
Learning with Attribute Costs

Haim Kaplan
∗

Computer Science Dept.
Tel-Aviv university

haimk@post.tau.ac.il

Eyal Kushilevitz
Computer Science Dept.

Technion

eyalk@cs.technion.ac.il

Yishay Mansour
†

Computer Science Dept.
Tel-Aviv university

mansour@cs.tau.ac.il

ABSTRACT
We study an extension of the “standard” learning models
to settings where observing the value of an attribute has an
associated cost (which might be different for different at-
tributes). Our model assumes that the correct classification
is given by some target function f from a class of functions
F ; most of our results discuss the ability to learn a clause (an
OR function of a subset of the variables) in various settings:

Offline: We are given both the function f and the distri-
bution D that is used to generate an input x. The goal is
to design a strategy to decide what attribute of x to ob-
serve next so as to minimize the expected evaluation cost
of f(x). (In this setting there is no “learning” to be done
but only an optimization problem to be solved; this problem
is to be NP-hard and hence approximation algorithms are
presented.)

Distributional online: We study two types of “learning”
problems; one where the target function f is known to the
learner but the distribution D is unknown (and the goal is
to minimize the expected cost including the cost that stems
from “learning” D), and the other where f is unknown (ex-
cept that f ∈ F) but D is known (and the goal is to min-
imize the expected cost while limiting the prediction error
involved in “learning” f).

Adversarial online: We are given f , however the inputs
are selected adversarially. The goal is to compare the learner’s
cost to that of the best fixed evaluation order (i.e., we ana-
lyze the learner’s performance by a competitive analysis).

∗Work partially supported by Israel Science Foundation
(ISF) Grant no. 548.
†This work was supported in part by the IST Programme of
the European Community, under the PASCAL Network of
Excellence, IST-2002-506778, by a grant no. 1079/04 from
the Israel Science Foundation and an IBM faculty award.
This publication only reflects the authors’ views.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’05, May 22-24, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-58113-960-8/05/0005 ...$5.00.

General Terms
Algorithms, Theory

Categories and Subject Descriptors
I.2.6 [Learning]; F.2.2 [Nonnumerical Algorithms]

Keywords
Learning, Online, Approximation Algorithms

1. INTRODUCTION
This paper is motivated by the observation that, in many

cases, there is an inherent cost associated with observing
each attribute of a given input x. Our goal is to model such
scenarios and to offer algorithms that address this concern.
The main variant of our model can be viewed as an exten-
sion of the classical PAC model [16], and has been proposed
recently in the Machine Learning literature [14, 13]. To mo-
tivate the various variants of our model, we use a simple
(hypothetical) medical setting. Each input x represents a
patient where each attribute xi represents the outcome of a
medical test for this patient.

Consider a setting in which a doctor would like to diagnose
if a patient has some disease. The doctor can run various
tests on the patient in order to deduce the outcome; In fact,
one would expect the order of tests to be determined so
as to minimize the expected cost, an important criteria for
any HMO (intuitively, one would expect that the doctor
would run a simple blood test before using an expensive
MRI; however, the probability of passing a certain test also
influences its cost-effectiveness). This setting can be viewed
as an offline setting, where the function f that the doctor
evaluates (i.e., the final diagnosis based on the test results) is
known, the distribution of the test outcomes (attributes) in
the general public is also known, and the goal is to minimize
the expected cost of evaluating f(x).

Alternatively, consider a doctor conducting a research in
order to formulate a diagnosis function f . She has the set
of tests that she can run on each patient; after observing
some of these tests she predicts the outcome. Since f is not
known, the predictions might be incorrect. The doctor later
learns whether her prediction was correct or not. Clearly,
we would like to minimize those mistakes (for the insurance
company sake) while maintaining a low overall cost, which
is composed from learning the function and the evaluation
process (for the HMO sake). We call this model the distri-
butional online model, since the patients arrive in an online
way; however, they are drawn from some fixed underlying

distribution D. The above describes the case where the tar-
get function f is unknown yet the distribution D might be
known. An alternative case is when D is unknown but f
is known; the goal is to minimize the expected cost of the
tests, while collecting information regarding the distribu-
tion. (This scenario can be motivated in cases of changing
the patients’ population; e.g., in the case of evaluating on
humans a function learned using monkeys, where the func-
tion f is the same, but the distribution might be different.)

Finally, we consider the adversarial online model, where
the target function is known but the adversary controls the
arrival process. The hope is to bound the average online
cost compared to a fixed evaluation order.

1.1 Our Model and Notation
We consider Boolean functions over the domain {0, 1}n.

We assume that each attribute xi has an associated cost ci.
The evaluation of a given function f on input x is done by
specifying a decision tree T of the attributes. This decision
tree T is used to decide what attributes of x to observe next,
given the outcome of the attributes that we observed. The
value of f is written at the leaves of the tree. The cost of
evaluating an input x using a tree T is the sum of the costs
of the attributes along the path that x follows in T .

We mostly deal with simple functions, like clauses, where
seeing an attribute which is one determines the value of the
function. For such functions we can limit the evaluation
model to a leveled decision tree. In a leveled decision tree,
all the (internal) nodes at a the same level (distance from
the root) of the tree, test the same attribute of x. For such
a tree we might encounter attributes which do not have an
influence on the target function f . (Specifically, attribute
xi has influence on a function g if there exists two inputs
x, x′ that differ only on their i-th attribute and such that
g(x) 6= g(x′).) In case we encounter such attribute at a node
v, we assume that the subtree rooted at the left child of v
and the subtree rooted at the right child of v are identical,
and hence we can continue without evaluating the attribute
at v. For this reason, the cost of evaluating an input x
using a leveled decision tree T is the sum of the costs of the
influential attributes along the path that x follows in T . A
leveled decision tree is in fact equivalent to a permutation
of the attributes, that determines the order in which we
inspect them. While evaluating x we inspect the attributes
one by one, in the order determined by the permutation,
skipping attributes that have no influence, until the value of
the function is determined. We pay the sum of the costs of
the attributes that we inspected.

As mentioned, we consider target functions f that belong
to certain simple classes of functions over {0, 1}n. The tar-
get function f is used to give the correct classification for
each input. A Disjunctive Normal Form (DNF) is an OR of
terms, where each term is an AND of attributes. A Read-
Once DNF has every attribute appearing in at most one
term. A Conjunctive Normal Form (CNF) is an AND of
clauses, where each clause is an OR of attributes.

The input generation is done as follows. In the adversarial
online model the inputs are chosen by an adversary. In all
other models, there is a fixed distribution D and the inputs
are sampled i.i.d. using D. The description of a distribution
(when it is known) is given as follows. A product distribu-
tion is specified by the probabilities pi of each attribute xi

to get the value 1 (wlog, 0 < pi < 1). In the case of a general

distribution D, we assume a conditional distribution oracle
that, given any assignment to a subset of the attributes, re-
turns the conditional probability that the target function f
is one, e.g., PrD[f = 1|x3 = 1, x7 = 0].

The algorithm needs to compute (or to predict, in some
settings) the value of the target function f for a given input
x. By “computing the value”, we mean that the algorithm
can “explain” this value; i.e., if f(x) = 1 then the algorithm
outputs a term of the function which is true, and if f(x) = 0
the algorithm outputs a clause which is zero. (Namely, even
if we are given a DNF which is always true, we still need,
for every input, to exhibit a term which is true!) If f(x) = 1
we say that a term which equals 1 is a certificate for f(x),
and if f(x) = 0 we say that a clause which equals 0 is a
certificate for f(x). In case f(x) = 1 we denote the smallest
cost of a term which is 1 by CER(f, x), otherwise we denote
the smallest cost of a clause which is 0 by CER(f, x).

In general our algorithms would have two performance
measures. The first is the cost of evaluating f(x). The sec-
ond, which is relevant when the target function is unknown,
is the number of mistakes performed until the correct target
function is identified.

1.2 Our Results

1. Known function and known distribution (Offline
Computation): Given a function f and a distribution D,
compute the optimal/approximate permutation that mini-
mizes the average cost of computing f . (In this setting there
is no learning and the main task is an optimization.)

For a general distribution D, the optimization problem is
NP-Complete and we present a 4-approximation algorithm
for the case that f is a clause. We generalize the results to
the case where f can be represented as a read-once DNF.
For monotone functions that have a small DNF and CNF
(e.g., small decision trees), we give a logarithmic approxima-
tion algorithm when the cost and the distribution are both
uniform.

2. Known function and unknown distribution (Dis-
tributional Online I): Given a target function f ∈ F (but
no information about D), evaluate f while minimizing the
average evaluation cost.

For the case where f is a clause, we show a learning al-
gorithm for which, with probability 1− δ, the cost of evalu-
ating the first T examples is bounded by O(T · E[OPTD] +
OPTD(S) ·poly(n)), where E[OPTD] is the expected cost of
the optimal permutation and OPTD(S) is the cost of OPTD

on a subset of the examples S, where |S| = poly(n, log 1/δ).

3. Unknown function and known distribution (Dis-
tributional Online II): Given a class of functions F , learn
the target function f ∈ F while minimizing the average eval-
uation cost as well as the number of mistakes the algorithm
performs. (There is a clear tradeoff between the two pa-
rameters, our aim would be to have a bounded number of
mistakes and get our average cost to converge to the optimal
average cost.)

We study product distributions and target functions that
are clauses. We show how the online algorithm can guaran-
tee at most O(n) mistakes, while its expected cost is at most
the optimal expected cost, in the case it is given the proba-
bility that f = 1, and otherwise it makes at most O(n log n)
mistakes and has near optimal expected cost.

4. Adversarial online model: Given a function f , at
each time step the online algorithm selects a permutation
and the adversary selects an input.

For the lower bound, we consider a simple case where the
target function is a clause, known to the learner, and all the
costs are equal. We show that the adversary can force any
deterministic algorithm to have average cost of n/2 while
there always exists a fixed ordering of the attributes that
has average cost at most 2. For the upper bound, we show
that if we evaluate the attributes in order of increasing costs
then the total cost is at most n times the optimal cost, for
any input and any target function.

It is important to note that our results do not depend
on the magnitude of the costs, or on the largest possible
cost. This is a very important feature which makes both
our algorithms and analysis much more delicate.

1.3 Related work
The offline version of our problem, when the distribution

is known and the function is a clause containing all the vari-
ables, is in fact a generalization of a problem which has been
studied recently, under different names, one of which is Min-
Sum Set Cover (MSSC). The input to the MSSC problem
(like the input to the classical Set Cover problem) consists
of a collection of sets F = {S1, . . . , Sm} containing elements
from some universe U . The goal is to find a permutation
Sπ(1), Sπ(2), . . . , Sπ(m) that minimize the average covering
times f(e) for all e ∈ U . The covering time of e ∈ U is
the minimum j such that e ∈ Sπ(j). Bar-Noy et al. [3]
show that the greedy algorithm for MSSC, which iteratively
picks the set with the smallest ratio of cost to the number
of uncovered elements which it covers, is a 4-approximation
algorithm. More recently Feige, Lovasz, and Tetali [9] gave
a simpler proof and also showed that it is NP-hard to ap-
proximate this problem to within a factor smaller than 4.

The MSSC problem had found several exciting applica-
tions recently. Cohen, Fiat, and Kaplan [6] considered a
generalization of the problem in the context of exploiting
associations to speed up search in P2P networks. Babu et
al. [2, 15] used it in the context of recent work on data
streams, where a stream had to go through a sequence of
commutative pipelined filters that should be ordered so that
average processing time is minimized. Some of our results
may be interesting in the context of these applications as
well.

The papers of Cohen et al. and of Babu et al. mentioned
above, as well as this paper, generalize MSSC as defined in
[9] in various ways: (1) sets are generalized to be predicates
with certain success probability over some probability dis-
tribution, (2) predicates have non uniform costs, and (3) we
may only have estimates on the success probability of each
predicate. Theorem 2.4 unifies all these generalizations; The
proof of Feige [9] with some changes suffices to establish it.

Etzioni et al. [7, 8] considered a related but different of-
fline problem. In their work, attributes model information
sources. An example x (a file, say) has xi = 1 if the ith infor-
mation source stores x. They assume a product distribution,
i.e., each source answers the query with fixed probability pi.
In their setup source i, in addition to cost ci, also has a du-
ration di which is the time that it takes source i to provide
the answer. The basic problem is to find a schedule, that
assigns to each source i a time ti in which we query it, as-
suming we have not been able to get an answer for another

source before that time. The objective is to minimize the
expected overall cost of the schedule, where the overall cost
of the schedule is the sum of (1) the time it takes to perform
the schedule, and (2) its cost (the sum of the costs of the
sources we asked). They present a constant approximation
algorithm for this basic problem.

Charikar et al. [5] also considered an offline problem sim-
ilar to ours. They looked at functions defined by boolean
AND/OR binary tree. Their goal was to find a decision tree
with good competitive ratio. The competitive ratio of a de-
cision tree T for a particular example x is the ratio between
the cost of T on x, and CER(f, x), the cost of the cheap-
est certificate for f(x). The competitive ratio of T is the
maximum of the competitive ratio of T over all examples x.
Given a function f , Charikar et al. [5] produce a decision
tree with competitive ratio bounded by max{k, `}, where
k is the size of the largest term in a minimal DNF repre-
sentation of f , and ` is the size of the largest clause in a
minimal CNF representation of f . Furthermore, they show
how to design an algorithm specific to a function f and a
cost vector c, achieving the best possible competitive ratio.
In contrast our results in Section 2.2 give an algorithm for
monotone functions f whose DNF and CNF representations
are given, and uniform costs, that is O(log m) competitive,
where m is the largest among the number of terms in the
DNF representation, and the number of clauses in the CNF
representation. Notice that m ≥ max{k, `}.

The most relevant work in the machine learning literature
is the work of Madani et al. [14] which describes a fixed
budget learning setting. In their setting, the learner needs to
optimize its performance using a fixed budget. They study
the coin problem – finding the coin with the highest bias;
they show that in general the optimization problem is hard,
and they consider specific priors and algorithms in the fixed
budget model. In [13] the performance of the Naive Bayes
estimator is evaluated using a Dirichlet prior.

Littlestone [12] formulated the online (mistake-bound) learn-
ing model which we use for presenting some of our algo-
rithms. We also use the idea of “elimination” formulated
by [12] (with roots in [16]) and used as a basic technique in
other learning algorithms.

2. OFFLINE COMPUTATION
In this section, we discuss the offline problem; namely,

both the target function f and the distribution D are known
to the algorithm. For a target function which is a clause, as
stated before, the optimal decision tree is a leveled decision
tree that is equivalent to a permutation of the attributes.
The following theorem characterizes the optimal offline per-
mutation for a product distribution. (See, e.g., [10].)

Theorem 2.1. Given a clause f = x1 ∨ . . . ∨ xk over the
input {0, 1}n, and a product distribution D, the optimal per-
mutation is sorted according to ci/pi (from small to large).
Hence, there is a polynomial time algorithm to compute the
optimal permutation.

For an arbitrary distribution given by an oracle1 the fol-
lowing Theorem states that finding the best permutation

1Recall that such oracle, given any assignment to a subset of
the attributes, returns the conditional probability that the
target function is one, e.g., Pr[f = 1|x = 1, x7 = 0]

is hard. The proof is by a straightforward reduction from
Min-Sum Set Cover (see Section 1.3).

Theorem 2.2. Deciding if the optimal average cost of a
given clause f is at most K is NP-hard.

Given that the problem is NP-Hard, it is natural to seek
an approximation algorithm. A natural approximation algo-
rithm is Greedy, which selects the attributes in the permu-
tation one after the other. The next attribute selected is the
one that has the lowest marginal cost, i.e., µi = ci/pi, where
pi is the probability that xi = 1 given that all the attributes
in the prefix are zero. Using the ideas of Feige et al. [9],
we show that the Greedy algorithm is an 4-approximation
algorithm (The proof is a special case of Theorem 2.4).

Theorem 2.3. For any distribution D and any clause f ,
the expected cost of Greedy is at most 4 times the expected
cost of OPT.

In the learning setting we might know the distribution
only approximately. For this reason we consider a varia-
tion of algorithm Greedy, called Greedy

′. At each iter-
ation Greedy

′ receives estimates of the conditional proba-
bilities (rather than the exact conditional probabilities that
Greedy uses). Algorithm Greedy

′ first determines g(1),
the index of its first attribute and, in general, it deter-
mines g(k) after it has determined already g(1), . . . , g(k−1).
Let pk

j be the probability that xj = 1 given that the at-
tributes xg(1) through xg(k−1) evaluate to 0. Algorithm
Greedy

′ is parameterized by two parameters ε and γ. We
assume that when it determines g(k), Greedy

′ receives for
xi an estimate p̂k

i , such that: (1) if p̂k
i 6= 0 then p̂k

i ∈
[(1 − ε)pk

i , (1 + ε)pk
i], and (2) for any pk

i > γ/n we have
p̂k

i > 0. At phase k, Greedy
′ computes µ̂k

` = c`/p̂k
` , and

picks attribute x` with a minimal value µ̂k
` , and places it

in the k-th position in its permutation. To emphasis the
dependency of Greedy

′ on ε and γ we sometimes use the
notation Greedy

′(ε, γ) instead of Greedy
′. We say that

estimates p̂k
i which satisfy Conditions (1) and (2) above are

valid for Greedy
′(ε, γ).

We prove the following upper bound on the cost of the
permutation produced by Greedy

′.

Theorem 2.4. For any distribution D, the expected cost

of Greedy
′ is at most 4 (1+ε)

(1−ε)(1−2γ)
times the expected cost

of OPTD.

Proof. We use the following notation for a permutation
π. For an example e, let I(e, π) be the minimum j such that
eπ(j) = 1 We define: (1) wπ

i = Pr[I(x, π) = i] and w0 = 0.

(2) απ
i =
�i

j=1 wπ
i , (3) βπ

i = 1−απ
i = Pr[I(x, π) ≥ i+1], (4)

Cπ
i =

�i
j=1 cπ(j) and (5) D(S) = Pr[x ∈ S], where (1)-(4)

are defined for 0 ≤ i ≤ n.
Let g denote the permutation produced by Greedy

′ and
let opt denote the permutation of OPTD. For OPTD we de-
fine a step function h, such that O(y) = Copt

k =
�k

j=1 copt
j ,

where y ∈ [αopt
k−1, α

opt
k). Clearly the cost of OPTD is � 1

0
O(y)dy.

For Greedy
′, we define a function G such that for y ∈

[αg
k−1, α

g
k), G(y) = βg

k−1

cg(k)

w
g
k

. Again, it is easy to see that

the cost of Greedy
′ is � 1

0
G(y)dy. The crux of the proof is

to show that for every k, 1 ≤ k ≤ n,

O(1 − βg
k−1/2) ≥ G(1 − βg

k−1)
(1 − 2γ)(1 − ε)

2(1 + ε)
.

This implies that if we shrink G by a factor of 2(1+ε)
(1−2γ)(1−ε)

in the y dimension and by a factor of 2 in the x dimension
it fits underneath O from which the theorem follows.

Consider OPTD after it covered2 a 1 − βg
k−1/2 fraction

of the space (and has comulative cost O(1 − βg
k−1/2)). De-

note by S1 the 1 − βg
k−1/2 fraction of the probability space

that OPTD covers. Let S2 be the subset of S1 not covered
by {xg(1), . . . , xg(k−1)}. It follows that D(S2) is at least a
βg

k−1/2.
Denote by A the set of attributes xj whose residual prob-

ability, pk
j after Greedy

′ picked its first k − 1 attributes
is smaller than γ/n. Let S3 be the subset of S2 which is
covered by attributes from A. Since |A| ≤ n, and each
attribute in A covers at most γ/n of the remaining βg

k−1

fraction of the space that Greedy
′ does not cover with

its first k − 1 attributes (i.e. those examples for which
xg(1), xg(2), . . . , xg(k−1) are all zeros), we obtain that D(S3)
is no larger than βg

k−1 · n(γ/n) = βg
k−1γ. Let S4 = S2 − S3,

we have that D(S4) ≥ βg
k−1(1/2 − γ). Obviously since

D(S4) > 0 there must be an attribute xj whose residual
probability pk

j ≥ γ/n. In particular xg(k) is such an at-
tribute.

Let q = Pr[xg(1) = 0, . . . , xg(k−1) = 0]. The probability

pk
g(k) that xg(k) = 1 given that xg(1), xg(2), . . . , xg(k−1) are all

zeros is wg
k/q by the definitions of wg

k and q. So the residual
cost of xg(k) after Greedy

′ picked xg(1), xg(2), . . . , xg(k−1) is
cg(k)/(w

g
k/q). The optimal algorithm OPTD must also have

attributes 6∈ {xg(1), xg(2), . . . , xg(k−1)} ∪ A to cover S4. Let

xo be one such attribute and let pk
o the probability that xo

is one given that xg(1), xg(2), . . . , xg(k−1) are zero.
Since Greedy

′ picks an attribute with smallest estimate
of residual cost we know that the estimate that Greedy

′

had for the residual cost of xo was larger than the estimate
Greedy

′ had for the residual cost of xg(k) when it picked

its kth attribute. If p̂k
o is the estimate that Greedy

′ had
for the residual probability of xo and p̂k

g(k) is the estimate

that Greedy
′ had for the residual probability of xg(k) then

we have that
cg(k)

(1+ε)w
g
k

/q
≤

cg(k)

p̂k
g(k)

≤ co

p̂k
o
≤ co

(1−ε)pk
o

Rearranging the rightmost and leftmost sides we get that
(1−ε)pi

oqcg(k)

(1+ε)w
g
k

≤ co .

Summing up over all attribute xo that OPTD uses to cover

S4 we obtain that O(1 − βg
k−1/2) ≥ βg

k−1
(1−2γ)(1−ε)

2(1+ε)

cg(k)

w
g
k

=

G(1 − βg
k−1)

(1−2γ)(1−ε)
2(1+ε)

, since
�

o pk
oq ≥ βg

k−1
1−2γ

2
.

Note that Greedy is simply Greedy
′ with γ = 0 and

ε = 0, and therefore it has an approximation ratio of 4.

2.1 Read-Once DNF
We first show that the optimal permutation for computing

a Read-Once (R/O) DNF is a permutation on the terms. A
permutation of terms is a permutation of the attributes that
can be described as first a permutation of the terms and
then for each term a permutation of its variables. (We will
use this definition only for R/O DNF, in which case it is
well defined.) Surprisingly, the following lemma shows that
for any distribution and any set of costs there is an optimal
permutation which is a permutation of terms.
2We use terminology related to set cover here. By saying
that an algorithm “covers” some fraction p of the probability
space with a set of attributes Y , we mean that for p fraction
of the examples at least one attribute of Y is one.

Lemma 2.5. Let f be a R/O DNF and π a permutation.
There exists a permutation π′ which is a permutation of the
terms, whose cost on any input is at most the cost of π.

We can now extend Theorems 2.1 and 2.3 to R/O DNF.

Theorem 2.6. Let f be a function which is a R/O DNF.
Then, (1) For a product distribution P , there is a polynomial
time algorithm to compute the optimal permutation, and (2)
for any distribution P , there is a polynomial time algorithm
to compute a permutation whose expected cost is 4 times the
optimal permutation.

2.2 Small CNF and DNF
Assume that we are given a monotone function f that

has at most m terms in its DNF representation and at most
m clauses in its CNF representation. (We are given both
the CNF and the DNF description of the function.) We
assume uniform costs (i.e., ci = 1 for every i), and uniform
distribution D from which examples are drawn.

To formulate the upper bound, recall the definition in Sec-
tion 1.1: CER(f, x), when f(x) = 1 is the cost of the cheap-
est term of f which is one, and when f(x) = 0, CER(f, x) is
the cost of the cheapest clause of f which is zero.3 We show
how to achieve an average cost which is bounded by the av-
erage (over D) of CER(f, x) times O(ln m). Obviously the
optimal cost for x is at least CER(f, x) since the partial
assignment it observes must always form a certificate.

Theorem 2.7. Let f be a monotone function that can be
represented by both an m term DNF and by an m clause
CNF. For uniform costs there is an algorithm that evaluates
f with expected cost of O(ED[CER(f, x)] ln m).

Proof. Since f is monotone we can assume, without loss
of generality, that the DNF and CNF representations are
both monotone (i.e., consisting only of non-negated vari-
ables). The idea is that we create two programs, one assum-
ing that the function is one and the other assuming that
the function is zero. We interleave the two programs, and
show that the cost of the program with the correct assump-
tion is at most a factor O(ln m) from the expected value
of CER(f, x). At each iteration we evaluate two variables.
One that appears in the most terms (in the DNF) that were
not yet eliminated and the other that appears in the most
clauses (in the CNF) that were not yet eliminated.

Given an input x, assume that f(x) = 1 (the case f(x) = 0
is similar). To simplify the analysis, we assume that the
cost is 1 only when the variable evaluates to 1 and zero
otherwise. We denote this new cost function by cost1. (We
will overcome this assumption at the end of the proof.) Since
f(x) = 1, some term of f is one according to x. Let K
be the size of the smallest such term T ; i.e., CER(f, x) =
K. This implies that the K variables in T intersect all the
clauses of f . The argument proceeds in a way similar to the
analysis of the greedy algorithm for set cover; that is, we
first observe that there is a variable that appears in m/K
clauses. If the variable evaluates to 1 then we have cost 1 and
eliminate m/K clauses. If the variable is zero then we incur
no cost (and might not eliminate any clauses). Therefore,
after evaluating at moat K ln m variables to 1 we eliminate

3For uniform costs, the cheapest term is the one containing
the smallest number of attributes.

all the clauses. This shows that the cost which our algorithm
pays according to cost1 is no larger than CER(f, x) ln m.

Generalizing to a uniform cost function, we would like
intuitively to claim that about half of the variables that are
evaluated, turn out to be ones. Consider the i-th variable
that we evaluate. Given that the value of the function is
1 and any values for the other variables, we claim that the
probability that xi = 1 is at least 1/2. To see why this holds,
consider x1. We have two type of inputs for which f = 1:
either f(0y) = f(1y) = 1 or f(1y) = 1 and f(0y) = 0 (here
we use the fact that f is monotone). Since we assume that
the distribution is uniform, it is clear that the probability
that x1 = 1 given that f(x) = 1 is at least 1/2.

To complete the proof, note that since Pr[xi = 1 | f(x) =
1] ≥ 1/2 we obtain that for any strategy A to query the vari-
ables and any termination condition, ED[cost1(A)|f(x) =
1] ≥ (1/2)ED[cost(A)|f(x) = 1].

The case that the function is zero is similar (eliminating
the terms of the DNF, rather than the clauses of the CNF,
when an attribute is zero).

3. ADVERSARIAL ONLINE
In this section we consider learning in the adversarial on-

line setting. We start by presenting a lower bound, which
applies for the case where the target function f is a clause
(specifically, the OR of all n variables). We then, show an
almost matching upper bound that applies to all target func-
tions.

Theorem 3.1. Let the target function be f = x1∨· · ·∨xn

and a uniform cost (ci = 1, for all i). For any deterministic
online algorithm A for f there is an input sequence such that
the cost of A is at least n/4 times the cost of the best static
permutation.

Next, we show that sorting the variables according to
their cost (and using this permutation for all inputs), al-
most achieves the lower bound.

Theorem 3.2. Let f be a target function and π be a per-
mutation of the attributes according to the cost (from small
to large). Then, for any input x, the cost of π satisfies
cost(π, x) ≤ n · CER(f, x).

4. ONLINE DISTRIBUTION MODEL I:
UNKNOWN DISTRIBUTION

In this section, we address the case where the distribution
D is unknown and arbitrary while the function f , which
is a clause, is given. We assume that f(x) = 1 since if
f(x) = 0 every algorithm has to observe all attributes to
prove it. The basic approach is to sample from D, estimate
the residual costs of the attributes, and run Greedy

′ using
the estimates. However, since some of the attributes may
be much more expensive than others, we have to be care-
ful not to pay too much for learning parts of D which are
insignificant.

Consider an attribute xi. By sampling from the unknown
distribution D, we can compute an estimate, p̂i, of the prob-

ability pi
def
= PrD(xi = 1), as follows. Draw L examples from

D and check for each example if xi = 1. Let b be the num-
ber of examples for which xi = 1. If b > θ, for some fixed
threshold θ, we let p̂i = b/L. Otherwise we let p̂i = 0.

More specifically, let ε and δ′ be two parameters (to be

fixed). Set θ = 6 ln(3/δ′)

(ε)2
and L = 2nθ/γ; then, by Lemma 6.2,

with probability at least 1 − δ′ we have that for all i: (1) if
pi < γ

4n
then our estimate p̂i is zero, (2) if pi ≥

γ
n

then p̂i is
not zero and is within (1±ε) from pi, and (3) if γ

4n
≤ pi < γ

n

and p̂i 6= 0, then p̂i is within (1 ± ε) from pi.
4

Recall the offline algorithm Greedy
′(ε, γ) from Section 2.

After fixing the first k− 1 attributes xg(1), xg(2), . . . , xg(k−1)

in its permutation, g, the algorithm uses estimates p̂k
i on

the probabilities pi that xg(1), xg(2), . . . , xg(k−1) are all zeros
and xi is one, to choose its k-th attributes xg(k). We now
describe a straightforward algorithm that answers examples
drawn from D while computing estimates p̂k

i , as required by
Greedy

′, and converging to its permutation g. We call this
algorithm the Naive Learning algorithm (NL).

Algorithm NL maintains a sequence of attributes which
is a prefix of the permutation that it gradually constructs.
This prefix is constructed such that it is also a prefix that
Greedy

′(ε, γ) would have constructed, for some valid esti-
mates of the probabilities pk

i .
The prefix is initially empty. In general assume that the

prefix of NL consists of k−1 attributes after answering some
sequence of examples. For the next example, e, NL first
observes the attributes in the prefix. If NL hits an attribute
in the prefix which is one then NL stops there and reports
that f(e) = 1. Otherwise, if all attributes in the prefix are
zero then NL uses e to estimate pk

i for every attribute xi

not in the prefix. To do that (and find out the value of
f(e) at the same time) NL observes the value of each of the
remaining attributes in e. After L examples for which NL
observed all attributes not in its prefix, NL has estimates
for pk

i that valid for Greedy
′(ε, γ) with probability 1 − δ′.

That is, each estimate p̂k
i , with probability 1 − δ′, is either

0 if pi ≤ γ/n, or it is accurate to within (1 ± ε) relative
error. NL then picks the attribute with smallest residual
cost according to its estimates and adds it to its prefix.

Taking δ′ = δ/n32n and using the union bound we obtain
that with probability 1 − δ, NL’s estimates for all pk

i ’s are
valid for Greedy

′(ε, δ). The following theorem summarizes
the properties of NL, its proof is similar to the proof of
Theorem 4.2 and hence omitted.

Theorem 4.1. Let S = e1, . . . , eT be a sequence of ex-
amples to which we apply the algorithm NL. Let S′ be the
subset of S for which NL observes the attributes that are not
in the prefix (notice that, by the definition of NL, we have
|S′| ≤ nL). Suppose that we run NL on S with δ′ ≤ δ/n32n.
Then, with probability at least 1 − δ, the following hold.
(1) Let cpre(ej) be the cost paid by NL for observing at-
tributes in the prefix at the time in which it processed ej.

Then,
�T

j=1 cpre(ej) = T · 4(1+ε)
(1−2γ)(1−ε)

· (1 + ε)ED(OPTD),

where ED(OPTD) is the expected cost of OPTD on an ex-
ample drawn from D.
(2) The cost NL pays for observing additional attributes, for
examples in S′, is at most O(nL) times

�n
i=1 ci = O(ncmax),

where cmax is the cost of the most expensive attribute.

The weakness of this straightforward approach is that the
cost that NL pays on S′ (and therefore on the entire se-
quence) may be very large compared to the cost of OPTD

4In Lemma 6.2 use q = γ
2n

and F = θ. The number of
samples m is then equal to L.

on the particular sample or even compared to the expected
cost of OPTD on the distribution D. This is because we
may be observing an expensive attribute for about nL times
while OPTD may not observe it at all. To be able to relate
the learning cost to the cost of OPTD on the sample, we
describe an algorithm which we call the Greedy Learning
(GL) algorithm. The GL algorithm also uses a permutation
which starts with a prefix, that is also a prefix of Greedy

′.
However, in contrast with NL, when GL cannot resolve an
example with the attributes in its prefix, it does not ob-
serve all other attributes. Instead, GL carefully observes
attributes in its suffix one by one, in a particular order, to
avoid large cost. Even before defining GL precisely, to con-
trast its performance with the performance of NL we state
our main theorem.

Theorem 4.2. Let S = e1, . . . , eT be a sequence of exam-
ples when a round of GL ends, and let S′ be the subset of S
for which GL observed attributes that are not in the prefix
(as we shall see, from the definition of GL would follow that
|S′| ≤ n2L). Suppose we run GL on S with δ′ = δ/n32n.
Then, with probability at least 1 − δ, the followings hold:
(1) Let cpre(ej) be the cost paid by GL for observing at-
tributes in its prefix while processing ej. Then,�T

j=1 cpre(ej) ≤ T ·(1+ε)ED(Greedy
′(ε, γ)) ≤ T · 4(1+ε)

(1−2γ)(1−ε)
·

(1 + ε)ED(OPTD).
(2) The cost GL pays for observing additional attributes in
the examples of S′ is at most O(n2) times the cost paid by
OPTD on the examples in S′.

It is worthwhile to compare the theorem regarding NL
(Theorem 4.1) and that regarding GL (Theorem 4.2). The
main and most important difference is in the second guar-
antee. While NL has a guarantee of O(n2cmaxL) on its cost
for processing the set S′, algorithm GL has a guarantee of
O(n2) times the cost of OPTD to process S′. This is a cru-
cial difference, showing that GL is as good as OPTD, up to
a factor which is independent of the costs.

4.1 The Greedy Learning algorithm: GL
The Greedy Learning (GL) algorithm maintains a permu-

tation of the attributes partitioned into two subsequences
called prefix and suffix and one additional attribute in be-
tween the prefix and the suffix which is the currently explored
attribute. The order of attributes in the prefix is determined
by the algorithm. The attributes in the suffix are sorted by
their costs. Each attribute in the suffix is marked either as
“explored” or “unexplored”.

The GL algorithm progresses in phases, where each phase
is divided to rounds. In phase k, let Pk be the attributes
in the prefix, and let Sk denote the set of the remaining
attributes. At round j of this phase, the explored attributes
are Ek,j, and the currently explored attribute is ak,j , where
ak,j 6∈ Ek,j (the currently explored attribute does not change
during a round). The permutation πk,j in round j of phase
k has first the attributes in the prefix Pk, in the order that
they were added to the prefix, followed by ak,j followed but
the attributes in Sk \ {ak,j}, sorted according to their cost.

In phase 0, we have an empty prefix, i.e., P0 = ∅, and all
the attributes are marked “unexplored”. In the first round
(of phase 0) the currently explored attribute, a0,1, is the
cheapest attribute. The permutation π0,1 starts with a0,1

followed by the remaining attributes sorted by their cost.

In general, in round j of phase k, we use permutation πk,j

until we observe the currently explored attribute ak,j in L
examples; (where L, and θ are defined by fixing δ′, ε, and γ)
in which case round j terminates, ak,j is marked “explored”,
and Ek,j+1 = Ek,j ∪ {ak,j}. When round j terminates, we
first check the number of times b, that ak,j was true (out of
the L times it was observed). If b < θ, we estimate p̂k

i = 0;
otherwise, we estimate p̂k

i = b/L. We also set µ̂k
i = ci/p̂k

i to
be our estimate of the residual cost of attribute ak,j . This
completes a round.

Now we test if the phase terminates, or we should continue
to the next round of the same phase. We calculate the min-
imum among the residual costs of the explored attributes in
the phase, i.e., in Ek,j+1, denote it by ŵk,j = mini∈Ek,j+1 µ̂k

i .
We also calculate the minimum cost among the costs of all
unexplored attributes in the suffix, denote it by w′.

If ŵk,j > w′ then we set ak,j+1 to be the unexplored at-
tribute in the suffix with the cheapest cost, i.e., let ` =
arg mini∈Sk−Ek,j+1 ci, and ak,j+1 = x`. We continue to
round j + 1 of phase k.

If ŵk,j ≤ w′ we add to the prefix the explored attribute
with the smallest residual cost in the suffix. I.e., Pk+1 =
Pk ∪ {xa}, where a = arg mini∈Ek,j+1 µ̂k

i , and Sk+1 = Sk \
{xa}. This completes phase k, and we move to phase k + 1.
At the beginning of phase k + 1, we mark all elements that
are not in Pk+1 as “unexplored” and make the cheapest one
the currently explored attribute.

Algorithm GL simulates the algorithm Greedy
′, described

in Section 2, where at each iteration we try to avoid esti-
mating the pi’s of expensive attributes, when knowing they
cannot change the decision of Greedy

′. Specifically, at each
iteration we have estimates for pi’s of the explored attributes
in the suffix. If there are unexplored attributes in the suf-
fix when we add the next attribute to the prefix, then it
is guaranteed that, whatever the p̂i of those attributes are,
Greedy

′ could have taken the same decision.

4.2 The analysis of GL
We assume that we run GL on a sequence S = e1, . . . , eT

and after eT a round of GL ends. To establish the first part
of Theorem 4.2, we show that the prefix of GL is in fact a
prefix that could have obtained by Greedy

′(ε, γ), and we
also show that the cost of such prefix on S is close to T times
its expected cost on an example from D. Then, to establish
the second part of Theorem 4.2, we show that GL does not
observe attributes which are too expensive even for those
examples for which the attributes in the prefix are all zero.
Immediately from Lemma 6.2 we obtain that:

Lemma 4.3. Let S′ be a subset of S such that |S′| ≥ L.
Fix a set of attributes Y , and an attribute xi 6∈ Y . Let p the
probability that all attributes in Y are zero and xi = 1 for an
example drawn from D. Let p̂ be the fraction of examples in
S′ for which all attributes in Y are zero and xi = 1. Then
with probability 1−δ′, (1) if p̂ 6= 0 then p̂ ∈ [(1−ε)p, (1+ε)p],
and (2) for any p > γ/n we have p̂ > 0.

Combining this lemma with the union bound we obtain
the following lemma and its corollary.

Lemma 4.4. Fix δ′ = δ
n32n . Then with probability 1 − δ

in every round j of phase k, for every subset of attributes
Y , and an attribute xi 6∈ Y , the following hold: Let p the
probability that all attributes in Y are zero and xi = 1 for

an example drawn from D. Let p̂ be the fraction of examples
in round j of phase k for which all attributes in Y are zero
and xi = 1. Then with probability 1 − δ′, (1) if p̂ 6= 0 then
p̂ ∈ [(1 − ε)p, (1 + ε)p], and (2) for any p > γ/n we have
p̂ > 0.

Let c(ej), 1 ≤ j ≤ T , be the cost of GL for answering ex-
ample ej . We partition c(ej) into three components c(ej) =
cpre(ej) + ccur(ej) + csuf (ej). The first part cpre(ej) is the
cost paid by GL for observing attributes in the prefix while
processing ej . The second part ccur(ej) is the cost paid by
GL if it observed the currently explored attribute while pro-
cessing example ej , otherwise ccur(ej) = 0. The third part
csuf (ej) is the cost incurred by GL for observing attributes
in the suffix while processing ej . Let Epre =

�
j cpre(ej),

Ecur =
�

j ccur(ej), and Esuf =
�

j csuf (ej). We bound

Epre, Ecur, and Esuf in the following. The next lemma
bounds Epre. By combining it with Theorem 2.4, we estab-
lish the first part of Theorem 4.2.

Lemma 4.5. If we use GL with δ′ = δ/n32n then, with
probability 1− δ over the choice of S, we have Epre ≤ T (1+
ε)ED(Greedy

′).

Our last two lemmas establish the second part of Theo-
rem 4.2. Let Ecur =

�
k Ecur

k where Ecur
k is the contribu-

tion to Ecur of the cost of observing the currently explored
attribute for examples during phase k. Assume we explore
j(k) > 1 attributes during phase k. Then, the number of ex-
amples for which we observe the currently explored attribute
during phase k is b(k) = jL. Let xe(k) be the j(k)-th and
therefore the most expensive attribute that GL explores at
phase k. Then Ecur

k ≤ bce(k). The following lemma shows
that with probability at least 1−δ, for every phase k, OPTD

also pays at least (1− ε)2bce(k)/n2 to serve the examples in
phase k.

Lemma 4.6. Let B(k) denote the set of examples for which
we observe the currently explored attribute during phase k,
and let b(k) = |B(k)|. Let xe(k) be the most expensive at-
tribute which GL explores during phase k. Then, with prob-
ability at least 1 − δ, for every phase k, the cost of OPTD

during phase k is at least (1 − ε)2b(k)ce(k)/n2.

Proof. Recall that Pk denotes the prefix of the permu-
tation of GL in phase k. Let Dk be the distribution D con-
ditioned on examples for which all attributes in Pk are zero.
Consider using OPTD on Dk. Let xopt(k) be the cheapest

attribute that is one with probability at least 1
n

over Dk.
By Lemma 4.4, with probability 1 − δ, for every k, the

fraction of the examples in B(k) that are answered by xopt(k)

is at least (1 − ε) 1
n
. So the cost of OPTD, just on the

examples in B(k), is at least b(k)(1 − ε)copt(k)/n.
If ce(k) ≤ copt(k) the lemma follows. Otherwise we claim

that ce(k) ≤ ncopt(k)/(1 − ε). By the definition of our al-
gorithm if ce(k) > copt(k) then xopt(k) is explored before

xe(k). Since xopt(k) is true for a fraction ≥ 1/n of Dk then,
by Lemma 4.4, when our algorithm explores it estimates
its residual probability to be at least (1 − ε)/n. There-
fore the residual cost of xopt(k) after exploring it is at most
ncopt(k)/(1 − ε). It follows from the definition of our algo-
rithm that ce(k) ≤ ncopt(k)/(1 − ε) as otherwise we would
not explore it.

Last we bound Esuf . Notice that for each example j,
1 ≤ j ≤ T , such that csuf (ej) > 0, OPTD must also observe
an attribute in the suffix. This is since, by the definition of
GL, all attributes in the prefix and the currently explored
attribute at time j are zero. By Theorem 3.2, for each j such
that csuf (ej) > 0, the cost of OPTD to answer example j is
at least csuf (ej)/n. This establishes the following lemma.

Lemma 4.7. The cost Esuf is at most n times the cost of
OPTD on S′.

5. ONLINE DISTRIBUTION MODEL II:
UNKNOWN TARGET FUNCTION

In this section, we assume that the target function f is a
monotone clause which is not known to the algorithm, and
that the distribution from which examples are drawn is a
product distribution D, which is given to the algorithm. At
each time step t, our online algorithm specifies a hypothesis
ht and a way to evaluate it on the input zt (which is drawn
from D). At the end of each step, the algorithm observes
the correct value of the target function, i.e., f(zt). When
evaluating the performance of an online algorithm, there are
two different measures: the first measure is the number of
mistakes, i.e., |{t | ht(zt) 6= f(zt)}|, and the second measure
is the average cost per example. (In our setting ht will also
be a monotone clause.)

There is a clear tradeoff between the two measures. An
extreme trivial solution, is not to observe any attribute and
output a random guess! The cost is zero but the error rate is
high (half). In the other extreme, one can use the best learn-
ing algorithm for the class in question (monotone clauses, in
our case) regardless of the cost of observing the examples.
In this section, we aim at getting a tradeoff between the two
extremes. Moreover, we would like our number of mistakes
to be independent of the number of time steps (specifically
it will be O(n), where n is the number of variables, which is
optimal) while keeping the cost near optimal.

Before describing our algorithm, we describe a standard
procedure which is widely used in online learning of clauses.
The procedure Elim(zt, ht) is performed when f(zt) = 0
and ht(zt) = 1. In such a case Elim(zt, ht) returns the set of
variables in the clause ht which are TRUE, i.e., Elim(zt, ht) =
{xi ∈ ht | zt

i = 1} (and we say that Elim is applicable). Note
that we are guaranteed that the variables in Elim(zt, ht) are
not in the target function f . This implies that we can “elim-
inate” any such variable. Clearly, the maximum number of
times we can use Elim is n.

We assume first that our online algorithm Online(q, D)
receives as an input, in addition to the product distribu-

tion D = (p1, . . . , pn), also the probability q such that q
def
=

Pr[f = 1]. Let Xt be the set of variables that have not
been eliminated before time t. (Initially X1 includes all n
variables.) To specify ht, let xi1 , . . . , xi`

be the variables in
Xt sorted by increasing value of µij

= cij
/pij

(break ties

arbitrarily)5. Let Ht
k,r

def
= ∨k−1

j=1xij
∨ (xik

∧ Br(r)), where
Br(r) is a Bernoulli random variable whose probability of
1 is r (and the probability of 0 is 1 − r). The evaluation
of Ht

k,r is done by observing the variables xi1 to xik−1 in

order. If any of these variables is 1 then Ht
k,r terminates

5It is assumed, wlog, that pij
> 0; otherwise, the variable

xij
can be ignored.

with output 1. If they are all zero then it flips a coin with
bias r. If the coin comes up 1 it observes xik

and returns
its value and otherwise it returns zero. The hypothesis ht is
the unique Ht

k,r such that Pr[Ht
k,r = 1] = q.

Lemma 5.1. For any t, there is a unique pair (k, r) such
that Pr[Ht

k,r = 1] = q.

An online algorithm is balanced if, at every time step t,
we have Pr[f = 1] = Pr[ht = 1]. (Algorithm Online(q, D)
is balanced by definition.) For a balanced online algorithm,
given that at time t a mistake occurred, i.e., f(zt) 6= ht(zt),
the probability that Elim(zt, ht) is applicable is exactly 1/2.
This implies that the expected number of mistakes is O(n).

Claim 5.2. The expected number of mistakes of a bal-
anced online algorithm is at most O(n).

Let OPT(f, D) be the optimal evaluation of f , with re-
spect to a distribution D. (Recall that, by Lemma 2.1, when
D is a product distribution then the optimal evaluation sorts
the variables in f according to µi = ci/pi.) The next lemma
bounds the expected cost of Online(q, D) at any time t.

Lemma 5.3. Let D be a product distribution, and let ht =
Ht

k,r be such that Pr[f = 1] = Pr[ht = 1]. Then,

E[cost(OPT(f, D))] ≥ E[cost(ht)].

Proof. To simplify notation, assume that the variables
xi1 , . . . , xi`

in Xt when sorted by increasing µij
, are in fact

x1, . . . , x`. That is ht = Ht
k,r = ∨k−1

j=1 xj ∨ (xk ∧ Br(r)). We

can write the expected cost of ht as,

E[cost(ht)] =
k−1�
i=1

ci

i−1�
j=1

(1 − pj) + rck

k−1�
j=1

(1 − pj)

=

k−1�
i=1

µipi

i−1�
j=1

(1 − pj) + rµkpk

k−1�
j=1

(1 − pj) .

We can visualize E[cost(ht)] as an integral of a step function
η(x), whose values are µi. More precisely, let q0 = 0, and let

qm =
�m

i=1 pi�i−1
j=1(1− pj), for 1 ≤ m ≤ k. Note that qm is

the probability that one of the variables x1, . . . , xm is one.
For x ∈ (qi−1, qi], where 1 ≤ i ≤ k − 1, we have η(x) = µi;
for x ∈ (qk−1, qk−1 + r(qk − qk−1)], we have η(x) = µk; and
for x ∈ (qk−1 + r(qk − qk−1), 1], we have η(x) = 0. This

implies that � 1

0
η(x)dx = E[cost(ht)].

Similarly, we can write the expected value of the opti-
mal evaluation of f as an integral of ηf (x), which is a step
function defined as η(x) but with respect to OPT(f, D).
Since Pr[ht = 1] = Pr[f = 1], we have ηf (x) 6= 0 for
any x such that η(x) 6= 0. Furthermore, since Xt con-
tains all the variables in f , and both ht and the optimal
evaluation of f order their variables by increasing value
of µi, it follows that for every x such that η(x) 6= 0 we
have η(x) ≤ ηf (x). Thus, η(x) ≤ ηf (x) for every x and
E[cost(ht)] ≤ E[cost(OPT(f, D))].

The following theorem now follows from Claim 5.2 and
Lemma 5.3.

Theorem 5.4. Let D be a product distribution. The ex-
pected number of mistakes of Algorithm Online(q, D) is O(n)
and at any time t we have E(cost(ht)) ≤ E[cost(OPT(f, D))],
where ht is the hypothesis of Online(q, D) at time t (and
its evaluation order). (The expectation is over an example
drawn from the product distribution D.)

Now, we extend the result to the case where q = Pr[f = 1],
the probability that the target function is one, is unknown
to the algorithm. We modify the algorithm and its analysis
and show that, the same goal can be achieved with a slight
increase in the cost, and O(n log n) mistakes.

The algorithm ON approx(ε, δ, D) receives as a param-
eter ε ∈ (0, 1/4], a confidence parameter 0 < δ < 1, and a
product distribution D. The algorithm will try to learn a
monotone clause f from examples drawn from D. The pa-
rameter ε controls the tradeoff between the number of mis-
takes that ON approx(ε, δ, D) makes to its expected cost.
For larger ε we will make less mistakes but the cost would
be larger relative to the optimal cost. The parameter δ is
the probability that ON approx(ε, δ, D) would not behave
as we expect (“fail”). Specifically, with probability 1 − δ
ON approx(ε, δ, D) will indeed converge to the function f
if given enough examples from D, while making at most
O(n

ε2
log(n

δ
)) mistakes with expected cost which is larger

than the optimal expected cost by at most a factor of (1+ε).
The algorithm ON approx(ε, δ, D) runs in phases and

maintains a set X of variables that have not been elimi-
nated. At phase k, we have a hypothesis hk which is used
throughout this phase, and the evaluation of hk is done by
sorting the variables that it contains according to µi = ci/pi.
We start the first phase with h1 = ∅. Phase k terminates in
one of two ways:
(1) There is a mistake on an example x where f(x) = 0 and
hk(x) = 1. We call such a mistake an eliminating mistake
since ELIM(x, hk) will eliminate at least one variable from
hk. We call a phase that terminates due to an eliminating
mistake an eliminating phase.

When an eliminating phase k terminates with an elim-
inating mistake x then we set X = X \ Elim(x, hk) and
hk+1 = hk ∩ X.
(2) During phase k, there has been α = (γ/ε2) log 4n/δ mis-
takes where f(x) = 1 and hk(x) = 0 (where ε = ε/16 and
γ ≥ (1 + ε) is a fixed constant). We call such a phase a
growing phase.

We then proceed to phase k + 1. Consider a growing
phase k that terminates. Let Lk be the total number of
steps in phase k and q̂k = α/Lk. Let Zk = {xi ∈ X | pi ≤
(1+ ε)q̂k/Pr[h = 0]}\hk . If Zk is empty then the algorithm
continues with hk+1 = hk (we will show that this occurs
with negligible probability). If Zk is not empty then let
xik+1 = arg minxi∈Zk

µi = ci/pi. We set hk+1 = hk ∨ xik+1

and proceed to phase k + 1.
Clearly there are at most n eliminating phases since, af-

ter each such phase, we eliminate at least one variable that
cannot get back into h. We say that a growing phase k suc-
ceeds if Zk 6= ∅ and thereby hk � hk+1. Clearly, there are at
most n growing phases that succeed. We will show that with
probability 1 − δ all growing phases succeed and therefore
there are at most 2n phases altogether (Theorem 5.10).

Once we establish that with probability 1 − δ there are
only 2n phases, by the definition of the algorithm, it makes
at most O(nα) = O(n

ε2
log(n

δ
)) mistakes.

We focus now on a particular phase k. Denote by Mk the
event that we obtain a mistake; that is, the event that for
an example x drawn from D, f(x) 6= hk(x). Denote by Mk

e

the event that f(x) = 0 and hk(x) = 1, in which case we say
that x is an eliminating example (recall that if this event
happens then the phase ends with an elimination). Denote
by Mk

ne the event that f(x) = 1 and hk(x) = 0. When

we focus on a particular phase k, we sometimes drop the
superscript k when it is clear from the context and use M ,
Me, and Mne to denote the three events.

Our next lemma shows that if there is a non-negligible
probability of getting an eliminating mistake in a phase,
then indeed the phase is likely to end with an elimination.

Lemma 5.5. If Pr[Mk
e | Mk] ≥ ε2 then with probability at

least 1 − δ/4n phase k ends with an elimination.

We say that phase k is heavy if Pr[Mk
e | Mk] ≥ ε2; other-

wise, phase k is light. Lemma 5.5 asserts that a heavy phase
is likely to be eliminating. Specifically,

Lemma 5.6. With probability 1 − δ/2, all heavy phases,
in the first 2n phases, are eliminating phases.

We focus now on a light growing phase and show that it
is likely to succeed. Since in a light phase Pr[Me | M] ≤ ε2,
it follows that the probability of a mistake (i.e., the event
M) in such a phase is similar to the probability of the event
Mne.

Specifically, let k be a light phase and let p = Pr[Mk],
pne = Pr[Mk

ne], and pe = Pr[Mk
e]. Since the phase is light,

we have (1 − ε2)p ≤ pne ≤ p and pe ≤ ε2p ≤ ε2. Let
q = Pr[Mne | Me], where Me is the event that the ex-
ample is not eliminating. Since Mne ⊆ Me, we get q =
Pr[Mne]/Pr[Me] = pne/(1 − pe). Combining the last in-
equalities,

(1 − ε2)p ≤ pne ≤ q =
pne

1 − pe
≤

pne

(1 − ε2)
≤

p

(1 − ε2)
, (1)

and so

(1 − ε2)q ≤ p ≤
q

1 − ε2
≤ (1 + 2ε2)q. (2)

Recall that q̂k = α/Lk, where Lk is the length of the
phase. The following lemma shows that q (and therefore
also p and pne) are close to q̂k with high probability.

Lemma 5.7. Let k be a growing phase then with probabil-
ity 1 − δ/2n, |q − q̂k| ≤ εq̂k.

Equations (1) and (2), and Lemma 5.7 imply the following
corollary

Corollary 5.8. Let k be a light growing phase. Then,
with probability 1 − δ/2n, for ε ≤ 1/4, |p − q̂k| ≤ (1 − 2ε)
and |pne − q̂k| ≤ (1 − 2ε).

The next lemma guarantees that, with probability 1 −
δ/2n, each light growing phase indeed succeeds.

Lemma 5.9. With probability 1− δ
2n

, in every light grow-
ing phase k we have V ⊂ Zk, where V is the set of variables
in f and not in hk.

Proof. Let g be the clause of the variables in V and
xi ∈ V . We have that

pne = Pr[f(x) = 1, hk(x) = 0] = Pr[g(x) = 1, hk(x) = 0]

= Pr[g(x) = 1] Pr[hk(x) = 0] ≥ pi Pr[hk(x) = 0] .

By Corollary 5.8, pne ≤ (1 + ε)q̂k, with probability 1 −
δ
2n

. (Note that this holds for a phase, independently of any
particular xi ∈ V .) So, for every xi ∈ V , we have

pi ≤ (1 + ε)q̂k/Pr[hk(x) = 0] ,

with probability 1− δ
2n

, and therefore xi ∈ Zk, with proba-

bility 1 − δ
2n

.

The following theorem states that indeed, with probability
1 − δ, our algorithm has at most 2n phases.

Theorem 5.10. For any product distribution D, algorithm
ON approx(ε, δ, D), with probability at least 1 − δ, termi-
nates after at most 2n phases.

Last we prove a bound on the cost of the algorithm.

Lemma 5.11. With probability 1− δ, for any phase k, the
expected cost of hk is at most (1 + 16ε)OPT(f, D).

Proof. The statement clearly holds for h1. We prove
that, at the end of a light growing phase k, the statement
holds for hk+1 with probability 1− δ/2n.6 Since after a ter-
minating phase the cost only decreases, and with probability
1 − δ/2 we have only terminating phases and light growing
phases the lemma would follow.

Note that pe = Pr[Me] = Pr[Me|M] Pr[M]. Since the
phase is light then, by Corollary 5.8, with probability 1 −
δ/2n, we have p = Pr[M] ≤ (1+2ε)q̂k, and pne ≥ (1−2ε)q̂k.
So pe = Pr[Me|M] Pr[M] ≤ ε2(1 + 2ε)q̂k ≤ εq̂k, for ε ≤ 1/4.
Therefore,

Pr[f(x) = 1] − Pr[hk(x) = 1] = pne − pe

≥ ((1 − 2ε) − ε)q̂k ≥ (1 − 3ε)q̂k.

Since we select xik+1 such that Pr[xik+1 = 1] ≤ (1+ε)q̂k

Pr[hk(x)=0]
,

we have Pr[hk+1(x) = 1] ≤ Pr[hk(x) = 1] + (1+ ε)q̂k. Con-
sider

h′ =
1 − 3ε

1 + ε
hk+1 +

4ε

1 + ε
hk.

For h′ we have that Pr[h′(x) = 1] ≤ Pr[f(x) = 1]. Con-
sider the set of variables hk ∪ Zk, then by Lemma 5.9 both
h′ and f are subsets of it, and h′ is in fact H

k+1, 1−3ε
1+ε

on

that set. Therefore, by an argument as in the proof of
Lemma 5.3, we have that E[cost(h′)] ≤ E[cost(f)]. On the
other hand, E[cost(h′)] ≥ 1−3ε

1+ε
E[cost(hk+1)]. Therefore,

E[cost(hk+1)] ≤ (1 + 16ε)E[cost(f)], for ε ∈ (0, 1/4].

The following theorem summarizes this section.

Theorem 5.12. For any product distribution D and any
clause f , with probability 1 − δ, the number of mistakes
of ON approx(ε, δ, D) is at most O(nα) = O(n

ε2
log(n/δ))

and, at any time t we have E[cost(ht)] ≤ (1+ε)E[OPT(f, D)].

6. REFERENCES
[1] D. Angluin and L. G. Valiant. Fast probabilistic

algorithms for Hamiltonian circuits and matchings.
JCSS, 18(2):155–193, April 1979.

[2] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and
J. Widom. Adaptive ordering of pipelined stream
filters. In SIGMOD, 2004.

[3] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H.
Shachnai, and T. Tamir. On chromatic sums and
distributed resource allocation. Inf. Comput.,
140(2):183–202, 1998.

[4] A. Bar-Noy, M. M. Halldórsson, and G. Kortsarz. A
matched approximation bound for the sum of a greedy
coloring. IPL, 71(3-4):135–140, 1999.

6The dependency is on the same event that guarantees that
the phase succeed.

[5] M. Charikar, R. Fagin, V. Guruswami, J. Kleinberg,
P. Raghavan, and A. Sahai. Query strategies for priced
information. In 32nd STOC, pages 582–591, 2000.

[6] E. Cohen, A. Fiat, and H. Kaplan. Associative search
in peer to peer networks: Harnessing latent semantics.
In Proceedings IEEE INFOCOM , 2003.

[7] O. Etzioni, S. Hanks, T. Jiang, R. M. Karp,
O. Madani, and O. Waarts. Efficient information
gathering on the internet. In FOCS, 234–243, 1996.

[8] O. Etzioni, S. Hanks, T. Jiang, and O. Madani.
Optimal information gathering on the internet with
time and cost constraints. SIAM J. Comput.,
29(5):1596–1620, 2000.

[9] U. Feige, L. Lovász, and P. Tetali. Approximating
min-sum set cover. In APPROX, 94–107, 2002.

[10] J. M. Hellerstein and M. Stonebraker. Predicate
migration: optimizing queries with expensive
predicates. In SIGMOD, 267–276. ACM Press, 1993.

[11] A. T. Kalai and S. Vempala. Efficient algorithms for
online decision problems. In COLT, 26–40, 2003.

[12] N. Littlestone. Learning when irrelevant attributes
abound: A new linear-threshold algorithm. Machine
Learning, 2:285–318, 1988.

[13] D. J. Lizotte, O. Madani, and R. Greiner. Budgeted
learning of naive-bayes classifiers. In UAI, 378–385,
2003.

[14] O. Madani, D. J. Lizotte, and R. Greiner. Active
model selection. ICML, 2004.

[15] K. Munagala, S. Babu, R. Motwani, and J. Widom.
The pipelined set cover problem. ICDT, 2005.

[16] L. G. Valiant. A theory of the learnable.
Communications of the ACM, 27(11):1134–1142, 1984.

Appendix: Concentration Bounds

For our analysis in Section 4 and 5 we need the following
version of the Chernoff bound [1].

Theorem 6.1. Let X1, . . . , Xm be i.i.d. {0, 1} random
variables, where E[Xi] = p. Let b =

�m
i=1 Xi. Then,

1. For all β ∈ (0, 1] we have Pr[b ≤ (1−β)pm] ≤ e−β2pm/2

2. For all β ∈ (0, 1] we have Pr[b ≥ (1+β)pm] ≤ e−β2pm/3

3. For all β ≥ 1 we have Pr[b ≥ (1+β)pm] ≤ e−β2pm/(2+β)

4. (combining the above 2 and 3) For all β > 0 we have

Pr[b ≥ (1 + β)pm] ≤ e−βpm/3

An immediate consequence we obtain the following lemma.

Lemma 6.2. For q ∈ [0, 1] and F ≥ 0 let m = F/q. Let
X1, . . . , Xm be i.i.d. {0, 1} random variables, where E[Xi] =
p. Let b =

�m
i=1 Xi and p̂ = b/m. Then, for any ε ∈ (0, 1),

with probability 1 − 4e−ε2F/6,

1. If p ≥ 2q then b ≥ F .

2. If p ≤ q/2 then b < F .

3. If p ≥ q/2 then p̂ ∈ [(1 − ε)p, (1 + ε)p].

