability b of some

future event F occurring within some time frame. It is known that F will occur with

some unknown probability b, where b was uniformly generated over [0, 1]. That is, we

may identify the occurrence of F with a random variable V ∼ Bernoulli(b), taking the

value 1 if F occurs and 0 otherwise.

Now, each of T participating agents receives one binary signal vt, the realization

of a random variable Vt (identical to V as defined above, and independent of the

others). The T agents sequentially update (each in turn, only once) a posted probability

estimate. Namely, agent t posts at time t an estimate pt that may depend on the



172 CHAPTER 10. HISTORY INDEPENDENT LEARNING

previously posted (outstanding) estimate pt−1 and its private signal vt. The resulting

posted estimate pT , an aggregation of the T agent’s private signals, is an estimator for

b, the unknown probability of F occurring. Upon the last agent posting pT , yet a final

a realization of V takes place to determine the outcome F .

To motivate rational agents, the quadratic scoring rule (9.4) is used to compensate

agents as follows: SF (p) = 1−(1−p)2 and SF (p) = 1−p2 defines the score attributed to

an agent posting a price p upon the eventual occurrence or no occurrence (respectively)

of the event F . For an underlying (‘true’) probability b of F occurring, we denote by

Sb(p) the expected score related to a posted probability estimate p,

Sb(p) , bSF (p) + (1− b)SF (p) ,

and we have for the quadratic scoring rule

Sb(p) = b(1− (1− p)2) + (1− b)(1− p2) = 2bp− p2 + 1− b . (10.5)

Now, the net score of an agent that updated the probability from pt−1 to pt (that is,

agent t − 1 posted pt−1) is SF (pt) − SF (pt−1) if F occurred and SF (pt) − SF (pt−1)

otherwise. Again, for an underlying probability b of F occurring, the net score of such

agent is Sb(pt)−Sb(pt−1). Recall that the quadratic scoring rule (being strictly proper)

motivates the agents to post their best estimate of the probability of F occurring 2.

If agents knew their position in the sequence, and all agents were rational, then they

could update the estimate for b using the iterative Bayes update (10.2). We consider the

alternative setting where agents are history independent, and that the order of updates

is a random permutation of the agents. In this case, agents cannot update the estimate

for b using the Bayes estimator — the tth agent does not know how many updates have

been done, i.e., t − 1, and therefore does not know 1
t+2 . For reasons of symmetry, in

this history independent setting, the update strategies of all agents could be identical,

since we know that the update cannot depend on the position in the trading sequence.

It is thus natural to consider exponential moving average updates. As we also assume

that agents participate only once, agent t means the agent who updates at the t’th time

period. Let Pt(~V ) be the random variable giving the distribution of the prediction of

2Note that such posterior estimate should take into account the outstanding posted probability
estimate resulting from previous updates.



10.1. MODEL AND PRELIMINARIES 173

agent t, i.e., pt ∼ Pt. Pt depends on ~V[1,t] and how agents 1, . . . , t − 1 compute their

prediction.

10.1.3 Estimator Performance Metrics

A common metric for assessing the performance of an estimator is the Mean Squared

Error (MSE). Specifically, for PT = θ(~v), an estimation for b we have that the MSE is

the sum of the estimator’s variance and squared bias:

MSE(PT , b) , E~V [PT − b)2] = σ2
~V

(PT ) + β2
~V

(PT ) , (10.6)

where β(PT ) = E~V [PT − b] is the bias of the estimator PT = θ(~V ) and σ2(PT ) =

E~V [(PT − E~V [PT ])2] is its variance.

To assess the quality of the random variable PT (~V ) as an estimator3 of b we consider

the following properties:

• maxb MSE(b, PT ): The worst case MSE, (providing a measure for the closeness

of a realized estimate pt ∼ PT to the true b.

• maxb Prob~V (|PT−b| > ε): The worst case confidence δ(ε) of a desired ε-accuracy.4

Quantifying the confidence-accuracy trade-off in terms of T and γ where appli-

cable.

• EB[MSE(b, PT )]: The expected MSE, over the realization of b.

The following claim, a corollary of Corollary 13, indicates that in this social learning

setting, the performance of an estimator may also be quantified by the expected total

net score of the agents C(b, P0, PT ) , E~V [Sb(PT )− Sb(P0)|B = b].

Claim 14. For a fixed b and initial price P0 in a sequential social learning setting based

on the quadratic scoring rule,

MSE(b, PT ) + C(b, P0, PT ) = (b− P0)2.

Indeed, for a fixed b, by the above claim, the sum of the expected total net score and

the MSE of PT is constant, implying that optimizing for total net score is equivalent

to optimizing for minimal worse-case MSE, the first metric above.

3To simplify notation we omit the dependence on ~V of the estimator PT .
4And the related inverse, worst case accuracy ε(δ) of a desired δ-confidence.



174 CHAPTER 10. HISTORY INDEPENDENT LEARNING

Revisiting the notation of Corollary 13, note that the Bayes estimator θ̂(·) is the

conditional expectation of the posterior distribution of B given the signals ~v. We

conclude that for any Bergman loss function (9.3), as shown in [20], the Bayes estimator

minimizes (among all estimators θ(~V )) the estimation error MEf and is therefore our

key benchmark in assessing the performance of EMA estimators θγ(·) for γ ∈ [0, 1].

10.1.4 Notation

To simplify notation, we use the following abbreviated notation throughout the re-

mainder of this chapter. The process we consider has two stages, first, a random choice

b ∼ B is sampled. Following which, signals ~v[1,T ] ∼ V T are generated. We consider

expectation of two kinds: expectations over the realization of ~v[1,T ] for a fixed b, and

the joint expectation over both realizations of b and ~v[1,T ].

Therefore, for any random variable X, we use the notation E(X) , E~V (X|B = b)

for taking the expectation over ~V while conditioning over B = b. The notation EB(X)

and EB,~V means taking the expectation also with respect to B. Similarly, we use the

notation Pr(X) , Pr~V (X|B = b), i.e., the conditional probability given B = b of the

event X.

10.2 Estimator’s Performance

In this section we study the basic performance measures for the Bayes estimator and

EMA as a function of T , the total number of agents. We first compute the worse case

MSE and high probability deviation for the Bayes estimator and the EMA estimator

(for a general γ). Those results would be particularly handy when we later compute

for specific values of γ and this will allow us to measure the performance in such cases

and compare them to the Bayes estimator.

Later in this section, we compute the value of γ that maximizes the expected profits

of the agents in a social learning process that is based on the quadratic scoring rule,

and study its performance. The main goal is to show that the loss due to the restriction

of the agents to use EMA is rather minimal, assuming a non-strategic behavior of the

agents. This would be especially important in the next section where we consider the

equilibrium under the assumption of strategic agents. It will allow us to compare the

performance that results from limiting the agents to use a dictated γ for the EMA



10.2. ESTIMATOR’S PERFORMANCE 175

versus the performance due to the strategic behavior of the agents.

We start with the analysis of the Bayes estimator, which is optimal as mentioned in

Section 10.1.3 and therefore a natural benchmark. Before stating the first key theorem

of this section, we need three technical lemmas. The first is McDiarmid’s inequality.

Lemma 15 ([86]). Let the function f : D1 × · · · ×Dn → R satisfy for any i ∈ 1, . . . , n

sup
x1,...,xn,x̂i

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x̂i, xi+1, . . . , xn)| ≤ ci.

Let X1, . . . , Xn be independent random variables, where Xi ∈ Di. Then

Pr[|f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| ≥ ε] ≤ 2e−2ε2/(
∑n
i=1 c

2
i )

The second lemma is a bound for the worse case probability (over possible values

of b, the expected value of each of the signals {Vt}Tt=1) of ε-deviation of an estimator

PT = θ̂(~V ) from b.

Lemma 16. For any estimator PT = θ̂(~V ) and any b ∈ [0, 1], define

βw , max
b
|E(PT )− b| , then

max
b
Pr(|PT − b| > ε) ≤ max

b
Pr(|PT − E(PT )| > ε− βw) .

Proof. Fix ε > 0. For any b ∈ [0, 1] and any pt (a realization of PT ) we have

|pT − b| = |pt −E(PT ) +E(PT )− b| ≤ |pt −E(PT )|+ |E(PT )− b| ≤ |pT −E(PT )|+ βw

Therefore, the event |PT − b| > ε implies the event |PT − E(PT )| + βw > ε, and we

conclude that for any b ∈ [0, 1], Pr(|PT − b| > ε) ≤ Pr(|PT − E(PT )|+ βw > ε).

Finally, since the above holds for any b ∈ [0, 1] it holds for b∗ , arg maxb Pr(|PT −

b| > ε) and we get

max
b
Pr(|PT − b| > ε) ≤ Pr(|PT − E(PT )| > ε− βw|B = b∗)

≤ max
b
Pr(|PT − E(PT )| > ε− βw)



176 CHAPTER 10. HISTORY INDEPENDENT LEARNING

The third lemma is a computation of the expected score5 (10.5) of an agent using

the Bayes estimator in the social learning process.

Lemma 17. For the Bayes estimator PT = θ̂(~V ), and P0 = 1
2 ,

EB,~V [2bPT − P 2
T ] =

1

3
− 1

6(T + 2)

Proof. Recall that E[Vt] = b, E[ViVj ] = b2 for i 6= j, and E[V 2
i ] = b. Also, we have

EB[b] = 1
2 , and EB[b2] = 1

3 . Using the Bayesian update PT =
(
∑T
t=1 Vt)+1
T+2 , we have

EB,~V [2bPT − P 2
T ] =EB,~V

2b

∑T
t=1 Vt + 1

T + 2
−

(∑T
t=1 Vt + 1

T + 2

)2


=EB

[
2b
Tb+ 1

T + 2

]
− EB

[
T 2b2 + T (3b− b2) + 1

(T + 2)2

]
=

(2/3)T + 1

T + 2
− (1/3)T 2 + (7/6)T + 1

(T + 2)2

=
1

3
− 1

6(T + 2)

The following theorem establishes upper bounds on the MSE and high probability

deviation, for any value of b ∈ [0, 1], and the expected MSE assuming a uniform prior

for b ∼ B. The interpretation of a worse case upper bound is a guarantee about the

performance measures regardless of the realization b ∼ B, in contrast to the expectation

over b ∼ B whose guarantee is much harder to interpret given a specific realization of

b ∈ [0, 1].

Theorem 18. For the Bayes estimator PT = θ̂(~V ), for any b ∈ [0, 1],

(1) MSE(b, PT ) ≤ 1
4(T+2) ,

(2) With probability at least 1 − δ we have |PT − b| ≤ 1
T+2 +

√
ln 1
δ

2T , or equivalently,

Pr(|PT − b| > ε) ≤ exp(−2(ε− 1
T+2)2T ) , and

(3) For P0 = 1
2 , EB[MSE(b, PT )] = 1

6(T+2) .

Proof. For the first claim (1), recall that MSE(b, PT ) = β2(PT ) + σ2(PT ). Now, we

have

β2(PT ) = (E(PT )− b)2 =

(
Tb+ 1

T + 2
− b
)2

=

(
1− 2b

T + 2

)2

, and

5Disregarding the terms that do not depend on the estimate Pt, those are canceled out when
computing the net score Sb(Pt)− Sb(Pt−1)



10.2. ESTIMATOR’S PERFORMANCE 177

σ2(PT ) = σ2

(∑T
t=1 Vt + 1

T + 2

)
= σ2

(∑T
t=1 Vt
T + 2

)
=

1

(T + 2)2

T∑
i=1

σ2(Vt) =
Tb(1− b)
(T + 2)2

,

where the last equality follows since each Vt is a Bernoulli random variable with prob-

ability of success b. Taking the sum of the two expressions above we can see that

the maximum is attained for b = 1
2 resulting in an upper bound for the MSE of

T
4(T+2)2 ≤ 1

4(T+2) .

For the high probability bound (2), we first use McDiarmid’s inequality (Lemma 15)

as follows. Recall that PT = θ̂(~V ) = 1
T+2 +

∑T
t=1

1
T+2Vt. This implies that the influence

of Vt on PT is abounded by ct = 1
T+2 . Therefore,

∑
t c

2
t = T

(T+2)2 and we get:

Pr(|PT − E(PT )| > ε) ≤ e
−2ε2∑
t c

2
t = e

−2ε2(T+2)2

T ≤ e−2ε2T

Plugging into Lemma 16, we get

max
b
Pr(|PT − b| > ε) ≤ max

b
Pr(|PT − E(PT )| > ε− 1

T + 2
) ≤ e−2(ε− 1

T+2
)2T

As required. The equivalent formulation is achieved by setting δ = e−2(ε− 1
T+2

)2T and

solving for ε.

For the third claim (3), we have

EB,~V [MSEV (b, PT )] = EB,~V [Sb(P0)− Sb(PT )] + EB[(b− P0)2] (10.7)

=
1

3
− EB,~V [2bPT − P 2

T ] =
1

6(T + 2)
, (10.8)

where the first equality is by Claim 14, the second equality by the definition of the

quadratic scoring rule (9.4), and the last equality by Lemma 17.

Next we establish bounds for the performance of the Exponential Moving Average

(EMA) as a function of the parameter γ and the number of agents T . Again, we first

need a couple of technical lemmas. The first, a closed form for the variance of the EMA

estimator.

Lemma 19. For the EMA estimator (10.3), σ2(θγ(~V )) = b(1−b)γ
2−γ − b(1−b)γ

2−γ (1− γ)2T



178 CHAPTER 10. HISTORY INDEPENDENT LEARNING

Proof. For PT = θγ(~V ) we have

E[P 2
T ] = E

(P0(1− γ)t +
T∑
t=1

γ(1− γ)T−tVt

)2


= P 2
0 (1− γ)2T + 2P0(1− γ)TE[

T∑
t=1

γ(1− γ)T−tVt] +
T∑

i,j=1

γ2(1− γ)2T−i−jE[ViVj ]

The first term is a scalar. For the second term we have,

E[

T∑
t=1

γ(1− γ)T−tVt] = γb

T−1∑
t=0

(1− γ)t = γb
1− (1− γ)T

γ
= b

(
1− (1− γ)T

)
.

For the last term, recall that E[V 2
i ] = b and E[ViVj ] = b2 for i 6= j. We have

T∑
i,j=1

γ2(1− γ)2T−i−jE[ViVj ] =
T∑

i,j=1,i 6=j
γ2(1− γ)2T−i−jE[ViVj ] +

T∑
t=1

γ2(1− γ)2T−2tE[V 2
t ]

=
T∑

i,j=1

γ2(1− γ)2T−i−jb2 +
T∑
t=1

γ2(1− γ)2T−2t(b− b2)

=

(
T∑
t=1

γ(1− γ)T−tb

)2

+
T∑
t=1

γ2((1− γ)2)T−t(b− b2)

=

(
bγ

1− (1− γ)T

γ

)2

+ γ2 1− (1− γ)2T

1− (1− γ)2
b(1− b)

= (1− (1− γ)T )2b2 + γ
1− (1− γ)2T

2− γ
b(1− b).

Also, E(PT ) = b+ (1− γ)T (P0 − b) and we have E2(PT ) = b2 + 2b(1− γ)T (P0 − b) +

(1− γ)2T (P0 − b)2. Finally, σ2(PT ) = E(P 2
T )− E2(PT ) and we get

σ2(PT ) =P 2
0 (1− γ)2T + 2bP0(1− γ)T (1− (1− γ)T ) + γ

1− (1− γ)2T

2− γ
b(1− b) + (1− (1− γ)T )2b2

− (b2 + 2b(1− γ)T (P0 − b) + (1− γ)2T (P0 − b)2)

=
γ

2− γ
b(1− b) + b2 − b2 + (1− γ)T

(
2bP0 − 2b2 − 2bP0 + 2b2

)
+ (1− γ)2T

(
P 2

0 − 2bP0 −
γ

2− γ
b(1− b) + b2 − (P0 − b)2)

)
=

γ

2− γ
b(1− b)− (1− γ)2T γ

2− γ
b(1− b)



10.2. ESTIMATOR’S PERFORMANCE 179

The following lemma provides closed form expressions for several expectations in-

volving the EMA estimator.

Lemma 20. For the EMA estimator PT = θγ(~V )

(1) EB,~V [2bPT ] = 2
3 + (1− γ)T (P0 − 2

3)

(2) EB,~V [P 2
T ] = 4−γ

6(2−γ) + (1− γ)T [P0 − 2
3 ] + (1− γ)2T (P 2

0 − P0 + 4−3γ
6(2−γ))

(3) EB,~V [2bPT − P 2
T ] = 4−3γ

6(2−γ) − (1− γ)2T (P 2
0 − P0 + 4−3γ

6(2−γ))

Proof. Note that E[PT ] = b + (1 − γ)T (P0 − b), EB[b] = 1
2 , and that EB[b2] = 1

3 . We

therefore have

EB,~V [2bPT ] = Eb∼B[2b2 − 2b2(1− γ)T + 2bP0(1− γ)T ] =
2

3
+ (1− γ)T (P0 −

2

3
) ,

proving (1). To prove (3), we use the derivation of E[P 2
T ] in the proof of Lemma 19

and average over b ∼ B to get

EB,~V [2bPT − P 2
T ] =

2

3
+ (1− γ)T (P0 −

2

3
)− P 2

0 (1− γ)2T − P0(1− γ)T [1− (1− γ)T ]

− 1

3
(1− (1− γ)T )2 − γ

6(2− γ)
(1− (1− γ)2T )

=
4− 3γ

6(2− γ)
− (1− γ)2T (P 2

0 − P0 +
4− 3γ

6(2− γ)
).

Finally, since EB,~V [P 2
T ] = EB,~V [2bPT ]−EB,~V [2bPT −P 2

T ], (2) follows immediately from

(1) and (3) .

We can now establishing performance bounds for the EMA estimator.

Theorem 21. For the EMA estimator PT = θγ(~V ), for any b ∈ [0, 1],

(1) MSE(b, PT ) ≤ γ
4 + (1− γ)2T ,

(2) With probability at least 1−δ, we have |PT−b| ≤ (1−γ)T +
√

γ
2 ln 1

δ , or equivalently,

Pr(|PT − b| > ε) ≤ exp(−2 (ε−(1−γ)T )2

γ ) , and

(3) For P0 = 1
2 , EB[MSE(b, PT )] = γ

6(2−γ) + (1− γ)2T (2−3γ)
12(2−γ) .

Proof. To bound the MSE in (1), we first take the expectation of PT = θ̂(~V ) w.r.t. ~V

in (10.3) and rearranging we get E(PT ) = b+ (1− γ)T (P0 − b). We therefore have

β2(PT ) = (E(PT )− b)2 = (1− γ)2T (P0 − b)2 ≤ (1− γ)2T .

Using Lemma 19, the bound (1) follows by maximizing the sum MSE(b, PT ) =



180 CHAPTER 10. HISTORY INDEPENDENT LEARNING

β2(PT ) + σ2(PT ) over b. For the high probability bound (2) we first apply Lemma 16

max
b
Pr(|PT − b| > ε) ≤ max

b
Pr
(
|PT − E(PT )| > ε− (1− γ)T

)
. (10.9)

To further bound the right hand term of (10.9) above, we use McDiarmid’s inequality

(Lemma 15) as follows. Consider the definition (10.3) of PT = θγ(~V )

PT = P0(1− γ)T +
T∑
t=1

γ(1− γ)T−tVt .

Each signal Vt contributes to PT at most ct , γ(1− γ)T−t. and we have

T∑
t=1

c2
t = γ2

T∑
t=1

(1− γ)2(T−t) = γ2
T−1∑
t=0

(1− γ)2i =
γ

2− γ
[1− (1− γ)2T ] ≤ γ

Therefore by Lemma 15) we have

Pr(|PT − E(PT )| > ε) ≤ e−2ε2/
∑
t c

2
t ≤ e−2ε2/γ ,

and combining with (10.9) we get the desired bound,

max
b
Pr(|PT − b| > ε) ≤ max

b
Pr
(
|PT − E(PT )| > ε− (1− γ)T

)
≤ e−2(ε−(1−γ)T )

2
/γ .

Finally, for the expectation (3) we use (10.7) again and apply Lemma 20 (giving a

closed expressions for EB,~V [2bPT − P 2
T ] for EMA).

The statistical consistency (MSE approaching 0 when T →∞ ) of the Bayes estima-

tor is evident 6. EMA estimators θγ(·) are consistent for γ = ω
(

1
T

)
(which guarantees

that (1 − γ)T vanishes). Note also that if the agents know b (i.e., PT ≡ b) then

MSE(b, PT ) = 0 and the resulting expected score of the agents is EB[(b − P0)2] = 1
3

(assuming P0 = 1/2. We may therefore interpret 1
3 −EB,~V [Sb(PT )] = EB[MSE(b, PT )]

as the penalty to the agents of the remaining uncertainty regarding b.

10.2.1 Non-Strategic Agents

We now turn to study the performance of the exponential moving average estimator

θγ(~V ) for a specific value of γ, namely, the γ that maximizes the total score of the

6This also follows from Theorem 18 above



10.2. ESTIMATOR’S PERFORMANCE 181

traders. This is not in equilibrium (we compute the equilibrium γ later, and the two

are not the same). For a fixed γ ∈ [0, 1], the expected agent score is

ΦT (γ, b) ,
1

T

T∑
t=1

E (Sb(Pt)− Sb(Pt−1)) =
1

T
E[Sb(PT )− Sb(P0)],

where the second equality follows by the linearity of expectation and the telescopic

nature of the summation.

To find the γ maximizing the expected profit we can ignore the constants 1
T and

Sb(P0) and then,

γ∗max , arg max
γ

EBΦT (γ, b) = arg max
γ

EB,~V Sb(PT ) = arg max
γ

EB,~V (2bPT − P 2
T ),

where the last identity is from (9.4), and noting that the additive term of 1 − b is

independent of γ.

Theorem 22. For the EMA estimator PT = θγ(~V[1,T ]), and P0 = 1/2,

γ∗max =
lnT

2T
+ φ, where |φ| ≤ 2

T
.

Proof. From Lemma 20 we have that for the EMA estimator,

aT (γ) , EB,~V [2bPT − P 2
T ] =

4− 3γ

6(2− γ)
− (1− γ)2T (P 2

0 − P0 +
4− 3γ

6(2− γ)
). (10.10)

Now, Let r(γ) , 4−3γ
6(2−γ) = 1

2 −
1

3(2−γ) , we have

aT (γ) = r(γ)[1− (1− γ)2T ] + (P0 − P 2
0 )(1− γ)2T

a′T (γ) = r′(γ)[1− (1− γ)2T ] + 2T (1− γ)2T−1[r(γ)− (P0 − P 2
0 )]

a′′T (γ) = r′′(γ)[1− (1− γ)2T ] + 4Tr′(γ)(1− γ)2T−1 − 2T (2T − 1)(1− γ)2T−2[r(γ)− (P0 − P 2
0 )]

Note that r′(γ) = − 1
3(2−γ)2 and r′′(γ) = − 2

3(2−γ)3 . For γ ∈ [1
2 , 1] we have

a′T (γ) < − 4

27
(1− 2−2T ) + 2T2−2T+1(

1

6
− 1

4
) < 0 ,

so the maximum value of aT (γ) is at γ = 1
2 which is included in the next case. For

γ ∈ [0, 1
2 ] we have r(γ)− (P0 − P 2

0 ) ≥ r(1
2)− 1

4 = 1
36 and also r(γ)− (P0 − P 2

0 ) ≤ 1
3 .



182 CHAPTER 10. HISTORY INDEPENDENT LEARNING

We consider two values of γ: γ+ = 3+lnT
2T and γ− = −3+lnT

2T .

We have that (1− γ+)2T = 1
Te3

and (1− γ−)2T = e3

T . This implies that

a′T (γ+) = r′(γ+)[1− (1−γ+)2T ]+2T (1−γ+)2T−1[r(γ+)− (P0−P 2
0 )] < − 1

12
+

2

3e3
< 0.

Similarly,

a′T (γ−) = r′(γ−)[1−(1−γ−)2T ]+2T (1−γ−)2T−1[r(γ−)−(P0−P 2
0 )] > − 4

27
+

4e3

27T
+2e3 1

36
> 0

This implies that γ∗max ∈ [γ−, γ+]

Note that a similar proof applies to any value of P0 ∈ (0, 1). It is worthwhile to

compare the resulting γ∗max, maximizing agent score using the EMA estimator with that

of the Bayesian estimator. In the Bayesian estimator the agent is aware of the history

and knows his location in the permutation, and when his location is t he updates using

γbayes = 1
t+2 . If we average over all the locations we have that the average update

magnitude is 1
T

∑T
t=1

1
t+2 ≈

lnT
T . Note that this is only a factor of 2 larger than the

resulting update maximizing total agents’ profit7 using EMA.

Now, based on Theorem 21, we derive the following performance of the EMA esti-

mator θγ∗max
(~V ):

Corollary 23. For the EMA estimator PT = θγ∗max
(~V ), for any b ∈ [0, 1],

(1) MSE(b, PT ) = O( lnT
T ) ,

(2) With probability at least 1− δ, we have |PT − b| = O(

√
log(T ) log( 1

δ
T ) , and

(3) For P0 = 1
2 , EB[MSE(b, PT )] = lnT

24T −
1

12T +O( 1
T 2 ) .

Prrof Sketch. Note that (1−γ∗max)2T ≈ 1/T , and that for γ = lnT
2T we have (1−γ)2T =

1
T . Also, for γ = 1√

2T
we have (1− γ)2T = e−

√
T . Finally, the term γ

6(2−γ) approaches

γ
12 and the term 2−3γ

12(2−γ) approaches 1
12 . Plugging the above in Theorem 21 yields the

corollary.

We can contrast the bounds with those of the Bayes estimator PT = θ̂(~V ). The MSE

bound increased by a logarithmic factor O(lnT ) (from O( 1
T ) to O( lnT

T ) and the high

probability bound increases only by a factor of O(
√

log T ). This logarithmic increases

show that the impact of the limitation of the updates to EMA is rather limited.

7Which by Claim 14 is the update minimizing estimator’s MSE!



10.3. STRATEGIC AGENTS 183

10.3 Strategic Agents

We consider the learning process with agents using the EMA estimator, θγ(~V ), where

agents are strategic. I.e., we seek a value of γ such that, for all t, given that agents

1, . . . , t − 1 compute their prediction using EMA with parameter γ, then it is a best

response for agent t to do likewise. Such a choice of γ gives a symmetric equilibrium

for the more general setting where agent predictions use individual update parameters.

To find such a value of γ, let λ(γ) be the best response of an agent, assuming that

all other agents use update factor γ. (For brevity we will use λ, when clear from the

context.) An agent arriving at time t will update the outstanding prediction Pt−1 as

follows

Pt(γ, λ) = (1− λ)Pt−1(γ) + λVt ,

where Pt−1(γ) = Pt−1(γ, γ) assumes that the first t− 1 agents update using θγ . Since

the agent does not know her location, her expected score is,

u(γ, λ) =
1

T

T∑
t=1

EB,~V [Sb(Pt(γ, λ))− Sb(Pt−1(γ))] .

Therefore, an agent maximizes her expected score, given that all other agents update

using γ, by choosing the best response λ∗(γ),

λ∗(γ) = arg max
λ

u(γ, λ) and in equilibrium λ∗(γ) = γ . (10.11)

An update parameter that achieves equilibrium is denoted γ∗eq, i.e., λ
∗(γ∗eq) = γ∗eq. Note

that we are assuming that the total number of agents T is known by the agents. Hence

the utilities and updates defined above may all depend on T (e.g., γ∗eq(T )) which is

omitted from the notations for clarity when not needed explicitly. In Section 10.4.1 we

discuss the extension to the case where the agents have only a prior distribution over

the number of agents.

Aiming at the value of γ∗eq(T ) we first derive a closed form for λ∗(γ).

Lemma 24. Let PT = θγ(~V ). For P0 = 1/2,

λ∗(γ) =
γ2T + (1− γ)2(1− (1− γ)2T )a(γ)

2γT + (1− γ)2(1− (1− γ)2T )a(γ)

where a(γ) = 1
2(1− 2γ

2−γ ).



184 CHAPTER 10. HISTORY INDEPENDENT LEARNING

Proof. Recall that,

Pt(γ, λ) = (1− λ)Pt−1(γ) + λVt ,

For λ∗(γ) to be a best response, we need to maximize

u(γ, λ) =
1

T

T∑
t=1

EB,~V [2bPt(γ, λ)− P 2
t (γ, λ)− Sb(Pt−1(γ))] .

Now, Since Sb(Pt−1(γ)) does not depend on λ, we only need to maximize

1

T

T∑
t=1

EB,~V [2bPt+1(γ, λ)]− EB,~V [P 2
t+1(γ, λ)] .

Taking the derivatives w.r.t. λ we have

d

dλ
Pt(γ, λ) = Vt − Pt−1(γ),

and similarly,

d

dλ
P 2
t (γ, λ) = 2Pt(γ, λ)

d

dλ
Pt(γ, λ) = 2Pt(γ, λ)(Vt − Pt−1(γ)).

Therefore, to maximize u(γ, λ) we need that

LHS =
1

T

T∑
t=1

EB,~V [2b(Vt − Pt−1(γ))] =
1

T

T∑
t=1

EB,~V [2Pt(γ, λ)(Vt − Pt−1(γ))] = RHS .

For the LHS, taking the expectation first w.r.t. ~V and then w.r.t. B we have,

LHS =
1

T

T∑
t=1

EB[2b(b− b− (1− γ)t(P0 − b))] =
−1

T
(1− γ)

1− (1− γ)T

γ
[P0 −

2

3
] .



10.3. STRATEGIC AGENTS 185

For the RHS we have

RHS =
1

T

T∑
t=1

EB,~V [2Pt+1(γ, λ)(Vt+1 − Pt(γ))]

=
2

T

T∑
t=1

EB,~V [((1− λ)Pt(γ) + λVt+1)(Vt+1 − Pt(γ))]

=
2

T

T∑
t=1

EB,~V
[
(1− λ)Pt(γ)Vt+1 − (1− λ)P 2

t (γ) + λV 2
t+1 − λVt+1Pt(γ)

]
=

2

T

T∑
t=1

(1− 2λ)EB,~V [Pt(γ)Vt+1]− (1− λ)E~V ,B

[
P 2
t (γ)

]
+ λEB,~V

[
V 2
t+1

]
.

We now compute each of the expectations:

2

T

T∑
t=1

E~V ,B

[
V 2
t+1

]
=

2

T

T∑
t=1

EB[b] = 1;

2

T

T∑
t=1

E~V ,B [Vt+1Pt(γ)] =
2

T

T∑
t=1

EB[b(b+ (1− γ)t(P0 − b))]

=
2

3
+ (1− γ)

(
P0 −

2

3

)
1− (1− γ)T

γT
;

2

T

T∑
t=1

E~V ,B

[
P 2
t (γ)

]
=

2

T

T∑
t=1

4− γ
6(2− γ)

+ (1− γ)t
(
P0 −

2

3

)
+ (1− γ)2t

(
P 2

0 − P0 +
4− 3γ

6(2− γ)

)
=

4− γ
3(2− γ)

+ 2(1− γ)
1− (1− γ)T

γT

(
P0 −

2

3

)
+ 2(1− γ)2 1− (1− γ)2T

(2− γ)γT

(
P 2

0 − P0 +
4− 3γ

6(2− γ)

)
.

Then we have

RHS =(1− 2λ)

(
2

3
+ (1− γ)

(
P0 −

2

3

)
1− (1− γ)T

γT

)
− (1− λ)

(
4− γ

3(2− γ)
+ 2(1− γ)

1− (1− γ)T

γT

(
P0 −

2

3

))
− 2(1− λ)(1− γ)2 1− (1− γ)2T

(2− γ)γT

(
P 2

0 − P0 +
4− 3γ

6(2− γ)

)
+ λ .



186 CHAPTER 10. HISTORY INDEPENDENT LEARNING

Putting it all together we get the equation

γ

3(2− γ)
−(1− γ)

1− (1− γ)T

γT

(
P0 −

2

3

)
= λ

2

3(2− γ)
− (1− γ)

1− (1− γ)T

γT

(
P0 −

2

3

)
− 2(1− λ)(1− γ)2 1− (1− γ)2T

(2− γ)γT

(
P 2

0 − P0 +
4− 3γ

6(2− γ)

)
.

Simplifying, we conclude that λ(γ) is maximized only if

γ

3
= λ

2

3
− 2(1− λ)(1− γ)2 1− (1− γ)2T

γT

(
P 2

0 − P0 +
4− 3γ

6(2− γ)

)
. (10.12)

Setting P0 = 1
2 in (10.12) and rearranging we get

λ∗(γ) =
γ2T + (1− γ)2(1− (1− γ)2T )a(γ)

2γT + (1− γ)2(1− (1− γ)2T )a(γ)
(10.13)

where a(γ) = 1
2(1− 2γ

2−γ ).

The following theorem derives the value of γ∗eq(T ) and shows that it gives the unique

symmetric equilibrium.

Theorem 25. Let P0 = 1
2 and let γ∗eq be the update parameter in a symmetric equilib-

rium, then

γ∗eq(T ) =

√
1

2T
− β , and β ∈ [0,

6

T
] ,

and this is the unique symmetric equilibrium.

Proof. By Lemma 24, since in equilibrium we have λ∗(γ) = γ, we need

γ =
γ2T + (1− γ)2(1− (1− γ)2T )a(γ)

2γT + (1− γ)2(1− (1− γ)2T )a(γ)
.

Reorganizing we get

γ2T = (1− γ)3(1− (1− γ)2T )
1

2

(
1− 2γ

2− γ

)
. (10.14)

Now, For γ < lnT
T , the right hand side of (10.14) (RHS) is O(1) whereas the left hand

side (LHS) is O( log2 T
T ). For γ > lnT

T , the LHS increases with γ while the RHS decreases

with γ therefore there is a unique equilibrium.



10.3. STRATEGIC AGENTS 187

First, we show that for γ = 1√
2T

the LHS of (10.14) is larger than the RHS.

1

2T
T =

1

2
>

1

2
(1− γ)3(1− (1− γ)2T )

(
1− 2γ

2− γ

)

since the three rightmost terms of the RHS above are less than 1. Second, we show

that for γ = 1−ε√
2T

the LHS is smaller, for ε > 12√
2T

. In this case, for the LHS of (10.14)

we have,
(1− ε)2

2T
T =

(1− ε)2

2
.

For the RHS of (10.14) we have,

1

2
(1− 1− ε√

2T
)3

(
1−

(
1− 1− ε√

2T

)2T
)(

1−
2 1−ε√

2T

2− 1−ε√
2T

)

>
1

2

(
1− 3

1− ε√
2T

)
·
(

1− 1− ε√
2T

)(
1− 2

1− ε√
2T

)
>

1

2

(
1− 12

1− ε√
2T

)
.

So we need that

(1− ε)2 < 1− ε < 1− 12
1− ε√

2T

which holds for ε > 12√
2T

.

We now revisit the EMA estimator PT = θγ(~V ) performance for the equilibrium

update γ∗eq = 1√
2T

. As in the case for non-strategic agents, note that (1−γ∗eq)T ≈ e
−
√
T
2 ,

and calculating similarly to the proof of Corollary 23, we derive the following corollary

of Theorem 21 for the case PT = θγ∗eq(
~V )

Corollary 26. For the EMA estimator PT = θγ∗eq(
~V ), for any b ∈ [0, 1],

(1) MSE(b, PT ) = O( 1√
T

) ,

(2) With probability at least 1− δ, we have |PT − b| = O(T−1/4
√

log(T ) log(1
δ )) , and

(3) For P0 = 1
2 , EB[MSE(b, PT )] = 1

12
√

2T−6
+O(e−

√
2T ) .

Comparing the bounds above with those of the Bayes estimator θ̂(~V ) and with the

exponential moving average θγ∗max
(~V ). Both θ̂(~V ) and θγ∗max

(~V ) achieve a mean square

error of Õ( 1
T ) vs. O( 1√

T
) for the symmetric equilibrium. For the high probability bound

(2) the gap is between Õ( 1√
T

) and Õ( 1
T 1/4 ). This is both good news and bad news.

The good news is the process converges to the true probabilities even when agents are

unaware of the trading history (and use EMA updates). The bad news is that the

convergence rate deteriorates due to selfish strategic behavior.



188 CHAPTER 10. HISTORY INDEPENDENT LEARNING

10.4 Extensions

Three separate extensions to the basic setting are considered. Analysis of the equilib-

rium update is presented for the case where the total number of agents is unknown

and for a setting in which all agents except one are fully informed (that is, have direct

access to all the signals). Finally, the utility gain for a single aware agent is analyzed.

10.4.1 Distribution Over the Number of Agents

An interesting extension is to assume further uncertainty, where even the total number

of agents, T , is unknown. It may be unrealistic to forecast the number of agents. A

more reasonable assumption may be a common prior over the number of agents. The

obvious question is how this additional uncertainty impacts our results. So, we want

to compute the symmetric equilibrium in this setting.

Theorem 27. For strategic agents that know neither their position in line, nor the

total number of agents, but share a prior on the total number of agents with E[ 1
T ] ≤ 1

8 ,

the equilibrium update is γ∗dist = Θ(
√
E( 1

T )).

Proof. We first establish the following condition for the update γ∗dist of strategic agents

at equilibrium.

(γ∗dist)
2 = 6(1− γ∗dist)3ET [

1− (1− γ)2T

T
]ρ(P0, γ

∗
dist) , (10.15)

where ρ(P0, γ) , (P0− 1
2)2 + 2−3γ

12(2−γ)) ∈ (0, 1
3). Repeating the derivation of Eq. (10.12)

from the proof of Lemma 24, we have that γ∗dist must satisfy

γ = 2λ− 6(1− λ)(1− γ)2(P 2
0 − P0 +

4− 3γ

6(2− γ)
)ET [

1− (1− γ)2T

γT
] (10.16)

Since at equilibrium λ = γ we must have that the following expression is positive,

6(1− λ)(1− γ)2(P 2
0 − P0 +

4− 3γ

6(2− γ)
)ET [

1− (1− γ)2T

γT
]

Now, since all the terms of the above expression except (P 2
0−P0+ 4−3γ

6(2−γ)) are guaranteed

to be positive, we must have ρ(P0, γ) = P 2
0 − P0 + 4−3γ

6(2−γ) > 0 . Now, at equilibrium,

setting λ = γ = γ∗dist in (10.16), and simplifying we get the condition (10.15). We



10.4. EXTENSIONS 189

therefore have

(γ∗dist)
2 ≤ 2ET [

1− (1− γ)2T

T
] = Θ(ET [

1

T
]) .

We now need to show that γ∗dist is not too small. First note that by the above cal-

culations we can bound (γ∗dist)
2 ≤ 2E[ 1

T ] ≤ 1
4 . Therefore, γ∗dist ≤

1
2 and we have

ρ(P0, γ
∗
dist) ≥

1
36 . Substituting in (10.15) we get

(γ∗dist)
2 ≥ 6

8 · 36
ET [

1− (1− γ)2T

T
] = Θ(ET [

1

T
]) .

Note that by the Jensen Inequality,8 the condition E[ 1
T ] ≤ 1

8 implies E[T ] ≥ 8.

Namely, we are dealing with situations in which the agents assume there are not too few

of them (in expectation). Note also that the resulting equilibrium update parameters

is Θ(
√
E( 1

T )), which is different from Θ(E( 1√
T

)). Conceptually, this is very good

news. Recall that the Bayes update would have mean square error equal Θ(E(1/T )).

This implies that the EMA equilibrium update γ∗dist, which is only square-root of that

quantity, has a mean square error of Θ(
√
E( 1

T )), assuming that for α =
√
E( 1

T ) we

have E[Te−αT ] = O(
√
E( 1

T )). This establishes the following corollary to Theorem 21

part (1), for γ∗dist = Θ(
√
E( 1

T )).

Corollary 28. If the Bayes estimator MSE is bounded by ε then for agents in equiliria,

the mean square error is at most O(
√
ε+ E[Te−εT ]).

10.4.2 Single Unaware Agent

Assume all agents do the correct (fully informed, Bayesian) update θ̂(·), except for one

agent which is not aware of the history and his location. Such a setting assesses the

penalty of an agent not knowing its location. Alternatively, this measures the maximum

price that such an agent would be willing to pay to gain the information, in the extreme

case that all other agents know their location. One can view the unaware agent as a

late adopter of a technology that determines an agent’s location, and we compute the

penalty associated with this late adaptation.

Technically, this implies that when the unaware agent arrives at the process, the

price is set by the Bayesian update θ̂(~v). We now compute the γ that maximizes the

8Stating that E[f(X)] ≤ f(E[X]) for a convex function f of a random variable X.



190 CHAPTER 10. HISTORY INDEPENDENT LEARNING

agent’s score. Let t be the unaware agent, then we have,

P γt =(1− γ)PBt−1 + γVt and PBt−1 =
1 +

∑t−1
i=1 Vi

t+ 1
,

where P0 = 1
2 . The average profit of the unaware trader, assuming a uniform distribu-

tion over his arrival t ∈ {1, · · · , T}, is,

1

T

T∑
t=1

EB,~V [Sb(P
γ
t )− Sb(PBt−1)].

The following theorem establishes the optimal update parameter.

Theorem 29. The optimal update parameter γ∗1 for a single unaware trader model,

when P0 = 1
2 , is

γ∗1 =
lnT

T + lnT

Proof. First we compute

EB,~V [2bP γt ] =EB,~V [2b(1− λ)PBt−1 + 2bλVt]

=EB,~V [2b(1− λ)
1 + b(t− 1)

t+ 1
+ 2bλVt]

=2(1− λ)EB[
b+ b2(t− 1)

t+ 1
] + 2λEB[b2]

=2(1− λ)
(1/2) + (t− 1)/3

t+ 1
+

2

3
λ =

2

3
− 1− λ

3(t+ 1)

Summing over t,

T∑
t=1

EB,~V [2bP γt ] =

T∑
t=1

2

3
− 1− λ

3(t+ 1)
≈ 2T

3
− (1− λ) lnT

3

The expected second moment is,

EB,~V [(P γt )2] =EB,~V [(1− λ)2(PBt−1)2 + λ2V 2
t + 2λ(1− λ)VtP

B
t−1]

=(1− λ)2EB,~V [(PBt−1)2] + λ2EB,~V [V 2
t ] + 2λ(1− λ)EB,~V [VtP

B
t−1]



10.4. EXTENSIONS 191

We now compute each of the terms above:

EB,~V [V 2
t ] =EB[b] =

1

2

EB,~V [VtP
B
t−1] =EB,~V [Vt

1 +
∑t−1

i=1 Vi
t+ 1

] = EB[b
1 + b(t− 1)

t+ 1
] =

1
2 + 1

3(t− 1)

t+ 1
=

1

3
− 1

6(t+ 1)

EB,~V [(PBt−1)2] =EB,~V [
(1 +

∑t−1
i=1 Vi)

2

(t+ 1)2
] =

1

(t+ 1)2
EB,~V [1 + 2(

t−1∑
i=1

Vi) + (
t−1∑
i=1

Vi)
2]

=
1

(t+ 1)2
EB[1 + 3b(t− 1) + (t− 1)(t− 2)b2] =

1 + 3
2(t− 1) + 1

3(t− 1)(t− 2)

(t+ 1)2

=
1

3
− 1

6(t+ 1)

Substituting the terms and summing over t,

T∑
t=1

EB,~V [(P γt )2] =

T∑
t=1

λ2

2
+

(
1

3
− 1

6(t+ 1)

)(
(1− λ)2 + 2λ(1− λ)

)
=

T∑
t=1

λ2

2
+

(
1

3
− 1

6(t+ 1)

)
[1− λ2]

≈λ
2T

2
+

(
T

3
− lnT

6

)
(1− λ2)

We can now compute the expected payoff

U =

T∑
t=1

EB,~V [2bP γt − (P γt )2] =
2T

3
− 1− λ

3
lnT − λ2T

2
−
(
T

3
− lnT

6

)
(1− λ2)

The derivative is,

U ′ =
lnT

3
− λT + 2λ

(
T

3
− lnT

6

)

and requiring U ′ = 0 we get that the maximum9 is achieved at λ = lnT
T+lnT

Recall that when none of the agents are informed, the utility maximizing update

parameter is lnT
2T while if all the agents are informed and use Bayes updates then the

average update parameter is lnT
T . The update parameter above is a small step from

the update of all informed Bayesian traders to all uninformed EMA traders.

9Note that U ′′ < 0.



192 CHAPTER 10. HISTORY INDEPENDENT LEARNING

10.4.3 Single Aware Agent

This setting can be seen as the flip-side of the previous setting. Here we consider the

case that only a single agent is informed regarding his location. This models the benefit

that a trader can gain by being able to access his location. One way of gaining the

information is through buying it exclusively, the utility gain bounds the price the agent

would be willing to pay for such an information.

Technically, assume a single agent doing the correct (fully informed, Bayesian)

update θ̂(·), and all other agents (not aware of their location) are restricted to use

EMA θγ strategy and are either unaware or ignore the fact that a single agent is using

a different strategy. We define

P γt−1 =(1− γ)P γt−2 + γVt−1 and PBt =
1 +

∑t
i=1 Vi

t+ 2
.

When the single aware agent is in location t his expected utility is EB,~V [Sb(P
B
t ) −

Sb(P
γ
t−1)]. We consider the average expected utility of the single aware agent, denoted

uT (γ,Bayes), is,

uT (γ,Bayes) =
1

T

T∑
t=1

EB,~V [Sb(P
B
t )− Sb(P γt−1)].

Theorem 30. For γ = lnT
2T we have uT ( lnT

2T ,Bayes) = Θ( ln2 T
T ) and for γ = 1√

2T
we

have uT ( 1√
2T
,Bayes) = Θ( 1√

T
).

Proof. Let uT (Bayes) be the average expected utility of the agents using Bayesian

updates, i.e.,

uT (Bayes) =
1

T

T∑
t=1

CB(b, P0, PT ) = (b− P0)2 − 1

T

T∑
t=1

MSE(b, PBt )

where the first equality follows since the gain of the Bayesian agents is identical to the

cost to the market maker, and the second equality follows from Claim 14.

Similarly, let uT (γ) be the average expected utility of the agents using EMA θγ(~V )

updates, i.e.,

uT (γ) =
1

T

T∑
t=1

Cγ(b, P0, PT ) = (b− P0)2 − 1

T

T∑
t=1

MSE(b, P γt ),



10.5. SUMMARY AND DISCUSSION 193

where again, the first equality follows since the gain of the Bayesian agents is identical

to the cost to the market maker, and the second equality follows from Claim 14.

We first show

uT (γ,Bayes) = uT (Bayes)− uT−1(γ).

Let t be the location of the aware trader.

uT (γ,Bayes) =
1

T

T∑
t=1

EB,~V [Sb(P
B
t )− Sb(P γt−1)]

=
1

T

T∑
t=1

EB,~V [Sb(P
B
t )− Sb(P0)] +

1

T

T∑
t=1

EB,~V [Sb(P0)− Sb(P γt−1)]

=uT (Bayes) +
1

T

T−1∑
t=1

EB,~V [Sb(P0)− Sb(P γt )]

=uT (Bayes)− uT (γ)

Using the identities for uT (Bayes) and uT (γ) we have,

uT (γ,Bayes) =
1

T

T∑
t=1

MSE(b, P γt )−MSE(b, PBt ).

By Theorem 18 we have MSE(b, PBt ) = Θ(1
t ), and hence 1

T

∑T
t=1 MSE(b, PBt ) = O( lnT

T ).

By Theorem 21 we have MSE(b, P γt ) = Θ( ln t
t ) for γ = lnT

2T and 1
T

∑T
t=1 MSE(b, P γt ) =

Θ( ln2 T
T ). Similarly, MSE(b, P γt ) = θ( 1√

t
) for γ = 1√

2T
and 1

T

∑T
t=1 MSE(b, P γt ) =

Θ( 1√
T

). Combining the two bounds derives the theorem.

When all agents are symmetric then the utility of an individual agent is Θ( 1
T ), since

the total utility of all the agents is constant. It follows from the theorem above that

the utility to a single aware agent is significantly higher. Thus, the value of knowing

the position is (about) 1√
T

.

10.5 Summary and Discussion

The main results are further discussed in this section, followed by a short review of

related models and future reserach direction.



194 CHAPTER 10. HISTORY INDEPENDENT LEARNING

Update

process

Worst case Mean

Square Error:

maxb MSE(b, PT )

Expected Mean

Square Error:

EBMSE(b, PT )

B uniform in [0, 1]

Guaranteed accuracy

for confidence 1− δ:
ε(δ) = argminε maxb

Prob(|PT − b| < ε)

≥ 1− δ

Bayes 1
4(T+2)

1
6(T+2)

1
T+2 +

√
ln 1
δ

2T

Exp. Moving Averages:

Symmetric

Equilibrium

γ = 1/
√

2T

1
4
√

2T
+ e−

√
2T 1

12
√

2T−6
+O

(
e−
√

2T
)

O
(√

log(T ) log(1/δ)√
T

)

Socially Optimal

γ =
(

lnT
2T

) lnT
8T + 1

T
lnT
24T −

1
12T +O

(
1
T 2

)
O

(√
log(T ) log(1/δ)

T

)

Arbitrary γ
γ
4 + (1− γ)2T γ

6(2−γ) + (1− γ)2T (2−3γ)
12(2−γ)

√
γ
2 ln 1

δ + (1− γ)T

Figure 10.1: Performance metrics for Exponential Moving Average (EMA) method versus Bayes
optimal benchmark for estimating (PT ) the unknown bias b of a coin. T is the total number of updates
and γ is the averaging constant of EMA. The mean squared error (MSE) in the second column is over
realizations of the signals V1, . . . , VT . The expectation in the third column is assuming a uniform
prior of b ∈ [0, 1] and initial prediction P0 = 1

2 . The values in this table come from Theorems
18,21,22, and 25.

10.5.1 Main Results

We considered three measures of quality for a predictor:

1. The worst case mean square error (for any choice of b ∈ [0, 1]). (Column 2 of

Figure 10.1).

2. The expected mean square error (where b is uniformly chosen in [0, 1] before the

signals are generated). (Column 3 of Figure 10.1).

3. The guaranteed accuracy for a given level of confidence. (Column 4 of Figure

10.1).

The rows of Figure 10.1 are for Bayes updates and various values of γ for exponential

moving averages.

• Bayes update, this is equivalent to agents knowing the complete history, namely,



10.5. SUMMARY AND DISCUSSION 195

Bayes θ̂(~V ) =
∑T
t=1 Vt+1
T+2 .

Exponential

Moving Average
θγ(~V ) = (1−γ)T

2 + γ
∑T

t=1(1− γ)T−tVt.

Computing Bayes

Predictions

Incrementally

Pt =
(

1− 1
t+2

)
Pt−1 + 1

t+2Vt.

Computing Exponential

Moving Averages

Incrementally

Pt = (1− γ)Pt−1 + γVt.

Figure 10.2: Bayes Update vs. Exponential Moving Average, uniform [0, 1] prior,
p0 = 1/2, ~V = V1, . . . , VT , where Vt is the private signal to agent t. Agent t is the t’th
agent to act. Note the similarity of rows 3 and 4. Agents that do not know their index
cannot do incremental Bayes update.

the count and values of previous updates performed.

• Updates performed via exponential moving averages, in two settings:

1. Agents are strategic, and γ (= 1√
2T

— see Theorem 25) is a symmetric

equilibrium.

2. Choosing γ (= lnT
2T — see Theorem 22) so as to maximize the social score.

By Claim 14, This is equivalent to choosing γ to minimize the mean square

error.

We also give the general form of the estimators performance metrics for any value

of γ (last row of Figure 10.1).

In Lemma 12 we prove that the sum of the agents’ net score (that is, the cost of

subsidizing the whole process) and the Bregman loss function (e.g., the mean square

error, when the quadratic scoring rule is used) always sums to a constant. This implies

that an extra expenditure of x as a subsidy to the information market means a reduction

of the same amount in the mean square error expected. Thus, one can view such

processes as information markets where the market makers pay (in subsidies) in return

for quality of information (reduction in the mean square error, or other Bregman loss



196 CHAPTER 10. HISTORY INDEPENDENT LEARNING

function).

Now, comparing Row 1 (Bayes estimator) of Figure 10.1 with Row 3 (max profit

possible with exponential moving averages) suggests that agents lose little by restricting

their strategy space to exponentially moving averaging. Their total profit cannot exceed

that obtained by the Bayes estimator, and they are very close to this upper bound.

I.e., the difference is O( lnT
T ). This loss (in total agents score) is the consequence of

agents being unaware of the historical trades and using an exponential moving average

estimator.

Now, comparing Row 2 (symmetric equilibrium using exponential moving averages)

of Figure 10.1 with Row 1 (Bayes estimator) shows that the mean square error increases

by a Θ(
√
T ) factor and that the error probability for a given confidence increases by a

Θ(T−
1
4 ) factor. Note that the mean square error still vanishes at a polynomial rate (in

T ), and that, for any constant accuracy, the error probability remains exponentially

small.

Subsequently, we dealt with several extensions that include the following:

1. The number of traders T is unknown to the agents but is sampled from a known

prior distribution. We show that the mean square error, for strategic agents, in

equilibrium is
√
ε where ε is the mean square error for the Bayes estimator.

2. We further consider two related settings:

• All but one agent do Bayesian updates, what should the outlier do? In-

tuitively, she should not value her signal too highly. The correct choice is

γ ≈ lnT
T .

• All agents do exponential moving average updates (with γ = 1√
2T

), but one

agent knows her position in line. What should she do? What is the value to

the trader to know her position in line? Here, the correct choice is γ ≈ 1√
T

.

10.5.2 Related Models

Our setting can be casted10 in the model of partial information presented by [17].

The issues studied in [17, 58, 87] are how communication leads agents to revise their

posteriors until they converge, given that the agents have common priors.

10In a somewhat non-standard use of the Aumann’s model, because there are aspects of the state of
the world that are not interesting in and of themselves, whereas in our setting agents are only interested
in the underlying probability of the event occurring.



10.5. SUMMARY AND DISCUSSION 197

Other work discussing aspects of information aggregation among agents having

private information differ by the nature of the information to get aggregated. In [76],

addressing the impact of information on pricing, informed traders (insiders) and “noise”

traders are modeled, and prices are set by a market maker according to the aggregated

demand. The informed trader, aware of the impact of trades on prices, behaves strategi-

cally, thus, trades so that private information is incorporated into the market slowly in

order to maximize utility. Eventual convergence in probability of an information market

using market scoring rules is investigated in [94]. Their model, however, assumes that

all trades are public knowledge, and does not consider uncertainty regarding historical

trades. Moreover, the rate of convergence is not quantified. Convergence in informa-

tion markets with incomplete information is also considered by [54]. They consider

a version of Shapley-Shubik market games11 [112] where, in multiple rounds, traders

simultaneously submit bids, and market clearing prices are computed and revealed.

This repeats until convergence (if it converges, as characterized by [54]). Agents in this

model, however, are not utility maximizers (the only goal is to compute some function),

and therefore, contrary to our model, there is no notion of a strategic equilibrium.

10.5.3 Closing Remarks and Future Work

Inherently, in information markets, agents have private signals and trade options (or

make predictions) based upon incomplete information. Knowing the history of past ac-

tions makes a difference because it reveals much about the signals of other participants,

under appropriate assumptions (See [54], [78]). Our setting relaxes this assumption of

available history, and therefore also fits scenarios in which this information may simply

be unavailable.

Note that an agent having access to the actions history could use her own signal and

compute the optimal (Bayes) estimate for the bias b. The Bayes estimator is the best

possible in the sense that it minimizes the expected loss of any Bregman loss function,

see [20].

Let alone the whole history, even just the timing of the action (that is, the “po-

sition in line”) is critical. consider the first and last agents to act. The first to act

associates little value to the initial prediction (based entirely upon the common prior),

11In a somewhat unusual setting, where Bayesian traders indicate how much they are willing to
spend, but not how much they value the security.



198 CHAPTER 10. HISTORY INDEPENDENT LEARNING

and accordingly values her own signal highly. Contra-wise, the last to trade has good

reason to assume that the current prediction (imperfectly) mirrors the wisdom of the

crowd and that her signal has much less importance. This reasoning is irrelevant in

our setting, where agents don’t know how many agents acted before them. Strategic

agents would decide on the their action based on their “belief ” on the way other agents

perform their updates, hence suggesting our analysis of equilibrium strategies for utility

maximizing agents.

Our analysis of history-independent social learning settings was mostly based on

the quadratic scoring rule. This raises the question regarding the socially optimal

and equilibrium updates resulting in settings where different scoring rules are used,

and any qualitative and quantitative differences (if at all). Conducting the analysis in

more general terms for families of scoring rules (e.g., based on their characterization as

Bregman loss functions) may also be the subject of future research.

Finally, the choice of strategy space for the agents is usually key in the analysis

of equilibrium in game-like scenarios. Future research allowing for strategies beyond

those assumed in our investigated setting (e.g., an update rate γ that also depends on

the outstanding prediction) may result in different equilibrium (and socially optimal)

strategies, and, as a result, in different properties for the related predictors.



Part IV

Summary

199



200

This thesis investigated the usage of machine learning in different settings and

related robustness aspects. In the first setting, the Trading Agent Competition, a

model-light approach to the design of a competing agent in the TAC-AA game proved

to be top performing. Also, evidence of robustness of top performing agents to changes

in the synthetic game environment suggests the applicability of their strategies to real

scenarios. Furthermore, a new TAC game, AdX, was implemented as a platform for

evaluating the mechanisms used in the Ad Exchange setting, and evidence from the

first competitions conducted during 2014 provide insights regarding successful adver-

tiser’s strategies. In the second setting, Domain Adaptation, the methods of Robust

Optimization and the concept of Algorithmic Robustness are combined to derive a

generalization bound and a related Domain Adaptation SVM learning algorithm. The

last setting researched in this thesis, sequential multi-agent learning, is introduced and

shown to be robust to the unavailability of transaction history. That is, interpreting

the state of the social computation as a predictor of an unknown underlying random

variable, it’s performance in equilibrium is quantified and shown to perform compa-

rably to the optimal predictor having access to the full history. In what follows, the

main results of the thesis are detailed together with possible related future research

direction.

First, a simple model-light competing agent for TAC-AA was implemented, mainly

relying on the model-free RWM on-line-learning algorithm. Making it into the final

rounds of the TAC-AA 2010 competition proved the approach viable. In subsequent

TAC-AA competition, the agent performance was significantly improved by modeling

the TAC-AA user population distribution across states using the Particle Filtering

method. Contrary to other reported implementation exploiting the game specification,

ours was based on the model-free KNN algorithm for estimating the particle filter in-

puts. Due to the high inherent unpredictability in the TAC-AA scenario and related

diminishing benefits of modeling improvements through Machine Learning, our simpli-

fying approach proved to be as successful, eventually winning TAC-AA 2013. To cope

with the relatively high estimation errors introduced by using KNN for particle filter

inputs, an unorthodox exploration-exploitation particle-advance method was used, in

which a small randomly chosen subset of the particles are not advanced and kept for

the subsequent time step regardless of the observation. Theoretical analysis of this

method is challenging and would be a very interesting future research.



201

Aiming at an assessment of the applicability of strategies employed by success-

ful TAC agents to real scenarios, an empirical study of the robustness of TAC-AA

agents was conducted. A series of experiments that varied different underlying game

parameters (the competing agents being unaware) provided surprising evidence for the

superior robustness of the top performing TAC-AA agents. This is surprising since

one could expect that the high performance is due to fitting the strategies to the game

spec, making such agents vulnerable to modeling mismatch. Therefore, the robustness

results suggests that the strategies may be universally successful in a sense and appli-

cable to more complex and unpredictable scenarios, such as those taking place in real

settings. Another result obtained in this thesis regarding the TAC scenario is the abil-

ity to identify agents and predict their profitability by simple machine learning using

agents’ behavioral attributes (e.g., agent bidding activity, distributions of some events

for different query types, and resulting ad position). Principal Component Analysis

(with only two principal components sufficing) was used for agent identification, and

3-Nearest Neighbor for profit estimation. Associating the agents robustness and this

characterization is left for future research, as also ways to use it as part of a TAC-AA

competing agent’s strategy.

Finally, for the TAC setting, a new TAC game for the Ad Exchange setting - TAC-

AdX - is introduced and implemented, with competitions taking place during 2014.

The game simulates key elements of the Ad Exchange setting (e.g., users of different

types visits to publishers’ web sites, impression opportunities announced and auctioned

at the Ad Exchange, campaigns being allocated to advertisers) and competing agents

implement that advertisers strategies aiming to acquire and execute targeted marketing

campaigns. As with other TAC games, TAC-AdX provides a platform for evaluating

in conjunction different competing agents strategies as well as alternative implemen-

tations of the underlying mechanisms of the scenario (e.g., the auction performed at

the Ad Exchange, the pricing of information regarding users’ attributes by dedicated

third-parties, and the reserve price setting by the publisher). Reports by teams that

implemented agents for the first TAC-AdX competitions suggest the effectiveness of

some real-world methods for the TAC-AdX game, although a methodological evalua-

tion of applicability of successful strategies by TAC-AdX agents to real setting (e.g.,

through robustness, as done for TAC-AA) is left for future research. Another natural

follow-up research may include the empirical evaluation (given implementations of com-



202

peting agents) of alternative schemes for implementing a related TAC-AdX mechanism

(e.g., reserve price optimization by the publishers).

Next, the Robust Optimization approach is used to derive a generalization bound

and learning algorithm for the Domain Adaptation setting. A measure of discrepancy

(λ-shift) between distributions is introduced, allowing its incorporation into a related

generalization bound (Theorem 11). Furthermore, interpreting the prior knowledge re-

garding domain discrepancy and Algorithmic Robustness requirements as constraints on

a related optimization program for learning a classifier, fits into the Robust Optimiza-

tion framework and results in Domain Adaptation variants of SVM for classification

and regression that are inherently Algorithmically Robust, with the dual formulation

(8.17) suggesting a re-weighting interpretation. Natural extensions of this work as part

of future research include the application of similar methods to other Algorithmically

Robust learning algorithms (e.g., PCA), and the analysis of optimal space-partition

methods (over which the λ-shift metric is defined) which were left out of the current

research.

Last, this thesis considers the social learning setting, where a chain of agents (that is,

a common computation propagating through a chain of communicating agents) seek an

estimate of the probability, b, of some future binary event, based on private independent

signals (each a realization of a binary event having the same underlying probability b).

This research introduces strategic behavior to current models of influence propagation

in social networks and provides a prescription for combining the private signal and the

preceding agent’s advice, quantifying the resulting performance (in equilibrium) of the

Exponential Moving Average (EMA) strategy vs. the optimal achievable using Bayes

updates (that is, having access to the full history). The quality of pT , the prediction

of the last agent along a chain of T agents (which may be viewed as an aggregate

estimator of b that depends on the private signals of T agents) was studied and shown

to be as follows

• (Theorem 18) When agents know their position in the sequence, the expected

mean square error of the aggregate estimator is Θ( 1
T ). Moreover, with probability

1− δ, the aggregate estimator’s deviation from b is Θ

(√
ln(1/δ)
T

)
.

• (Corollary 26) If the position information is not available, and agents are in equi-

librium, the aggregate estimator has a mean square error of O( 1√
T

). Furthermore,



203

with probability 1 − δ, the aggregate estimator’s deviation from b is Õ
(√

ln(1/δ)√
T

)
.

Extensions of the model are also analyzed for the cases where the total number of

agents is only available through a common prior (the equilibrium update for this case

is given in Theorem 27), for the case where there is only a single unaware agent (the

optimal update rule for the single agent is provided in Theorem 29), and for the case

where there is only a single aware agent having access to the full history (Theorem

30 quantifying the performance of the related resulting estimators). Future research

directions for this setting include dealing with other Bregman-based losses beyond the

quadratic loss analyzed in this work, and considering the resulting equilibrium for richer

strategy spaces for the collaborating agents (in the most general case, where the agents’

update may arbitrarily depend on the outstanding prediction and their signal), beyond

the linear updates assumed herein.



Bibliography

[1] 13th international conference on autonomous agents and multiagent systems.
http://aamas2014.lip6.fr/. 5.7

[2] 16th international workshop on agent-mediated electronic commerce and
trading agents design and analysis. http://users.ecs.soton.ac.uk/vr2/

amectada2014/. 5.7

[3] Alexa. http://www.alexa.com/. 5.3.2.1, 5.6.3

[4] The annual loebner competition. http://www.loebner.net/Prizef/

loebner-prize.html. 2.2

[5] Marketwatch virtual stock exchange games. http://www.marketwatch.com/

game/. 2.2

[6] Quantcast. www.quantcast.com. 5.3.2.1

[7] Tac ad auctions game. http://aa.tradingagents.org/. 2, 5.6

[8] Tac adx git repository. https://code.google.com/p/tac-adx/. 5.6

[9] Tac agents repository. http://tac.sics.se/showagents.php. 2.3

[10] Tau adx game workshop, fall 2013. http://sites.google.com/site/gameadx/
agents. 5.7

[11] The trading agent competition - competitive benchmarking for the trading agent
community. http://tac.sics.se/. 5.6

[12] J. Abernethy and R. Frongillo. A characterization of scoring rules for linear
properties. JMLR, 2012. 9.5

[13] Jacob Abernethy and Rafael M. Frongillo. A collaborative mechanism for crowd-
sourcing prediction problems. CoRR, abs/1111.2664, 2011. 9.5

[14] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle
filters for online nonlinear/non-gaussian bayesian tracking. Trans. Sig. Proc.,
50(2):174–188, February 2002. 3.4.3.1

[15] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Mach. Learn., 47(2-3):235–256, May 2002. 1.2

[16] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The
nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1):48–77, 2002.
1.2

204

http://aamas2014.lip6.fr/
http://users.ecs.soton.ac.uk/vr2/amectada2014/
http://users.ecs.soton.ac.uk/vr2/amectada2014/
http://www.alexa.com/
http://www.loebner.net/Prizef/loebner-prize.html
http://www.loebner.net/Prizef/loebner-prize.html
http://www.marketwatch.com/game/
http://www.marketwatch.com/game/
www.quantcast.com
http://aa.tradingagents.org/
https://code.google.com/p/tac-adx/
http://tac.sics.se/showagents.php
http://sites.google.com/site/gameadx/agents
http://sites.google.com/site/gameadx/agents
http://tac.sics.se/


BIBLIOGRAPHY 205

[17] Robert J. Aumann. Agreeing to disagree. The Annals of Statistics, 4(6):pp.
1236–1239, 1976. 10.5.2

[18] Robert Axelrod. The evolution of strategies in the iterated prisoners dilemma.
The dynamics of norms, pages 1–16, 1987. 2.2

[19] S. Balseiro, J. Feldman, V. Mirrokni, and S. Muthukrishnan. Yield Optimization
of Display Advertising with Ad Exchange. ArXiv e-prints, February 2011. 5.1,
5.5.3.1

[20] Arindam Banerjee, Xin Guo, and Hui Wang. On the optimality of conditional
expectation as a bregman predictor. IEEE Transactions on Information Theory,
51(7):2664–2669, 2005. 10.1.3, 10.5.3

[21] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick
White. Testing closeness of discrete distributions. J. ACM, 60(1):4:1–4:25, Febru-
ary 2013. 6.3

[22] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira,
and Jennifer Wortman Vaughan. A theory of learning from different domains.
Machine Learning, 79(1-2):151–175, 2010. 6.3, 4

[23] Shai Ben-David, Tyler Lu, Teresa Luu, and Dávid Pál. Impossibility theorems for
domain adaptation. Journal of Machine Learning Research - Proceedings Track,
9:129–136, 2010. 6.3, 6.3

[24] Shai Ben-David and Ruth Urner. On the hardness of domain adaptation and the
utility of unlabeled target samples. In ALT, pages 139–153, 2012. 6.3

[25] Shai Ben-David and Ruth Urner. Domain adaptation—can quantity compensate
for quality? Annals of Mathematics and Artificial Intelligence, 70(3):185–202,
March 2014. 6.3

[26] Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of linear program-
ming problems contaminated with uncertain data. Mathematical Programming,
88(3):411–424, 2000. 7.1

[27] J. Berg, A. Greenwald, V. Naroditskiy, and E. Sodomka. A knapsack-based
approach to bidding in ad auctions. In ECAI, pages 1013–1014, 2010. 4.1

[28] Jordan Berg, Amy Greenwald, Victor Naroditskiy, and Eric Sodomka. A first
approach to autonomous bidding in ad auctions. In In EC 2010 Workshop on
Trading Agent Design and Analysis (TADA, pages 343–348. SpringerVerlag, 2010.
3.1, 3.4, 3.4

[29] Dimitris Bertsimas, David B. Brown, and Constantine Caramanis. Theory and
applications of robust optimization. SIAM Rev., 53(3):464–501, August 2011. 7.1

[30] Steffen Bickel, Michael Brckner, and Tobias Scheffer. Discriminative learning for
differing training and test distributions. In In ICML, pages 81–88. ACM Press,
2007. 6.3

[31] Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning
under covariate shift. J. Mach. Learn. Res., 10:2137–2155, December 2009. 6.2.1



206 BIBLIOGRAPHY

[32] Darse Billings. The first international RoShamBo programming competition.
ICGA Journal, 23(1):42–50, 2000. 2.2

[33] John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, Bollywood,
Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. In
Association for Computational Linguistics, Prague, Czech Republic, 2007. 6.3

[34] A. Blum and Y. Mansour. Learning, regret-minimization, and equilibria. In
Algorithmic Game Theory, Chapter 4. 2007. 3.3.2

[35] G. W. Brier. Verification of forecasts expressed in terms of probability. Weather
Rev, 78:1–3, 1950. 9.4

[36] Lorenzo Bruzzone and Mattia Marconcini. Domain adaptation problems: A
dasvm classification technique and a circular validation strategy. IEEE Trans.
Pattern Anal. Mach. Intell., 32(5):770–787, May 2010. 6.3

[37] Sbastien Bubeck and Nicol Cesa-Bianchi. Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. Foundations and Trends in Machine
Learning, 5(1):1–122, 2012. 1.2

[38] U.S. Census Bureau. Current Population Survey, 2013 Annual Social and Eco-
nomic Supplemen. Available at http://www.census.gov/prod/techdoc/cps/

cpsmar13.pdf. 5.1, 5.3.1, 5.6.3

[39] Nicolò Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. Regret minimization
for reserve prices in second-price auctions. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, pages 1190–
1204. SIAM, 2013. 5.3.2.2

[40] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cam-
bridge University Press, New York, NY, USA, 2006. 1.2, 3.3.2

[41] Yee Seng Chan and Hwee Tou Ng. Word sense disambiguation with distribution
estimation. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence, IJCAI’05, pages 1010–1015, San Francisco, CA, USA, 2005. Morgan
Kaufmann Publishers Inc. 10

[42] Yiling Chen and Jennifer Wortman Vaughan. A new understanding of prediction
markets via no-regret learning. In Proceedings of the 11th ACM Conference on
Electronic Commerce, EC ’10, pages 189–198, New York, NY, USA, 2010. ACM.
9.5, 9.5

[43] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning
with statistical models. J. Artif. Int. Res., 4(1):129–145, March 1996. 6.2.3

[44] Corinna Cortes, Yishay Mansour, and Mehryar Mohri. Learning bounds for
importance weighting. In John D. Lafferty, Christopher K. I. Williams, John
Shawe-Taylor, Richard S. Zemel, and Aron Culotta, editors, NIPS, pages 442–
450. Curran Associates, Inc., 2010. 6.2.1

[45] Corinna Cortes and Mehryar Mohri. Domain adaptation in regression. In ALT,
pages 308–323, 2011. 6.3

http://www.census.gov/prod/techdoc/cps/cpsmar13.pdf
http://www.census.gov/prod/techdoc/cps/cpsmar13.pdf


BIBLIOGRAPHY 207

[46] Corinna Cortes, Mehryar Mohri, Michael Riley, and Afshin Rostamizadeh. Sam-
ple selection bias correction theory. In Proceedings of the 19th International
Conference on Algorithmic Learning Theory, ALT ’08, pages 38–53, Berlin, Hei-
delberg, 2008. Springer-Verlag. 6.2.1, 6.2.3

[47] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for trans-
fer learning. In Proceedings of the 24th International Conference on Machine
Learning, ICML ’07, pages 193–200, New York, NY, USA, 2007. ACM. 6.2.3

[48] Easley David and Kleinberg Jon. Networks, Crowds, and Markets: Reasoning
About a Highly Connected World, chapter 16. Cambridge University Press, New
York, NY, USA, 2010. 9.3

[49] Bruno De Finetti. La prevision: Ses lois logiques, ses sources subjectives. Ann.
Inst. Henri Poincaré, 7:1–68, 1937. 9.4

[50] Nikhil R. Devanur and Thomas P. Hayes. The adwords problem: Online keyword
matching with budgeted bidders under random permutations. In ACM Confer-
ence on Electronic Commerce. Association for Computing Machinery, Inc., 2009.
5.5.3.1

[51] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential monte
carlo sampling methods for bayesian filtering. Statistics and Computing,
10(3):197–208, July 2000. 3.4.3.1

[52] Arnaud Doucet and Adam M. Johansen. A tutorial on particle filtering and
smoothing: fifteen years later, 2011. 3.4

[53] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the general-
ized second-price auction: Selling billions of dollars worth of keywords. American
Economic Review, 97(1):242–259, 2007. 4.1

[54] Joan Feigenbaum, Lance Fortnow, David M. Pennock, and Rahul Sami. Compu-
tation in a distributed information market, 2004. 10.5.2, 10.5.3

[55] Jon Feldman, Monika Henzinger, Nitish Korula, Vahab S. Mirrokni, and Cliff
Stein. Online stochastic packing applied to display ad allocation. In Proceedings
of the 18th Annual European Conference on Algorithms: Part I, ESA’10, pages
182–194, Berlin, Heidelberg, 2010. Springer-Verlag. 5.5.3.1

[56] Jon Feldman, Vahab Mirrokni, S. Muthukrishnan, and Mallesh M. Pai. Auctions
with intermediaries: Extended abstract. In Proceedings of the 11th ACM Confer-
ence on Electronic Commerce, EC ’10, pages 23–32, New York, NY, USA, 2010.
ACM. 5.1, 5.3.3

[57] Social Fresh. How To Use The 15 Facebook Ad Targeting Options. http://

socialfresh.com/facebook-ad-options/. 5.3.1

[58] John Geanakoplos and Heracles M. Polemarchakis. We can’t disagree forever.
Cowles Foundation Discussion Papers 639, Cowles Foundation for Research in
Economics, Yale University, July 1982. 10.5.2

[59] Arpita Ghosh, Mohammad Mahdian, Preston McAfee, and Sergei Vassilvitskii.
To match or not to match: Economics of cookie matching in online advertising.

http://socialfresh.com/facebook-ad-options/
http://socialfresh.com/facebook-ad-options/


208 BIBLIOGRAPHY

In Proceedings of the 13th ACM Conference on Electronic Commerce, EC ’12,
pages 741–753, New York, NY, USA, 2012. ACM. 5.3.3

[60] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction,
and estimation. Journal of the American Statistical Association, 102(477):359–
378, 2007. 9.4

[61] I. J. Good. Rational decisions. Journal of the Royal Statistical Society. Series B
(Methodological), 14(1):pp. 107–114, 1952. 9.4

[62] Amy Greenwald and Peter Stone. The first international trading agent competi-
tion: Autonomous bidding agents. IEEE Internet Computing, 5(2):52–60, 2001.
2, 6.2.3

[63] Amaury Habrard, Jean-Philippe Peyrache, and Marc Sebban. Boosting for un-
supervised domain adaptation. In Hendrik Blockeel, Kristian Kersting, Siegfried
Nijssen, and Filip Zelezn, editors, ECML/PKDD (2), volume 8189 of Lecture
Notes in Computer Science, pages 433–448. Springer, 2013. 6.3

[64] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The weka data mining software: An update. SIGKDD Explor.
Newsl., 11(1):10–18, November 2009. 3.4.3.3

[65] Robin Hanson. Combinatorial information market design. Information Systems
Frontiers, 5(1):107–119, 2003. 9.5

[66] Shai Hertz, Mariano Schain, and Yishay Mansour. An empirical study of trading
agent robustness. In Proceedings of the 2013 International Conference on Au-
tonomous Agents and Multi-agent Systems, AAMAS ’13, pages 1253–1254, Rich-
land, SC, 2013. International Foundation for Autonomous Agents and Multiagent
Systems. 1.5.4, 4

[67] Jiayuan Huang, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt,
and Bernhard Schlkopf. Correcting sample selection bias by unlabeled data. In
Bernhard Schlkopf, John Platt, and Thomas Hoffman, editors, NIPS, pages 601–
608. MIT Press, 2006. 6.3

[68] iab. RTB Project. OpenRTB API Specification Version 2.2. Available at http://
www.iab.net/media/file/OpenRTBAPISpecificationVersion2_2.pdf. 5.3.1

[69] Patrick R. Jordan, Michael P. Wellman, and Guha Balakrishnan. Strategy and
mechanism lessons from the first ad auctions trading agent competition. In Pro-
ceedings of the 11th ACM Conference on Electronic Commerce, EC ’10, pages
287–296, New York, NY, USA, 2010. ACM. 2.3, 4.1, 4.3.3

[70] PatrickR. Jordan and MichaelP. Wellman. Designing an ad auctions game for the
trading agent competition. In Esther David, Enrico Gerding, David Sarne, and
Onn Shehory, editors, Agent-Mediated Electronic Commerce. Designing Trading
Strategies and Mechanisms for Electronic Markets, volume 59 of Lecture Notes
in Business Information Processing, pages 147–162. Springer Berlin Heidelberg,
2010. 2, 3.1, 4.1, 5.2.2

[71] Takafumi Kanamori and Hidetoshi Shimodaira. Active learning algorithm using
the maximum weighted log-likelihood estimator. Journal of Statistical Planning
and Inference, 116(1):149 – 162, 2003. 6.2.3

http://www.iab.net/media/file/OpenRTBAPISpecificationVersion2_2.pdf
http://www.iab.net/media/file/OpenRTBAPISpecificationVersion2_2.pdf


BIBLIOGRAPHY 209

[72] W. Ketter, J. Collins, P. Reddy, C. Flath, and M. Weerdt. The power trading
agent competition. ERIM Report Series Reference No. ERS-2011-027-LIS, 2011.
2

[73] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. Pro-
ceedings of the 30th International Conference on Very Large Data Bases, 2004.
6.3

[74] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.
Robocup: The robot world cup initiative. In Proceedings of the First International
Conference on Autonomous Agents, AGENTS ’97, pages 340–347, New York, NY,
USA, 1997. ACM. 2.2

[75] B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain
adaptation using asymmetric kernel transforms. In Proceedings of the 2011 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR ’11, pages 1785–
1792, Washington, DC, USA, 2011. IEEE Computer Society. 6.3

[76] Albert S. Kyle. Continuous auctions and insider trading. Econometrica, 53(6):pp.
1315–1335, 1985. 10.5.2

[77] S. Lahaie, D. M. Pennock, A. Saberi, and R. V. Vohra. Sponsored search auctions.
In N. Nisan, T. roughgarden, E. Tardos, and V. V. Vazirani, editors, Algorithmic
Game Theory, chapter 28, pages 699–716. Cambridge University Press, New York,
NY, 2007. 4.1

[78] Nicolas S. Lambert, David M. Pennock, and Yoav Shoham. Eliciting properties of
probability distributions. In Proceedings of the 9th ACM Conference on Electronic
Commerce, EC ’08, pages 129–138, New York, NY, USA, 2008. ACM. 10.5.3

[79] John Ledyard, Robin Hanson, and Takashi Ishikida. An experimental test of
combinatorial information markets. Journal of Economic Behavior and Organi-
zation, 69(2):182 – 189, 2009. Individual Decision-Making, Bayesian Estimation
and Market Design: A Festschrift in honor of David Grether. 9.5

[80] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.
Inf. Comput., 108(2):212–261, February 1994. 1.2, 3.3.2

[81] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation: Learning
bounds and algorithms. In COLT, 2009. 6.3, 6.3, 5, 6.3

[82] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adapta-
tion with multiple sources. Advances in Neural Information Processing Systems
(2008), 2009. 6.2.3

[83] Yishay Mansour, S. Muthukrishnan, and Noam Nisan. Doubleclick ad exchange
auction. CoRR, abs/1204.0535, 2012. 5.1, 5.3.3

[84] Yishay Mansour and Mariano Schain. Robust domain adaptation. Annals of
Mathematics and Artificial Intelligence, pages 1–16, 2013. 1.5.4, 6.3, 7.1

[85] Anna Margolis. A literature review of domain adaptation with unlabeled data.
Technical report, 2011. 6.3



210 BIBLIOGRAPHY

[86] Colin McDiarmid. On the method of bounded differences, surveys in combina-
torics. Math. Soc. Lecture, pages 148–188, 1989. 15

[87] Richard D. McKelvey and Talbot Page. Common knowledge, consensus, and
aggregate information. Econometrica, 54(1):pp. 109–127, 1986. 10.5.2

[88] John Blitzer Minmin Chen and Kilian Weinberger. Co-training for domain adap-
tation. In Neural Information Processing Systems, Cambridge, MA, 2011. MIT
Press. 6.3

[89] Mehryar Mohri and Andres Muñoz Medina. Learning theory and algorithms for
revenue optimization in second-price auctions with reserve. CoRR, abs/1310.5665,
2013. 5.3.2.2, 5.7

[90] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
Machine Learning. The MIT Press, 2012. 1.1, 1, 1.1, 1.2, 1.2, 6.3, 6.3

[91] S. Muthukrishnan. Ad exchanges: Research issues. In WINE, pages 1–12, 2009.
5.1, 5.3.3

[92] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1),
pages 58–73, 1981. 5.3.2.2

[93] Jinzhong Niu, Kai Cai, Simon Parsons, Peter McBurney, and Enrico Gerding.
What the 2007 TAC market design game tells us about effective auction mecha-
nisms. Autonomous Agents and Multi-Agent Systems, 21:172–203, 2010. 2

[94] Michael Ostrovsky. Information aggregation in dynamic markets with strategic
traders. Research Papers 2053, Stanford University, Graduate School of Business,
March 2009. 10.5.2

[95] Michael Ostrovsky and Michael Schwarz. Reserve prices in internet advertising
auctions: A field experiment. In Proceedings of the 12th ACM Conference on
Electronic Commerce, EC ’11, pages 59–60, New York, NY, USA, 2011. ACM.
5.3.2.2

[96] Abraham Othman and Tuomas Sandholm. The gates hillman prediction market.
Review of Economic Design, 17(2):95–128, 2013. 9.5

[97] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans.
on Knowl. and Data Eng., 22(10):1345–1359, October 2010. 6.2.3

[98] D. Pardoe, D. Chakraborty, and P. Stone. Tactex09: a champion bidding agent
for ad auctions. In W. van der Hoek, G. A. Kaminka, Y. Lespérance, M. Luck,
and S. Sen, editors, AAMAS, pages 1273–1280. IFAAMAS, 2010. 4.1

[99] David Pardoe, Doran Chakraborty, and Peter Stone. Tactex09: A champion bid-
ding agent for ad auctions. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: Volume 1 - Volume 1, AAMAS ’10,
pages 1273–1280, Richland, SC, 2010. International Foundation for Autonomous
Agents and Multiagent Systems. 3.1, 3.4, 3.4.3.2, 3.4.3.3

[100] David Pardoe and Peter Stone. Boosting for regression transfer. In Johannes
Frnkranz and Thorsten Joachims, editors, Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 863–870. Omnipress, 2010.
6.2.3



BIBLIOGRAPHY 211

[101] David Pardoe and Peter Stone. A particle filter for bid estimation in ad auctions
with periodic ranking observations. In The 10th International Conference on
Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’11, pages
887–894, Richland, SC, 2011. International Foundation for Autonomous Agents
and Multiagent Systems. 2.2, 3.3.3, 4.1

[102] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D.
Lawrence. Dataset Shift in Machine Learning. The MIT Press, 2009. 6.1

[103] Achim Rettinger, Martin Zinkevich, and Michael Bowling. Boosting expert en-
sembles for rapid concept recall. In Proceedings of the 21st National Conference
on Artificial Intelligence - Volume 1, AAAI’06, pages 464–469. AAAI Press, 2006.
6.2.3

[104] John Rust, John H. Miller, and Richard Palmer. Characterizing effective trading
strategies: Insights from a computerized double auction tournament. Journal of
Economic Dynamics and Control, 18(1):61 – 96, 1994. Special Issue on Computer
Science and Economics. 2.2

[105] Norman Sadeh, Raghu Arunachalam, Joakim Eriksson, Niclas Finne, and Sverker
Janson. TAC-03: A supply-chain trading competition. AI Magazine, 24(1):92–94,
2003. 2, 6.2.3

[106] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual
category models to new domains. In Proceedings of the 11th European Conference
on Computer Vision: Part IV, ECCV’10, pages 213–226, Berlin, Heidelberg,
2010. Springer-Verlag. 6.3

[107] F. Sanders. On Subjective Probability Forecasting. Journal of Applied Meteorol-
ogy, 2:191–201, April 1963. 9.4

[108] Leonard J. Savage. Elicitation of personal probabilities and expectations. Journal
of the American Statistical Association, 66(336):pp. 783–801, 1971. 9.4

[109] Mariano Schain, Shai Hertz, and Yishay Mansour. A model-free approach for a
tac-aa trading agent. In Esther David, Christopher Kiekintveld, Valentin Robu,
Onn Shehory, and Sebastian Stein, editors, AMEC/TADA, volume 136 of Lecture
Notes in Business Information Processing, pages 119–132. Springer, 2012. 1.5.4,
3

[110] Mariano Schain and Yishay Mansour. Ad exchange - proposal for a new trading
agent competition game. In AMEC/TADA, pages 133–145, 2012. 1.5.4, 2

[111] Shai Ben-David Shai Shalev-Shwartz. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, 2014. 2, 1.4

[112] Lloyd S Shapley and Martin Shubik. Trade using one commodity as a means of
payment. Journal of Political Economy, 85(5):937–68, October 1977. 10.5.2

[113] Lampros C. Stavrogiannis. Competing demand-side intermediary auctioneers in
online advertising exchanges. In Proceedings of the 2014 International Conference
on Autonomous Agents and Multi-agent Systems, AAMAS ’14, pages 1705–1706,
Richland, SC, 2014. International Foundation for Autonomous Agents and Mul-
tiagent Systems. 5.3.3



212 BIBLIOGRAPHY

[114] Masashi Sugiyama and Motoaki Kawanabe. Machine Learning in Non-Stationary
Environments: Introduction to Covariate Shift Adaptation. The MIT Press, 2012.
6.1

[115] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul Von Bnau, and
Motoaki Kawanabe. Direct importance estimation with model selection and its
application to covariate shift adaptation. In In NIPS, 2008. 6.2.1, 6.3

[116] G. Sutcliffe. The cade-17 atp system competition. J. Autom. Reason., 27(3):227–
250, October 2001. 2.2

[117] Bingyang Tao, Fan Wu, and Guihai Chen. TAC adx’14: Autonomous agents for
realtime ad exchange. In Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey,
May 4-8, 2015, pages 1111–1119, 2015. 5.7

[118] H. R. Varian. Position auctions. International Journal of Industrial Organization,
25(6):1163–1178, 2007. 4.1

[119] Y Vorobeychik. A game theoretic bidding agent for the ad auction game. In Third
International Conference on Agents and Articial Intelligence, ICAART, 2011. 3.1

[120] Pengyuan Wang, Yechao Liu, Marsha Meytlis, Han-Yun Tsao, Jian Yang, and Pei
Huang. An efficient framework for online advertising effectiveness measurement
and comparison. In Proceedings of the 7th ACM International Conference on
Web Search and Data Mining, WSDM ’14, pages 163–172, New York, NY, USA,
2014. ACM. 5.3.4.1

[121] Michael P. Wellman, Amy Greenwald, and Peter Stone. Autonomous Bidding
Agents: Strategies and Lessons from the Trading Agent Competition (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2007. 2, 2.3

[122] Michael P. Wellman and Peter R. Wurman. A trading agent competition for
the research community. In IJCAI-99 Workshop on Agent-Mediated Electronic
Trading, Stockholm, August 1999. 2

[123] Robert L. Winkler. Scoring rules and the evaluation of probability assessors.
Journal of the American Statistical Association, 64(327):pp. 1073–1078, 1969.
9.4

[124] Dikan Xing, Wenyuan Dai, Gui-Rong Xue, and Yong Yu. Bridged refinement for
transfer learning. In Proceedings of the 11th European Conference on Principles
and Practice of Knowledge Discovery in Databases, PKDD 2007, pages 324–335,
Berlin, Heidelberg, 2007. Springer-Verlag. 6.3

[125] Huan Xu, Constantine Caramanis, and Shie Mannor. Robustness and regulariza-
tion of support vector machines. J. Mach. Learn. Res., 10:1485–1510, December
2009. 7.1

[126] Huan Xu and Shie Mannor. Robustness and generalization. In COLT, pages
503–515, 2010. 7.2, 6, 7.2, 7, 6, 8.2, 8.3, 8.4, 4, 8.6

[127] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning
using gaussian fields and harmonic functions. In IN ICML, pages 912–919, 2003.
6.3



י שקלול לינארי עם הסיגנל המחקר מניח מרחב אסטרטגיות פשוט לכל סוכן )עדכון החישוב הנוכחי ע"

הפרטי( ומעוניינים באסטרטגיה האופטימלית מבחינה חברתית )כלומר, המשיגה בתוחלת את התועלת 

תוחלת מצב בו תיפגע הכללית הגבוהה ביותר עבור כלל ניקוד נתון( ובאסטרטגיות שווי המשקל )כלומר, 

. עבור אסטרטגיות אלו (וט בה, בעוד שאר הסוכנים ממשיכים לנקהניקוד של סוכן שיסטה ממנה

(, מתקבלים תהליכים Quadratic Scoring Rules –עבור כללי ניקוד ריבועיים  10)המנותחות בפרק 

הניתנים לפרשנות כמשערכים להסתברות המאורע החיצוני. אנו מנתחים את ביצועי משערכים אלו 

במידה והיסטורית הפעולות היתה ומשווים אותם לביצועי מהשערך האופטימלי )בייסיאני( האפשרי 

בהמשך, אנו מרחיבים את המודל למקרים בהם הסוכנים אינם יודעים מראש את מספר  ידועה ונגישה.

לגבי מספר הסוכנים הכולל(, למקרים בהם  –הידועה לכל הסוכנים  –)אלא רק התפלגות  הסוכנים הכולל

צג את הערך של ידיעת ההיסטוריה(, רק אחד הסוכנים נטול היסטוריה )ואת השוני בתועלת כמיי

ואת השוני בתועלת כמייצג חסם על המחיר שסוכן ולמקרים בהם ההסטוריה נגישה רק לאחד הסוכנים )

נחתם באזכור של מחקרי עבר של כמה מודלים קשורים  10פרק  (.יסכים לשלם כדי לקבל גישה כאמור

ודל המוצג בו אוסף גדול של סוכנים הפועלים )אם כי לא נחקרו בעבר שיוויי משקל ותכונות משערכים במ

כללי סדרתית בצורה אסטרטגית(, ובהתייחסות למחקר עתידי אפשרי עבור תרחישים המשתמשים ב

 ניקוד אחרים או המאפשרים לסוכנים מרחבי אסטרטגיות רחבים יותר.

 



אלגוריתמי ההסתגלות וחסמי ההכללה המוצגים בעבודה זו מבוססים על תוצאות  .7מתוארים בפרק 

 המאמר הבא:

Robust domain adaptation. Mansour, Yishay and Schain, Mariano. Annals of 

Mathematics and Artificial Intelligence, pages 1-16, 2013. Springer. 

 

 חברתיתלמידה  –חלק שלישי 

של העבודה, אוסף סוכנים בעלי מידע פרטי  9( המתוארת בפרק Social Learning) בלמידה חברתית

המידה . אמורה לשקף את סך המידע המבוזר בין הסוכניםתוצאה משותפת שלהשגת משתפים פעולה 

ובנכונותו לפעול  תלויה בתועלת של כל אחד מהסוכנים סך המידעבה תוצאת החישוב אכן מייצגת את 

מבחינים בין שני תרחישים של למידה חברתית השונים  באופן המייצג את המידע הפרטי שברשותו.

)למשל, בעת תוצאת החישוב המשותף של כל אחד מהסוכנים תלויה ב התועלתמהותית. בראשון, 

בחירות(. בשני, בו אנו מתמקדים בעבודה זו, התועלת של כל סוכן קשורה במאורע חיצוני, והמידע 

הפרטי של הסוכן מתייחס להסתברות התרחשות המאורע )לדוגמה, המאורע הוא פשיטת רגל של חברה 

תוצאת החישוב המשותף  ם המייצג הסתברות להתרחשות המאורע(.מסויימת, ולכל סוכן מידע פני

אמורה לייצג את "חכמת ההמון" בקשר להסתברות האמיתית להתרחשות המאורע, והתועלת של כל 

סוכן נקבעת בדיעבד לאור קרות המאורע או לא )למשל, מחיר אגרת חוב של חברה כמשקף תחזית 

והתועלת לסוכן בהתאם למחיר בו קנה את אגרת החוב  ההמון לגבי סיכויי פשיטת הרגל של החברה,

( המבוססים Prediction Marketsמתוארים שווקי תחזיות ) 9בפרק  ומצב החברה בעת תשלום החוב(.

מוצגת התייחסות למחיר של  ,( כדוגמה לתרחיש למידה חברתיתScoring Rulesעל כללי ניקוד )

ומפותחת נוסחה , לקרות המאורע העומד בבסיסוות האופציה הנסחרת בשוק כמשערך של ההסתבר

הקושרת בין העלות של עושה השוק )מעצם טבעם, בשווקי תחזיות נדרש סבסוד חיצוני( לאיכות 

 המשערך המתקבל. 

עבור מאורע חיצוני שסיכויי מודל של למידה חברתית סדרתית נטולת היסטוריה. אנו חוקרים  10בפרק 

, כל סוכן מקבל דגימה אחת )סיגנל( של ניסוי בעל אותם סיכויי התרחשותו אינם ידועים לסוכנים

התרחשות. הסוכנים חולקים ביניהם את המידע )באופן עקיף( על ידי עדכון סדרתי של חישוב משותף 

בסיגנל של כל סוכן כך שבעת העדכון היסטוריית העדכונים אינה נגישה לסוכן )אלא רק תוצאת התלוי 

תייחס למודל זה כמשקף שרשרת המלצות בין אנשים לגבי טיב מוצר מסויים החישוב עד כה(. ניתן לה

על בסיס נסיון שימוש פרטי ואמון בממליץ, בהנחה שלממליצים חשובה תדמיתם בעיני חבריהם ולכן 

 פועלים ביושר על פי הסיגנל האמיתי שבידיהם.



, והאפשרות לנצל מצב טיפוסי לקראת סוף המשחק )בו נותרים בעלות גבוהה מהתשלום מהמפרסם(

תוצאות אלו מחזקות את מעט סוכנים עם אפשרות לזכות במסעות פרסום( לצורך הפקת רווח משמעותי. 

המשחק  –מיים הרלוונטיות של המשחק כפלטפורמה לחקר תרחישים דומים במציאות )וגם לצרכים אקד

נמצא תיאור מפורט  5ממשיך לשמש כפלטפורמה לסדנאות רלוונטיות באוניברסיטאות שונות(. בפרק 

של המשחק והיישויות השונות, כמו גם הארכיטקטורה והמימוש. תיאור זה מבוסס בחלקו על הצעת 

 המשחק שפורסמה במאמר הבא:

 Ad Exchange - Proposal for a New Trading Agent Competition Game. Schain, 

Mariano and Mansour, Yishay. 14th International Workshop on Agent-Mediated 

Electronic Commerce and Trading Agents Design and Analysis 2012. 

 

 הסתגלות חסינה –חלק שני 

הבעיה מוצגת  ( היא מושא המחקר בחלק זה של התזה.Domain Adaptationבעיית ההסתגלות )

, ובה על אלגוריתם למידה חישובית להתמודד עם מצב בו, בניגוד להנחה המקובלת בתיאוריה 6בפרק 

התכונות הסטטיסטיות  –הקלאסית של למידה חישובית,  סביבת האימון שונה מסביבת המבחן. כלומר 

ולת הכללה( שונות של סביבת המקור )כלומר, של דגימות האימון אשר באמצעותם משיג האלגוריתם יכ

מאלו של הסביבה בה על תוצאת אלגוריתם הלמידה לפעול )סביבת היעד(. באופן טבעי יש להניח קשר 

ים מוצג 6בפרק הכללה במצב שכזה. למידה ו כלשהו בין סביבת המקור והיעד בכדי שתתאפשר יכולת

ת המבוססים על מידת חסמי הסתגלו המתודולוגיות שהיו מוכרות להתמודדות עם הבעיה, תוך דגש על

 פער בין סביבות המקור והיעד. 

בעבודה זו מוצגים אלגוריתמי למידה וחסמי הכללה להסתגלות המבוססים על שיטות אופטימיזציה 

( אנו מחפשים רגילה(. באופטימיזציה חסינה )בניגוד לאופטימיזציה Robust Optimizationחסינה )

ודאות לגבי המצב. כתוצאה מכך, הפתרון של אופטימיזציה  פתרון אופטימלי תחת אילוצים המשקפים אי

אנו מציגים פתרון  8. בפרק לטעויות בהערכת המצב )עד כדי המרווח הנתון ע"י האילוצים( חסיןכזו 

לבעית ההסתגלות באמצעות אופטימיזציה חסינה ע"י אפיון הפער בין סביבת המקור והיעד כאילוצים 

הסביבות. בפיתוח האלגוריתם אנו מסתמכים גם על תיאוריית החסינות המייצגים את חוסר הודאות בין 

יכולות ההכללה של אלגוריתמים  , המאפיינת ומכמתת את(Algorithmic Robustnessהאלגוריתמית )

השימוש בחסינות תוצר הלמידה בסביבות איברי מדגם האימון. להם השתנות חסומה של אשר 

ומספק חסמי הכללה  לגשר על השוני בין סביבות היעד והמקוראלגוריתמית מאפשר לאלגוריתם שלנו 

. אופטימיזציה חסינה וחסינות אלגוריתמית 8התלויים במידת שוני בין סביבות המוצגת גם היא בפרק 



מספר הימים בו הם משתתפים במכרזים, השונות ברווחים היומיים, ותמהיל המוצרים הממוצע( ושימוש 

 Principal Component -רכיבים ראשיים )אנליזה של  PCAבאלגוריתם למידה חישובית מסוג 

Analysis)  .פרק זה הודגמה האפשרות לסווג סוכנים בדיוק גבוה ע"פ שני הרכיבים הראשיים בלבד

 מבוסס בעיקר על תוצאות שפורסמו במאמר הבא: 

An Empirical Study of Trading Agent Robustness. Hertz, Shai, and Schain, Mariano 

and Mansour, Yishay. Proceedings of the 2013 International Conference on 

Autonomous Agents and Multi-agent Systems.  

 

 שאופיין ומומש במסגרת התזה. המשחק TAC-Ad Exchangeחדש,  TACמתואר משחק  5בפרק 

ד לפרסום בחיפוש מדמה סביבת התמודדות על פרסום למשתמשים הגולשים באתרי אינטרנט. בניגו

אליו מתנקזים בזמן אמת הזדמנויות  Ad Exchangeממומן, כאן מכרזי הפרסום מבוצעים ע"י רכיב 

הפרסום )מאתרי אינטרנט בהם מבקרים המשתמשים( וההצעות של המפרסמים )באמצעות סוכנויות 

חינה במטרה לאפשר ב Ad Networks(. המשחק פותח מנקודת המבט של ה Ad Networksפרסום, 

של אסטרטגיות הוצאה לפועל של מסעות פרסום במציאות מורכבת בה משולבים מנגנונים רבים 

בעיקר קביעת מחירי מינימום לפרסום ע"י האתרים, מכרזי הפרסום המבוצעים ע"י הישוייות המעורבות: 

, סחר במידע לגבי המשתמשים )משמש את המפרסמים כדי להתאים את Ad Exchangeע"י ה 

 ע"י המפרסמים.  Ad Networksהפרסומות לאוכלוסיית היעד הנדרשת(, והקצאת חוזי הפרסום ל 

. בתחילת המשחק לכל Ad Networksבמשחק, הסוכנים המתחרים מממשים את האסטרטגיות של ה 

על )מסע פרסום מאופיין ע"י אוכלוסיית היעד, כמות הצפיות סוכן מוקצה מסע פרסום שעליו להוציא לפו

המבוקשת, והתשלום לסוכנות(. בהמשך המשחק מתמודדים הסוכנים על זכיה במסעות פרסום נוספים 

ע"י הצעת העלות למפרסם. ההצעה ובה העלות הנמוכה ביותר זוכה, אך תוך התחשבות בביצועי העבר 

על הסוכן המתחרה לאזן לפיכך ום לפועל( של כל סוכן מתחרה. מסעות פרס א)ביכולתו המוכחת להוצי

בין התועלת לטווח הקצר )הוצאה לפועל של מסע הפרסום הנוכחי בעלות נמוכה ככל האפשר, תוך סיכון 

מטרה לשפר סיכוייו לזכיה "בכל מחיר" והשגת שיפור תדמיתי ב ביצוע החוזהשל אי מימוש כנדרש( לבין 

  במסעות פרסום עתידיים.

, והשניה במסגרת סדנא TAC 2014עם סיום מימוש המשחק התקיימו מספר תחרויות )אחת במסגרת 

במדעי המחשב באוניברסיטת תל אביב( בהן השתתפו קבוצות מאוניברסיטאות בארה"ב, בריטנה, סין, 

וישראל. בחינה של אסטרטגיות הסוכנים במשחק ומסקנות הקבוצות המשתתפות מרמזת על דינאמיקה 

ם הראשונים )גם ותופעות שעשויות להתרחש במציאות. בפרט, החשיבות שבביצוע מסעות הפרסו



( והרחבנו את אפשרויות הפעולה שלו כך שיוכל Particle Filtering –שימוש בשיטות סטטיסטיות 

להתמודד במכרזים גם על מקומות נוספים פרט לראשון. בכל מקרה האופי נטול המודל נשמר ע"י ביסוס 

מודל במהותו, בניגוד -הנטול Nearest Neighborעל אלגוריתם  Particle Filterהקלט למנגנון ה 

בנוסף, הספציפי של המשחק. )המודל( המבנה אותו על  ביססומימשו מנגנון זה אך לקבוצות אחרות ש

שיפרנו את רכיב האופטימיזציה ע"י הנחה היוריסטית לגבי הקשר בין המחיר הזוכה במכרז לבין כמות 

הנחה זו איפשר לממש אופטימיזציה ע"י חיפוש פשוט אחר הצעת  המוצרים שיימכרו והרווח הצפוי לסוכן.

וד לשיטות מורכבות ויקרות חישובית ששימשו לאופטימיזציה, ע"פ המחיר האופטימלית במכרז )בניג

שיטת אופטימיזציה זו הוכחה כיעילה, כמו גם מנגנון המידול,  פרסומים, את הסוכנים התמחרים(.

חוסר דיוק שלא השפיע מהותית על התוצאה  –מודל -)שאמנם לא השיג דיוק במודל כמו שיטות תלויות

הסוכן הגיע למקום  2012ו  2011הה המובנית במשחק( ובתחרויות של הסופית לאור רמת הרעש הגבו

לזו של הסוכן המנצח. בסופו של דבר, לאחר סבב שיפורים נוסף,  3%השלישי ובתוצאה הקרובה עד כדי 

בעבודה מכיל תיאור מפורט של הארכיטקטורה והמנגנונים  3. פרק 2013הסוכן זכה בתחרות של שנת 

כמו גם ניתוח של התועלת השולית היורדת של שיפור הדיוק של אלגוריתמי השונים שמומשו בסוכן, 

  הבא:פרק זה מבוסס בעיקר על תוצאות שפורסמו במאמר הלמידה המשמשים במידול. 

A Model-Free Approach for a TAC-AA Trading Agent. Schain, Mariano and Hertz, 

Shai and Mansour, Yishay. Lecture Notes in Business Information Processing 2012, 

and Trading Agents Design and Analysis (TADA) Workshop 2012.  

 

מתוארים אוסף ניסויים שבוצעו לבחינת הרלוונטיות של מנגנונים המשמשים סוכנים במשחקי  4בפרק 

TAC  )לצורך כך, שינינו את מימוש שרת למצבים מורכבים במציאות. )כלומר, במצבים מופשטים יחסית

המשחק )בין השאר, שונה מודל מעבר המשתמשים בין המצבים השונים, מודל ההקלקות, גודל 

קודמות  TAC-AAאוכלוסיות המשתמשים, ועוד( ומדדנו את השינויים בביצועים של סוכנים מתחרויות 

 TAC-AAהגבוההים בתחרויות  )הסוכנים לא שונו(. התוצאות הראו שדווקא הסוכנים בעלי הביצועים

היו עמידים יותר לשינויים. לאור תוצאה מפתיעה זו )הרי בכדי להשיג תוצאות שיא, צפוי הפגינו חוסן ו

היה שסוכנים יותאמו ככל האפשר לחוקים הספציפיים של המשחק(, ניתן להעריך שמנגנונים המשמשים 

, ובכך עולה גם למציאות המורכבת האמיתיתסוכנים בעלי ביצועים גבוהים עשויים להיות רלוונטיים 

 כפלטפורמות סינטטיות לבחינת שיטות העשויות לשמש במציאות. TACהערך של משחקים דוגמת 

כמו כן נבדקה בניסויים האפשרות לזהות סוכנים ע"פ טביעת אצבע התנהגותית )לעתים במצבים כאלו, 

הלך המשחק או בדוחות המתפרסמים תוך בפרט, זהות הסוכנים היריבים לא נתונה במ TACובמשחקי 

כדי ואחרי תום המשחק(. ע"י הגדרת מספר מאפיינים קטן )בפרט, המיקום בו הסוכנים זוכים במכרזים, 



מציבים לסוכנים המתחרים אתגר מורכב מתחום תורת המשחקים, ובכך הם נבדלים מסביבות משחקים 

מלאכותיות אחרות אשר מציבות אתגרים מתחום תורת ההחלטות )כלומר, בעיות אופטימיזציה במהותן, 

נים שאינן כוללות יריב בעל אסטרטגיה לא ידועה( או בעלות מרחבי אסטרטגיה פשוטים מדי עבור הסוכ

( TACבמשחקי  הדדית -המתחרים )לדוגמה, החלטה בודדת, לעומת אוסף החלטות יומיות ותלויות

על באופן שלא מאפשר להכיל את מורכבות האתגרים הרלוונטיים במסחר אוטונומי באינטרנט. לפיכך, 

לממש אסטרטגיות מסתגלות המאזנות בין השפעות של ההחלטות  TACסוכנים מתחרים במשחקי 

ארכיטקטורת מימוש של  מחזורי ובתנאי אי וודאות.על בסיס משוב בסביבת מסחר דינאמית יות האפשר

סוכן גנרי תכלול לכן רכיב מידול המשערך את מצב המשחק מתוך הדו"חות, ורכיב אופטימיזציה המחשב 

 החלטה מיטבית עבור המצב המשוערך.

)כל באינטרנט )"משתמשים"( רוכשים פוטנציאליים  , שרת המשחק מדמה אוכלוסיותTAC-AAבמשחק 

מצב המייצג את  אשר מבצעים מדי יום חיפוש על פיאוכלוסיה עם העדפה מובנית למוצרים מסוג מסויים( 

בסופו של דבר. הסוכנים המתחרים מעוניינים למכור מלאי מוצרים מוגבל,  נטייתם לבצע רכישה

 פרסום במקביל לתוצאת החיפוש של המשתמשים. תומודעהזכות להציג ומתחרים במכרזים על 

משתמש עשוי לבחור )בהקלקה( אחת ממודעות הפרסום שזכו במכרז )פעולה זו גוררת עלות לסוכן, ע"פ 

( ובסיכוי מסויים )התלוי Generalized Second Price –תוצאות המכרז, בשיטת מחיר שני מוכלל 

מכירה של מוצרים מעבר למלאי  הגוררת רווח לסוכן(.ולה מבצע רכישה )פעבמצבו ובגורמים נוספים( 

)על בסיס מידע חלקי לגבי המצב האפשרי של הפסדים לסוכן ועליו להעריך לפיכך עלולה לגרור נתון 

של את התועלת השולית המשתמשים השונים, רמות המלאי הנוכחיות, ופעולות הסוכנים המתחרים( 

 TAC-AAומשחק  TACאפייני משחקי מודעה )וכנגזרת, הצעת המחיר במכרז(. מ זכיה במכרז להצגת

 .2בפרט מפורטים בפרק 

(, model-lightבגישה נטולת מודל ) TAC-AA כנים לתחרויותסותכנון ומימוש אנו מתארים  3בפרק 

נלווים. ה פשטותהחוסן והומראים שסוכן כאמור יכול להשיג ביצועים עליונים וגם להנות מיתרונות 

, רכיב מידול התעלם כמעט כליל ממבנה המשחק TAC-AA 2010במימוש הסוכן הראשון, לתחרות 

לבחירת תמהיל המוצרים  (Regret Minimizationורכיב האופטימיזציה מימש אלגוריתם מזעור חרטה )

במכרז תוך למכירה )על פי הרווח בעבר כפי שדווח עבור כל מוצר(. בהנתן התמהיל הרצוי, הסוכן מציע 

נסיון לזכות במיקום הראשון עבור כל מוצר בתמהיל. תוצאות התחרות הראו שהגבלות אלו על הסוכן 

מתחת  30%מעל התוצאה החציונית בתחרות ובפכר של כ  –עדיין אפשרו לו להגיע למקום גבוה 

  לתוצאה המנצחת.

)תוך  כדי לנצח בתחרות, ובמטרה לזהות את המרכיבים הדרושים 2011לקראת התחרות הבאה בשנת 

יכולת להעריך את מצב המשתמשים )ע"י הוספנו לסוכן מודל ככל האפשר( -שמירה על גישה נטולת



 תקציר

 סוכני מסחר אוטונומיים –חלק ראשון 

בחלק זה נחקרות אסטרטגיות של סוכני מסחר אוטונומיים )כלומר, המקבלים החלטות לאורך זמן באופן 

עצמאי וללא התערבות אדם( המממשים אלגוריתמי למידה לשם הוצאה לפועל מיטבית של מסעות 

סוכנים אלו, אבן הפינה של כלכלת האינטרנט, מתחרים במכרזים בזמן אמת על  פרסום באינטרנט.

הצעות המחיר של הסוכנים מושפעות מגורמים רבים, הזדמנויות פרסום לגולשים באתרי אינטרנט. 

בעיקר מאפייני המשתמשים )אליהם מיועדות הפרסומות( והאתרים, מאפייני מסע הפרסום )סוגי וכמות 

  ומסעות הפרסום שלהם, ועוד. , אופי המפרסמים המתחריםזמן, וכדומה(קהל היעד, אורך 

המבנה המורכב של הפרסום באינטרנט והקושי להעריך ביצועי אסטרטגיות באופן בלתי תלוי )מעצם 

טבע המצב, ביצועי אסטרטגיה תלויים באופן הדוק באסטרטגיה המממומשת ע"י הסוכנים המתחרים( 

)אם כי תוך כדי הפשטה מתבקשת(  תכותיות המדמות את הסביבה האמיתיהובילו לפיתוח סביבות מלא

 TAC Tradingומהוות תשתית לבחינה מבוקרת של אסטרטגיות כאמור. אחת הסביבות האלו היא 

Agent Competition - מתים תעבהן משנתיות תחרויות  2000, קהילת מחקר המנהלת מאז שנת

 זוכושקופה שמחקר שונים. סביבה מבוקרת  צוותי מטעם אסטרטגיותמממשים הסוכנים סוחרים 

ואלגוריתמי הלמידה הממומשים בהן )ובכלל של  אפשרת ניתוח והערכה של ההאסטרטגיות השונותמ

שיטות המכרזים למשל( ומהווה ציר מחקר  –מנגונינים המשמשים יישויות המשתתפות בתרחיש 

הציע סביבת  ,2000בו התחרו בשנת  ,אשוןהר TACמשחק  לקבוצות רבות החוקרות שיטות רלוונטיות.

סוכני נסיעות המתחרים ביניהם מול ובידור,  מסחר לרכישת רכיבי חופשות )כלומר, ספקי טיסות, מלונות

משחקים נוספים הוצגו בשנים שלאחר מכן, לסביבת ניהול  .(פוטנציאלייםרוכשים על תיאום חופשות ל

 TAC Ad (TAC-AA) (Sponsored Searchפוש ממומן )שרשראות אספקה, תכנון שווקים, ופרסום בחי

Auctions , בהם מתואר סוכן מתחרה שמומש כחלק מעבודת התזה, של עבודה זו 4ו  3נשוא פרקים ,

ובחינה אמפירית של חוסן סוכנים לשינויים כאמצעי להערכת אפשרות להעברת הטכנולוגיות לשימוש 

משחק המדמה מצבי מסחר מבוזר בין ספקי וצרכני אנרגיה, ומשחק  ולאחרונה הוצע .בעולם האמיתי

מנגנון ריכוזי למכירה פומבית למפרסמים, שפותח וממומש כחלק מעבודת  – Ad Exchangeלסביבת 

 .5התזה ומתואר בפרק 

בכולם שרת מרכזי )המסמלץ את הסביבה ומממש את מאפיינים משותפים רבים.  TACלמשחקי 

מבוססים על מחזור יומי  TACסוכנים מתחרים מרוחקים ובלתי תלויים. משחקי המשחק( המתקשר עם 

תוצאות ובו שרת המשחק מבצע סימולציה על סמך החלטות יומיות המתקבלות מהסוכנים המתחרים )

 TACבמהותם, משחקי מדווחות לסוכנים, לצורך קבלת החלטות עתידיות(. חלקיות של הסימולציה 



rules סטנדרטיים, אנו מנתחים אסטרטגיות אופטימליות חברתית, את אסטרטגיות שיווי המשקל, ואת )

ביצועי החישוב המתקבל עבור אסטרטגיות אלו )כמייצגות משערך( ביחס למשערך הבייסיאני האופטימלי 

 אשר היה מתאפשר לו היתה גישה מלאה למידע הפרטי של כל הסוכנים ולהיסטוריית הפעולות.  

   

 

 

 

 

  



מכירה פומבית ריכוזי לנגנון מ – Ad Exchangeלבסוף, בחלק הראשון של התזה, נבחנת סביבת 

נקודת המבט תוך התמקדות בשל הזדמנויות פרסום לגולשים באתרי אינטרנט.  (בזמן אמת)למפרסמים 

זכיה , יישות האמונה על ההוצאה לפועל של מסעות פרסום ע"י Ad Networkשל ה והאתגרים 

 TAC-Adחדש  TACבהזדמנויות פרסום לאוכלוסיית יעד מוגדרת מראש, הוגדר ומומש משחק 

Exchange מאפשרים לגבש  2014. סוכנים שממומשו ע"י קבוצות סטודנטים לתחרויות שהתקיימו ב

 מעמודי התווך של כלכלת האינטרנט. –תובנות לגבי האסטרטגיות הנדרשות בתרחיש זה 

-Domainהסתגלות )מופע נוסף של חוסן, הנחקר בחלק השני של התזה, הוא בהקשר לבעיית ה

Adaptation) – כנית לסווג( מצופה לפעול אלגוריתם למידה חישובית )למשל, תתוצר  התרחיש בו

סביבת  -בסביבת "יעד" בעלת מאפיינים שונים ביחס לסביבת ה"מקור" )בה התרחשה הלמידה 

תרחישים כאלו נפוצים מאוד למעשה )למשל בזיהוי דיבור, ראיה ממוחשבת, עיבוד שפה ה"אימון"(. 

החשיבות הרבה בכימות הפגיעה בביצועים )באמצעות חסמי הכללה( ובשיטות  טבעית, ועוד( ומכאן

  להתאמת אלגוריתמי למידה קיימים לתרחישים אלו.

-( ובתכונות של חסינותRobust Optimizationחסינה )-אנו עושים שימוש בגישת אופטימיזציה

בעיית הסתגלות והתאמה ( כדי להשיג חסמי הכללה חדשים לAlgorithmic Robustnessאלגוריתמית )

אנו מציעים ( לתרחישי הסתגלות. SVM-תוך שימוש בשל אלגוריתמי למידה קלאסיים לסווג ורגרסיה )

אלגוריתם למידה לבעיית ההסתגלות על ידי עיצוב מובנה של תכונות חסינות אלגוריתמית. גישה גנרית 

באופן טבעי, ית ההסתגלות. זו עשויה לשמש להתאמה של אלגוריתמי למידה קלאסיים אחרים לבעי

חסמים והתאמות כאמור תלויים בתכונות סטטיסטיות של ההבדלים בין סביבות המקור והיעד. אנו 

 מציעים אמת מידה לכימות הבדלים אלו. 

שיטות לשיתוף פעולה בין  – (Social Learning) למידה חברתיתהחלק השלישי והאחרון בתזה עוסק ב

חישוב התלוי במידע פרטי המבוזר בין הסוכנים. במיוחד, אנו חוקרים תהליך סוכנים תחרותיים לצורך 

סדרתי בו כל סוכן פועל )כלומר, מעדכן את החישוב( לאור תוצאת פעולת הסוכן שלפניו והמידע הפרטי 

שברשותו. תהליכים כאלו מתאימים לתיאור שווקי תחזיות )בהם הסוכנים סוחרים באופציות לסיכויי 

ולתהליכי המלצות המבוססות על אמון  רע עתידי, על בסיס מידע פנימי פרטי לכל סוחר(התרחשות מאו

)בהם כל סוכן מקבל מקודמו המלצה לגבי איכות מוצר, ומעביר המלצה מעודכנת לבא אחריו לאור 

נסיונו(. ניתן לראות בתוצאת החישוב במקרים אלו כצבירה של המידע הפרטי שבידי הסוכנים )"חכמת 

 .עתידי , למשל כמשערך הציבורי להסתברות התרחשות מאורעההמון"(

אנו מציגים מודל של למידה חברתית נטולת היסטוריה ובו לכל סוכן מרחב אסטרטגיות פשוט המגדיר 

והמצב הנוכחי בלבד )כלומר, שלו את פעולת העדכון )של מצב החישוב הנוכחי( על בסיס המידע הפרטי 

 scoringעבור כללי ניקוד ) (., ובפרט לכמות העדכונים שכבר נעשוםללא נגישות להיסטורית העדכוני



 תמצית

התפתחות האינטרנט הביאה עמה הזדמנויות עסקיות ואתגרים נלווים, רבים מהם הניתנים להצגה 

תבניות התנהגות והעדפות הגולשים באתרים, כלומר, הכללה על בסיס תצפיות:  ,כבעיות למידה

 מניחיםאלגוריתמי למידה  סווג תכני משתמשים, ועוד.במכרזים לפרסומות, של המפרסמים ההצעות 

תלויים במידת ההתאמה בין המודל והמציאות. של הסביבה בה הם פועלים ונבחנים, וביצועיהם  – מודל

של אלגוריתם למידה הוא מידת רגישותו לאי התאמות שכאלו. מחקר זה בוחן היבטי חוסן של  חוסןה

 הקשרים שונים.אלגוריתמי למידה חישובית ב

תרחישים הדורשים מידול ואופטימיזציה בסביבה מרובת  -חלק הראשון של התזה  מושא המחקר ב

על בסיס למידת התנהגות  הערכת מצבל נדרש סוכןבהם  –סוכנים )למשל, במצבי תחרות בין סוכנים 

 .של חוסן נדרש כאמור מופעמהווים , , וקבלת החלטה לפעולה אופטימלית(הסוכנים היריבים והשפעתם

  להוביל להחלטות אומללות. דל מוטעה עלולהל מוהערכת מצב המבוססת עבתרחישים כאלו, 

 Tradingהמטרה הראשונה בתזה, בהקשר זה, היא מימוש סוכנים לומדים, ובמיוחד סוכנים לתחרות 

Agent Competition (TAC) –  סביבה מבוקרת להערכת אסטרטגיות להוצאה לפועל של מסעות

-נמנעים מסיכוני אי נטולות מודלפרסום במנועי חיפוש. סוכנים הממומשים בשיטות למידה חישובית 

ליריבים עויינים בסביבה מורכבת. סוכנים כאלו גם פשוטים יותר התאמת מודל ומצופים להיות עמידים 

תכונות וביצועי סוכן שמימשנו בגישה נטולת מודל לעומת אלו של סוכנים בתזה אנו בודקים למימוש. 

להשיג ביצועים משופרים תוך הסתמכות על המבנה שמומשו בגישות שונות )האמורות  TACמתחרים ב 

הוספה הדרגתית של מנגנונים תלויי מודל והפרמטרים הספציפפים בסביבה המסומלצת בתחרות(. 

, ועד זכיה במקום הראשון 2010שתתפות בתחרות )לראשונה בשנת לסוכן שלנו לאורך שנות הה

כמו כן,  מאפשרת לכמת את הערך של שימוש בשיטות אלו.( 2013בשנת  TAC-Ad Auctionsבתחרות 

היורדת של שימוש השולית אנו מבססים את החוסן של שיטות נטולות מודל ע"י הדגמת החשיבות 

 שלנו. יר הביצועים עתבסוכן במודלים מדוייקים 

חוסן כאמצעי להערכת הרלוונטיות של האסטרטגיות המשמשות סוכנים בסביבה הבתזה נבדק 

בדרך כלל. ע"י שינוי  לתרחישים במציאות המורכבת הרבה יותר TACהמבוקרת של תחרויות דוגמת 

ובילים בפרמטרי ההדמיה בתחרות )ללא יידוע הסוכנים המתחרים( הודגם )במפתיע( שהסוכנים המ

ממצאים אלו תומכים באפשרות לשימוש בתחרות המקורית עמידים יותר לשינויים לא צפויים בסביבה. 

עבור תרחישים מורכבים  TACבתובנות לגבי אסטרטגיות ומנגנונים מתחרויות בסביבה פשטנית כגון 

  במציאות. 



 

 

 הפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר

 בית הספר למדעי המחשב ע"ש בלבטניק

 

 

 

 אלגוריתמי למידה חישובית

 וחוסן 

 

 

 

 חיבור לשם קבלת תואר "דוקטור לפילוסופיה"

 מאת

 מריאנו שיין

 

 

 

 בהנחייתו של

 פרופסור ישי מנצור

 

 

 

 הוגש לסנאט של אוניברסיטת תל אביב

 2015 ינואר


	Machine Learning - A Robustness Perspective
	Supervised Learning
	On-line Learning
	Bayesian Methods for Classification
	Robustness Through Regularization
	Overview of The Thesis
	Part I - Autonomous Bidding Agents
	Part II - Robust Domain Adaptation
	Part III - Multiagent Learning
	Published Papers


	I Autonomous Bidding Agents
	The Trading Agents Competition
	The TAC Ad-Auctions Game
	Characteristics of TAC Games
	A Short Discussion

	A TAC-AA Top-Performing Agent - A Model-Light Approach
	Introduction
	High-Level Agent's Architecture and Strategy
	A simple Model-Light Agent for TAC-AA 2010
	Modeler
	Optimizer
	Results

	Tau Agent for TAC-AA 2011 and Beyond
	Modeling CPC, Position and Bid Relation
	Hidden Game Parameters
	Particle Filters for Users Population Distribution Over States
	Optimizer's Query Allocator
	Results

	Limitations of Machine Learning Models
	Conclusion

	An Empirical Study of Agent Robustness
	Introduction
	Robustness of TAC-AA Agents
	Experiment 1 - Users Model
	Experiment 2 - Click-Through Rate
	Experiment 3 - Conversion Rate
	Experiment 4 - Single Ad
	Experiment 5 - Population Size
	Conclusion

	Agents Behavioral Identification
	Strategic Fingerprint
	Relation to Profit
	A Short Discussion

	Conclusion

	AdX - A New TAC Game
	Motivation, The AdX Scenario
	Game Overview
	A Brief Description
	Game Entities and Flow

	The Model
	Users and Market Segments
	Publishers' Web Sites
	Ad Exchange and User Classification
	Advertising Campaigns
	Ad Networks

	Game Flow
	Daily Sequence of Actions and Events
	Mesages

	Elements of Ad Network Strategy
	Bidding for the User Classification Service level
	Bidding for the Campaign Opportunity
	Ad Exchange Bid Bundle

	Implementation
	Architecture
	Parameters
	Real Data

	AdX Game Competitions and Conclusion


	II Robust Domain Adaptation
	The Domain Adaptation Problem
	Train-Test Discrepancy - Motivation
	Train-Test Discrepancy - Learning Settings
	Covariate Shift: PY|X = QY|X
	Prior Shift: PX|Y = QX|Y
	Other Related Settings: PX = QX and Beyond
	Domain Adaptation with Unlabeled Target Data

	Domain Adaptation Theory and Algorithms

	Robust Optimization and Algorithmic Robustness
	Robuts Optimization
	Algorithmic Robustness

	Robust Domain Adaptation
	Model
	-shift

	Adaptation Bounds using Robustness
	Robust Domain Adaptation SVM for Classification
	-shift SVM Adaptation
	Optimistic SVM Adaptation
	Pessimistic SVM Adaptation

	Robust Domain Adaptation for Regression
	Experiment
	Conclusion and Future Directions


	III Multiagent Learning
	Distributed Information Aggregation and Prediction
	Social Learning
	Endogenous and Exogenous Settings
	Information Cascading
	Ingredients of Agent's Strategic Behavior
	Prediction Markets
	A Prediction Market as an Estimator

	History Independent Learning
	Model and Preliminaries
	The Unknown Bias Generative Model
	Social Learning of the Unknown Bias Generative Model
	Estimator Performance Metrics
	Notation

	Estimator's Performance
	Non-Strategic Agents

	Strategic Agents
	Extensions
	Distribution Over the Number of Agents
	Single Unaware Agent
	Single Aware Agent

	Summary and Discussion
	Main Results
	Related Models
	Closing Remarks and Future Work



	IV Summary
	Bibliography


