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Abstract

We consider a network providing Differentiated Services (DiffServ) which allow network service
providers to offer different levels of Quality of Service (QoS) to different traffic streams. We focus
on loss and first show that only trivial bounds could be obtained by means of traditional competitive
analysis. Then we introduce a new approach for estimating loss of an online policy calledloss-
boundedanalysis. In loss-bounded analysis the loss of an online policy is bounded by the loss of an
optimal offline policy plus a constant fraction of the benefit of the online policy. We relate the loss-
bounded analysis to the throughput-competitive analysis. We derive tight upper and lower bounds
for various settings of DiffServ parameters using the new loss-bounded model. We believe that loss-
bounded analysis is an important technique that can complement traditional competitive analysis
providing new insight and interesting results.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The prevalent today’s Internet service model is the best-effort model (also known as the
so-called send and pray model). This model does not permit users to obtain better service,
no matter how critical their requirements are, and no matter how much they may be willing
to pay for better service. Clearly, with the increased use of the Internet for commercial
purposes, such a model is not satisfactory any more.

In IP-based networks providing any form of streams differentiation requires the
network to keep some per stream state information. This translates to increased memory
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requirements and processing power. The majority of the installed routers use architectures
that will experience a dramatic decrease in performance if mechanisms to provide
sophisticated flow differentiating features are added. Thus, with existing infrastructure,
implementing any complicated functionality inside the network is either impossible or
would be prohibitively expensive.

Differentiated Services were proposed as a compromise solution for the Quality of
Service (QoS) problem in Internet networks. Differentiated Services assigns each packet a
predetermined QoS and aggregates traffic to a small number of classes [2]. Each class
is forwarded using the same per-hop behavior at the routers, thereby simplifying the
processing and storage requirements. In addition, there is no overhead of signaling, other
than the class type in the header of each packet. This is in contrast with ATM, a network
designed to support QoS, where a special setup procedure is required in order to establish
the QoS guarantees.

From the router perspective, the tools for providing Differentiated Services are based on
the following operations that should be done at high speeds: packet classification, buffer
management and packet scheduling. In this work we investigate the second aspect.

Over the past few years Differentiated Services has attracted a great deal of research
interest in the networking community [5,12,15,17]. Two basic paradigms were proposed:
the “Premium” service [11] and the “Assured” service [4]. The Premium service model
provides to the user the same QoS guarantee as a dedicated line with a predefined bit rate.
A Premium service traffic flow is shaped at the entry to the network and hard-limited to
its provisioned peak rate. On the other hand, an Assured service traffic flow may exceed
its provisioned rate, but the excess traffic is not given the same assurance level (Assured
service may be viewed as “pay more—get more”). One can relate a high QoS class packets
to the “in-profile” packets (packets that agree with the provisioned rate) and a low QoS
class to the “out-profile” packets (packets that surpass the provisioned rate). Another
interpretation is to classify the traffic to a few different QoS classes.

We abstract the Differentiated Services priority model as follows. Packets of different
QoS priority have distinct benefit values starting from the lowest benefit of 1 and up to the
highest benefit ofα � 1. For example, in the Assured service model we have two levels of
priority, α and 1. For more advanced traffic models there may be a need in more than two
distinct benefits.

Most today’s Internet routers deploy FIFO buffering policy, i.e., packets are sent in
the same order as they arrive. One of the advantages of this policy is its amenability
to simple and efficient hardware implementation. In addition, and even more important,
FIFO buffering scheme reflects the nature of the network. FIFO order is critical for many
applications, for example, multimedia applications where audio/video frames must be
played in order. Moreover, the main Internet transport protocol TCP is optimized to receive
packets in FIFO order. In TCP, packets arriving out of order lead to significant overhead
and even retransmissions, which can result in a drastic drop of the performance. For this
reasons the FIFO scheme is the most natural approach for network buffering today.

In our model each link of a network is serviced by a single FIFO queue. A queuing
policy is presented with a sequence of packet arrivals and has to serve each packet online,
i.e., without knowledge of future packets. It performs two functions: stores and selectively
rejects/preempts packets subject to the buffer capacity constraints. When the queue is not
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empty each time unit the first packet in the FIFO order is sent to the output link. A policy
obtains the benefit of packets it delivers. The goal is to maximize the policy’s benefit, that
is the sum of the benefits of delivered packets, or alternatively minimize the benefit of the
packets it drops.

In competitive analysis the online policy is compared with an optimal offline policy, that
knows the entire input sequence in advance. An online policy is said to bec-throughput-
competitive if for any input sequence its benefit constitutes at leastc-fraction of the benefit
of an optimal offline policy. Conversely, an online policy is said to bec-loss-competitive
if the loss of an optimal offline policy constitute at leastc-fraction of its loss. Note that a
throughput-competitive guarantee does not translate to a loss-competitive guarantee. For
example, an online policy might lose a constant fraction of the total benefit of the input
sequence while an optimal offline policy may have no loss at all. In such a case the online
policy is throughput-competitive but not loss-competitive.

Loss-competitive guarantee is very desirable in communication networks, which are
designed to minimize loss. Unfortunately, only trivial bounds can be obtained by means
of loss-competitive analysis. To highlight the difference between loss-competitive and
throughput-competitive analysis we note that in this paper we demonstrate that the loss-
competitive ratio of the simple Greedy Policy is 1/α while in [7] it was proved that its
throughput-competitive ratio is 1/2.

Motivated by this, we propose a new model calledloss-boundedanalysis for estimating
loss of an online policy. In traditional competitive analysis loss of an online policy is
compared directly with the loss of an optimal offline policy. Inclb-loss-bounded analysis
the loss of an online policy is upper bounded by the loss incurred by an optimal offline
policy plus a constant fractionclb of the benefit of the online policy. We let this fractionclb

be theloss-bounded ratioof the online policy. We expect loss-bounded ratio to be a small
constant, and in such a case the results are especially interesting. Observe that a trivial loss-
bounded ratio ofclb = ∞ is achieved by any online policy and the smallerclb the better
the performance of the online policy. An optimal policy hasclb = 0.

We demonstrate that the loss-bounded approach is dual to the throughput-competitive
analysis, i.e.,clb-loss-bounded guarantee translates to 1/(1+ clb)-throughput-competitive
guarantee and, conversely,ctc-throughput-competitiveguarantee translates to(1−ctc)/ctc-
loss-bounded guarantee. For this reason, the main difference between the loss-bounded and
the throughput-competitiveanalysis is rather conceptual. Note that there is also a notational
difference: 0-throughput-competitive ratio corresponds to∞-loss-bounded ratio.

We are not the first to try and analyze Differentiated Services. Initial works have focused
on simple probabilistic traffic models [10,14]. Unfortunately, giving a realistic model for
Internet traffic is a major problem by itself. Network arrivals were often modeled as Poisson
processes for analytic simplicity, however a number of studies have demonstrated that
packet inter-arrivals are not exponentially distributed [13]. Moreover, Internet was shown
to exhibit chaotic behavior [18]. This highlights the advantage of competitive analysis [3,
16], where a uniform performance guarantee is provided over all input instances.

Competitive analysis of queuing policies for Differentiated Services focused on
throughput-competitiveness. In [1] different non-preemptive policies are analyzed for the
two distinct benefit values model. We extend the model of [1] by allowing preemptions and
considering multiple benefit values. In [9] preemptive queuing policies for arbitrary benefit



82 A. Kesselman, Y. Mansour / Journal of Algorithms 46 (2003) 79–95

values are studied in context of smoothing video streams. They establish an impossibility
result showing that no online policy can have a better throughput-competitive ratio than 4/5
and demonstrate that the greedy policy is at least 1/4-throughput-competitive. Recently
in [7] the greedy policy has been shown to achieve the throughput-competitive ratio of
1/2. In fact, it has been demonstrated that the competitive ratio of the greedy policy is
(α + 1)/(2α + 1). They also considered a new model in which packet delay is bounded
and packets may be reordered. In this work, in contrast with [7,9], we concentrate on the
loss of a policy. This dramatically changes both the analysis and the results.

Following this research, Hahne et al. [6] extend single buffer analysis to the shared
memory switches. They consider preemptive buffer management policies and show that
the well-known Longest Queue Drop policy is at least 1/2-competitive and at most
1/

√
2-competitive for the case of fixed size and value packets. They also present a 3/4

general lower bound on the competitive ratio of any online policy. Non-preemptive switch
management policies are studied in [8], where they propose a new scheduling policy called
Harmonic whose throughput competitive ratio is almost optimal.

The rest of the paper is organized as follows. Section 2 contains the summary of
our results. In Section 3 we formally define our model. Description of queuing policies
appears in Section 4. Loss-bounded analysis of two benefit values is presented in Section 5.
Section 6 contains loss-bounded analysis of restricted benefit values and impossibility
result for general benefit values. Traditional loss-competitive analysis appears in Section 7.
In Section 8 we compare the loss-bounded analysis with the traditional competitive
analysis. Our concluding remarks appear in Section 9.

2. Summary of results

In this section we give a brief overview of our main results while the formal definitions
and proofs are deferred to the following sections. We present upper and lower bounds
for various benefit setting models with regards to the traditional loss-competitive and the
new loss-bounded models. We note that all the obtained upper bounds are almost tight.
We analyze the Greedy Policy that always accepts to the buffer high benefit packets and
the β-Preemptive Greedy Policy that does exactly the same, but when it accepts a high
benefit packet may additionally preempt low benefit packets whose total value is bounded
by 1/β times the value of the accepted high benefit packet. We also study so-called
Combined Policy which simulates either the Greedy Policy or theβ-Preemptive Greedy
Policy, whichever gives the best competitive ratio, and derive a loss-bounded ratio which
is independent onα.

The first set of results appearing in Table 1 deals with the two benefit values model,
where we have packets with either a high benefit ofα or a low benefit of 1. We show
that the Greedy Policy achieves a non-interesting 1/α loss-competitive ratio, which turns
out to be the tight upper bound. The loss-bounded ratio of the Greedy Policy follows
from its throughput-competitive ratio of(α + 1)/(2α + 1) established in [7] by applying
Theorem 10. We prove that the loss-bounded ratio of the

√
α-Preemptive Greedy Policy

is 1/
√

α, which is approximately tight. Observe that the provided guarantee is much
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Table 1
Two benefit values setting results

Policy/model Loss-competitive Loss-bounded

Greedy 1/α α
α+1√

α-preemptive greedy 0 1/
√

α

Combined 0 0.68
Impossibility results 1/α 1/

√
α − 3

α+1

Table 2
Restricted benefit setting results

Policy/model Loss-competitive Loss-bounded

Greedy 1/α α
α+1√

α1/n-preemptive greedy 0
√

α1/n+1

α1/n−
√

α1/n−1
+

√
α1/n

α1/n−1

Impossibility results 1/α 1/
√

α1/n − 3
α1/n+1

Table 3
Arbitrary benefit setting results

Policy/model Loss-competitive Loss-bounded

Greedy 1/α α
α+1

Impossibility results 1/α 0.2

stronger than that of the Greedy Policy. The throughput-competitive guarantee of the
√

α-
Preemptive Greedy Policy approaches 1 whenα is large.

Next we extend the two benefit model and study the case ofn + 1 different benefit
values{αi/n: 0 � i � n}. Table 2 summarizes these results. One can see that as the number
of values increases, the guarantee is weaker. Both the competitive ratio of the

√
α1/n-

preemptive greedy and the impossibility results are of the order of 1/
√

α1/n, for large
values ofα1/n.

The last set of results that corresponds to arbitrary benefit values between 1 andα

appears in Table 3. We prove that no online policy can have less than a constant loss-
bounded ratio.

3. Model description

We consider a FIFO buffer that can holdB packets. We assume that packets may arrive
to the queue at any time and send events are synchronized with time. Each packetp has
correspondingbenefit, b(p). The system obtains the benefit of the packets it sends, and its
aim is to maximize the benefit of the transmitted packets.

Now we define the system more formally. We denote theith packet in the FIFO buffer
asF [i] and let the index of the last packet in this order belast� B. When a packet arrives,
a queuing policy can either reject or accept the packet. At any time the policy can also
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preempt packets that are currently in the buffer. Each time unit a send operation is executed
if the buffer is not empty, i.e.,last> 0, and the first packet in the buffer is sent. In addition,
we require that at the start and at the finish times of a schedule the buffer is empty.

Definition 1. For a sequence of packetsS and an online policyA we denote:

• The subsequence of packets with benefitb by Sb .
• The benefit ofA on S by VA(S) and the loss ofA on S by LA(S) (note that

V (S) = VA(S) + LA(S)).

We denote an optimal offline policy by OPT and for an input sequenceS, VOPT(S) and
LOPT(S) are the optimal benefit and the optimal loss, respectively. Next we define a new
model for analyzing loss of an online policy.

Definition 2. We say that a policyA is clb-loss-bounded iff for every sequence of packetsS,
LA(S) � LOPT(S) + clb × VA(S).

For completeness, we also present the traditional definitions of competitiveness.

Definition 3. We say that a policyA is ctc-throughput-competitive iff for every sequence
of packetsS, VA(S) � ctc × VOPT(S).

Definition 4. We say that a policyA is clc-loss-competitive iff for every sequence of
packetsS, clc × LA(S) � LOPT(S).

4. Scheduling policies

The basic buffer management operations are defined in the following way.

accept(p) { last= last+ 1; p.index= last; F [last] = p; }
reject(p) { free(p); }
remove(p) {

for i = p.indexto last− 1 do

F [i] = F [i + 1];
last= last− 1;
free(p);

}
preempt(p) { remove(p); }
send() { transmit(F [1]); remove(F [1]); }

Now we describe a natural Greedy Policy that always retains in the buffer a set of pack-
ets with highest benefit. An arriving packet isacceptedif either the buffer is not full or
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the buffer is full and the minimal benefit among the accepted packets in the buffer is less
than the benefit of the arriving packet. In the latter case a packet with the minimal benefit
is preempted from the buffer before acceptance of the arriving packet. An arriving packet
is rejectedotherwise.

Greedy Policy

last= 0;
GreedyPacketArrivalHandler(p) {

if (last< B) then

accept(p);
else

min= F [1]; / ∗ get a packet with the minimal benefit∗ /

for i = 2 to last do

if (F [i].benefit< min.benefit) then min= F [i];
if (min.benefit< p.benefit) then

preempt(min);
accept(p);

else

reject(p);
}

Next we introduce theβ-Preemptive Greedy Policy that behaves like the Greedy Policy
except that upon acceptance of a packet, additional packets may be preempted. The
preempted packets are the low benefit packetsclosest to the transmitting end of the FIFO
whose total benefit is bounded by 1/β times the benefit of the accepted packet. Note that
these areadditionalpreemptions.

The intuition behind the additional preemptions is as follows. Consider the following
scenario. At the beginning the buffer is full of low benefit packets. For the nextB time units
a single high benefit packet arrives. If no low benefit packet is preempted, afterB time
units the buffer is full of high benefit packets. Assume now that a burst ofB high benefit
packets arrives. In this case they are all lost. Theβ-Preemptive Greedy Policy solves this
problem by preemptingα/β low benefit packets upon arrival of each packet of benefitα.
For sufficiently large value ofβ , theβ-Preemptive Greedy Policy performs like the Greedy
Policy, which was shown in [7] to be 1/2-throughput-competitive. However, small values
of β may cause excessive preemptions and large loss of low benefit packets. Thus, there is
a need to optimize the value ofβ in order to achieve a balance between maximizing of the
current throughput and minimizing of potential future loss.

β-Preemptive Greedy Policy

last= 0;



86 A. Kesselman, Y. Mansour / Journal of Algorithms 46 (2003) 79–95

PreemptiveGreedyPacketArrivalHandler(p) {
/ ∗ apply the Greedy packet arrival handling routine∗ /

GreedyPacketArrivalHandler(p);
/ ∗ check whetherp was accepted∗ /

if (F [last] == p) then

val= p.benefit/β; / ∗ calculate how much to preempt∗ /

for i = 1 to last− 1 do

if (F [i].benefit� val) then

val= val− F [i].benefit;
preempt(F [i]);

}
Finally, we introduce the Combined Policy which simulates the policy with the best

competitive ratio between the Greedy Policy and theβ-Preemptive Greedy Policy.

Combined Policy with input parameter α

If α/(α + 1) > 1/
√

α then simulate the Greedy Policy. Otherwise, simulate the
√

α-
Preemptive Greedy Policy.

5. Two benefit values

In this section we consider packets having two possible benefit values, that is a high
benefit ofα � 1 or a low benefit of 1. Next we prove that the

√
α-Preemptive Greedy

Policy achieves a 1/
√

α loss-bounded ratio, which is nearly the best competitive ratio
possible for an online policy. First we need some auxiliary lemmas.

Lemma 1. When packets are scheduled according to the
√

α-Preemptive Greedy Policy,
and there are at leastB/

√
α high benefit packets in the buffer then at the next time step the

policy schedules a high benefit packet.

Proof. Note that the number of low benefit packets initially preceding to the first high
benefit packet in the FIFO order is at mostB. Each high benefit packet preempts

√
α low

benefit packets from the beginning of the FIFO order, if any, and there are at leastB/
√

α

high benefit packets. Thus, the first packet in the FIFO order should be a high benefit
packet. ✷
Definition 5. A scheduling interval[ts, tf ] is overloaded intervalif:
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(1) Some high benefit packet was rejected during this interval and only high benefit
packets were scheduled betweents andtf .

(2) At time ts − 1 either a low benefit packet was scheduled or the buffer was empty and
at timetf + 1 either a low benefit packet was scheduled or the buffer was empty.

(3) The interval is maximal, i.e., it is not contained in any other overloaded interval.

Definition 6. A scheduling interval[ts, tf ] is active intervalif:

(1) At each time slot betweents andtf some packet was scheduled.
(2) The interval is maximal.

Definition 7. A packetbelongsto a scheduling interval iff it was either scheduled or lost
during this interval.

Claim 1. When packets are scheduled according to the
√

α-Preemptive Greedy Policy the
number of high benefit packets in the buffer at the time unit preceding the beginning of an
overloaded interval[ts, tf ] is at mostB/

√
α.

Proof. Either at timets − 1 a low benefit packet was scheduled and the claim follows by
Lemma 1, or the buffer was empty and the claim holds trivially.✷
Claim 2. When packets are scheduled according to the

√
α-Preemptive Greedy Policy the

length of an overloaded interval is at leastB.

Proof. When a high benefit packet is lost, the buffer is full of high benefit packets. Since
high benefit packets are never preempted it takes at leastB time units to schedule all of
them. This yields the claim. ✷

In the following lemma we bound from below the number of low benefit packets
dropped by the optimal policy.

Lemma 2. For any input sequence, the optimal policy rejects at least the same number of
low benefit packets as the number of low benefit packets rejected by the

√
α-Preemptive

Greedy Policy plus the number of low benefit packets preempted by some of the firstB high
benefit packets scheduled during an overloaded interval.

Proof. The proof is by way of contradiction. Assume that the statement of the lemma does
not hold for a particular schedule. Let us consider the active intervals of the

√
α-Preemptive

Greedy Policy. It must be the case that the statement is violated for at least one interval.
Otherwise, it is fulfilled for the whole schedule.

LetP = [ts, tf ] be such an interval,S be the set of packets that belong toP andt be the
last time at which a low benefit packet was either rejected or preempted by some of the first
B high benefit packets scheduled during an overloaded interval. Observe that there is a time
momentt ′ � t at which the buffer of the

√
α-Preemptive Greedy Policy is full. We consider

the set of packetsS′ (S′ ⊆ S) that belong to time interval[ts , t ′]. Notice that any policy can
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schedule at mostt ′ − ts +B packets fromS′. The
√

α-Preemptive Greedy Policy up to time
t ′ had scheduledt ′ − ts and bufferedB packets fromS′. Since the optimal policy sends at
least the same number of high benefit packets fromS′ as the

√
α-Preemptive Greedy Policy

does and it cannot accept more thant ′ − ts + B packets fromS′, it should have rejected
at least the same number of low benefit packets as the

√
α-Preemptive Greedy Policy did

prior to timet ′. That contradicts to our assumption.✷
At this point we are able to prove the main theorem.

Theorem 1. The loss-bounded ratio of the
√

α-Preemptive Greedy Policy is at most1/
√

α.

Proof. We process loss of low and high benefit packets separately. We denote bySo
α the

union of the firstB packets scheduled during all overloaded intervals. The rest of the high
value packets scheduled is denoted bySu

α . We show that

LA(S1) � 1√
α

VA

(
Su

α

) + LOPT(S1) and LA(Sα) � 1√
α

VA

(
So

α

) + LOPT(Sα),

establishing the theorem, sinceSα = Su
α ∪ So

α andLA(S) = LA(S1) + LA(Sα).
First we bound the loss of low benefit packets. There are two cases of loss. The first

one is due to additional preemptions (preemption of a low benefit packet by the policy
when a high benefit packet arrives and the buffer is full) and the second one is due to buffer
overflow (low benefit packets that are rejected when they arrive). We denote the former case
by LExtra

A and the loss of the latter case byL
Rej
A . The loss of the first kind we further divide

to the loss of low benefit packets preempted by a high benefit packet scheduled among the
first B packets during an overloaded interval,LOvfl

A , and the rest,LPrm
A . By Lemma 2,

L
Rej
A (S1) + LOvfl

A (S1) � LOPT(S1).

Now let us bound the value ofLPrm
A . Since each high benefit packet can preempt low benefit

packets with cumulative benefit at most
√

α and high benefit packets themselves are never
preempted, we can charge the high benefit packet for the preempted low benefit packets,
obtaining that

LPrm
A (S1) � 1√

α
VA

(
Su

α

)
.

By adding up both of these inequalities we obtain:

LA(S1) � 1√
α

VA

(
Su

α

) + LOPT(S1).

A slightly more complicated task is to bound the loss of high benefit packets. We
divide the schedule into underloaded and overloaded intervals. No high benefit packet
is lost during underloaded interval. According to Claim 1 at the very beginning of an
overloaded interval there are at mostB/

√
α high benefit packets in the buffer. All the high

benefit packets that were lost during the interval arrived throughout this interval. Clearly,
an optimal offline policy could have sent additionally at mostB/

√
α high benefit packets
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since the
√

α-Preemptive Greedy Policy throughout an overloaded interval behaves like
the Greedy Policy with respect to high benefit packets.

Thus, the loss of high benefit packets by the
√

α-Preemptive Greedy Policy is bounded
by the loss of an optimal offline policy plus at most extraB/

√
α packets per each

overloaded interval. We denote the loss of the first kind byLNcs
A and the loss of the second

kind byLAdd
A . By definition,

LNcs
A (Sα) � LOPT(Sα).

To bound the loss ofLAdd
A note that, by Claim 2, the length of an overloaded interval

is at leastB. Hence, the ratio between the loss and the cumulative benefit of the firstB

packets scheduled during an overloaded interval is at mostB
√

α/Bα = 1/
√

α. Therefore,
the additional loss of high benefit packets is bounded by

LAdd
A (Sα) � 1√

α
VA

(
So

α

)
and LA(Sα) � 1√

α
VA

(
So

α

) + LOPT(Sα),

which completes the proof.✷
Now we consider the Combined Policy and show that its loss-bounded ratio is at

most 0.68.

Theorem 2. The loss-bounded ratio of the Combined Policy is at most0.68.

Proof. The loss-bonded ratio of the Combined Policy is the minimum of the loss-bonded
ratio of the Greedy Policy and the loss-bonded ratio of the

√
α-Preemptive Greedy Policy,

that is min(α/(α + 1),1/
√

α). To optimize the lower bound, we take the worst-case value
of α that equates the two ratios. Using numerical solution we find that the loss-bonded
ratio of the Combined Policy, is maximized whenα ≈ 2.15. Substituting this value ofα,
we obtain that the loss-bounded ratio of the Combined Policy is at most 0.68. ✷

In the next theorem we prove a lower bound on loss-bounded ratio showing that the
bound of Theorem 1 is approximately tight.

Theorem 3. The loss-bounded ratio of any online policy is at least1/
√

α − 3/(α + 1) for
B � √

α.

Proof. Suppose that packets are scheduled according to the online policyA. We construct
a bad sequence of packets similar to the one used in [9]. At timets = 0 the buffer is empty
andB −1 low benefit packets arrive. Each following time unit a high benefit packet arrives.
Let tf be the first time when the buffer contains no low benefit packets and letk = tf − ts .
Note that the number of the scheduled low benefit packets isk and the number of the lost
low benefit packets isB − k − 1 respectively. Now there may be two cases.

(1) In case 0� k < B/
√

α, the input sequence is terminated. The loss-bounded ratio of
the online policyclb must fulfill the following:

B − k − 1 � clb · k(α + 1).
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Therefore,clb > (B − k − 1)/(k(α + 1)). This ratio is minimized whenk is maximal, thus
substituting the upper bound fork we get

clb >
B − B/

√
α − 1

B
√

α + B/
√

α
� 1√

α
− 1/

√
α + 1/B + 1/α√
α + 1/

√
α

� 1√
α

− 3

α + 1
, (1)

which holds forB � √
α.

(2) In caseB/
√

α � k < B, at timetf a burst ofB high benefit packets arrives. Note
that at leastk of them are lost by the online policy. The loss-bounded ratioclb of the online
policy over the whole sequence should satisfy:

B − k − 1+ kα � B − 1+ clb(k + Bα),

since an optimal offline policy would have lostB − 1 low benefit packets. Thus,

k(α − 1) � clb(k + Bα), clb � k(α − 1)

k + Bα
.

After substituting the lower bound fork to the numerator and the upper bound fork to the
denominator of the fraction, we get

clb �
B√
α
(α − 1)

B + Bα
>

1− 1/α

1+ √
α

>
1√
α

− 2

α + 1
, (2)

and the theorem follows.✷

6. Restricted and general benefit values

In this section we first consider packets that have a restricted set ofn+ 1 benefit values,
that is {αi/n: 0 � i � n}. We obtain results that are generalization of the corresponding
results for the two benefit values model. In particular, we prove that the loss-bounded
ratio of the

√
α1/n-Preemptive Greedy Policy is(

√
α1/n + 1)/(α1/n − √

α1/n − 1) +√
α1/n/(α1/n − 1) and that this bound is almost the best achievable by any online policy.

Then we present a general lower bound for loss-bounded analysis.

Lemma 3. When packets are scheduled according to the
√

α1/n-Preemptive Greedy Policy,
and there are at leastB/

√
α1/n packets of benefit greater thanα(i−1)/n in the buffer at the

next time step the policy schedules a packet with benefit of at leastαi/n.

The proof of Lemma 3 is identical to that of Lemma 1.

Definition 8. A scheduling interval[ts, tf ] is i-overloadedif:

(1) All the following holds regarding the interval:
(a) Some packet of benefitαi/n was rejected during this interval, and
(b) no packet of benefit greater thanαi/n was rejected during this interval, and
(c) only packets with benefit at leastαi/n were scheduled betweents andtf .
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(2) One of the following holds at timets − 1:
(a) A packet with benefit less thanαi/n was scheduled, or
(b) it is the finish time of aj -overloaded interval withj > i, or
(c) the buffer was empty.

(3) One of the following holds at timetf + 1:
(a) a packet with benefit less thanαi/n was scheduled, or
(b) it is the start time of aj -overloaded interval withj > i, or
(c) the buffer was empty.

(4) The interval is maximal, i.e., it is not contained in any otheri-overloaded interval.

Claim 3. When packets are scheduled according to the
√

α1/n-Preemptive Greedy Policy
the last interval in a sequence of consecutive overloaded intervals with increasing index
has length at leastB time units.

Proof. Suppose that the last interval in the sequence isi-overloaded. Ani-overloaded
interval may be interrupted either by losing of a packet with benefit greater thanαi/n or
by scheduling a packet of benefit less thanαi/n. Since the overloading index of the next
interval is less thani it must be the case that transmitting of a lower benefit packet took
place.

By the definition ofi-overloaded interval some packet of benefitαi/n was rejected
during this interval. At this time moment the buffer was full of packets with benefit
not less thanαi/n and it requires at leastB time units to schedule all these packets to
completion. ✷

Next we prove the loss-bounded ratio of the
√

α1/n-Preemptive Greedy Policy.

Theorem 4. The loss-bounded ratio of the
√

α1/n-Preemptive Greedy Policy is at most
(
√

α1/n + 1)/(α1/n − √
α1/n − 1) + √

α1/n/(α1/n − 1).

Proof. The packets may be lost either due to preemptions or due to rejections. We denote
the loss of the first case byLPrm

A and the loss of the second case byL
Rej
A . We show that

LPrm
A (S) �

√
α1/n + 1

α1/n − √
α1/n − 1

VA(S)

and

L
Rej
A (S) � LOPT(S) +

√
α1/n

α1/n − 1
VA(S),

establishing the theorem.
First we boundLPrm

A . An arriving packetp may first preempt a packet of lower benefit
in time of buffer overflow, which constitutes at most 1/α1/n fraction of the benefit ofp.
In additionp’s extra preemptions constitute at most 1/

√
α1/n fraction of its benefit. We

should also take in account that each preempted packet might have itself preempted other
packets. Notice that such a chain is always finite because the benefit increases very fast and
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it is bounded byα. Moreover, the total benefit of a chain is dominated by that of the last
packet, which is necessarily sent to the output link.

We define therecursive preemptions setof a packet to be the union of the directly
preempted packets and their recursive preemptions sets. We charge the last packet in
the preemptions chain of all the lost packets in its recursive preemptions set. Lety =
1/

√
α1/n + 1/α1/n and assume thatα is sufficiently large so thaty < 1. If the last packet

in the chain of preemptions has benefitαi/n then the cumulative benefit of its recursive
preemptions set is bounded by the following fraction of its benefit:

y + y2 + · · · < y

1− y
=

√
α1/n + 1

α1/n − √
α1/n − 1

.

We charge each packet the loss due to its recursive preemptions set obtaining that

LPrm
A (S) �

√
α1/n + 1

α1/n − √
α1/n − 1

VA(S).

It remains to boundLRej
A . We start by determining overloaded intervals in order of

decreasing index. When we are done with a particulari we mark the corresponding
intervals and continue with the remained parts of the schedule.

Notice that by definition ofi-overloaded interval no packet with benefit greater than
αi/n is lost during such an interval. Thus, we have to concentrate on the loss of packets
with benefit less than or equal toαi/n.

Let I = [ts , tf ] be ani-overloaded interval and lettl be the last time moment before
ts at which a packet with benefit less thanαi/n was scheduled. If there is no suchtl
then an optimal offline policy would have also lost packets belonging to the interval with
cumulative benefit that is greater than or equal to the benefit of the interval’s lost set. So
assume that such time exists.

According to Lemma 3 at timetl there are at mostB/
√

α1/n packets of benefitαi/n

in the buffer. Hence, in the worse case an optimal offline policy could have scheduled
additionally at mostB/

√
α1/n of the lost packets with benefit at mostαi/n. There may be

two cases regarding the length of the interval, that isl(I) = ts − tf + 1.

(1) In casel(I) � B, the ratio between the additional loss and the cumulative benefit of
the packets that were scheduled duringI is bounded by

αi/nB/
√

α1/n

Bαi/n
= 1√

α1/n
.

(2) In casel(I) < B, according to Claim 3 the last interval in the sequence of
consecutive intervals with increasing index has length at leastB. We charge this interval
of loss ofB/

√
α1/n additional packets. Note that the last interval in a sequence maybe

charged at most once by each interval in the sequence. The total value charged for a
sequence of intervals in which the last interval has indexk is bounded by

k∑

i=0

B√
α1/n

αi/n = α(k+1)/n − 1

α1/n − 1
· B√

α1/n
<

√
α1/n

α1/n − 1
· Bαk/n.
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Therefore, the cumulative loss owing to rejections is bounded from above by

L
Rej
A (S) � LOPT(S) +

√
α1/n

α1/n − 1
VA(S),

which completes the proof.✷
The next theorem presents a lower bound on loss-bounded ratio demonstrating that the

bound of Theorem 4 is nearly tight. The proof is similar to that of Theorem 3 and is omitted.

Theorem 5. The loss-bounded ratio of any online policy is at least1/
√

α1/n −3/(α1/n +1)

for B �
√

α1/n.

Next we present a lower bound for loss-bounded analysis in case of general benefit
values. The pathological case for general packet values is still obtained by the interaction
between two packet values. The following theorem is proved by maximizing the bounds of
Eqs. (1) and (2) from Theorem 3 forα ≈ 5.

Theorem 6. The loss-bounded ratio of any online policy is at least0.2 − C/B, for some
constantC � B.

7. Traditional loss-competitive analysis

In this section we consider packets having arbitrary benefit values so that for any packet
its benefit is between 1 andα. We deal with traditional loss-competitive analysis. The next
theorem shows that the Greedy Policy accomplishes a non-zero loss-competitive ratio.

Theorem 7. The Greedy Policy is1/α loss-competitive.

Proof. Clearly, the Greedy Policy maximizes the number of scheduled packets. This
implies that the cumulative benefit of the lost packets is at most a factor ofα far from
the optimal. ✷

This loss-competitive ratio is not appealing since asα increases the loss-competitive
ratio decreases to zero. The following theorem shows that this ratio is the best that an
online policy could achieve.

Theorem 8. The loss-competitive ratio of any online policy is at most1/α.

Proof. Consider the following scenario. At timet = 0 the buffer is empty and a low benefit
packet followed by a high benefit arrive. If the policy drops the packet of low benefit then it
is 0-loss-competitive since there exists a feasible schedule of these packets. In case the low
benefit packet is not dropped, it is sent at timet . Then at timet + 1,B high benefit packets
arrive. Thus, the online policy necessarily drops one high benefit packet, since an optimal
offline policy could have dropped the low benefit packet instead. The theorem follows.✷
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8. Comparative evaluation of loss-bounded analysis

In this section we evaluate the loss-bounded analysis by comparing it with the traditional
competitive analysis. We show that the loss-bounded approach is dual to the throughput-
competitive analysis. The following theorem demonstrates translation from the loss-
bounded to the throughput-competitive guarantee.

Theorem 9. A clb-loss-bounded policyAlb provides1/(1 + clb)-throughput-competitive
guarantee.

Proof. The loss ofAlb by definition are bounded by

LAlb(S) � LOPT(S) + clbVAlb(S).

After substituting in place of loss the difference between the total benefit of the sequence
and the benefit gained by the policy forAlb and OPT we get

V (S) − VAlb(S) � V (S) − VOPT(S) + clbVAlb(S),

VAlb � 1

1+ clb
VOPT(S),

which yields the claim. ✷
Now we show the reverse translation. The proof of the following theorem is analogous

to that of Theorem 9 and is omitted.

Theorem 10. A ctc-throughput-competitive policyAtc provides(1− ctc)/ctc-loss-bounded
guarantee.

9. Concluding remarks

In this work we investigated a framework of Differentiated Services. We have shown
importance of analysis of loss of an online policy and obtained impossibility results for
traditional competitive analysis. Then we introduced a new model for loss evaluation—
loss-bounded analysis in which the loss of an online policy is upper bounded by the loss
of an optimal offline policy plus a constant fraction of the benefit of the online policy.
For various QoS parameters settings we presented tight lower and upper bounds for FIFO
buffer management.

The proposed policies may be used for managing current Internet routers that wish
to provide Differentiated Services. Due to their simplicity they may operate at very
high speeds. Moreover, their implementation does not require installing additional costly
equipment.

By choosing the appropriate benefit setting and value ofα the network operator could
manage traffic streams in the best way. For instance, to give high priority packets an
absolute preference over low priority packetsα may be made very large. Conversely, for
α near one, we are basically use the “best-effort” approach optimizing the total throughput
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and ignoring different priorities. It is worth to note that the loss-bounded ratio of our
policies is improved with increasing ofα.
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