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3.1 Lecture Overview

In this lecture we consider the problem of routing traffic to optimize the performance
of a congested and unregulated network. We are given a network, a rate of traffic
between each pair of nodes and a latency function specifying the time needed to
traverse each edge given its congestion. The goal is to route traffic while minimizing
the total latency. In many situations, network traffic cannot be regulated, thus each
user minimizes his latency by choosing among the available paths with respect to the
congestion caused by other users. We will see that this ”selfish” behavior does not
perform as well as an optimized regulated network.
We start by exploring the characteristics of Nash equilibrium and minimal latency
optimal flow to investigate the coordination ratio. We prove that if the latency of
each edge is a linear function of its congestion, then the coordination ratio of selfish
routing is at most 4/3. We also show that if the latency function is only known
to be continuous and nondecreasing in the congestion, then there is no bounded
coordination ratio; however, we prove that the total latency in such a network is no
more than the total latency incurred by optimally routing twice as much traffic on
the same network.

3.2 Introduction

We shall investigate the problem of routing traffic in a network. The problem is de-
fined as follows: Given a rate of traffic between each pair of nodes in a network find an
assignment of the traffic to paths so that the total latency is minimized. Each link in
the network is associated with a latency function which is typically load-dependent,
i.e. the latency increases as the link becomes more congested.
In many domains (such as the internet or road networks) it is impossible to impose
regulation of traffic, and therefore we are interested in those settings where each user
acts according to his own selfish interests. We assume that each user will always select
the minimum latency path to its destination. In other words, we assume all users are
rational and non malicious. This can actually be viewed as a noncooperative game
where each user plays the best response given the state of all other users, and thus
we expect the routes chosen to form a Nash equilibrium.
The network contains a numerous amount of users where each user holds only a neg-
ligible portion of the total traffic. Alternatively, we can think of a model with a finite
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Figure 3.1:

number of users that are allowed to split their load between different paths. Our tar-
get function is to minimize the average (or total) latency suffered by all users. We will
compare the overall performance under a Nash equilibrium against the theoretically
optimal performance of a regulated network.

Before we continue, let’s examine an example setting which has inspired much of the
work in this traffic model. Consider the network in Figure 3.1(a). There are two
disjoint paths from S to T. Each path follows exactly two edges. The latency func-
tions are labelled on the edges. Suppose one unit of traffic needs to be routed from
S to T. The optimal flow coincides with the Nash equilibrium such that half of the
traffic takes the upper path and the other half takes the lower path. In this manner,
the latency perceived by each user is 3

2
. In any other nonequal distribution of traffic

among the two paths, there will be a difference in the total latency of the two paths
and users will be motivated to reroute to the less congested path.

Note Incidentally, we will soon realize that in any scenario in which the flow at
Nash is split over more than a single path, the latency of all the chosen paths must
be equal.

Now, consider Figure 3.1(b) where a fifth edge of latency zero is added to the network.
While the optimum flow has not been affected by this augmentation, Nash will only
occur by routing the entire traffic on the single S → V → W → T path, hereby
increasing the latency each user experiences to 2. Amazingly, adding a new zero
latency link had a negative effect for all agents. This counter-intuitive impact is
known as Braess’s paradox.

Anecdote 1 Two live and well known examples of Braess’s paradox occurred when
42nd street was closed in New York City and instead of the predicted traffic gridlock,
traffic flow actually improved. In the second case, traffic flow worsened when a new
road was constructed in Stuttgart, Germany, and only improved after the road was
torn up.
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3.2.1 The Model - Formal Definition

• We consider a directed graph G = (V,E) with k pairs (si, ti) of source and
destination vertices.

• ri - The amount of flow required between si and ti.

• Pi - The set of simple paths connecting the pair (si, ti). P =
⋃

i Pi.

• Flow f - A function that maps a path to a positive real number. Each path P
is associated with a flow fP .

• fe - The flow on edge e defined for a fixed flow function. fe =
∑

P :e∈P fP .

• A flow f is said to be feasible if ∀i, ∑
P∈Pi

fP = ri.

• Each edge e ∈ E is given a load-dependent latency function denoted `e(·). We
restrict our discussion to nonnegative, differentiable and nondecreasing latency
functions.

• (G, r, `) - A triple which defines an instance of the routing problem.

• The latency of a path `P is defined as the sum of latencies of all edges in the
path. `P (f) =

∑
e∈P `e(fe).

• C(f) - The total latency, also defined as the cost of a flow f. C(f) =
∑

P∈P `P (f)fP .
Alternatively, we can accumulate over the edges to get C(f) =

∑
e∈E `e(fe)fe.

3.3 Characterizations of Nash & OPT Flows

3.3.1 Flows at Nash Equilibrium

Lemma 3.3.1 A feasible flow f for instance (G, r, `) is at Nash equilibrium iff for
every i ∈ {1, ..., k} and P1, P2 ∈ Pi with fP1 > 0, `P1(f) ≤ `P2(f).

From the lemma it follows that flow at Nash equilibrium will be routed only on best
response paths. Consequently, all paths assigned with a positive flow between (si, ti)
have equal latency denoted by Li(f).

Corollary 3.1 If f is a flow at a Nash equilibrium for instance (G, r, `) then
C(f) =

∑k
i=1 Li(f)ri.
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3.3.2 Optimal (Minimum Total Latency) Flows

Recall that a cost of a flow f is expressed by C(f) =
∑

e∈E `e(fe)fe. We seek to
minimize this function for finding an optimal solution.

Observation 3.2 Finding the minimum latency feasible flow is merely a case of the
following non-linear program:

min
∑

e∈E ce(fe)

subject to: ∑
P∈Pi

fP = ri ∀i ∈ {1, ...k}
(NLP) fe =

∑
P∈P:e∈P fP ∀e ∈ E

fP ≥ 0 ∀P ∈ P

where in our problem we assign ce(fe) = `e(fe)fe.

Note For simplicity the above formulation of (NLP) is given with an exponential
number of variables (there can be an exponential number of paths). This formulation
can be easily modified with decision variables only on edges giving a polynomial num-
ber of variables and constraints.

In our case we assume that for each edge e ∈ E the function ce(fe) = `e(fe)fe is
a convex function and therefore, our target function C(f) is also convex. This is a
special case of convex programming. We wish to optimize (minimize) a convex func-
tion F(x) where x belongs to a convex domain.
Recall the following properties of convex sets and functions:

1. If f is strictly convex then the solution is unique.

2. If f is convex then the solution set U is convex.

3. If y is not optimal (∃x : F (x) < F (y)) then y is not a local minimum. Conse-
quently, any local minimum is also the global minimum.

Lemma 3.3.2 The flow f is optimal for the convex program of the form (NLP) iff
∀i ∈ {1, ..., k} and P1, P2 ∈ Pi with fP1 > 0, c′P1

(f) ≤ c′P2
(f).

Notice the striking similarity between the characterization of optimal solutions (Lemma
3.3.2) and Nash equilibrium (Lemma 3.3.1). In fact, an optimal flow can be inter-
preted as a Nash equilibrium with respect to a different edge latency functions.
Let x`e(x) be a convex function for all e ∈ E. Define `∗e(fe) = (`e(fe)fe)

′.

Corollary 3.3 A feasible flow f is an optimal flow for (G, r, `) iff it is at Nash equi-
librium for the instance (G, r, `∗).

Proof. f is OPT for ` ⇔ c′P1
(f) ≤ c′P2

(f) ⇔ `∗P1
(f) ≤ `∗P2

(f) ⇔ f is Nash for `∗

(∀i ∀P1, P2 ∈ Pi). 2
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3.3.3 Existence of Flows at Nash Equilibrium

We exploit the similarity between the characterizations of Nash and OPT flows to
establish that a Nash equilibrium indeed exists and its cost is unique.
For the outline of the proof we define an edge cost function he(x) =

∫ x

0
`e(t)dt.

By definition (he(fe))
′ = d

dx
he(fe) = `e(fe) thus he is differentiable with non de-

creasing derivative `e and therefore convex. Next, we consider the following convex
program:

min
∑

e∈E he(fe)

subject to: ∑
P∈Pi

fP = ri ∀i ∈ {1, ..., k}
(NLP2) fe =

∑
P∈P:e∈P fP ∀e ∈ E

fP ≥ 0 ∀P ∈ P
Observation 3.4 The optimal solution for (NLP2) is Nash for the modified instance
where `e(x) = h′e(x).

Proof. The proof follows directly from Lemma 3.3.1 and Lemma 3.3.2 2

Since Nash is an optimal solution for a different convex setting we conclude that:

• Nash equilibrium exists.

• The cost at Nash equilibrium is unique.

3.3.4 Bounding the Coordination ratio

The relationship between Nash and OPT characterizations provide a general method
for bounding the coordination ratio ρ = C(f)

C(f∗) = Nash
OPT

.

Theorem 3.5 For an instance (G, r, `), if there exists a constant α ≥ 1 s.t.

∀e ∈ E ∀x ∈ R+ x`e(x) ≤ α

∫ x

0

`e(t)dt

then ρ(G, r, `) ≤ α.

Proof.

C(f) =
∑

e∈E `e(fe)fe

≤ α
∑

e∈E

∫ fe

0
`e(t)dt

≤ α
∑

e∈E

∫ f∗e
0

`e(t)dt

≤ α
∑

e∈E `e(f
∗
e )f ∗e

= α · C(f ∗)
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The first inequality follows from the hypothesis, the second follows from the fact that
Nash flow f is OPT for the function

∑
e∈E

∫ x

0
`e(t)dt and the final inequality follows

from the assumption that the latency functions `e are nondecreasing.
2

Corollary 3.6 If every latency function `e has the form `e(x) =
∑d

i=0 ae,ix
i (meaning

latency is a polynomial function of order d) then ρ(G, r, `) ≤ d + 1.

Note From the corollary, an immediate coordination ratio of 2 is established for
linear latency functions. Later, we will show a tighter bound of 4

3
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Figure 3.2:

Figure 3.2(a) shows an example for which Nash flow will only traverse in the lower
path while OPT will divide the flow equally among the two paths. The target func-
tion is 1(1 − x) + x · x and it reaches minimum with value 3

4
when x = 1

2
, giving a

coordination ratio of 4
3

for this example. Combining the example with the tighter up-
per bound to be shown, we demonstrate a tight bound of 4

3
for linear latency functions.

In Figure 3.2(b) the flow at Nash will continue to use only the lower path but OPT

will reach minimum for the cost function x · xd + (1− x) · 1 at x = (d + 1)−
1
d , giving

a total latency 1- d
d+1

(d + 1)−1/d which approaches 0 as d → ∞. So, limd→∞ ρ = ∞
meaning, ρ cannot be bounded from above in some cases when nonlinear latency
functions are allowed.

3.4 A Bicriteria Bound for latency functions

We now examine an interesting bicriteria result. We show that the cost of a flow at
Nash equilibrium can be bounded by the cost of an optimal flow feasible for twice the
amount of traffic.

Theorem 3.7 If f is a flow at Nash equilibrium for instance (G, r, `) and f ∗ is a
feasible flow for instance (G, 2r, `) (same network but with twice the required rate),
then C(f) ≤ C(f ∗).
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Proof. Let Li(f) be the latency of a si− ti flow path, so that C(f) =
∑

i Li(f)ri.
We define a new latency function:

¯̀
e(x) =

{
`e(fe) if x ≤ fe

`e(x) if x ≥ fe

This latency function will allow us to approximate the original latencies as well as to
lower bound the cost of any feasible flow.

• Step 1: Let’s compare the cost of f ∗ under the new latency function ¯̀ with
respect to the original cost C(f ∗).
From the construction of ¯̀

e(x) we get:

¯̀
e(x)− `e(x) = 0 for x ≥ fe
¯̀
e(x)− `e(x) ≤ `e(fe) for x ≤ fe

So, for all x we get x[ ¯̀e(x)− `e(x)] ≤ `e(fe)fe.

The difference between the new cost under ¯̀
e and the original cost under `

is:

∑
e

¯̀
e(f

∗
e )f ∗e − C(f ∗) =

∑
e∈E f ∗e ( ¯̀

e(f
∗
e )− `e(f

∗
e ))

≤ ∑
e∈E `e(fe)fe

= C(f).

The cost of OPT with the latency function ¯̀ increased by at most the cost of
Nash (an additive C(f) factor).

• Step 2: Denote z0 the zero flow in G. For the pair si − ti we can observe that
by construction, ∀P ∈ Pi

¯̀
P (z0) ≥ `P (f) ≥ Li(f).

Hence, since ¯̀
e is nondecreasing for each edge e, ∀P ∈ Pi

¯̀
P (f ∗) ≥ ¯̀

P (z0) ≥
`P (f) ≥ Li(f), revealing that the cost of f ∗ with respect to ¯̀ can be bounded
as follows:

∑
P

¯̀
P (f ∗)f ∗P ≥ ∑

i

∑
P∈Pi

Li(f)f ∗P

=
∑

i 2Li(f)ri = 2C(f).

Combining the results from the previous two steps finishes the proof of the theorem:

C(f ∗) ≥ ∑
P

¯̀
P (f ∗)f ∗P − C(f)

≥ 2C(f)− C(f) = C(f).

2
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3.5 A Tight Bound for Linear Latency Functions

Finally, we consider a scenario where all edge latency functions are linear
`e(x) = aex + be, for constants ae, be ≥ 0. A fairly natural example for such a model
is a network employing a congestion control protocol such as TCP. We have already
seen in Figure 3.2(a) an example where the coordination ratio was 4

3
. We have also

established an upper bound of 2 according to Corollary 3.6. We shall now show that
the 4

3
ratio is also a tight upper bound. Prior to this result, we examine two simple

cases:

1. `e(x) = b

2. `e(x) = aex.

For both these cases we will show that OPT=Nash.

• Case 1 is obvious since the latency on each path is constant, so both OPT and
Nash will route all the flow to the paths with minimal latency.

• Case 2:

– Using Lemma 3.3.1, a flow f is at Nash equilibrium iff for each source-sink
pair i and P, P ′ ∈ Pi with fP > 0 then
`P (f) =

∑
e∈P `e(fe) =

∑
e∈P aefe ≤

∑
e′∈P ′ ae′fe′ = `P ′(f).

– Using Lemma 3.3.2, a flow f ∗ is an optimal flow iff for each source-sink
pair i and P, P ′ ∈ Pi with f ∗P > 0 then
C ′

P (f ∗) =
∑

e∈P C ′
e(f

∗
e ) =

∑
e∈P ((aef

∗
e )f ∗e )′ =

∑
e∈P 2aef

∗
e ≤

∑
e′∈P ′ 2ae′f

∗′
e =

C ′
P ′(f

∗).

Corollary 3.8 For the latency functions `e(x) = ae(x) f is at Nash equilibrium
iff f is an optimal flow.

Observation 3.9 In the example shown in Figure 3.2(a) we showed that even a
simple combination of the two sets of functions is enough to demonstrate that OPT
6= Nash.

Theorem 3.10 Let f be a flow at Nash equilibrium and f ∗ an optimal flow . If the
latency functions are all of the form `e(x) = aex + be then ρ ≤ 4

3
.

Proof. We define a new latency function ¯̀
e,

¯̀
e(x) = (`e(fe)) · x = `f

e · x

Under this definition of ¯̀
e, OPT ≡ Nash (by Corollary 3.8).

Hence, f is at Nash equilibrium with respect to ¯̀⇔ for every feasible flow x where
Cf (·) is the cost with respect to ¯̀, Cf (f) ≤ Cf (x).
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Cf (x) =
∑

e(aefe + be) · xe

≤ ∑
e(aexe + be)xe + 1

4

∑
e aef

2
e

≤ C(x) + 1
4
C(f)

The first inequality is justified by the following algebraic steps:

(aefe + be)xe ≤ (aexe + be)xe + aef2
e

4

⇔ aefexe ≤ aexexe + aef2
e

4

⇔ fexe ≤ x2
e + f2

e

4

⇔ 0 ≤ x2
e − fexe + f2

e

4
= (xe − fe

2
)2

Since f brings Cf (·) to minimum,

C(f) = Cf (f) ≤ Cf (x)

≤ C(x) + 1
4
C(f)

or,
3

4
C(f) ≤ C(x).

As this is true for all x, let’s plug-in x = f ∗:

C(f) ≤ 4

3
C(f ∗).

2

3.6 FIN

All good things must come to an end.


