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Lecture 7: May 4
Lecturer: Yishay Mansour Scribe: Gur Yaari, Idan Szpektor

7.1 Extensive Games with Perfect Information

An extensive game is a detailed description of the sequential structure of the decision prob-
lems encountered by the players in strategic situation. There is perfect information in such
a game if each player, when making any decision, is perfectly informed of all the events that
have previously occurred.

7.1.1 Definitions

Definition An extensive game with perfect information 〈N, H, P, Ui〉 has the fol-
lowing components:

• A set of N players

• A set H of sequences (finite or infinite). Each element of H is a history; each compo-
nent of a history is an action taken by a player.

• P is the player function, P (h) being the player who takes an action after the history
h.

• Payoff function Ui, i ∈ N

After any history h player P (h) chooses an action from the set A(h) = {a : (h, a) ∈ H}.
The empty history is the starting point of the game.

Example

Two players want two identical objects. One of them propose an allocation which the other
either accepts or rejects. Both players are reasonable.
In this representation each node corresponds to a history and any edge corresponds to an
action.
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Figure 7.1: An extensive game, allocating two identical objects between two people

• H = {∅, (2, 0), (1, 1), (0, 2), ((0, 2), y), ((2, 0), n), ((1, 1), y), ((1, 1), n), ((0, 2), y), ((0, 2), n)}

• P (∅) = 1 and P ((2, 0)) = P ((1, 1)) = P ((0, 2)) = 2

7.1.2 Strategy

Definition A strategy of player i ∈ N in an extensive game 〈N, H, P, Ui〉 is a function
that assigns an action in A(h) to each history h ∈ H for which P (h) = i

A strategy specifies the action chosen by a player for every history after which it is her turn
to move, even for histories that , if the strategy is followed, are never reached.

Example

In the game shown in figure 7.2, the strategies of the first player S1 = {AE, AF, BE,BF},
i.e. her strategy specifies an action after the history (A, C), even if she chooses B at the
beginning of the game.
One can transform an extensive game with perfect information to a normal game by setting
all the possible histories as the possible choices for a normal game.

7.1.3 Nash Equilibrium

Definition A Nash equilibrium of an extensive game with perfect information
〈N, H, P, Ui〉 is a strategy profile s∗ = (si)i∈N such that for every player i ∈ N and for every
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Figure 7.2: An extensive game in which player 1 moves before and after player 2

strategy s we have Ui(s
∗) ≥ Ui(s)

Example

Figure 7.3: Two players extensive game

The game has two Nash equilibria: (A, R) and (B, L) with payoff (2, 1) and (1, 2). The
strategy profile (B, L) is a Nash equilibrium because given that player 2 chooses L, it is
optimal for player 1 to choose B at the beginning. (B, R) is not a Nash equilibrium since
then player one prefer to choose A. Player 2’s choice L is a ”threat” if player 1 chooses A.
If player 2 chooses R, then player 1 prefer A since her payoff increases.

7.1.4 Subgame perfect Equilibrium

Definition The subgame of the extensive game with perfect information Γ =
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〈N, H, P, Ui〉 that follows the history h is the extensive game Γ(h) = 〈N, H|h, P |h, Ui|h〉
where H|h is the set of sequences h′ of actions for which (h, h′) ∈ H.

Definition A subgame perfect equilibrium of an extensive game with perfect in-
formation 〈N, H, P, Ui〉 is a strategy profile s∗ such that for every player i ∈ N and every
history h ∈ H for which P (h) = i we have Ui(s

∗|h) ≥ Ui(s|h) for every strategy si of player
i in the subgame Γ(h)

Lemma 7.1 The strategy profile s∗ is a subgame perfect equilibrium if and only if for every
player i ∈ N and every history h ∈ H for which P (h) = i and for every ai ∈ Ai(h) exists
Ui(s

∗|h) ≥ Ui(s
∗
−i|h, si) such that si differs from s∗i |h only in the action ai after the history

h.

Proof: If s∗ is a subgame perfect equilibrium then it satisfies the condition. Now suppose
there is a history h which player P (h) should change her action. Let h be the longest history
as above. For P (h) = i she can change to ai ∈ Ai(h) and increases her payoff. Thus s∗ is
not a subgame perfect equilibrium. �

Theorem 7.2 Every extensive game with perfect information has a subgame perfect equilib-
rium.

Proof:We will use a backwards induction procedure. We start with the leaves and walk
up through the tree. In every vertex we choose the best action (Best Response). By Lemma
?? this profile is a subgame perfect equilibrium. �

The Chain-Store Game

Figure 7.4: Player’s choices in city k in the chain-store game

A chain-store (player CS) has branches in K cities. In each city k there is a single
competitor, player k. In each period one of the potential competitors decides whether or
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not to compete. If player k decides to compete then the chain-store can either fight (F ) or
cooperate (C). If challenged in any given city the chain-store prefers to cooperate rather
then fight, but obtains the highest payoff if there is no entry. Each potential competitor is
better off staying out than entering and being fought, but obtains the highest payoff when
it enters and the chain-store is cooperative.
The game has a multitude of Nash equilibria: (Out, F ) or (In, C).
The game has a unique subgame perfect equilibrium: every challenger chooses In and
the chain-store always chooses C.

7.2 Repeated Games

The idea behind repeated games is that if we let the players play the same game a couple of
times, they could get to different equilibria than those of a Nash Equilibrium of a one single
round game. For example, we would like to achieve cooperation in the Prisoner’s Dilemma
game.

7.2.1 Finitely Repeated Games

Lets look again at the Prisoner’s Dilemma game:

C D
C (3, 3) (0, 4)
D (4, 0) (1, 1)

Claim 7.3 In a repeated game of T steps, where T is a final number, the only Nash Equi-
librium is to play (D,D) in all T steps.

Proof: In the last step, both players will play D, since otherwise at least one of the
players would want to change her decision in order to improve her benefit. Now, using
induction, if both players played the last i steps (D,D), then the same reason will hold for
the i− 1 step. �

We shall look now at a modified Prisoner’s Dilemma game:

Claim 7.4 In the finite T steps modified game, there is a subgame perfect equilibrium for
which the outcome is (C,C) in every step but the last three, in which it is (D,D).

Proof: The strategy chosen by the first player should be to play T − 3 times C and then
the last 3 times to play D. However, if the second player has played differently than this
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C D E
C (3, 3) (0, 4) (0, 0)
D (4, 0) (1, 1) (0, 0)
E (0, 0) (0, 0) (1

2
, 1

2
)

strategy, we will play E for the rest of the steps. Since we stop cooperating at the T − 2
step, its enough to see if the other player has played differently at the T − 3 step. Here are
the two possible outcomes starting from the T − 3 step:
Playing according to the strategy will yield (C,C) (D,D) (D,D) (D,D). The total payoff if
these steps for the second player is 3 + 1 + 1 + 1 = 6.
If the second player will change her strategy, the best moves that can be made are (C,D)
(E,E) (E,E) (E,E). The total payoff for the second player is 4 + 1

2
+ 1

2
+ 1

2
= 51

2
.

As we can see playing differently than the stated strategy will yield less profit for the deviating
player. Thus it is best to play the proposed strategy by both players. �

The average payoff in this game is (3(T − 3) + 3)/T which is 3− 6
T
. This payoff is close

to 3 which is the payoff of repeated cooperation.

7.2.2 Infinitely Repeated Games

There are several ways to look at the payoff of a player in an infinitely repeated game, a
game that is repeated an infinite number of steps. We shall look at an N players game G
with a payoff function ~u, where ui is the payoff function of player i. We define ui

t as the
payoff of player i at step t.

Definition The average payoff of a game G is the limit of the average payoff of the first
T steps:
1
T
(
∑T

t=1 ui
t) →T→∞ ui

Definition The finite payoff of a game G is the sum of the payoff of the first H steps of
the game:

∑H
t=1 ui

t

Definition The discount payoff of a game G is the weighted sum of the payoff of the
steps of the game:

∑∞
t=1 ui

t

In the rest of the document when we refer to the payoff of an infinitely repeated game,
we shall mean an average payoff ui.

Definition The payoff profile of an infinitely repeated game G is the payoff vector ~w,
where wi is the payoff of player i. A payoff profile ~w is feasible if there are βa for each
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outcome a ∈ A, K =
∑

a∈A βa, such that ~w =
∑

a∈A
βa

K
~u(a).

Definition The minimax payoff of player i in a single step is: vi = mina−i∈A−i
maxai∈Ai

ui(a−i, ai)

Claim 7.5 In every Nash Equilibrium of a single game, the payoff of player i is at least vi.

Proof: If a player has a smaller payoff than vi then by the definition of the minimax
payment, there is a different strategy that she can play in order to profit at least vi. �

Definition A payoff profile ~w is enforceable if ∀i∈Nvi ≤ wi. A payoff profile is strictly
enforceable if ∀i∈Nvi < wi.

Theorem 7.6 Every feasible enforceable payoff profile ~w in an infinitely repeated game G is
a Nash Equilibrium with an average payoff.

Proof: We will describe a strategy that is Nash Equilibrium with the payoff ~w.
Since ~w is feasible there are βa for each a ∈ A, K =

∑
a∈A βa, such that ~w =

∑
a∈A

βa

K
~u(a).

We shall assume that ∀a∈Aβa ∈ N.
The strategy of each player is to play cycles of K steps, going over all the possible outcomes
a ∈ A in an ordered list and playing her outcome in a βa times. If player i deviates from this
strategy, the rest of the players will change to a new strategy P−i that enforces the payoff of
player i to be at most the minimax payoff vi.
Thus, if a player i deviates from the main strategy, her payoff will be vi. which is not better
than her payoff in ~w. Because each deviation will not improve the payoff of player i, ~w is a
Nash Equilibrium. �

Theorem 7.7 Every feasible strictly enforceable payoff profile ~w in an infinitely repeated
game G has a Subgame Perfect Equilibrium with an average payoff.

Proof: We will describe a strategy that is Subgame Perfect Equilibrium with the payoff
~w.
We shall use the same cyclic strategy as in the previous theorem, where all the players play
the outcome a for βa steps. If a player deviates from the strategy, the other players will
punish her but only in a finite number of steps. At the end of the punishing steps all players
will resume to play the cyclic strategy.
More specifically, at the end of each K steps cycle, the players will check if one of the
players has deviated from the cyclic strategy. If a player, let say player j, has indeed played
differently, the other players will play, for m∗ steps, the minimax strategy P−j that will
enforce a payoff of at most vj for player j, where m∗ is chosen as follows:
We mark player j’s strategy in each step t of the last cycle as a

′t
j . The maximal payoff benefit
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for player j out of the steps in the cycle is g∗ = maxat [uj(at
−j, a

′t
j )− uj(at)], where at ∈ A is

the expected outcome in step t of the K steps. We would like to get Kg∗ + m∗vj < m∗wj

in order to make the punishment worthwhile. However, since ~w is strictly enforceable, we
know that vj < wj and so there exist m∗ such that 0 < Kg∗

wj−vj
< m∗.

Playing the punishment strategy for m∗ steps will yield a strictly smaller payoff for player j
than playing the cyclic strategy without deviation. �

7.3 Bounded Rationality

We have seen that in a repeated Prisoner’s Dilemma game of N rounds there is no coopera-
tion. A way to circumvent this problem is to assume that the players have limited resources.
This kind of player is said to have Bounded Rationality.

A Bounded Rationality player is an automata with:

S - the state set.

A - the actions.

δ : S × A → S - the state transfer function.

f : S → A - the actions function.

S0 - the starting state.

We assume that the automata is deterministic and that in each state only one action is
chosen. A stochastic strategy is to randomly choose one automata from a set of deterministic
automatas.

7.3.1 Tit for Tat

The Tit for Tat strategy (TfT) for the repeated Prisoner’s Dilemma game will play in the
next round what the opponent played in the last round (see figure ??).

Theorem 7.8 The TfT strategy is a Nash Equilibrium if the opponents has at most N − 1
states while the game is of N rounds.

Proof: Any diversion of the opponent from the cooperation action C for k > 0 rounds,
playing D, will yield a profit of 4 + 1(k − 1) + 0δ for the opponent. On the other hand, if
a cooperation is kept, the opponent’s profit is 3k + 3δ. Where δ is 1 when the diversion is
not at the end of the game (i.e. there are more rounds afterwards) and 0 at the end of the
game. If δ is 1, the next round the opponent will play C, she will profit 0, while profiting 3
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Figure 7.5: The automata of the Tit for Tat strategy

if a cooperation was maintained. This means that in the middle of the game the opponent
will always prefer to cooperate since it has a bigger profit, 3k +3 > 3+k. The problem is at
the end of the game. While k > 1 it is still more profitable to cooperate, since 3k > 3 + k.
However when k is 1, it is better to defect, meaning that the only time that it is better to
defect is in the last round.

If the opponent has an automata of at most N − 1 states then for any action series of
length N−1 the automata will return to an already visited state, arriving at a cycle. If until
then the automata did not play D, it will never play D. However, if it did play D in one of
the first N − 1 rounds the opponent will gain less than playing a full cooperation. Thus, the
only Nash Equilibrium for at most N − 1 states automata is to play C constantly.

Since this logic is true for any kind of at most N − 1 states automata, it is also true for
a stochastic strategy over a set of such automatas. �

7.3.2 Bounded Prisoner’s Dilemma

We have seen an example for a simple bounded rationality strategy for the Prisoner’s
Dilemma game that will yield a cooperation in some conditions. The next step is to an-
alyze any general bounded rationality strategy for that game, described by a final automata,
and find what are the conditions that will lead to a cooperation between two players using
these strategies in an N rounds game.

Theorem 7.9 If, in a Repeated Prisoner’s Dilemma with N rounds, both players have an
automata with at least 2N−1 states then the only Equilibrium is the one is which both players
play (D,D) in all rounds.

Proof: Given an opponent, that optionally can play stochastically, it is possible to play
an optimal strategy as follows:
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We shall build a game history tree of depth N . At each node we shall calculate the
distribution of the optimal action using dynamic programming, starting from the leafs and
up the tree. Based on the profits of all the possible paths from a specific node to the leafs,
we can choose the best response at every node.

The chosen optimal startegy can be encoded in a full binary tree of depth N−1, describing
the first N − 1 rounds, and one node for the last round (any optimal automata plays D in
the last stage for every history of nonzero probability), summing to 2N−1 states.

As this is the optimal unrestricted strategy, the only Equilibrium is to play (D,D) at
each round, as shown earlier. �

Theorem 7.10 For a Repeated Prisoner’s Dilemma with N rounds, when both players have
automatas with at most 2ε1N states (when it is possible to change to a different automata
with a related size boundary 2ε2N), there exists an Equilibrium with a profit of 3− ε3.


