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Abstract

We study a setting where agents bid repeatedly for multiple identical items (such as im-

pressions in an ad auction). The agents are limited by a budget and have a value for each

item. They submit to the auction a bid and a budget. Then, the items are sold by a sequen-

tial second price auction, where in each auction the highest bid wins and pays the second

price. The main influence of the budget is that once an agent exhausts its budget it does

not participate in future auctions. We model this sequential auction as a one-shot budget

auction.

Our main contribution is to study the resulting equilibria in such a budget auction.

We show that submitting the true budget is a dominating strategy while bidding the true

value is not a dominating strategy. The existence of a pure Nash equilibria depends on our

assumptions on the bidding strategy of losing agents (agents not receiving any items). We

show that if losing agents are restricted to bid their value then there are cases where there

is no pure Nash equilibria, however, if losing agents can bid between the minimum price and

their value then there is always a pure Nash equilibria.

We also study simple dynamics of repeated budget auctions, showing their convergence

to a Nash equilibrium for the case of two agents and for the case of multiple agents with

identical budgets.
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Chapter 1

Introduction

1.1 Motivation

Auctions have become the main venue for selling online advertisements. This trend started in

the sponsored search advertisements (such as, Google’s AdWords, Yahoo!’s Search Marketing

and Microsoft’s AdCenter), and expended to the display advertisement (such as, Double click

Ad Exchange [12]). This trend has even propagated to classical advertisement media, such

as TV [14].

There are a few features that are shared by many of those auctions mechanisms. First,

the price is set using a second price (or a generalized second price (GSP)) with the motivation

that users should try to bid their utility rather than search for a optimal bid value. Second,

there are daily budgets that cap the advertiser’s total payment in a single day. Our main

goal is to abstract a model for such existing auctions, and study its equilibria and dynamics.

There has been an increasing interest in the role of budgets in auctions. A very interesting

line of work is constructing incentive compatible mechanism for an auction with budgets

[4, 6, 9]. Another line of research has been maximizing the auctioneer’s revenue [11, 2, 13].

In this work we take a very different approach, studying existing mechanisms which are

inherently non-incentive compatible, and ignoring revenue maximization issues.
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1.2 Our Model and Main Results

In our model agents bid for multiple identical divisible items.1 The agents submit a bid

and a budget to the auctioneer, which conceptually runs a sequence of second price auctions

with some fixed minimum price. The auction terminates when all items have been sold or

all agents have exhausted their budget. This sequential auction is a one-shot budget auction.

The one-shot budget auction abstracts a sponsored search auction with a single slot or an

auction for a single display advertisement [12], where the items represent advertisement

impressions.

We model the agents as having two private inputs, a budget and a value per item. The

budget restriction is hard in the sense that if the agent spends more than his budget, it has

an infinite negative utility. Otherwise, the utility of the agent is quasi-linear, i.e., his utility

from each allocated item is the difference between his value and the item price he pays, and

his total utility is his utility per item times the number of items he is allocated.

We show that in such budget auctions, submitting the true budget is a dominant strategy,

while bidding the true value is not a dominant strategy. Our main focus is studying the

properties and the existence of pure Nash equilibria in a budget auction, and in most cases

we assume that agents report their true budget and selects the bid strategically.

We show that in equilibrium all winning agents (agents that exhausted their budget) pay

the same price per item. In our model there might be an additional agent that receives a

non-zero allocation, yet does not exhaust his budget (which we call a border agent). The

remaining agents (which are not allocated any items) are losing agents, and have zero utility.

The existence of a pure Nash equilibria depends on our assumptions regarding the bids of

losing agents. For the case of two agents or multiple agents with identical budgets we show

that there exists a pure Nash equilibria, even when the losing agents are restricted to bid

their true value. For the case of multiple agents with different budgets, if losing agents are

restricted to bid their true value then there are cases where no pure Nash equilibrium exists.

However, if we relax this restriction, and assume that the losing agents bid any value between

the minimum price and their value, then there always exists a pure Nash equilibrium.

We also study simple dynamics of repeated budget auctions with myopic agents. For

the dynamics we use the Elementary Stepwise System [15], where in each day one non-best-

responding agent modifies his bid to a best response, and bid values are discrete (more

specifically, a multiple of ε). We prove that these repeated budget auction converge to a

Nash equilibrium for the case of two agents and for the case of multiple agents with identical

budgets.

1While technically, advertisement impressions are clearly not divisible, due to the large volume of impres-
sions, this is a very reasonable abstraction.
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To illustrate our results for the repeated budget auction we ran simulations. We observed

two distinct bidding patterns: either smooth convergence to an equilibrium or a bidding war

cycle. The smoothed convergence is observed for a very wide range of parameters and

suggests that the convergence is much wider than we are able to prove.

1.3 Related Work

The existence of a pure Nash equilibrium in GSP sponsored search auction was shown in the

seminal works [8, 16]. (For equilibrium in other related models see [13].)

There are many works on dynamics of bidding strategies in sponsored search auctions,

including theoretical and empirical works [10, 7, 1, 5]. Asdemir [1] analyzes two symmetric

agents with identical budgets, and shows a dynamics that converges to an equilibrium. Borgs

et al. [5] show a mechanism that converges to an equilibrium for first price auctions, and

conjecture that it also converges for second price auctions.

1.4 Thesis Outline

Section 2 presents the budget auction model. Section 3 shows basic properties of budget

auction. Section 4 studies pure Nash equilibria in budget auctions. Section 5 analyzes the

dynamics, and Section 6 presents simulations of the auction dynamics.
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Chapter 2

The Model

The model has a set of k agents, K = {1, ..., k}, bidding to buy N identical divisible items.

Each agent i ∈ K has two private values: his daily budget B̂i, and his value for a single

item vi. His utility ui depends on the amount of items he received xi and the price he paid

pi, and ui(xi, pi) = xi(vi − pi) as long as he did not exceeds his budget (i.e., xipi ≤ B̂i), and

ui = −∞ if he exceeded his budget (i.e., xipi > B̂i).

The auction proceeds as follows. The auctioneer sets a minimum price pmin, which is

known to the agents. Each agent i ∈ K submits two values, his bid bi and his budget Bi.

Therefore, the auction’s input is a vector of bids ~b = (b1, b2, ..., bk), and a vector of budgets
~B = (B1, B2, ..., Bk). The output of the auction is an allocation ~x = (x1, x2, ..., xk), such

that
∑

i∈K xi ≤ N and prices ~p = (p1, p2, ..., pk), such that pi ∈ [pmin, bi]. Agent i is charged

xipi for the xi items he receive.

The allocation and prices are calculated in the following way. Initially, the auctioneer

renames the agents such that b1 ≥ b2 ≥ . . . ≥ bk, we will later refer to this index also as

ranking. First, agent 1 receives items at price p1 = max{b2, pmin} until he runs out of budget

or items, i.e., x1 = min(N,B1/p1). Then, if there are still items left for sale, agent 2 pay a

price p2 = max{b3, pmin}, for x2 = max{0,min(N − x1, B2/p2)} items, and generally agent i

receives xi = max{0,min(N −
∑i−1

j=1 xj, Bi/pi)} items at a price pi = max{bi+1, pmin}. The

auction is completed either when all items are sold, or when all agents exhaust their budgets.

Obviously, if all items are sold to agents with higher rank than agent i, then xi = 0 and

ui = 0. Note that by this definition, the allocation of items to agents will never exceed the

supply N , i.e,
∑

i∈K xi ≤ N .

In some sense the auction resembles the General Second Price Auction (GSP) where each

agent pays the minimum price needed to remain in his current rank. Unlike most of the GSP

models for sponsored search, we do not have a quality difference between the ranks, except

that agents at the lower ranks risk not having any items left for them.
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It is important to note our assumptions: (i) Items are devisable goods, and prices are con-

tinuous, (ii) Ties between identical bids are broken by lexicographic order, i.e., the auctioneer

will first sell items to agent with the lower original index.

In general we assume that the bidders always bid above the minimum price, i.e., bi ≥ pmin.

Also, for the most part we assume that agents don’t bid above his true value, i.e., bi ≤ vi.
1

2.1 Preliminaries and Notations

In a Pure Nash Equilibrium (PNE) no agent i ∈ K can gain by unilaterally changing his

submitted bid bi and budget Bi.

Let ~b−i and ~B−i be the submitted bids and budgets, respectively, of all agents except

agent i.

Definition 2.1.1 Submitting budget y is a dominate strategy for agent i if for any bid

vector ~b, and any alternative budget y′ and budgets of the other agents ~B−i we have that

ui(xi, pi) ≥ ui(x
′
i, p
′
i), where xi and pi (x′i and p′i, respectively) are the allocation and price

under bids ~b and budgets (B−i, y) ((B−i, y
′), respectively).

Similarly, submitting bid z is a dominate strategy for agent i if for any submitted budgets ~B,

and any alternative bid z′ and bids of the other agents ~b−i we have that ui(xi, pi) ≥ ui(x
′
i, p
′
i),

where xi and pi (x′i and p′i, respectively) are the allocation and price under budgets ~B and

bids (~b−i, z) ((~b−i, z
′), respectively).

Given the outcome of the budget auction, we can split the agents into three different

categories: Winner Agents, Loser Agents and a Border Agent. A Border Agent is the lowest

ranked agent that gets a positive allocation, i.e., h is a Border Agent if h = max{i : xi > 0}.
Any agent j > h has xj = 0 and is called a Loser Agent. Any agent i < h is called a Winner

Agent and has xi = Bi/pi > 0, i.e., winner agents exhaust their budgets. (See Figure 2.1 for

an example.)

It would be interesting to compare the allocation and prices of the budget auction to the

Market Equilibrium price, which equalizes the supply and demand.

Definition 2.1.2 The demand of agent i at price p is an interval D(p) (or a point), as

follows,

Di(p) =


Bi/p if vi > p

0 if vi < p

[0, Bi/p] vi = p

1Theoretically, an agent might profit by over bidding his value, since it increases the price of the agent
i − 1 who ranked above him and therefore, decrease allocation xi−1. This will leave more items for agent i

and might increase his own allocation xi.
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The interval (or point) D(p) is the Aggregated Demand of all agents at price p, such that,

D(p) =
∑

i∈K Di(p). Price peq is the Market Equilibrium Price if N ∈ D(peq).

Notice that peq is unique since the function D(p) is strictly decreasing in p. In our

setting, this implies that peq ∈ [
∑

i∈S Bi/N,
∑

i∈S∪Z Bi/N ], where S = {i : vi > peq} and

Z = {i : vi = peq}.

2.2 An Example

Table 2.1 demonstrat an example to a budget auction with 100 items for sale with a minimum

price of 0. The agents are ordered by their bid (note that A is ranked before B alltough their

bids are equal, due to lexicography order).

Private Value Auction Inputs Auction Outcome Agent Outcome

Agent budget value budget bid allocation price utility type

A 20 2.0 20 1.0 20 1.0 20 winner

B 25 1.5 25 1.0 50 0.5 50 winner

C 30 1.5 20 0.5 30 0.3 36 border

D 20 0.5 20 0.3 0 0.0 0 loser

Table 2.1: An example of a budget auction with N = 100 and pmin = 0. The market

equilibrium price is 0.75.

Figure 2.1: The Market euilibrium price is of the following example is 0.75, as it where

aggregated demand equals the supply. Note that vertical drops, when the aggregated demand

is an interval and not a point, where prices equals the values (vi) of the different agents (at

0.5 and at 1.5 and in 2.0).
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Chapter 3

Properties of the auction

In this section we examine the Social Welfare maximization and dominating actions in the

budget auction. In our setting, the allocation that maximizes the social welfare allocates all

the N items to the agent with the highest valuation. This allocation is clearly not the goal

in our setting. The budget auction does not maximize social welfare and therefore is not

efficient, however, this is a side issue and we do not view it as a weakness of the mechanism.

Regarding the dominating action in the budget auction. At the start of the budget

auction, agents submit their bid and budget. Not surprising, bidding the true value is not

a dominant strategy, and agents can bid lower than their true value in order to maximize

their utility. We show that submitting the true budget is a dominant strategy.

Claim 3.0.1 In a budget auction, bidding the true value is not a dominant strategy, while

submitting the true budget is a dominant strategy.

Proof: To show that an agent can gain by bidding lower than its true value, consider the

example in Table 2.1. If Agent B would bid its true value then it would receive only 25

items, and still exhaust its budget, lowering its utility to 12.5 (from 50). Therefore bidding

the true value is not a dominate strategy.

Now we show that reporting the true budget is a dominate strategy. Agent i ∈ K reports

its bid bi and budget Bi to the auction and his utility function is xi(vi−pi) when xi ·pi ≤ B̂i.

Therefore the utility depends on the amount of items he is allocated, xi, his true value, vi,

and the price pi he pays. The budgets in this model do not effect the ranking order, and

therefore does not effect the price. The budgets do, however, effect the number of items

allocated to agent i, i.e, xi. Consider agent i changing his reported budget from Bi to B̂i,

and keeping his bid bi, and also the bids and budget reported by the other agents, b−i and

B−i, remain the same. Let x̂i and ûi be the number of items allocated and the utility of

agent i, respectively, in the case he reports his true budget B̂i.
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Suppose agent i reported a smaller budget Bi < B̂i, and gets allocated xi items, where

xi = min(N−
∑i−1

j=1 xj, Bi/pi) and x̂i = min(N−
∑i−1

j=1 x̂j, B̂i/pi). All agents in higher ranks

than agent i are not effected by the budget reported by agent i, so xj = x̂j for j < i, which

implies that N −
∑i−1

j=1 xj = N −
∑i−1

j=1 x̂j. Since Bi/pi < B̂i/pi we have that xi ≤ x̂i which

implies ui ≤ ûi.

Now suppose agent i reported higher budget Bi > B̂i. If xi = x̂i then xi · pi ≤ B̂i (which

will happen when i is a loser or border agent) then the agent does not even exhaust his real

budget, regardless of the budget he reports, and ui = ûi. Otherwise, if xi > x̂i (happens

when agent i is a winner agent) it implies that x̂i · pi = B̂i then x · pi > B̂i. Therefore, agent

i exceeds his budget and his utility, by definition, is ui = −∞ < ûi. We conclude that an

agent cannot improve his utility by reporting a different budget than his true budget. �
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Chapter 4

Pure Nash Equilibrium

In this section we study the existence of a Pure Nash Equilibrium (PNE) in budget auctions.

Our main result is that under mild conditions a PNE does exists.

We start by showing properties that any PNE in a budget auction must have, we then

define the notion of critical bid, which intuitive is the bid which make the agent indifferent

between being a winner or a border agent, and we complete by proving that PNE exist in

budget auctions. Throughout this section, unless we explicitly specify otherwise, we assume

that agents submit their true budgets (since its their dominant strategy, see Claim 3.0.1).

4.1 Properties of a Pure Nash Equilibrium

We show that in any PNE all winner agents pay the same price, which implies that all

winner agents and the border agent bid the same value (maybe with the exception the top

rank winner agent, who can bid higher). In addition, we show that this price is at most the

Market Equilibrium price.

Claim 4.1.1 In any PNE, all winner agents pay the same price p, the border agent pays a

price p′ ≤ p, and any loser agent j (if it exists) has value vj ≤ p. In addition, p is at most

the market equilibrium price, i.e., p ≤ peq.

Proof: If there is only one winner agent the claims holds trivially. Otherwise, for contradic-

tion, assume there is a PNE with at least two winner agents paying different prices. The

first ranked agent pays p1, and let j be the highest ranked winner agent that pays pj < p1.

In such a case we will show that agent 1 can improve his utility, in contradiction to the

assumption that it is a PNE.
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Since agents 1 to j are all winner agents, then any agent i ≤ j is allocated xi = Bi/pi
and

∑j
i=1 xi ≤ N . Therefore x1 ≤ N −

∑j
i=2 xi. If the top agent drops down to rank j (by

bidding pj−ε) he is allocated x′1 = min(B1/pj, N−
∑j

i=2 xi). Now, B1/pj > B1/p1 = x1 and

N −
∑j

i=2 xi ≥ x1 so x′1 ≥ x1. Since he now pays strictly less per item and receives at least

as many items as before, he strictly increases his utility, which contradicts our assumption

that this is a PNE. Therefore, all winner agents must pay the same price in any PNE.

The Border agent is ranked after all winner agents, so he pays price p′ ≤ p for each item.

All loser agents receive no items and have zero utility. If there is a loser agent i with value

vi > p then he can become a winner agent (by bidding p + ε), and gain a positive utility,

which contradict the fact that this is a PNE. Therefore, in an equilibrium any loser agents

must have value at most p.

Regarding the market equilibrium price peq, for contradiction assume that there exists

a PNE with p > peq. The utility of a winner agent j paying price p > peq is at least

as much if he was the border agent and paid price p
′ ≤ p since it is a PNE. Therefore,

(Bj/p)(vj−p) ≥ (N−
∑

i∈S−{j}Bi/p)(vj−p
′
), when S = {i : vi ≥ p}. Since (vj−p) ≤ (vj−p

′
),

then Bj/p ≥ N −
∑

i∈S−{j}Bj/p, but that leads to
∑

i∈S Bj/p ≥ N and
∑

i∈S Bj/p ∈ D(p).

Since peq is the Market Equilibrium Price and p > peq, we have that max(D(p)) < N , and

we have reached a contradiction. �

4.2 Loser Agent Strategy

Before we show our main result, the existence of a PNE, let us explore some alternative

assumptions. It seems that one of the critical assumptions in our model is regarding how the

loser agents bid. First we claim that if agents can bid above their value and report arbitrary

budget, then (in many cases) there is an equilibrium with price peq.

Claim 4.2.1 Assume that there is an agent j with vj < peq then there is an equilibrium in

which all the winner agents pay the market equilibrium price peq.

The above claim follows by letting all the agents with vi ≥ peq bid peq, and submit their

true budget, and agent j bids slightly below peq and submits infinite budget. Since at price

peq all the items are bought by agents with value at least peq, the agent j does not have any

items left, and has a zero utility. This is an unsatisfactory equilibrium, and for this reason

we will assume that an agent would bid at most its value, i.e., for any agent j has bj ≤ vj.

It is very natural to assume that the agents use their dominant strategy and report their

true budget. If we relax this assumption, we can have a much simpler proof for a PNE.

(More details, later in the proof for the case of agents with identical budgets.)
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Finally, we remark that if we assume that loser agents bid their value and submit their

true budget, i.e., bj = vj and Bj = B̂j, then there are cases in which no PNE exists. (See

Appendix A.) For this reason we assume that loser agents bid bj ∈ [pmin, vj].

4.3 Critical Bid

A critical bid of an agent tries to capture the point in which an agent is indifferent between

being a winner agent and a border agent. Intuitively, when other agents bid low, an agent

could prefer the top rank (as it is cheap). Similarly, when other agents bid high, then an

agent could prefer the bottom rank, and get the ’leftover’ items at the minimum price. The

critical bid models the transition point between these two strategies. Specifically, consider

the case when all the agents bid the same value, then a critical bid is the that value, for

which an agent is indifferent between being a winner agent and a border agent (receiving the

remaining items at minimum price). The critical bid plays an important role in our proof of

the existence of a PNE.

Definition 4.3.1 Consider an auction with the agents K and minimum price of pmin. The

critical bid for agent i is the bid value x = ci(K, pmin), such that when all agents participating

in the auction bid x, i.e., ~b = (x, ..., x), agent i is indifferent between the top rank (being a

winner agent) and the bottom rank (being a border agent).

Obviously each agent has potentially a different critical bid. When clear from the context

we denote the critical bid of agent j by cj. A function that would be of interest is ϕk(pmin) =

min1≤i≤k{ci(K, pmin)} which is the lowest critical bid among agents in set K with minimum

price pmin. The following lemma shows that the critical bid is between the agent’s value and

minimum price, and characterizes its best response when all the agents bid the same values.

Lemma 4.3.2 Let cj(K, pmin) be the critical bid of agent j, then: (a) cj(K, pmin) ∈ [pmin, vj],

and (b) if ~b = (x, ..., x) then for x < cj(K, pmin) agent j prefers the top rank and for

x > cj(K, pmin) agent j prefers the bottom rank.

Proof: Assuming that all agents bid the same value x ∈ [pmin, vj], lets look at the utility of

agent j as a function of x. Let the function fj(x) be agent’s j utility if he is ranked first,

and pays x:

fj(x) =

{
N(vj − x) if pmin ≤ x <

Bj

N
/* Agent j border agent*/

Bj

x
(vj − x) if

Bj

N
≤ x ≤ vj /* Agent j winner agent */

14



Let the function gj be agent’s j utility if he bids x, ranked last, and pays pmin:

gj(x) =


0 if pmin ≤ x <

∑
i6=j Bi

N
/* Agent j loser agent*/

(N −
∑

i6=j Bi

x
)(vj − pmin) if

∑
i 6=j Bi

N
≤ x <

∑
i 6=j Bi

N−Bj/pmin
/* Agent j border agent*/

Bj

pmin
(vj − pmin) if

∑
i 6=j Bi

N−Bj/pmin
≤ x ≤ vj /* Agent j winner agent */

It is easy to verify these following properties: (i) Both functions are continuous in the range

[pmin, vj]. (ii) Function fj is (strictly) decreasing in x, and gj is (weakly) increasing in x.

(iii) fj(pmin) ≥ gj(pmin), as in both cases agent j pays price pmin, but its allocation at top

rank is equal or higher than its allocation at the bottom rank. (iv) gj(vj) ≥ fj(vj) = 0.

We conclude that functions fj and gj must intersect in a unique point in the given range,

this point is the critical bid cj. In addition fj(x) > gj(x) for x < cj, and fj(x) < gj(x) for

x > cj. �

The next claim relates the critical bid to the market equilibrium price.

Claim 4.3.3 The Market Equilibrium Price is at least the critical bid value of any agent.

Proof: For contradiction, assume that there exists an agent j with critical bid cj > peq.

Therefore, (Bj/cj)(vj − cj) = (N −
∑

i∈S−{j}Bi/cj)(vj − p
′
), when S = {i : vi ≥ cj}. Since

(vj − cj) ≤ (vj − p
′
), then Bj/cj ≥ N −

∑
i∈S−{j}Bj/cj, but that leads to

∑
i∈S Bj/cj ≥ N ,

but since cj > peq it contradicts the definition Market Equilibrium Price. �

We now show a few properties of the agents’ incentives.

Claim 4.3.4 Consider a bid vector ~b = (b1, . . . , bk). Then: (a) The top ranked agent, or

any winner agent j ∈ K, cannot improve his utility by bidding higher, i.e., b
′
j > bj, (b) The

bottom ranked agent, or any loser agent j ∈ K, cannot improve his utility by bidding lower,

i.e., b
′
j < bj, and (c) If every agent i ∈ K bids bi = cj (agent j critical bid), then agent j

cannot improve his utility by changing his bid.

Proof: The utility of winner agent j is uj = xj · (vj − pj) =
Bj

pj
· (vj − pj). By increasing his

bid he can only increase his price pj, and decrease his allocation xj, and therefore decrease

his utility. Also an agent in the top rank (it can be either a winner of border agent) after

increasing his bid, his price and allocation do not change. This proves (a).

The bottom ranked agent k ∈ K, if he is a border agent, then the agent ranked above

him is a winner agent. To improve his utility, uk, agent k must increase his allocation (his

price can not decrease, since he is already paying the minimum price pk = pmin). Decreasing

bk will decrease the price the agent ranked above him, and would increase the allocation of

that agent. This could could only decrease the allocation of the bottom agent. For any loser

agent the claim is trivial, as he is not allocated any items, and by lowering his bid it will

remain a losing agent, since it might potentially reduce the price of the agent above him.

This proves (b).
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By definition when ~b = (cj, ..., cj) agent j is indifferent between being ranked at the top

or bottom. According to (a) when ranked at the top he cannot improve his utility by bidding

higher, and according to (b) when ranked at the bottom, he cannot improve his utility by

bidding lower. Therefore, he cannot improve his utility, which proves (c). �

4.4 Existence of Pure Nash Equilibrium

In this section we prove the existence of a PNE in a budget auction. We start by proving two

interesting special cases: only two agents, and multiple agents with identical budgets. Later

we present the general theorem, that a PNE exists for budget auction with any number of

agents.

Two Agents We start by characterizing the PNE in the simple case of only two agents

by constructing a bid vector that is indeed a PNE.

Claim 4.4.1 Assume that we have two agents with c2 ≤ c1. Then any bids b1 = b2 ∈
[c2,min{v2, c1}] are a PNE, and those are the only PNEs where agents submit their true

budget.

Proof: By Lemma 4.3.2 the critical bids c1 ∈ [pmin, v1], and c2 ∈ [pmin, v2]. In the PNE we

show agent 1 is ranked first and agent 2 is ranked second.

Agent 2 prefers the bottom rank (since b1 ≥ c2), so he would not gain by bidding more,

and, since he is at the bottom rank, then by Claim 4.3.4 he would not gain from bidding

less. Agent 1 prefers the top rank (since b2 ≤ c1), so he would not gain by bidding less, and,

since he is the top ranked agent, by claim 4.3.4 he does not gain from increasing his bid.

Therefore, this is a PNE.

Note that at any PNE for this setting, the order of the agents would be the same (due

to the order of the critical bids). This is true except when b1 = b2 = c1 = c2, where it is a

PNE and both agents are indifferent between the bottom and top rank, so the order is not

important. �

Note that it is possible that in a PNE agent 2 will be a loser agent, e.g., if c2 = v2 and
B1

c2
≥ N then for b1 = b2 = c2 agent 1 buys all items and agent 2 is a loser agent.

Agents with identical budgets Next we examine the case where all agents have identical

budgets, so agents differ only in their private value vi. We start with a simple claim that

limits the underbidding of agents.
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Claim 4.4.2 Let j be a loser agent, with budget Bj, and let agent i be ranked above him

with budget Bi ≤ Bj. If agent i under-bids agent j, i.e., b′i = bj − ε then agent i becomes a

loser agent.

Proof: Agent j is a loser agent, so
∑

l 6=j xl = N . Now, let agent i underbid j, i.e., b
′
i = bj− ε,

and all other agents keep their bid, i.e., b′−i = b−i. All agents above j pay in ~b′ price lower or

equal than in ~b, i.e., for every l 6= i, j, p
′

l ≤ pl, and p
′
j = b

′
i = bj − ε < pi. Since Bi ≤ Bj then

the aggregated budget of all agents that where ranked above agent j in ~b is lower than the

aggregated budget of all agents that are above agent i in b′. Since the aggregated budget

is higher and the price each agent pays is lower or equal, then
∑

l 6=i x
′

l ≥
∑

l 6=j xl = N , and

therefore agent i is a loser agent in ~b′. �

We now prove the following theorem.

Theorem 4.4.3 There exists a PNE for any number of agents with identical budgets, where

each agent bids bi ∈ [pmin, vi], loser agents bid bi = vi, and agent submit their true budget

(Bi = B̂i).

Proof: We prove the theorem by induction over the number of agents. By Theorem 4.4.1

there exists a PNE for two agents, which establishes the base of the induction. For the

induction hypothesis, we assume there is a PNE for k− 1 agents with identical budgets and

prove there is a PNE for k agents.

Let agent j have the lowest critical bid, i.e., cj = ϕk(pmin). By Lemma 4.3.2 we have

cj ∈ [pmin, vj]. We first consider whether ~b = (cj, . . . , cj) is a PNE when and agent j is at the

bottom rank. From Claim 4.3.4 we know that in ~b agent j cannot improve his utility. For

the other agents, there are two cases, depending on whether agent j is a loser or a border

agent.

1. If j is the border agent (xj(~b) > 0), then the other agents are winner agents. Every

winner agent i gains nothing from increasing the bid (Claim 4.3.4). Moreover, ci ≥ cj
so agent i prefers the top rank over the bottom rank so he will not decrease his bid,

and his current utility as a winner agent is identical to the one if he was at the top

rank. Therefore ~b is a PNE.

2. If j is a loser agent (xj(~b) = 0), then uj = 0. Since the agent j utility from top rank

and bottom rank in ~b are equal, then cj = vj (otherwise at top rank, agent j have a

non-zero utility). There is no PNE at the range [pmin, vj), since all agents (including

j) in this range prefer the top rank. At this point two interesting things happen: (a)

Agent j is a loser agent, and cannot increase his bid more since cj = vj. (b) Since

agents have identical budget then according to Claim 4.4.2 we know that no higher

ranked agent will underbid agent j, since he is a loser agent in ~b. From Claim 4.3.3
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we know that there cannot be a critical bid above the Market Equilibrium Price peq.

Therefore, for every agent i, max[D(ci)] ≥ N which implies that for all possible critical

bids agent j will indeed stay a loser agent. Therefore, we can set agent j bid to be

bj = vj. The remaining agents k−1 define a new budget auction with a new minimum

price pmin = vj (since no agent will under bid vj by Claim 4.4.2) and by the inductive

hypothesis, for this auction there exist a PNE.

�

For the identical budgets case we prove that a PNE exists for any number of agents when

all loser agents (if there are any) bid their true value and submit their true budget. If we

look back on the proof, we see that only once the fact that the agents have identical budgets

was used, and that is in Claim 4.4.2, to show that no winner agent will under-bid a loser

agent. We can achieve the same effect by letting the loser agents submits infinite budgets,

and thus no agent would be willing to underbid them. This is somewhat unnatural since

reporting the true budget is a dominant strategy. On the other hand, for the general case

of different budgets, if we restrict loser agents to bid their true value and budget, then there

are examples (See Appendix A) where a PNE does not exists. The main idea would be to

let the agents submit their true budget, and a bid which is at most their value.

General case Now we prove that every budget auction with any number of agents has

a Pure Nash Equilibrium where the agents submit their true budget and bid at most their

value. Assume that, v1 ≥ v2 ≥ ... ≥ vk. Let Sh = {1, 2, ..., h}, for h ≤ k, and Sk = K. The

first claim shows that if there is a critical bid which is lower than the value of any agent,

then there is a PNE.

Claim 4.4.4 If the lowest critical bid is lower than the value of any agent, i.e., cj =

ϕh(pmin) < vh, then ~b = (cj, ..., cj) is a PNE, where agent j is the border agent and other

agents are winner agents.1

Proof: According to Claim 4.3.4 agent j cannot improve his utility, and he is indifferent

between the bottom and top rank. Since cj < vh and vh ≤ vj, then cj < vj so when agent

j is ranked in ~b at the top he pays pj = cj < vj, hence he has positive utility. This means

that at bottom rank in ~b he also has positive utility, which implies that all other agents (i.e.,

Sh − {j}) are winners agents. Each winner agent i 6= j has ci ≥ cj so they all weakly prefer

the top rank over the bottom rank, and cannot improve their utility by bidding less than cj.

On the other hand, according to Claim 4.3.4, they cannot improve their utility by bidding

1We assume that agent j slightly underbids cj , and we ignore this small perturbation.
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more than cj. Therefore ~b is a PNE. �

The following claim shows that by modifying the minimum price we can modify the price

p that the winner agents are paying.

Claim 4.4.5 Let ~b1 be a PNE for a set of h agents and minimum price pmin, such that all

winner agents pay price p < vh, the border agent pays pmin, and there are no loser agents.

Then for every p∗ ∈ [p, vh] there exists a minimum price p∗min ∈ [pmin, vh] and an agent

j ∈ Sh such that there is a PNE ~b2 in which every agent i 6= j is a winner agent and pays

p∗, agent j is the border agent and pays pj = p∗min, and there are no loser agents.

Proof: Let cl = ϕh(pmin), meaning that agent l has the lowest critical bid when the minimum

price is pmin. Since it is a PNE then cl ≤ p, otherwise no agent prefers the bottom rank at

price p, and it cannot be PNE. A critical bid of agent i is when he is indifferent between

the top rank (being a winner agent with utility of Bi

p
· (vi − p)) and the bottom rank (being

border agent with utility of max[0, N −
∑

j 6=i Bj

p
](vi − pmin)). Since we know that there

are no loser agents (i.e., p >
∑

j 6=i Bj

N
), then agent i critical bid is when: Bi

ci
· (vi − ci) =

(N −
∑

j 6=i Bj

ci
)(vi − pmin).

Let fi(y) = ci(Sh, y) be the function that maps a minimum price y to critical bid for

agent i.

fi(y) =
(
∑

j 6=iBj) · (vi − y) +Bi · vi
N · (vi − y) +Bi

Let x := (vi − y) and A :=
∑

j 6=iBj, then,

fi(x) =
Ax+Bivi
Nx+Bi

=
A

N
+
Bivi − BiA

N

Nx+Bi

=
A

N
+

W

Nx+Bi

,

where W = Bivi − BiA
N

= Bi(vi −
∑

j 6=i Bj

N
) ≥ 0. Since W ≥ 0 then for each agent i,

function fi(x) is decreasing in x, which implies that the function fi(y) is increasing in y,

and in addition the function is continuous for the range [pmin, vh]. Therefore, the function

ϕh(y) = min1≤i≤h[ci(Sh, y)] is also continuous and increasing in y for that range. Since

ch(Sh, vh) = vh then ϕh(vh) ≤ vh, but the critical bid cannot be lower than the minimum

price so ϕh(vh) = vh. In addition we have that ϕh(pmin) = cl. Therefore, for every p∗ ∈ [cl, vh]

there exists p∗min ∈ [pmin, vh] such that ϕh(p
∗
min) = p∗. Therefore, according to Claim 4.4.4

there exists another PNE where all winner agents pay price p∗, the border agent pay price

p∗min, and there are no loser agents, as required. �

The following claim is essentially our inductive step in the proof of the PNE, showing

that you can increase the number of agents in a PNE by one.

Claim 4.4.6 Let ~b1 be a PNE with h agents and minimum price pmin, such that all winner

agents pay price p. If there is a new agent h+ 1 such that (a) vh ≥ vh+1, and (b) For every

19



i ∈ Sh the new critical bid ci(Sh+1, pmin) ≥ vh+1, then we can define a ~b2 which is a PNE for

Sh+1 with the same minimum price pmin, where agent h+ 1 is a loser agent.

Proof: We split the proof into two cases, depending on the price p and vh+1, the value of

agent h+ 1.

(a) Assume that p ≥ vh+1. First we show that, given that the agents in Sh keep their bid
~b1 then agent h + 1 cannot gain a positive utility for any bid b ∈ [pmin, vh+1]. From

the fact that ~b1 is a PNE without agent h+ 1 at price p and from Claim 4.1 we know

that
∑

vi≥pBi/p ≥ N (Since p ≤ peq, then
∑

vi≥pBi/p ≥
∑

vi≥peq
Bi/peq ≥ N). This

means that for any bid b2h+1 agent h + 1 utility is zero: If he pays price ph+1 = vh+1

per item then uh+1 = 0, and if he pays price ph+1 < vh+1 then the agents ranked above

him (who pay p ≥ vh+1) buy all items, and again uh+1 = 0.

We now show that if agent h + 1 bids b2h+1 = pmin and the agents in Sh keep their

previous bid, i.e., b2−i = b1−i, then ~b2 is a PNE. The utility of the agents in Sh does

not change between ~b1 = ~b2, since agent h + 1 bid equals the minimum price. We

already shown that agent h+ 1 cannot gain positive utility with any bid in the range

[pmin, vh+1]. Therefore ~b2 is a PNE. (Note that in this case it is possible that in ~b1 there

are loser agents in Sh.)

(b) Assume that p < vh+1. Then p < vh, which implies that agent h cannot be a loser agent

in ~b1, and therefore, there are no loser agents at in ~b1.

We show that there exists a PNE ~b2 where agents i ∈ Sh bid b2i = vh+1 and agent h+ 1

bids b2h+1 ∈ (pmin, vh+1]. In ~b2 all winner agents pay vh+1, the border agent pays b2h+1

and agent h+ 1 is a loser agent.

The fact that p < vh+1 implies that originally the lowest critical bid (considering only

agents in Sh) is lower than vh+1, and according to Claim 4.4.5 for some higher minimum

price p∗min > pmin the lowest critical bid would be cj = vh+1 = p∗. So for the h agents

in Sh, ~b
3 = (p∗, . . . , p∗) is a PNE, where winner agents pay p∗ and minimum price is

p∗min. Set agent h + 1 bid b2h+1 = p∗min. Next we prove that ~b2 = (vh+1, ..., vh+1, p
∗
min)

is a PNE for Sh+1 with minimum price pmin, by showing that no agent would want to

deviate:

• Agent h + 1: Just like in (a) - from the fact ~b3 is a PNE for Sh (without agent

h + 1) at price p∗ = vh+1 and from Claim 4.1 we know that
∑

i≤hBi/p
∗ ≥ N ,

which means that at price p∗ the agents in Sh buy the entire N items. This implies

that even if agent h+ 1 bids as high as he can, bh+1 = vh+1, still uh+1 = 0 since if

ranked first he pays price ph+1 = vh+1, and if ranked last he is allocated no items.

For all bids lower than vh+1 the agent is ranked last and is a loser agent.
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• Agents in Sh: Since the additional agent h+ 1 is a loser agent, there is no change

in the utility of the winner agents compared to ~b3, and since b2h+1 = p∗min the price

and utility of the border agent did not change either. The only possible change is

that the agents in Sh can now underbid b2h+1 = p∗min as it is no longer the minimum

price of the auction (the minimum price is pmin < b2h+1). We show that the agents

in Sh cannot improve their utility by such underbidding. Agent’s i ∈ Sh critical

bid ci ≥ vh+1, so agent i weakly prefers the top rank over the bottom rank when

all other agents pay price vh+1. If agent i underbids b2h+1 then agent h+1 and the

agent above him will pay price lower or equal b2h+1 < vh+1, and the rest will keep

paying price vh+1. Therefore, underbidding the agent i has a smaller allocation

than taking the bottom rank at price vh+1, since the agent i pays pmin in both

cases. Therefore, underbidding agent h+ 1 reduces agent i utility.

Since neither agent h + 1 nor the agents in Sh can improve their utility by deviating,
~b2 is a PNE.

�

Theorem 4.4.7 There exists a PNE for any number of agents, where agents submit their

true budget (Bi = B̂i) and bid at most their value (bi ≤ vi).

Proof: The proof is by induction on the number of agents. By Theorem 4.4.1 there exists

a PNE when there are only two agents. For the induction hypothesis, we assume there is

a PNE for h agents with minimum price pmin and prove there is a PNE for h + 1 agents

with minimum price pmin. Let cj = ϕh+1(pmin), so agent j has the lowest critical bid. We

consider two cases:

1. If cj < vh+1 ≤ vj, then according to Claim 4.4.4, we have that ~b = (cj, ..., cj) is a PNE.

2. If cj = vh+1, then ch+1 = vh+1. So, we can ’take-out’ agent h+1 (with the lowest value),

and for the auction with the agents in Sh, according to our induction hypothesis, there

is a PNE with minimum price pmin. Since we have: (a) vh+1 ≤ vh, and (b) for each

i ∈ Sh, we have ci(Sh+1, pmin) ≥ vh+1, then according to Claim 4.4.6 there is a PNE

for the agents in Sh+1 with minimum price pmin.

�
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4.5 Pure Nash Equilibrium Resiliency

In a PNE no single agent can improve his utility by changing his action. In this section we

will try to find out how resilient is a PNE in the budget auction to a deviation of a coalition

of agents. In order to do so we will use two known notions: Strong Nash Equilibrium (SNE)

and Coaliton Proof Nash Equilibrium (CPNE) [3].

Definition 4.5.1 An equilibrium is a Strong Nash Equilibirium (SNE) iff no coalition of

agents can deviate, in a way that will strictly increase the utility of all its members.

Definition 4.5.2 An equilibrium is a Coaliton Proof Nash Equilibrium (CPNE) iff it is

Pareto Efficent within the class of Self-Enforcing Agreements (SEA). In turn an agreement

is Self-Enforcing iff no proper subset (coalition) of agents, can agree to deviate (taking the ac-

tions of its complement as fixed), in that a way strictly increase the utility of all its members.

Note that the coalition will agree to deviate only to a Self-Enforcing state.

The SNE is a stronger requirement, and it is so strong, such that it only rarely exists. In

a CPNE (in opposed to a SNE) there might be a coalition Γ that by deviating can improve

the utility of all it agents. Nevertheless, such a deviation will not be ’stable’ as it is not

’Self Enforcing’, which means that a subset of the coalition Γ
′ ⊂ Γ can now deviate from the

original coalition (Γ) and further improve its utility (which will decrease the utility of other

members of the coalition). This is the reason why the original coalition (Γ) will not deviate

in the first place.

Naturally, SNE ⊆ CPNE ⊆ SEA ⊆ PNE.

Example 4.5.3 The following example is given in [3] and it highlights the distinction be-

tween SNE, and CPNE: In the following three player game, with utility matrix shown in table

4.5.3, player A chooses rows (A1, A2), player B chooses columns (B1, B2), and player C

chooses boxes (C1, C2).

C1 C2

B1 B2 B1 B2

A1 1,1,-5 -5,-5,0 A1 -1,-1,5 -5,-5,0

A2 -5,-5,0 0,0,10 A2 -5,-5,0 -2,-2,0

Table 4.1: CPNE in a 3 Payers Game

Suppose that the three players wish to come to an agreement regarding the strategies

that they will each play. As we argued above, any meaningful agreement must be a Nash

equilibrium. In this game there are two Nash equilibria, (A2, B2, C1) and (A1, B1, C2). Note,

that the first of these equilibria Pareto dominates the second. Should we therefore expect
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(A2, B2, C1) to be the chosen agreement? We believe not. Equilibrium (A2, B2, C1) seems

an implausible outcome - player C should recognize that players A and B (whose interests

are completely coincident) would have the opportunity and the incentive to jointly renege on

the agreement by playing (A1, B1) [note that this is a Nash equilibrium for A and B, holding

Cs action as fixed]. Therefore, the only meaningful (i.e., Self Enforcing) agreement is the

Coalition-Proof Nash Equilibrium (A1, B1, C2). Finally, what can be said about the set of

Strong Nash equilibria? As is easy to see, no Strong Nash equilibria exist for this game

(since (A1, B1, C2) is not Pareto efficient).

In the rest of this section we shall prove that for the case of public budgets, when agents

submit only bids, a subset of the budget auction equilibria are actually strong equilibria.

Nevertheless, if budgets are private, and agents submit both bids and budgets, the same

equilibria are no longer strong, but they are coalition proof.

Theorem 4.5.4 A PNE with no loser agents is a SNE, where budgets are public and agents

can only change their bids.

Proof: Let the vectors of bids and budgets ~b = (b1, ..., bk), ~B = (B1, ..., BK) yield a PNE

in which there are no loser agents. Each agent i ∈ K has allocation xi, pays price pi and

has utility of ui. Let W ⊆ K be the groups of winner agents and let agent j be the border

agent. From claim 4.1 we know that for every i ∈ W, pi = bi = p, and pj = pmin. Now, lets

falsely assume that there exists a coalition Γ ⊆ K that for every agent i ∈ Γ there is a bid

b
′
i 6= bi such that if the coalition Γ changes it bids together, each agent i ∈ Γ will have utility

u
′
i > ui. Let I ⊆ Γ be the subset of agents in the coalition that increase their bid, and D ⊆ Γ

be the subset of agents in the coalition that decrease their bid, i.e, for each i ∈ I, b′i > bi,

and for each i ∈ D, b′i < bi (obviously, I ∩D = φ). We shall first prove the theorem under

the assumption that I = φ, meaning that no agent in the coalition increases his bid, and

later we will relax this assumption.

If I = φ then D = Γ, so let agent d ∈ D be the lowest ranked agent after the deviation.

We shall prove that the deviation didn’t improve agent’s d utility. We proved in claim ??

that the price p is not higher than the Market Equilibrium price peq. It means that for

all agents i ∈ K,
∑

iBi/p ≥ N . Since the coalition only decreased it bids, after deviation,

each agent i ∈ D pays price pi < p ≤ peq so the aggregated demand of all agents i ∈ K

is
∑

iBi/pi >
∑

iBi/p ≥ N . This means that after deviation agent d cannot be a winner

agent. If agent d becomes a loser aqent then the claim is proved, if not he must be a border

agent, and there are two possibilities: (a) If agent d was the border agent before (d = j)

then he still pays the same price pmin, but has now lower allocation x
′

d < xd (since some

winner agents are paying less and winnig more items) so u
′

d < ud and his utility drops. (b)

If agent d was a winner agent before, then he prefered being a winner agent over a border

agent (which we proved to be better than deviating with the coalition and becoming the
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lowest ranked agent). Therefore, in this case u
′

d < ud as well, and agent d cannot improve

his utility by joining the coalition D, so no such coalition could exist.

Now, lets relax the assumption that I = φ, which means that there is at least one agent

in the colation that increases his bid. It is easy to see that no agent i ∈ I can improve his

utility by paying more than p. If agent i ∈ W then he must pay a lower price to improve

utility. If agent i /∈ W was the border agent before, then he prefered being the border agent

over being a winner agent that pays p, so he cannot improve his utility by paying price higher

then p. This means that after deviation no agent pays price higher than p so there should

exists a coalition D′ ⊆ Γ where all agents in it can improve their utility only by decreasing

their bid. But we just proved that no such coalition could exists, so a coalition with I 6= φ

cannot exist as well. �

Claim 4.5.5 A PNE with no loser agent is not a SNE if budgets are private and agents can

change both bids and budgets.

Proof: Conisider the following budget auction with two symmetrical agents with the following

settings: N = 75, pmin = 0, B̂1 = B̂2 = 50, v1 = v2 = 2.0. It is easy to calculate that

the cirtical bid of both agetns is 1.0 = c1 = c2, so by Claim 4.3.4 there is a PNE when

both agents report their true budget and bid their critical bid, i.e., when they both submit

Bi = 50, bi = 1.0 (see option 1 in Table 4.2).

Agents Actions Auction Results Utility

Option B1 b1 B2 b2 p1 p2 x1 x2 u1 u2

1 50 1.0 50 1.0 1.0 0.0 50 25 50 50

2 35 0.8 50 0.8 0.8 0.0 35 40 52.5 62.5

3 50 0.8 50 0.8 0.8 0.0 62.5 12.5 75 25

Table 4.2: An example of a budget auction with N = 75 and pmin = 0, and two symmetrical

agents: B̂1 = B̂2 = 50, v1 = v2 = 2.0

Next we show that this PNE is unique. In any PNE both agents must bid the same,

since otherwise the bottom ranked agent can slightly increase his bid, which will increase

his own allocation and improve his utility (it increases the price paied by the top agent). In

addition, since 1.0 = c1 = c2, then there is no PNE when both agents submit the same bid

b 6= 1.0. If b < 1.0 then both agents prefer the top rank, if b > 1.0 then both agents prefer

the bottom rank.

We conclude that there is a unique PNE when both agents submit their real budget, and

bid 1.0, so this PNE is the only ’candidate’ for a SNE. Option 2 in Table 4.2 eliminates this

option as it shows that both agents can coordinate their actions and strictly improve their

utility. Note that it requires agent 1 to submit a lower budget than his real one (which can
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be viewed as side payments to agent 2), so option 1 is clearly not a SNE, and there is no

SNE in this auction, as claimed.

It is worth pointing out that option 2 is not a self enforcing agreement (it is not even a

PNE) since agent 1 can deviate alone by submitting his real budget and further improving

his utility (option 3). �

Theorem 4.5.6 A PNE with no Loser Agents is a CPNE if budgets are private and agents

can change both bids and budgets.

Proof: We proved in theorem 4.5.4 that if a budget auction is at PNE with no Loser Agents

then no coalition of agents can strictly improve their utility by changing only their bids.

Nevertheless, when agents can also change their reported budgets, a coalition can strictly

improve the utility of all its members, as we showed 4.5.5. This requires a strategy that at

least one winner agent will report lower budget than his real one (a winner agent will not

report higher budget and a border agent that changes his submitted budget can effect only

his own utility as there are no loser agents). Submitting lower budget by a winner agents

actually enables ’side payments’ to the agent ranked below him. This strategy, however, is

not ’Self-Enforcing’ as the agent that reported lower budget can further improve his utility

by deviating alone from the coalition, and reporting his true budget. This, however, will

decrease the utility of the agent ranked below him, which is a member of the same coalition,

so he will not join such coalition in the first place, and the PNE is a CPNE is required. �
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Chapter 5

Dynamics of Repeated Budget

Auction

In this section we analyze the dynamics of the budget auction when it is played repeatedly

multiple times, and we refer to a single budget auction as a ’daily auction’. For a single

budget auction reporting the true budget is a dominant strategy (Claim 3.0.1), so we assume

agents always report their true budget (although, technically, in the repeated auction setting

it is not a dominant strategy anymore). Since even for a single budget auction, bidding true

value is not a dominant strategy (Claim 3.0.1), we should definitely observe agents bidding

differently than their value.

5.1 Repeated Budget Auction: Model

We assume that agents are myopic, and when modifying their bid, they are performing a best

response to the other bids. In the following we will formally set the model for the dynamics.

After each daily auction we compute for each agent its best response. If all the agents are

performing a best response, the dynamics terminates (in a PNE). Otherwise, a single agent,

which is not playing best response, is selected by a centralized Scheduler, and changes his

bid using a specific Best Response (described in detail later). We use the following notation:

bti is the bid of agent i at day t, and we assume that all agents submit their true budget (i.e.,

Bt
i = B̂i).

It is important to note that: (i) Budget restriction is daily - meaning that agent i can

spend up to B̂i each day, (ii) We assume that bids are from a discrete set, namely bti = lε for

some integer l, and (iii) Agents have full information: they know the number of items (N)

the minimum price (pmin), and after each day they observe the bids (~b) budgets ( ~B) prices
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(~p) and allocations (~x) of the previous days. Nevertheless, each agent i true value vi and

budget B̂i are private information.

Best Response: Since there could be many bids which are best response, we specify a

unique bid that is selected as BRi, as follows. Let the BRSi(~b−i) be the set of (discrete)

bids that maximizes agent’s i utility given the bids ~b−i of other agents. Let x = l · ε =

min{BRSi(~b−i)}. (This implies that for every y = l
′ · ε < x, we have ui(~b−i, y) < ui(~b−i, x),

and for every y = l
′ · ε > x, we have ui(~b−i, y) ≤ ui(~b−i, x).) Let

BRi(~b−i) =

{
x if ui(~b−i, x) > 0

vi if ui(~b−i, x) = 0

Note that an agent for which any best response bid yields zero utility bids his true value.

Since the bids are discrete, we need to redefine the critical bid notion.

Definition 5.1.1 Let ~bx−i be the bid vector such that every agent j ∈ {1, . . . , i − 1} bids

bj = x = l · ε, and every agent j ∈ {i+1, . . . , k} bids bj = x+ ε = (l+1)ε. The discrete value

x is agent’s i critical bid if: (a) ui(~b
x
−i, x) > ui(~b

x
−i, x + ε), i.e., agent i prefers the bottom

rank in ~bx−i, and (b) ui(~b
x−ε
−i , x− ε) < ui(~b

x−ε
−i , x), i.e., agent i prefers the top rank in ~bx−ε−i .

The following claim relates the critical (discrete) bid with the agent preferences.

Claim 5.1.2 Let x be the critical bid of agent i. Then: (a) If all agents bid at least as high

as in ~bx−i, then agent i prefers the bottom over the top rank, and (b) If all agents bid lower

than what they did in ~bx−i, then agent i prefers the top over the bottom rank.

Proof: (a) If all agents bid exactly as in ~bx−i, then by Definition 5.1.1 the claim holds. If some

agents bid higher, then agent i utility from the top rank strictly decreases (as the price is

higher). In addition agent i utility from the bottom rank is at least as high as before since all

winner agents pay equal or higher prices, so their allocation is lower or equal, which implies

that agent i allocation at the bottom rank is at least as high. Therefore, agent i prefers the

bottom rank over the top rank.

(b) By definition 5.1.1, for the bid vecotr ~bx−ε−i the claim holds. If some agents bid less than

x − ε, then there are agents who pay less than before, and are allocated more items. This

implies that agent i allocation at the bottom rank decreases, and so does his utility (as price

stays pmin). In addition, if the highest bid is now lower than x− ε then agent i utility from

the top rank increases. In conclusion, agent i prefers the top rank over the bottom rank, as

required. �

Scheduler We model the dynamics as an Elementary Stepwise System (ESS) [15] with

a scheduler. The scheduler, after each daily auction, selects a single agent that changes
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his bid to his best response. We considered on the following schedulers: (i) Lowest First -

From the set of agents that are not doing best response, the lowest ranked agent is selected.

(Intuitively, this mechanism prioritize loser agents over border and winner agents.) (ii)

Round Robin - Selects agents by order of index in a cyclic fashion. (iii) Arbitrary scheduler

- Selects arbitrarily from the set of agents that are not doing best response.

5.2 Convergence

In this section we study the converges of the repeated budget auction to a PNE. We start

with two agents, and generalize it to any number of agents with identical budgets.

Theorem 5.2.1 For a repeated budget auction with two agents and discrete bids bti = l · ε ∈
[pmin, vi], the ESS dynamics with any scheduler and any starting bids converges to a PNE.

Proof: For two agents, there is no difference between different schedulers, since no scheduler

can select the same agent twice. Therefore, any scheduler alternates between scheduling the

two agents until a PNE is reached.

We prove the case that c2 ≤ c1, the other case is similar and the proof is omitted (the

other case is not identical since the index of an agent has influence on the tie breaking rule).

Let ~b1 = (b11, b
1
2) be the bid vector at the first day, and let agent 1 be the first to move. Notice

that the best response of an agent does not depend on his own bid, but rather on the bid of

the other agent. We split the proof to three cases, based on agent 2 first bid, b12:

1. b12 < c2 ≤ c1. In this case the bids will increase until they reach a PNE, as follows.

Since b12 < c1, by Claim 5.1.2 agent 1 prefers the top rank which implies that at time

t = 2, b21 = BR1(b
1
2) = b12 (equal bids ranks agent 1 at the top). At time t = 3, since

b21 < c2 agent 2 also prefers the top rank, so b32 = BR2(b
2
1) = b21 + ε (agent 2 needs

a strictly higher bid to get the top rank). Both agents will continue to increase their

bids till at time t, such that bt1 = c2, by Definition 5.1.1, agent 2 will prefer the bottom

rank and bt+1
2 = BR2(b

t
1) = bt1 = c2. Since agent 1 still prefers the top rank (even if

c1 = c2) then bt+2
1 = BR2(b

t+1
2 ) = bt+1

2 = c2, and we reached a PNE since both agents

best response is to keep their bid.

2. c2 ≤ b12 ≤ c1. In this case the bids are already a PNE, as follows.

Since b12 ≤ c1 then by Claim 5.1.2, agent 1 prefers the top rank, so b21 = BR1(b
1
2) = b12.

Since b21 ≥ c2 then according to Claim 5.1.2, agent 2 prefers the bottom rank, so

b32 = BR2(b
2
1) = b21 = b12. Again, we reached a PNE since both agents best response is

to keep their bid.
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3. c2 ≤ c1 < b12. In this case bids will decrease until they reach PNE, as follows.

Since b12 > c1 then by Claim 5.1.2, agent 1 prefers the bottom rank, so b21 = BR1(b
1
2) =

b12 − ε. Since b21 = b12 − ε ≥ c2 then agent 2 also prefers the bottom rank, so b32 =

BR2(b
2
1) = b21 = b22 − ε. Both agents will continue to decrease their bid till at time t,

such that bt2 = c1 < c1 + ε, by Definition 5.1.1, agent 1 will prefer the top rank, so

bt+1
1 = BR1(b

t
2) = bt2 = c1. Since bt+1

1 ≥ c2 then agent 2 still prefers the bottom rank,

and bt+2
2 = BR2(b

t+1
1 ) = bt+1

1 = c1. Again, we reached a PNE since both agents best

response is to keep their bid.

�

Next we wish to prove that an auction with any number of agents with identical budgets,

and different values converge to a PNE. However, for that we need to make sure that no two

critical bids are equal.

Definition 5.2.2 Agents critical bids are ε-Separated, if for any agents i, j ∈ K, and every

minimum price pmin, we have |ci(K, pmin)− cj(K, pmin)| > ε.

We assume that the aggregated demand at minimum price exceed the supply N . For

agents with identical budgets, B, it implies that Bk > Npmin. Otherwise, it is an uninter-

esting case where all critical bids equal pmin and this is a PNE.

Claim 5.2.3 Assume that Bk > Npmin. For every ε > 0 there exists δ(ε) > 0 such that for

any two agents i, j ∈ K if |vi− vj| > δ(ε) then |ci− cj| > ε. In other words, critical bids are

ε-Separated for agents with identical budgets but different values.

Proof: Agent i critical bid is when his utility from top rank equals his utility from bottom

rank, so for the case of identical budgets we get:

B

ci
(vi − ci) = (N − B(k − 1)

ci
)(vi − pmin)

Bvi −Bci = Ncivi −Ncipmin −B(k − 1)vi +B(k − 1)pmin

kBvi −B(k − 1)pmin = ci(Nvi −Npmin +B)

ci =
kBvi −B(k − 1)pmin
Nvi −Npmin +B

The critical bid of agent i depends on his value, vi, and other parameters that are common

to all agents. We define f(x) to be the function that maps an agent value x to his critical

bid.

f(x) =
kBx−B(k − 1)pmin
Nx−Npmin +B

f
′
(x) =

kB(Nx−Npmin +B)− (kBx−B(k − 1)pmin)N

(Nx−Npmin +B)2
=

B2k −BNpmin
(Nx−Npmin +B)2

29



=
B(Bk −Npmin)

(Nx−Npmin +B)2

We assume that Bk − Npmin > 0 then f
′
(x) > 0. Moreover, since x > pmin then Nx −

Npmin + B > 0, which implies that f
′
(x) is decreasing in x. Let vmax be the highest value

among all agents, so for every x ∈ [pmin, vmax], f
′
(x) ≥ B(Bk−Npmin)

(Nvmax−Npmin+B)2
= α. We define

δ(ε) = 1
α
ε, so |vi − vj| > δ(ε) implies that |ci − cj| ≥ |vi − vj|α > δ(ε)α = α

α
ε = ε. �

We can now state the convergence theorem for agents with identical budgets.

Theorem 5.2.4 A repeated budget auction with any number of agents with identical bud-

gets, and different values, with a starting bids of pmin, the ESS dynamics with Lowest First

scheduler, converges to a PNE.

Proof: Let agent j has the lowest critical bid cj ∈ [pmin, vj]. The proof shows that every day

the lowest ranked agent increases his bid by ε until cj is reached. At this point if agent j is

the border agent we claim that a PNE is reached, and if agent j is a loser agent, then the

remaining agents continue increasing their bids until the next critical value is reached, and

so on.

We prove the theorem by induction over the number of agents. According to Theorem

5.2.1 an auction with only two agents converges to a PNE (regardless of their starting bid).

For the induction hypothesis, we assume that an auction with k − 1 agents converges to a

PNE after a finite number of days, and prove it converges for k agents as well.

Assume that cj > pmin (we handle the case cj = pmin later). At time t = 1, ~b1 =

(pmin, . . . , pmin), and agent k is ranked last, so he is chosen by the scheduler to move. Since

pmin < cj ≤ ck, by Claim 5.1.2, agent k prefers the top rank, and b2k = BRk(~b
1
−k) = pmin + ε

(which ranks him at the top). At time t = 2, ~b2 = (pmin, . . . , pmin, pmin + ε), agent k − 1

is ranked at the bottom, and agent k is ranked at the top. Since pmin < cj ≤ ck−1 then

b3k−1 = BRk−1(~b
2
−k) = pmin + ε (which ranks him at the top). For the same reason, the

rest of the agents (in the following order k − 2, k − 3, ..., 1) will increase their bid by ε

when they are ranked last, and this will rank them at the top. Therefore, after k days
~bk = (pmin + ε, . . . , pmin + ε).

This process will continue until at some day t, agents 1, . . . , j bid cj, while agents j +

1, . . . , k bid cj + ε, so let ~bcj be the matching bid vector as defined in Definition 5.1.1. Note

that for the case pmin = cj this happens when t = k−j, before agents 1, . . . , j have increased

their bid for the first time. At this point by Definition 5.1.1, agent j prefers the bottom rank.

Since agent j is already ranked at the bottom he is playing best response and the scheduler

will not choose him. We now consider the best response of every other agent i 6= j. There

are now two cases:

• If agent j is the border agent, then the rest are all winner agents. By Claim 4.3.4,
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increasing their bid in not best response. On the other hand, since every agent i 6=
j, ci > cj then by Claim 5.1.2 for the bid vector ~bcj every agent i prefers the top rank

over the bottom rank, so he will not decrease his bid either, and we conclude that

every agent i best response is to keep his bid. Since we know that the border agent j

keeps his bid, it is a PNE.

• If agent j is a loser agent then vj < cj + ε (otherwise he would have preferred the

top rank). Agent j will remain rank last and keep his bid bj = cj. Since agents

have identical budgets then according to Claim 4.4.2 no border or winner agents will

under-bid cj. Therefore we can indeed consider agent j to be ’out of the game’. The

remaining agents define a repeated budget auction with k − 1 agents and a minimum

price of pmin = cj. For this setting, according to our inductive hypothesis, the auction

converges to a PNE.

Note that there is a small difference in the starting price. At this point not necessarily all

agents starting price is the new minimum price: agents 1, . . . , j − 1 bid pmin = cj, while

agents j+ 1, . . . , k bid pmin + ε = cj + ε. We can now recalculate the new critical bids for the

remaining agents, taking under consideration that agent j is not participating, and the new

minimum price. From Claim 5.2.3 we know the new lowest critical bid is at least ε higher

than cj, so agents 1, . . . , j − 1 increase their bid to pmin + ε when it is their turn to move,

and all ’starting prices’ are equal again. �
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Chapter 6

Simulations

(a) starting bid is pmin (b) starting bid is vi (c) Random starting bid

Figure 6.1: A repeated budget auction with the agents from Table 2.1. Notice that in each

simulation the agents use a different starting bid, and all simulations converge to a PNE,

in which agents A and C are winner agents, agent B is the border agent, and agent D is a

loser agent.

This section shows simulations of dynamics in budget auctions, which can give some

intuition about typical bidding patterns of myopic agents. We simulated an ESS dynamics

with a Round Robin scheduler and ε = 0.01.

Simulation Results Our theoretical results show that in our dynamics there are cases

where the bids do not converge (see Appendix A). Our simulations show two bidding pat-

terns: smoothed convergence to an equilibrium and a bidding war cycle. Same patterns

where observed by Asdemir in [1] using an infinite horizon alternating move game, for the

case of two symmetrical agents (identical budget and value).

Convergence: For agents that are playing the defined best response mechanism, we only

managed to prove that the auction converges under the following restrictions: (i) All agents

have equal budgets, (ii) All agents start by bidding the minimum price, and (iii) The Lowest

First scheduler is used. When running our simulation, however, we noticed that many
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repeated budget auctions do converge to a PNE even when we relaxed these restrictions.

(See Figure 6.1 for an example of converge to a PNE with different budgets, without the

starting bid restriction and a Round Robin scheduler).

Bidding War: Auctions that do not converge to an equilibrium follow a ’Bidding War Cycle’

pattern as shown in Figure 6.2. In this pattern some agents out bid each other, and so bids

are rising until at some point (when the price is high enough) one of the agents drops his bid,

and the other agents follow by dropping their bid as well (just above the previous agent).

Later, the same agents continue to out bid each other till they restart a new cycle. This

pattern was also spotted in real data collected from Overtures [7] which they referred to as

’Sawtooth’. It is worth mentioning that Overture used a first price auction mechanism, in

which the existence of this pattern is less surprising.

Figure 6.2: A simulation of the auction described in Table A.1 at Appendix A. Bids follow

a Bidding War Cycle pattern.
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Appendix A

An Example for an auction with no

PNE

The example in Table A.1 shows a case where there is no PNE where loser agents are

restricted to report their true value and true budget.

In the example, agent D has the lowest critical bid, so in any PNE he must be ranked last.

In addition, at price p = vi = 1.0 when ranked last agent D is a loser agent, so agent D must

be a loser agent in any PNE. If agent D bids his true values bD = vD = 1.0, then the only

possible PNE is when agents A,B and C bid their critical bid cA = cB = cC = c = 1.143.

This is due to the fact that for lower price they all prefer the top rank, and for higher

price they all prefer the bottom rank. Therefore, the only bid vector that can yield a PNE is
~b = (c, c, c, 1.0). Table A.1 shows at column ’bidding at critical bid’ the outcome when agents

bid ~b (in which agents A, B, and C, are indifferent between ranks 1, 2 and 3). Nevertheless,

each agent i ∈ {A,B,C} can underbid agent D (by bidding 1.0 − ε) which improves his

utility (shown in column ’under bidding’ in Table A.1), so the bids vector ~b is not a PNE.

We conclude that in this example there is no PNE where loser agents report their true value.

Private Values bidding at critical bid under bidding

Agent B̂i vi ci bi pi xi ui type bi pi xi ui type

A 40 2.0 1.143 1.143 1.143 35 30 winner 1.143 1.143 35 30 winner

B 40 2.0 1.143 1.143 1.143 35 30 winner 1.143 1.0 40 40 winner

C 40 2.0 1.143 1.143 1.0 30 30 border 1.0− ε 0.0 17 34 border

D 8 1.0 1.0 1.0 0 0 0 loser 1.0 1.0− ε 8 0 winner

Table A.1: Two possible outcomes of the budget auction with 4 agents, N = 100 and

pmin = 0.
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