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Abstract

We show that for any radio network there exists a schedule of abroadcastwhose time is
O(D+ log5n), whereD is the diameter andn is the number of nodes. (This result implies an optimal
broadcast to networks withD =Ω(log5n).) We present a centralized randomized polynomial time
algorithm that given a network and a source, outputs a schedule for broadcasting the message from
the source to the rest of the network.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The importance of radio communication networks is increasing. While in the past radio
networks were used mainly for military applications today the focus shifts to civilian
applications such as cellular phones and wireless local area networks (LAN). One of
the main advantages of radio communication is the relative small investment in a rigid
infrastructure. In addition, radio networks allow mobile users, a feature which is crucial in
many applications. In this paper, however, we deal with multihop radio networks for which
the topology is fixed.

One of the basic tasks in radio networks is broadcast. Broadcast is the dissemination
of a message from a source node to all the nodes in the network. Broadcast is used
for checking that a station exists (e.g., in a wireless LAN), propagating topological
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information, etc. While such tasks exist in other types of networks, the lack of physical
connection, and the user mobility, makes the broadcast a crucial task for radio networks.
The transmission media of a radio network is simply the air, which is a shared media. As
such it suffers from the collision effect, namely, when two neighboring nodes of a station
transmit a message simultaneously, then neither of the messages is received at the station.

The design of broadcast protocols for a radio network is well studied and various
algorithms have been proposed. We will review here some of the previous works, with an
emphasis on works with a theoretical motivation and proven results. In order to compare
the various results it would be helpful to use the parametersn for the number of nodes in
the network andD for the diameter of the network.

The early works introduced distributed and centralized algorithms that compute
a schedule for broadcast in a radio network [12,13] and their time complexity is at least the
maximum node degree, which can beΩ(n), independent ofD. The more recent work can
be divided into the following categories:

(1) Centralized(each node needs to know the topology of the entire network). A cen-
tralized deterministic polynomial time algorithm for scheduling a bipartite graph in
O(log2n) time is given in [14], where they also extend this result to a general net-
work by dividing the graph into levels (according to their distance from the source)
and treats each pair of consecutive levels as a bipartite graph, showing a schedule
of O(D log2n) time. This is optimal for networks with constant diameter, due to the
lower bound in [1].

(2) Distributed(only the knowledge of the topology local to each node is needed). These
algorithms can be divided into:
(a) Deterministic protocols. A generalΩ(D logn) lower bound is proven in [9], even

for the case whereD =Ω(n), while a trivial upper bound isO(n2). In a sequence
of works [10,11,15,17] the upper bound has been improved toO(n log2n) [15].
Other deterministic protocols include [8,22].

(b) Randomized protocols. The work of [7] gives a distributed randomized protocol
which works in radio networks where a node has no topological knowledge of the
network, not even about its neighbors. The expected time of the broadcast was
improved toO(D logn + log2n). This was proved to be optimal in [20] where
it was shown that for any distributed algorithm, which does not depend on the
topology of the network, there exists a graph for which the algorithm runs in
expected timeΩ(D log(n/D)).

In this work we seek bounds on the length of the optimal schedule. A lower bound
of Ω(D) follows trivially, since the message needs to reach the furthest node from the
source. We study the question whether for any graph thereexistsa schedule that runs in
timeO(D). From [1] we know that this cannot be true in general, since there are graphs of
O(1) diameter that requireΩ(log2n) time.

We show that for any graph, withD = Ω(log5n), there is a schedule ofO(D) time
units. This resolves the open problem for almost the entire range ofD. By [1], for D =
o(log2n) there are graphs which requireΩ(log2n) time. We show that forD =Ω(log5n),
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there is always a schedule of timeO(D). For the range of diameters betweenΩ(log2n) and
O(log5n) it remains an open problem whether there exists anO(D) broadcast schedule.

Our result in constructive in the sense that we give a randomized algorithm that com-
putes it in expected polynomial time. (For computing the schedule using a deterministic
polynomial time algorithm we can derive a slightly worse result ofO(D+ log6n).)

In Section 2 we define the model and formalize the problem of broadcast. The overview
of the algorithm is given in Section 3. In Section 4 we present the method of constructing
the clusters with the desired properties. In Section 5 we define the clusters graph and build
the clusters tree. The main algorithm including the specific protocols for the nodes is
presented in Section 6. In Section 7 we prove the correctness and the time complexity
of the schedule and in Section 8 we bound the computation time needed to construct the
desired schedule. Finally, Appendix A describes the modification of the sparse partition
which is used by the algorithm.

2. The model

We model a multi-hop radio network as an undirected graphG(V,E), where an
edge represents the ability of two nodes to directly communicate. We assume that the
communication takes place in synchronous time-slots, this implies that all the nodes share
a global clock, and messages are sent only at clock ticks.

We formalize the restriction of a radio network as follows: A processor receives
a message at a certain time slot only if exactly one of its neighbors transmits at that time
slot. (If more than one neighbor transmits, the processor does not receive any information.)

A scheduleof a node defines for it in which time slots to transmit. A schedule of
a network is composed from a schedule for each node.

TheBroadcast problemis to send a single message from a given node, calledthe source,
to all the other nodes in the graph. A schedule solves the broadcast problem if when the
schedule terminates every node in the network has received the message.

The input to the scheduling algorithm is a connected graphG(V,E) and a nodes ∈ V
(the source), and the output is a schedule that solves the broadcast problem.

3. Algorithm overview

We wish to construct a schedule for broadcasting a message from the source node to
the rest of the nodes in the graph. The intuition behind our algorithm is the following: We
want the message to proceed “fast” to “distant” parts of the network. Once there is a copy
of the message “near” each node, we can complete the broadcast easily.

Our algorithm begins by dividing the graph intox super-levels, according to their
distance from the source, i.e., each super-level hasD/x levels. (The value of the parameter
x is determined through the analysis.)

Our work uses the idea ofnetwork partition[2,4,21] within each super-level. For each
super-level we define clusters such that
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(1) each cluster has a relatively small diameter,
(2) the union of the clusters covers the super-level, and
(3) the clusters graph can be colored byO(logn) colors. (The clusters graph is obtained

by treating each cluster as a node, and introducing an edge between two nodes if in the
original graph there is some edge that connects nodes from the corresponding clusters
or if they share a common node.)

The objective is to send the message to a given node in each cluster. Once this is
achieved, the other nodes in the cluster, which are close to such a recipient, obtain the
message from it (using a broadcast protocol [7]). On the clusters’ graph we build a directed
spanning tree of depthx, where the directions are from lower to higher original BFS levels.
Each node assigns a high priority to one of its sons and a low priority to the others. The
priorities are assigned in such a way that a path from the source to a cluster contains
at mostx edges connecting a node with a low-priority son. Also, the message arrives at
a high priority son after at mostO(D/x) time units, (since each path of the spanning tree
of the cluster graph contains at most one cluster from each super-level). Thus the total
delay of the high priority isO(D), which accomplishes the task of “quickly” propagating
the message to “distant” areas.

Having set up the graph in this manner, we can now build a schedule which is composed
of three processes. These three processes are performed alternately, on different clock ticks.

During the first process, calledBroadcast-Through, the message is propagated from
the first node that receives the message within the cluster (referred to asmessenger), to
a unique node which we pick in advance (referred to as thechosen representative) that
forwards the message to a cluster in the following super-level—the cluster with the highest
priority. The path taken in this process consists ofD/x nodes lying on consecutive BFS
levels. The paths are assigned colors in such a way that (1) two paths of the same color
cannot interfere with one another, and (2) paths with different colors can be pipelined so
that they do not interfere with one another. The total time complexity of the Broadcast-
Through process isO(D + x logn).

The second process is calledBroadcast-All. Its purpose is to deliver the message from
the messenger to all the nodes in its cluster. (The running time of the Broadcast-All is
O(D′ logn′ + log2n′), whereD′ is the diameter of the cluster andn′ is the number of
nodes in the cluster.) After this the message is forwarded to all the neighboring clusters in
the following super-level.

We prove that in order to reach any clusterC, the message is delayed by at most
O(logn) Broadcast-All processes which occur in ancestor clusters ofC. This is the main
reason why the time of the Broadcast-All process is negligible in the overall cost, when the
diameter is sufficiently large (i.e.,D =Ω(log5n) andx = log3n).

The third process is calledSuper-Level-to-Super-Leveland its purpose is to transfer the
message between clusters of adjacent super-levels. Its time complexity isO(log2n).

4. Building the clusters

A central notion in our algorithm is the notion of a cluster. We divide the graph into
clusters, which may be overlapping. Then, the broadcast is done on the graph of clusters.
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Definition 1. We define all nodes with the same distance from the source as aBFS level,
and we denote BFS levelj by lj = {v | dist(source, v)= j }.

Definition 2. We partition the graph to super-levels ofD/x levels, where we denote super-
levelGi byGi = {v | v ∈ lj , ((i−1) ·D/x)+1 � j � i ·D/x}. Given the super-levelGi ,
the lowestlevel ofGi is l((i−1)D/x)+1, and thehighestlevel ofGi is li·D/x . (Note thatGi
is not necessarily connected.)

Our algorithm of building the clusters is applied to each super-level separately and
consists of two stages:

(1) Defining pre-clusters in each super-levelGi . There exists one pre-cluster for each node
of the lowest level ofGi . (This procedure is explained in Section 4.1.)

(2) Merging the pre-clusters into clusters that have the desired properties. (This procedure
is explained in Section 4.2.)

4.1. Defining the pre-clusters

The pre-clusters of super-levelGi are defined as follows: Consider a super-level as
a directed graph, in which the edges are all directed from lower to higher levels. In such
a setting a pre-clusterS(i)u includes all the nodes reachable fromu.

This construction guarantees that each node at the highest level has an ancestor at the
lowest level, such that any shortest path between them is fully contained within the pre-
cluster.

4.2. Constructing the clusters

When building the clusters (as unions of pre-clusters) we have two major goals. The
first is to have clusters with a diameter as small as possible, so that a message can be
broadcast fast from one node to the rest of the nodes in the cluster. The second goal is to
be able to color the clusters with a small number of colors. In clusters with the same color
the broadcast can be performed in parallel. We like to minimize the number of coloring
to increase the parallelism. Note that clusters might overlap, however two clusters that
overlap are colored with different colors. The following theorem is a minor modification
of Theorem 2.1 in [21]. (Appendix A contains the full proof of the theorem.)

Theorem 3. For any graphH(V,E) and any pre-clustersS1, . . . , Sr , Si ⊂ V , such that
the diameter of the subgraph induced by the nodes ofSi is at most�, andr � n, there exist
clustersC1, . . . ,Ck with the following properties:

(1) Each clusterCj is a union of pre-clusters, i.e.,Cj = Sj1 ∪ · · · ∪ Sjr .
(2) Each pre-clusterSr is a member of at least one clusterCj .
(3) The diameter of each clusterCj is at most� · 2 logn, and
(4) There is a coloring of the clustersCj with logn� colors.

In addition, the clusters can be constructed from the pre-clusters inO(n3) time.
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By applying the above theorem on the pre-clusters of a graphGi , we get clustersC(i)j .
Next we show a basic property of the clusters we create. Namely, that the cluster will
contain, for any node at the highest level, a path to a node in the lowest level.

Definition 4. For two nodes,u ∈ li andv ∈ lj , i < j , let path(u, v) be any shortest path
betweenu andv in the graph in which each node is at the successive level of the previous
one.

It follows from the definition that path(u, v), for u ∈ li andv ∈ lj , consists ofj − i + 1
nodes. Notice also that path(u, v) does not always exist and it is not necessarily unique.
Since a cluster is a union of pre-clusters we derive the following lemma.

Lemma 5. Consider a super-levelGi , and a clusterC(i)j . For each nodev ∈ C(i)j ,

at the highest level, i.e.,v ∈ li·D/x , there is a nodeu ∈ C(i)j , at the lowest level, i.e.,

u ∈ l((i−1)·D/x)+1, such that there exists apath(u, v) for whichpath(u, v)⊆ C(i)j . (We refer
to such au as theancestorof v.)

5. The clusters graph

After building the clusters in all the super-levels, we proceed to define the clusters graph.
The nodes of the graph are the clusters, and two nodes are connected by an edge if the
corresponding clusters have an edge connecting them or if there is a mutual node.

The general idea is to forward the message between the clusters of successive super-
levels. Each cluster chooses asender—a unique cluster in the preceding super-level—from
which it will receive the message.

The procedure of picking the senders is applied to the clusters of each super-level,
starting from the clusters of the last super-level,Gx , and continuing towards the clusters
of the first super-level,G1. Each clusterC(i)j must first know all the clustersC(i+1)

r that

have chosen it as their sender, before it decides which clusterC
(i−1)
k to choose as its own

sender. We define a subgraph of the clusters graph which is a directed tree where an edge
fromC(i)j toC(i+1)

r indicates thatC(i+1)
r choseC(i)j as its sender.

Then, we start the processing of super-levelGi . For each clusterC(i+1)
r , from super-

levelGi+1, there is a unique cluster senderC(i)j in which there is a unique node which is
its representativein the highest level ofGi . This means that when we consider a cluster
C
(i)
j , some of its nodes at the highest level may be chosen by clusters from super-level

Gi+1. Those clusters would be called thesonsof C(i)j . We apply the following series of

steps to clusterC(i)j .

(1) The clusterC(i)j determines its rank according to the rank of its sons (which are clusters
in the following super-level that chose it as a sender) using the ranking procedure
which is described in Section 5.1.
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Fig. 1. The clusters graph.

(2) Using the ranking results ofC(i)j we chose a single node (from the nodes which were
marked as representatives) and call it thechosen representative.

(3) Using the chosen representativev, we find the ancestor ofu in C(i)j (which is in the
lowest level ofGi ) and call it themessenger.

(4) We pick a node inGi−1 which is connected to the messenger node and call it the
representative. (In the broadcast the representative will forward the message to its
messenger.) The cluster of the representative would be the sender ofC

(i)
j .

See Fig. 1 for an example of a clusters’ graph. Note that the tree relation between the
clusters depends heavily on the selection of the representatives and messengers.

5.1. The ranking procedure

Given the ranks of the sons of a clusterC, sayr1, . . . , rk , let rmax=maxi{ri}. If there
is a unique son whose rank isrmax, then the rank ofC is rmax. Otherwise, there are at least
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two sons with rankrmax, and in this case the rank ofC is rmax+ 1. (If C does not have any
sons its rank is 1.)

Since the edges between the representatives and the messengers create a tree structure
between the clusters, we can easily bound the rank as a function of the number of nodes.

Lemma 6. The rank of any clusterC is at mostlogn.

Note that this is the standard definition of a rank of a tree (see [16]).

5.2. Picking the messenger

For a clusterC in super-levelGi , if it has a son clusterF in Gi+1, such that
rank(C)= rank(F ), the nodev ∈ C which is the representative ofF in C will be called the
chosen representative. (Note that if such anF exists it is unique, and therefore we select
only one chosen representative.) Themessengerof C will be the ancestorof the chosen
representative. (By Lemma 5, such a node exists inC.)

If C has no such son clusterF (either it has no son cluster, or all its son clusters have
a strictly smaller rank) themessengerwill be chosen arbitrarily from the nodes at the lowest
level.

5.3. Picking the representative and sender

When a messenger for a clusterC is chosen, it picks one of its neighbors at the
previous level as the representative. Such a node exists—by the definition of the BFS levels.
The messenger lies at the lowest level of its super-level,Gi , i.e., in levell((i−1)·D/x)+1.
Therefore, its representative lies at the highest level of the previous super-level,Gi−1, i.e.,
in level l(i−1)·D/x . The sender ofC is the cluster to which the representative belongs.

6. The main algorithm

The broadcasting starts at the sender which is part of the first super-level,G1.
G1 consists of a single cluster, since the lowest level contains only one node, the source,
from which all the other nodes of the super-level are reachable.

The message is then passed from clusters inGi to clusters inGi+1 along the edges
from the representatives of clusters in super-levelGi to the messengers of clusters inGi+1.
(These are the edges of the tree defined in the previous section.)

Each clusterC(i)k , passes the message to neighboring clustersC
(i+1)
j . The message

advances in two ways within the cluster. A fast way, from the messenger to the chosen
representative, along the path connecting them, and a slow way, where it is being broadcast
to all the nodes in the cluster. Also there is a third way which is used to send the message
between super-levels. The three ways are interleaved and do not interfere with each other.
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6.1. The procedure for a single cluster

Each cluster, when its messenger receives the message, runs the following processes:

• Broadcast-Through: The message is passed from the messengeru to the chosen
representativev along path(u, v). Recall that the chosen representative is unique, and
the path is fully contained within the cluster.
• Broadcast-All: The message is broadcast to all the nodes in the cluster, including the

other representatives.
• Super-Level-to-Super-Level: A representative, upon receiving the message, broadcast

it to the messenger (which is at the next super-level).

The three tasks are performed in parallel using time division. We refer to the different
clock ticks of the clock as three different clocks. TheBroadcast-Throughclock is active
at t ≡ 0 (mod 3). TheBroadcast-Allclock is active att ≡ 1 (mod 3). TheSuper-Level-to-
Super-Levelclock is active att ≡ 2 (mod 3).

6.2. Broadcast-Through process

When the messenger of a cluster (whose color isj , 1� j � logn�) gets the message,
it waits until the Broadcast-Through clock has time≡ 3 · j (mod 3· logn�) and then starts
passing the message along the path to the chosen representative. Each node on that path,
upon receiving the message, passes it on to the next node on the path, during the Broadcast-
Through clock ticks. (We are working modulus 3· logn� since we like clusters of different
colors to start at least three clock ticks apart. The reason why we need the separation of
three is explained in the proof of Lemma 8.)

6.3. Broadcast-All process

The broadcasting to all the nodes of the cluster is done using the algorithmAnonymous
Broadcast, which is based on the randomized algorithm of [7]. Technically, theAnonymous
Broadcastrun the randomized algorithm until it outputs a schedule of timeO(D logn+
log2n). It is easy to see that the expected number of trials isO(1). This observation leads
to the following theorem.

Theorem 7. Given a graph,H(V,E), and a set of nodesU ⊂ V , all holding the
same message, there exists a schedule for broadcasting to the remaining nodes in time
T (D,n) = K · (D logn + log2n), whereK is a constant,n is the number of nodes and
D is the maximum distance from a nodev ∈ V to the nearest nodeu ∈ U , i.e., D =
maxv∈V minu∈U dist(v,u). In addition there exists a randomized algorithm that computes
the schedule in expected polynomial time.

Note that the schedule thatAnonymous Broadcastoutputs isalwaysof timeT (D,n), the
expectation is only over the running time of the procedure. We can replace the randomized
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procedure by the deterministic algorithm of [14]. This will cause the schedule to be of time
O(D log2n) and the overall schedule to be of timeO(D + log6n).

When broadcasting to all the nodes of a clusterC, regardless of the color, the messenger
v waits until the Broadcast-All clock has time≡ 0 (modT ((D/x) logn,n)). At this timev,
along with other nodes at that super-level, it applies theAnonymous Broadcastalgorithm.

Let D′ = O((D/x) · logn′) be the diameter of the clusterC andn′ be the number of
nodes in the cluster. Sincen′ < nwe have thatT (D′, n′) < T ((D/x) logn,n). This implies
that after at mostO((D/x) log2n) clock ticks all the representatives ofC at level li·D/x
receive the message.

6.4. Super-Level-to-Super-Level process

When the message gets to a representative, it waits until the Super-Level-to-Super-Level
clock has time≡ 0 (modK · log2n�) and then, along with the rest of the representative
nodes at that level, apply theAnonymous Broadcastprocess. AfterO(log2n) clock ticks
the message is broadcast from the representatives at levelli·D/x of super-levelGi to the
messengers at levell(i·D/x)+1 of super-levelGi+1.

6.5. Interaction between processes

When a messenger gets the message, it initiates the Broadcast-Through process and the
Broadcast-All process in its cluster. When a representative receives the message, it initiates
the Super-Level-to-Super-Level process.

Any other node which gets the message acts according to the current context. On the
ticks of the Broadcast-All clock, all nodes perform theAnonymous Broadcastalgorithm.
On the Broadcast-Through clock, a node on the path from a messenger to a chosen
representative that receives the message, forwards the message to the next node on the
path at the next Broadcast-Through clock tick. Note that a node may belong to a few
clusters, but such clusters would have different colors, and therefore their schedule would
not overlap.

7. Proof of correctness and complexity

We start by bounding the time it takes from the time the messenger of a cluster first
receives the message, until the message arrives at all the cluster’s nodes, and the chosen
representative in particular.

The three processes: Broadcast-Through (for updating the chosen representative),
Broadcast-All (for broadcasting to the rest of the cluster) and Super-Level-to-Super-Level
(for forwarding to the next super-level) are performed at the different clocks and do
not interfere one with the other. Therefore, we can examine the complexity of each one
separately.

Given the time bounds for each of the processes, we proceed to investigate the time
it takes for the message to get from one cluster representative, to the messenger of its
son-cluster. Finally, we prove that every node gets the message after no longer than
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O(D + x · log2n+ (D/x) · log3n) clock ticks. (Thus also proving the correctness of the
protocol.)

Lemma 8. Consider a nodev ∈ C of level� that transmits at timet of the Broadcast-
Through clock. Any other nodeu ∈ C′ of level� that transmits in timet hascolor(C′) =
color(C). Also, the next nodew on the path to the chosen representative ofC, receives the
message at timet (i.e., the transmission to it does not collide).

Proof. We need to consider only the Broadcast-Through processes, since the other
processes run at different clock ticks. Assume the color ofC is j and that the messenger
starts broadcasting at timet0= 3 · j (mod 3· logn�) of the Broadcast-Through clock. By
definition, the path from the messenger to the chosen representative advances a level every
Broadcast-Through clock tick. The message is broadcast from thekth level inGi to the
k+ 1 level at timet0+ k = 3j + k (mod 3· logn�). Therefore at any timet and any level,
there exists at most one color such that nodes belonging to clusters of that color might be
sending a message.

By Lemma 5 the path to the chosen representative is fully contained within the clusterC,
thereforew ∈ C. By the definition of the coloring, no node inC has an edge to a different
cluster of the same color, in particularw does not have such a neighbor. Sincev is the
only node inC that is transmitting, the message tow does not collide with any other
transmissions of nodes in clusters with colorj .

Consider a node at the same super-level with a different color,j ′. The Broadcast-
Through process started either at least three Broadcast-Through clock tick beforet0 or
at least three Broadcast-Through clock ticks aftert0. Since the message advances one level
each clock tick, the difference between them remains three, and hence no collision will
occur. In other words, when a node from a cluster whose color isj sends a message at
level k, no node of a different color, in any of the levels betweenk − 2 andk + 2, sends
a message at that time. (Here is where we use the separation of three clock ticks. If we had
a separation of only two, a collision could occur if, for example, some nodev at levelk
transmits to nodew, at levelk + 1, at the same time that some nodeu in level k + 2
transmits to nodew′, at levelk + 3. If there is an edge(w,u) in G, then the transmission
from v tow would collide, atw, with the transmission ofu.) ✷
Lemma 9. Suppose the messenger of a clusterC

(i)
j , from super-levelGi , gets the message

at time tj . The chosen representative of clusterC(i)j , receives the message by time
tj + O((D/x) + logn) and the rest of the nodes(including the other representatives)
receive the message by timetj + T ((D/x) logn,n)= tj +O((D/x) log2n).

Proof. Let α be the color of clusterC(i)j . The proof consists of two parts, one for the
chosen representative, which uses the Broadcast-Through process, and the other for the
other nodes, using the Broadcast-All process.

Broadcast-Through process: On the Broadcast-Through clock ticks, the messenger
passes the message to the next node on the path to the chosen representative. First the
messenger waits until the time becomes 3·α (mod 3· logn�) (which is at most 3· logn�
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clock ticks) and then the message is sent along the path to the representative. By Lemma 8
the message does not collide with any other transmission, and hence advances a level each
Broadcast-Through clock tick. The path from the messenger to the chosen representative
is of lengthD/x (as shown in Lemma 5) therefore the message reaches the chosen
representative afterD/x Broadcast-Through clock ticks. Consequently, the Broadcast-
Through process take at mostO(logn+D/x) clock ticks.

Broadcast-All process: On the Broadcast-All clock ticks we broadcast the message to all
nodes ofC(i)j . The messenger first waits until the time becomes 0(modT ((D/x) logn,n))
and then, along with other nodes at its level, broadcasts the message to all nodes at distance
D′ � (D/x) · 2 logn from it. All messengers that get the message at the sameT (D′, n)
time interval as the messenger ofC(i)j , wait at mostT (D′, n) Broadcast-All clock ticks
before they start broadcasting, and then run together theAnonymous Broadcastalgorithm.
By Theorem 7 it follows that after at mostT (D′, n) Broadcast-All clock ticks all nodes
get the message and therefore two runs of the algorithm never interfere with one another.
Consequently, the Broadcast-All passes take at mostT (D′, n)=O((D/x) log2n). ✷

Finally, we need to analyze the time it takes to transmit the message between super-
levels.

Lemma 10. Consider two super-levelsGi andGi+1 that contain the clustersC(i)j and

C
(i+1)
k , respectively, whereC(i)j is the sender ofC(i+1)

k . Let vi be the representative of

C
(i)
j andui+1 the messenger ofC(i+1)

k . Supposevi gets the message at timetm. Thenui+1

receives it by timetm +O(log2(n)).

Proof. Whenvi gets the message it waits until the time is 0(modK · log2(n)) then it starts
broadcasting using theAnonymous Broadcastalgorithm.

By Theorem 7 it follows that afterK · log2n clock ticks all nodes get the message and
therefore each invocation of the algorithm starts after the previous one has ended. Also,
since this algorithm is performed in a separate clock it does not interfere with the other
processes. Therefore,ui+1 gets the message after at most 2K · log2n. ✷
Theorem 11. A vertex waits no longer thanO(D+ x log2n+ (D/x) log3n) before it gets
the message.

Proof. Consider a nodev in super-levelGi . There is at least one clusterC(i)j such that

v ∈ C(i)j . In the cluster’s graph the relationship “sender of” defines a rooted tree. The path

to nodev includes all the clusters on the path from the source to the clusterC
(i)
j . Some

of the clusters on the path are thechosen sonof their father (i.e., their representative in
the sender cluster is the chosen representative). In the broadcast, in order to be certain that
the message has reached the chosen son it is sufficient that the Broadcast-Through protocol
terminated, while for the other sons we need that the Broadcast-All process has terminated.
In addition we have a Super-Level-to-Super-Level process each time the message advances
to the next cluster.
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From the fact that a rank can be no more than logn (Lemma 6) it follows that there are
at most logn clusters on the path toC(i)j which are not the chosen sons. This means that in
at most logn places on the path we need to reach a representative which is not the chosen
representative.

Lemma 9 proves that it takes at mostO(D/x + logn) time to reach a chosen
representative, and that it takes at mostO((D/x) log2n) time to reach a representative
which is not chosen. Lemma 10 proves that each Super-Level-to-Super-Level transfer takes
O(log2n) time.

The path hasi clusters,i � x, therefore the total time to reach any nodev is bounded
by

O
(
x
(
(D/x)+ logn

)+ logn
(
(D/x) log2n

)+ x log2n
)
,

which is

O
(
D + x · log2n+ (D/x) log3n

)
. ✷

Theorem 12. A vertex waits no longer thanO(D+ log5n) before it gets the message.

Proof. Let x = log3n in Theorem 11. ✷

8. The sequential complexity of the algorithm

The preprocessing phase of the algorithm includes:

(1) computing the clusters,
(2) for each cluster selecting the chosen representative and messenger, and
(3) selecting the parent cluster (and thus implicitly defining the clusters tree).

Lemma 13. The preprocessing phase takesO(n3) time, wheren is the number of nodes.

Proof. The algorithm begins by generating BFS levels: starting from the source which is
labeled 0, it labels all neighbors of marked nodes with increasing numbers. The complexity
of a BFS in a graph isO(m+ n), wherem is the number of edges (see, e.g., [16]).

In the next stage we define the pre-clusters. Each node whose BFS number is a multiple
of D/x becomes a kernel for a pre-cluster. The algorithm adds to the pre-cluster all the
kernel’s neighbors at distance less or equal toD/x that satisfy the following condition: the
distance from the neighbor to the kernel is the same as the difference between their BFS
numbers. When complete, such a pre-cluster induces a sub-graph whose edges connect
nodes that lie on different BFS levels in the original graph. Note that the number of pre-
clusters is bounded byn, and that we construct each pre-cluster in timeO(m). Therefore,
the total complexity of this stage isO(n ·m).

The construction of the clusters from the pre-clusters, by Theorem 3, takesO(n3).
The last procedure is that of assigning ranks to the clusters, and picking a sender for each

cluster accordingly. For each cluster, we compute the rank based on the rank of its sons.
The complexity of this task isO(n). Thus the total time of the algorithm isO(n3). ✷
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Given the output of the preprocessing phase, we derive a schedule for each cluster (using
Theorem 7) and establish the following theorem.

Theorem 14. There exists a randomized polynomial time algorithm that for any graphG

computes a schedule of lengthO(D+ log5n).

Appendix A. Constructing the clusters

Given the collection of pre-clusters,S(i)1 , . . . , S
(i)
m , we are going to build clusters

C
(i)
1 , . . . ,C

(i)
k with the following properties:

(1) EachCj is a union of someSr ’s.
(2) EachSr participates in someCj .

(3) The radius of each clusterCj is at most(D/x) · 2 logn, i.e.,∀u,v ∈ C(i)j dist(u, v)�
D/x · 2 logn.

(4) There is anα coloring on the clustersCj with α = logn� colors.
(5) The clusters are constructed in polynomial time.

The algorithm we use is similar to the algorithmMax Coverpresented in [2], and we
try to use here the same terminology. The major difference is that the output cover we
generate, requires few colors rather than a low degree. We start with a few definitions.

Definition 15. A coverof the graphG= (V ,E) is a collection of clustersS = {S1, . . . , Sm}
that contain all the vertices of the graph, i.e., such that

⋃
S = V .

A partial partition of G is a collection ofdisjoint clustersS = {S1, . . . , Sm}, i.e., with
the property thatS ∩ S′ = ∅ for everyS,S′ ∈ S.

A partial separated partitionof G is a partial partition such that for everyvi ∈ Si and
vj ∈ Sj then(vi , vj ) /∈E, i.e., there is no edge connecting two clusters.

Next we define a radius of a cluster and a set of clusters.

Definition 16. For a clusterS and a vertexv ∈ S, we define the radius ofS w.r.t. v as in
the induced subgraphG(S), namely,

Rad(v,S)=Rad
(
v,G(S)

)=max
w∈S

(
distG(S)(v,w)

)

and Rad(S) denotes theradiusof S,

Rad(S)=min
v∈S

{
Rad(v, S)

}
.

We denote the radius of a collection of clustersS as the maximum radius of a cluster
S ∈ S, i.e.,

Rad(S)=max
S∈S

{
Rad(S)

}
.
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We define the notion of one set system to coarsen another set system.

Definition 17. Given two collections of clusters,S = S1, . . . , Sp andT = T1, . . . , Tq we
say thatT coarsensS if the clusters ofS are fully subsumed in those ofT , i.e., for every
Si ∈ S there existsTj ∈ T a such thatSi ⊆ Tj .

Lastly we define a neighbor relationship between clusters.

Definition 18. A clusterF is defined to be aneighborof a clusterU if there exist nodes
u ∈ U andf ∈ F such that(u,f ) ∈E.

A.1. Procedure Part-Sep

In this section we present a procedure which will be used as a building block in the
construction of the new collection of clusters. The input is a graphG and a collection of
pre-clusters,R. The output consists of a partial separated partition, i.e., a collection of
clusters,DT , that subsume a subsetDR ⊆R of the original pre-clusters. The goal is to
subsume “many” pre-clusters ofR while maintaining the radii of the output clusters in
DT relatively small.

The procedure starts by settingU , the collection ofunprocessedpre-clusters, to equalR.
The procedure operates in iterations. Each iteration constructs one output clusterZ ∈ T ,
by merging together some pre-clusters ofR. The iteration begins by arbitrarily picking a
pre-clusterS0 ∈ U and designating it as the kernel of a cluster to be constructed next. The
cluster is then repeatedly merged with intersecting and neighboring pre-clusters fromU .
This is done in a layered fashion, adding one layer at a time. The pre-clusters ofU added
to Z are subsequently discarded fromU . At each stage, the original process is carried
repeatedly until the next iteration increases the number of original pre-clusters merged into
Z by a factor of less than 2. (This guarantees that there are at most logn iterations.) At that

U←R; DT ←∅; DR←∅
while U �= ∅ do

Select an arbitrary clusterS0 ∈ U
Z←{S0}; Z← S0
repeat
Y←Z; Y ←Z

Z←{S | S ∈ U, S ∈ neighbors(Y )}.
Z←⋃

S∈ZS
until |Z|� 2|Y|
U← U −Z
DT ←DT ∪ {Y }
DR←DR∪Y

end-while
Output (DR,DT ).

Fig. A.1. Procedure Part-Sep.
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point, the resulting cluster from thepreviousstage is added to the collectionDT . These
iterations proceed untilU is exhausted.

Note that each of the original pre-clusters inDR is covered by some cluster inDT
constructed during the execution of the procedure. However, some originalR pre-clusters
are thrown out of consideration without being subsumed by any cluster inDT . This is
why a single application of the procedure in not enough, and many phases are necessary.
A description of the procedure is given in Fig. A.1.

A.2. Analysis

The properties of the procedure are summarized by the following lemma.

Lemma 19. Given a graphG = (V ,E), |V | = n and a collection of pre-clustersR,
the collectionsDT and DR constructed by procedure Part-Sep satisfy the following
properties:

(1) DT coarsensDR.
(2) DT is a partial separated partition.
(3) |DR|� |R|/2.
(4) Rad(DT )� 2 log(|R|) ·Rad(R).

Proof. The construction ofDT is done by adding a new cluster,{Y }, to it at each iteration.
Since the cluster{Y } that is being added is the clusterZ of the previous stage, and thatZ
was built from union of pre-clusters fromU property (1) holds.

Property (2) is proved by showing that the collection of clustersY are mutually disjoint
and are not connected. Suppose, seeking to establish a contradiction, that there are two
verticesvi, vj such thatvi ∈ Yi andvj ∈ Yj and there is an edge(vi , vj ) in E. Without
loss of generality suppose thatYi was created in an earlier iteration thanYj . Sincevj ∈ Yj
there must be a pre-clusterUj such thatvj ∈ Uj andUj was still inU when the algorithm
started constructingYj . But every such pre-clusterUj is aneighborof Yi , and therefore the
final construction step creating the collectionZ from Yi should have addedUj into Z and
eliminating it fromU , a contradiction. Therefore the collectionDT is a partial separated
partition and property (2) is proved.

Property (3) is now derived as follows. It is immediate from the termination condition
of the internal loop that the resulting pairY,Z satisfies|Z|� 2|Y|. Therefore, using the
fact that theY clusters are disjoint that has just been proved,

|R| =
∑

Z

|Z|�
∑

Y

2|Y| = 2|DR|.

Finally, we analyze the increase in the radius of the clusters ofDT . Consider some
iteration of the main loop of the algorithm, starting with the selection of some pre-
clusterS ∈ U . Let J denote the number of times the internal loop was executed. Denote
the initial collectionZ by Z0. Denote the collectionZ constructed on theith internal
iteration (1� i � J ) by Zi . Note thatYi =Zi−1, Zi is constructed on the basis ofYi , and
Zi =⋃

S∈ZiS. We show by the following two claims:
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(1) |Zi |� 2i for every 0� i � J − 1.
(2) For every 0� i � J , Rad(Yi)� 2i ·Rad(U).

Claim (1) hold since each time the termination condition of the internal loop is not valid,
the size ofZ at least doubles. Claim (2) follows since we increase in each internal loop the
radius by at most 1+Rad(R)� 2Rad(R).

It follows from (1) that J � log(|R|), and hence by (2) we have that Rad(Yj ) �
2 log(|R|) ·Rad(U), which completes the proof of property (4) of the theorem.✷
A.3. Procedure cover

We now turn to construct the desired clusters. The algorithm involve multiple
applications of the procedure Part-Sep from the previous section. The input to the algorithm
is a graphG = (V ,E), |V | = n and a coverS. The output collection of clusters,T , is
initially empty. The algorithm maintains the collection of “remaining” pre-clustersR.
These are the pre-clusters not yet subsumed by the constructed collection. Initially,R= S,
and the algorithm terminates onceR = ∅. The algorithm operates in at mostlog(|S|)�
phases. Each phase consists of the activation of the procedure Part-Sep, which constructs
a partial separated partitionDT coarsening some of the pre-clusters ofR. The algorithm
then adds this subcollection of output clusters toT , and removes the set of subsumed
original pre-clustersDR fromR.

The fact that the collection of clustersDT constructed by the procedure Part-Sep is
a partial separated partition ensures that the clusters of each phase can be colored with the
same color. The formal description is given in Fig. A.2.

A.4. Analysis

Theorem 20. Given a graphG= (V ,E), and a coverS, the algorithm constructs a cover
T that satisfies the following properties:

(1) T coarsensS.
(2) Rad(T )� 2 log(|S|) ·Rad(S).
(3) There is anα coloring on the clusters ofT with α � log(|S|)� colors.

Seti← 1
R← S; T ←∅
repeat
(DR,DT )← Part− Sep(R)
T ← T ∪DT
Color the clusters ofDT by colori
R←R \DR
i = i + 1

until R= ∅
Fig. A.2. Procedure cover.
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Proof. Let Ri denote the contents of the collectionR at the beginning of phasei, and let
ri = |Ri |. Let DT i denote the collectionDT added toT at the end of phasei, and let
DRi be the collectionDR removed fromR at the end of phasei. The fact thatT coarsens
S (property (1)) follows from the fact thatT =⋃

i DT i ,S =⋃
i DRi and by property (1)

of Lemma 19,DT i coarsensDRi for everyi. Property (2) follows directly from property
(4) of Lemma 19. It remains to prove property (3). By property (2) of Lemma 19 it follows
that each phase constructs a collection of clusters which are 2-separated, i.e., for each two
clusters,Cp,Cq generated at the same phaseCp ∩ Cq = ∅ and for eachvp ∈ Cp,vq ∈ Cq
there is no edge(vp, vq) ∈ E. By the definition of coloring we can color all clusters
generated at the same phase with a single color. Therefore it remains to bound the number
of phases performed by the algorithm. This bound relies on the following observations. By
property (3) of Lemma 19, in every phase,i, at least|DRi | � |Ri |/2 pre-clusters ofRi
are removed from the collectionRi , i.e.,ri+1 � ri/2.

Consequently, sincer0 = |S|, S is exhausted after no more thanlog(|S|)� phases of
the algorithm, and hence the number of colors is no more thanlog(|S|)�. This completes
the proof of the theorem.✷
A.5. Applying the algorithm

We can now use the algorithm presented here in order to construct the clusters from the
original pre-clusters. The graphG we are using is the graph induced on the nodes of the
super-levelGi andn will be the number of its nodes.

Notice the radius of each original pre-cluster isD/x and that the collection of the
pre-clusters,S(i)1 , . . . , S

(i)
m is a cover of the super-level, Gi . The input to the algorithm,

is therefore: The graph,Gi , and the coverS, i.e., the collectionS(i)1 , . . . , S
(i)
m .

Theorem 21. The output collection of clusters,C(i)1 , . . . ,C
(i)
r satisfies:

(1) EachCj is a union of someSr ’s.
(2) EachSr participates in someCj .

(3) The radius of each clusterCj is at most2 ·D/x · log(n), i.e.,∀u,v ∈ C(i)j dist(u, v)�
D/x · 2 log(n).

(4) There is anα coloring on the clustersCj with α = logn� colors.
(5) The algorithm runs in timeO(m logn).

Proof. Property (1) follows directly from property (1) of Theorem 20 as coarsening means
that every cluster is a union of some pre-clusters. Property (2) follows from the construction
since every pre-cluster is taken out ofS only when it joins a cluster. The radius of the pre-
clusters isD/x, therefore we get from property (2) of Theorem 20 that the radius of the
clusters is at most 2· logn ·D/x. That proves property (3). Finally, from property (3) of
Theorem 20 we get that the coloring number of the clusters is less or equal tolog(|S|)�.
Since |S| < n, we have thatα is less or equal tologn�. That concludes the proof of
property (4).
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As for complexity, the algorithm consists ofO(logn) iterations of a procedure named
Part-Sep. This procedure also consists of iterations, during each of which it takes a pre-
cluster not yet processed to become a kernel for a new cluster. For each such kernel, it goes
over its neighboring clusters. It can be seen that in this process no edge is checked more
than once—after which it may merge another pre-cluster into a cluster. Whether it does so
or not, the vertex whose pre-cluster is already in a cluster does not check its edges again.
This procedure therefore takesO(m) time and the total time of this stage isO(m logn).
That concludes the proof of property (5).✷
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