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5.1 2-Player Zero Sum Games

are completely competitive, where whatever one player wins, the other loses. Examples of
such games include chess, checkers, backgammon, etc. We will show that in such games:

• An equilibrium always exists (although not necessarily a pure one);

• All equilibrium points yield the same payoff for the players;

• The set of equilibrium points is actually the cartesian product of independent sets of
equilibrium strategies per player.

We will also show applications of the theory of 2-Players zero sum games.

Definition Let G be the game defined by 〈N, (Ai) , (ui)〉 where N is the number of players,
Ai is the set of possible pure strategies for player i, and ui is the payoff function for player
i. Let A be the Cartesian product A =

∏n
i=1 Ai. Then G is a zero sum game if and only if:

∀~a ∈ A,
n∑
i=1

ui (~a) = 0 (5.1)

In other words, a zero sum game is a game in which, for any joint action, the sum of payoffs
to all players is zero.

We naturally extend the definition of ui to any probability distribution ~p over A by
defining ui (~p) = E~a∼ ~p (ui (~a)). The following is immediate due to the linearity of the
expectation and the zero sum constraint:

1The scribe notes are based in part on the scribe notes of Ilan Cohen, Natan Rubin and

Ophir Bleiberg, 2006, and those of Yair Ha-Levi and Daniel Deutsch, 2004.
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Corollary 5.1 Let G be a zero sum game, and ∆(A) the set of probability distributions over
A. Then

∀~p ∈ ∆(A),
n∑
i=1

ui (~p) = 0 (5.2)

Specifically, this will also hold for any probability distribution that is the product of N in-
dependent distributions, one per player, which applies to our mixed strategies.

A 2-player zero sum game is a zero sum game with N = 2. In this case, (5.1) may be
written as

∀a1 ∈ A1, a2 ∈ A2, u1 (a1, a2) = −u2 (a1, a2) (5.3)

Such a game is completely competitive. There is no motivation for cooperatibetween the
players.
A two person zero sum game may also be described by a single function π : A1 × A2 → R
describing the payoff value for player I, or the loss value for player II. The goal of player I is
to maximize π, while the goal of player II is to minimize π.
We say that π (i, j) is the value of the game for strategies i and j or simply the payoff for i
and j.

Given a certain ordering of the pure strategies of both players, we can also represent a
finite 2-player zero sum game using a real matrix Am×n (the payoff matrix), where m is the
number of pure strategies for player I and n is the number of pure strategies for player II.
The element aij in the ith row and jth column of A is the payoff (for player I) assuming
player I chooses his ith strategy and player II chooses his jth strategy.

When a 2-player zero sum game is represented as a matrix A, a deterministic Nash
equilibrium for the game is a saddle point of A, or a pair of strategies i, j so that:

aij = max
k
akj

aij = min
l
ail

However, such an equilibrium does not necessarily exist (e.g., consider the game ”Paper,
scissors, rock”).

5.2 Nash Equilibria

The Nash equilibria of a 2-player zero sum game have several interesting properties. First,
they all exhibit the same value. Second, they are interchangeable, meaning that given 2 Nash
equilibrium points, it is possible to replace a strategy for one of the players in the first point
by the strategy of the same player in the second point and obtain another Nash equilibrium.
Formally:
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Theorem 5.2

Let G be a 2-player zero sum game defined by 〈(A1, A2) , π〉. Let (τ1, τ2) and (σ1, σ2) be two
Nash equilibria for G. Then:

1. π (τ1, τ2) = π (τ1, σ2) = π (σ1, τ2) = π (σ1, σ2)

2. Both (σ1, τ2) and (τ1, σ2) are Nash equilibria of G.

Proof: (σ1, σ2) is a Nash equilibrium. Therefore, for the first player (who plays to
maximize π), we have

π (σ1, σ2) ≥ π (τ1, σ2)

However, (τ1, τ2) is a Nash equilibrium as well. Therefore, for the second player (who plays
to minimize π) we have

π (τ1, σ2) ≥ π (τ1, τ2)

Combining these two inequalities we get

π (σ1, σ2) ≥ π (τ1, σ2) ≥ π (τ1, τ2)

Similarly,
π (σ1, σ2) ≤ π (σ1, τ2) ≤ π (τ1, τ2)

From the last two inequalities we obtain

π (σ1, σ2) = π (τ1, τ2) = π (σ1, τ2) = π (τ1, σ2)

Which proves part 1 of the theorem. To prove part 2 we observe that because (σ1, σ2) is a
Nash equilibrium for player I,

∀α′1 ∈ A1, π (α′1, σ2) ≤ π (σ1, σ2) = π (τ1, σ2) ,

where the right-hand equation is due to part 1 of the theorem which has already been proven.
Similarly, because (τ1, τ2) is a Nash equilibrium for player II,

∀α′2 ∈ A2, π (τ1, α
′
2) ≥ π (τ1, τ2) = π (τ1, σ2) .

This means that (τ1, σ2) is a Nash equilibrium as well.
The proof is similar for (σ1, τ2). 2 �

We define the equilibrium strategies of a player as the set of all strategies played by the
player in any equilibrium point. For player I, this is given by

{σ1 ∈ A1 | ∃σ2 ∈ A2, (σ1, σ2) is an eq. pt. }

Corollary 5.3 The set of Nash equilibrium points of a 2-player zero sum game is the Carte-
sian product of the equilibrium strategies of each player.

2Theorem 5.2 holds with the same proof for both the pure and the mixed case.
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5.3 Payoff Bounds

For the case of pure strategies, player I can guarantee a payoff lower bound by choosing a
pure strategy for which the minimal payoff is maximized. This assumes player II is able to
know player I’s choice and will play the worst possible strategy for player I (note that in a
2-player zero sum game this is also player II’s best response to player I’s chosen strategy).

We denote this ”gain-floor” by V ′I :

V ′I = max
i

min
j
aij

Similarly, player II can guarantee a loss upper bound by choosing the pure strategy for which
the maximal payoff is minimal. We denote this ”loss-ceiling” by V ′II :

V ′II = min
j

max
i
aij

Lemma 5.4

For any function F : X × Y → R, for which all the relevant minima and maxima exist:

1. maxx∈X miny∈Y F (x, y) ≤ miny∈Y maxx∈X F (x, y).

2. Equality holds iff : ∃x0 ∈ X, y0 ∈ Y , F (x0, y0) = miny∈Y F (x0, y) = maxx∈X F (x, y0).

Proof: The proof of this lemma is trivial and therefore it is not shown here. �
Applying Lemma 5.3 to our case proves the intuitive fact that player I’s gain-floor cannot

be greater than player II’s loss-ceiling,

V ′I ≤ V ′II ,

and that equality holds iff we have a saddle point and thus an equilibrium.

5.4 Mixed Strategies

For a finite 2-player zero sum game denoted as a matrix Am×n, we denote a mixed strategy
for a player I (II) by a stochastic vector of length m (n), where the ith element in the vector is
the probability for the ith pure strategy of this player (using the same order used to generate
the payoff matrix).

Vectors in this text are always row vectors. We will typically use x for player I mixed
strategies, and y for player II mixed strategies. We shall denote by ∆d the set of stochastic
vectors in Rd.
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For a 2-player zero sum game given by matrix Am×n, and given mixed strategies x for player
I and y for player II, the expected payoff is given by

A (x, y) =
m∑
i=1

n∑
j=1

xiaijyj = xAyT (5.4)

Once again, if player I chose strategy x, the minimum gain (which is also player II’s best
response loss) is

vII (x) = min
y∈∆n

xAyT , (5.5)

which is player II best responce to what player I strategy. It is easily shown that this mini-
mum must be reachable in at least one pure strategy of player II.

Lemma 5.5

∀x ∈ ∆m, vII (x) = min
y∈∆n

xAyT = min
1≤j≤n

xAeTj

Proof: The proof is trivial given the fact that xAyT is a convex combination of xAeTj ,
so xAyT can never be less than all of xAeTj , and on the other hand, ej is also in ∆n, so
vII (x) ≤ xAeTj .

�
Therefore we can write (5.5) as

vII (x) = min
1≤j≤n

xAeTj = min
1≤j≤n

m∑
i=1

xiaij. (5.6)

This means that player I can guarantee the following lower bound on his payoff (gain-floor):

VI = max
x∈∆m

min
y∈∆n

xeAyT = max
x∈∆m

min
1≤j≤n

xAeTj = max
x∈∆m

min
1≤j≤n

m∑
i=1

xiaij. (5.7)

Such a mixed strategy x that maximizes vII (x) is a maximin strategy for player I. Once
again, this maximum exists due to compactness and continuity.

We define vI (y) in a similar fashion as player I’s most harmful response (to player II) to
strategy y of player II (this is also player I’s best response to y). Then, player II can guarantee
the following upper bound on his loss (loss-ceiling):

VII = min
y∈∆n

max
x∈∆m

xAyT = min
y∈∆n

max
1≤i≤m

eiAy
T = min

y∈∆n

max
1≤i≤m

n∑
j=1

yjaij. (5.8)

Such a mixed strategy y that maximizes vI (y) is a minimax strategy for player II.

VI and VII are called the values of the game for players I and II, respectively.
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5.5 The Minimax Theorem

Applying Lemma 5.3 to the maximin and minimax values of the game we obtain:

VI ≤ VII (5.9)

We will show the following fundamental property of 2-player zero sum games:

Theorem 5.6 (The Minimax Theorem)

VI = VII

The proof outline:

• We shall first prove the following lemma:

Lemma 5.7 (Supporting Hyperplane Theorem) Let B ⊆ Rd be a closed convex set and
~x 6∈ B then ~α = (α1, α2, . . . , αd) and αd+1 exist such that

~α · ~x =
d∑
i=1

αixi = αd+1 (5.10)

∀y ∈ B, ~α · ~y =
d∑
i=1

αiyi > αd+1 (5.11)

In other words, given a convex closed set B and a point outside the set ~x, the lemma
claims that we can pass a hyperplane through ~x such that B lies entirely on one side
of the hyperplane. This lemma and it’s proof are schematically shown in figure 5.1.

• Using Lemma 5.7, we shall prove the following claim:

Claim 5.8

For every matrix M (representing a 2 player zero-sum game) one of the following must
be true:

– ∃y,Myt ≤ 0 (where y is a stochastic vector).

– ∃x, xM > 0 (where x is a stochastic vector).
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• Finally, using this claim we can easily prove the minimax theorem, as follows:

Proof of the minimax theorem:
According to Claim 5.5 one of two conditions must be true:

– If the first item is true then ∃y,Myt ≤ 0. Since y is stochastic, it can be viewed
as a strategy for player 2, which guarantees: VI(y) ≤ 0 and hence VII ≤ 0. Recall
that VI ≤ VII meaning that VI ≤ VII ≤ 0.

– If the second item is true then ∃x, xM > 0 from which we conclude that 0 <
VI ≤ VII .

From the above we conclude that it is impossible to have VI < 0 < VII .
Now assume that VI , VII are the appropriate values for matrix M. Consider the matrix
obtained by subtracting (VI + VII)/2 from each coordinate in the matrix M, denoted
by M . Thus we have:

∀1 ≤ i ≤ m,∀1 ≤ j ≤ n,mij = mij − (VI + VII)/2.
Denote the relevant values for M by VI and VII . It is easy to see that the strategies
for players I and II have not changed, since the utility function of the game was only
changed by an additive constant. Therefore:

– VI = (VI − VII)/2

– VII = (VII − VI)/2

Since we have shown that VI ≤ VII we immediately conclude that if VI 6= VII then
VI < 0 < VII . Since we have already established that this is impossible, we conclude
that VI = VII �

Proof of the supporting hyperplace theorem: Let ~z ∈ B be the point in B nearest
to ~x. Such a point exists because B is closed, and the distance function is both continuous
and bounded from below by 0. We define

~α = ~z − ~x
αd+1 = ~α · ~x

Identity (5.10) holds immediately. We shall prove (5.11). Note that ~α 6= 0 because ~z ∈ B
and ~x 6∈ B. Thus,

~α · ~z − αd+1 = ~α · ~z − ~α · ~x = ~α · (~z − ~x) = ~α · ~α = |~α|2 > 0
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Figure 5.1: Supporting Hyperplane

Therefore,
~α · ~z > αd+1

Now, assume that there exists ~y ∈ B such that

~α · ~y ≤ αd+1

As B is convex, for any 0 ≤ λ ≤ 1,

~wλ = λ~y + (1− λ) ~z ∈ B

The square of the distance between ~x and ~wλ is given by

D2 (~x, ~wλ) = ‖~x− λ~y − (1− λ) ~z‖2 =
d∑
i=1

(xi − λyi − (1− λ) zi)
2

Taking the derivative of D2 according to λ we obtain

∂D2

∂λ
= 2 (~x− λ~y − (1− λ) ~z) · (~z − ~y)

= 2 (~z − ~x) · ~y − 2 (~z − ~x) · ~z + 2λ (~z − ~y)2

= 2~α · ~y − 2~α · ~z + 2λ (~z − ~y)2 ,

where we used the fact that ~α = ~z − ~x.
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Evaluating the derivative at λ = 0 we get

∂D2

∂λ
= 2~α · ~y − 2~α · ~z.

According to our assumption the first term ~α ·~y ≤ αd+1 and we showed that the second term
~α · ~z > αd+1, and therefore

∂D2

∂λ

∣∣∣∣
λ=0

< 0

Hence, for λ close enough to 0 we must have

D2 (~x, ~wλ) < D2 (~x, ~z) .

But ~z was chosen to minimize the distance to ~x, so we have a contradiction. Therefore for
all ~y ∈ B, and inequality (5.11) must hold.

�
Theorem of the Alternative for Matrices:. Recalls that we wish to prove Claim 5.5.

That is: For a matrix M, one of the following must hold:

• ∃y ∈ ∆,Myt ≤ 0 (where y is a stochastic vector and ∆ is the set of mixed strategies).

• ∃x ∈ ∆, xM > 0 (where x is a stochastic vector).

Let:

• M = (mij) : a m× n real matrix, and
{
~Mj

}n
j=1

= (m1j,m2j, . . . ,mmj) the columns of

the matrix.

• {~ei}mi=1 : a set of m unit vectors (where ~ei is the ith elementary vector in Rn).

• C = Conv(Mj, ei), where for any set of vectors {~vi}ki=1 :

Conv(v1...vk) =
{
vi :

∑k
i=1 λi × ~vi,

∑k
i=1 λi = 1, λi ≥ 0

}
We now have two possibilities, either ~0 is in C or it isn’t:

1. Suppose ~0 ∈ C. In this case there exists a stochastic vector ~v ∈ C of size m + n,
representing a linear combination of vectors in C, that produces ~0.
Denote the vectors y and y to be the vectors composed of the first n elements in ~v and
the last m elements, respectively. Formally, we have:

n∑
j=1

Mjyj +
m∑
i=1

eiyi = ~0
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and therefore:

Myt + Iyt = ~0

Myt = −Iyt

Each element in y ≥ 0, therefore Iyt ≥ 0. We therefore conclude that

MyT ≤ 0

Notice that y cannot be 0, because then y is also zero and v is known to be nonzero.
Using the fact that y 6= 0, we can now normalize y:

ŷk =
yk∑
yj

Now we have a stochastic vector ŷ, for which

MŷT ≤ 0

That satisfies the first claim in the theorem.

2. Alternatively, suppose ~0 /∈ C. By Lemma 5.7, there exist ~α ∈ Rm and αm+1 such that
for ~x = ~0

~α ·~0 = αm+1

Which means that αm+1 = 0, and

∀~z ∈ C, ~α · ~z > 0

In particular, this will hold if ~z is any of the vectors ~Mj or ~ei. Thus

~α · ~Mj > 0 for all 1 ≤ j ≤ n,

~ei · ~α = αi > 0 for all 1 ≤ i ≤ m.

Since ∀1 ≤ i ≤ m, αi > 0 we have
∑m

i=1 αi > 0, so we can scale by the sum and define

xi =
αi∑m
j=1 αj

Therefore,
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•
∑m

j=1 xj = 1

• ∀1 ≤ i ≤ m, xi > 0

• ∀1 ≤ j ≤ n, ~x · ~Mj > 0

In other words, there exists a stochastic vector ~x = (x1, . . . , xm) ∈ Rm s.t. xM > 0.
That satisfies the second claim in the theorem.

�

5.6 Results

We have shown that in a 2-player zero sum game the gain-ceiling for player I is equal to the
loss-floor for player II. We denote this value simply by V and call it the value of the game.

Part 2 of Lemma 5.3 tells us that VI = VII means that we have a Nash equilibrium point.
It is easy to see that the payoff in this equilibrium is exactly the value of the game. Theorem
5.2 tells us that all Nash equilibria will have this value, and that the set of all Nash equilibria
is actually a cartesian product of the equilibrium strategies of each player.

A strategy x for player I satisfying:

∀1 ≤ j ≤ n,
m∑
i=1

xiaij ≥ V (5.12)

is optimal for player I in the sense that this strategy guarantees a payoff of V against every
strategy of player II, and there is no strategy that guarantees a higher payoff against every
strategy of player II.
Similarly, a strategy y for player II satisfying:

∀1 ≤ i ≤ m,
n∑
j=1

yjaij ≤ V (5.13)

is optimal for player II.
It is clear that:

xAyT = V

otherwise one of 5.12 or 5.13 will not hold. It is easy to see that (x, y) is a Nash equilibrium.
Also, any Nash equilibrium must satisfy 5.12 and 5.13.

To summarize:
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Theorem 5.9

Let G be a 2-player zero sum game. Then:

1. The gain-floor for player I and loss-ceiling for player II are equal (the value of the game,
V ).

2. There is at least one mixed Nash equilibrium.

3. The set of equilibria for the game is the Cartesian product of the sets of equilibrium
strategies for each player.

4. The value of the game in all equilibria is V .

5.7 Infinite 2-Players Zero Sum Games

We have just proven that VI = VII for finite 2-players zero sum games. The following example
shows that in the infinite case this result does not hold.

Consider the following game (described schematically by the illustation above):

• The action of player 1 is, A1 = {x|x ∈ [0, 1]}.

• The action of player 2 is, A2 = {y|y ∈ [0, 1]}

• The utility - K(x, y) = u1(x, y) = −u2(x, y), where:



Infinite 2-Players Zero Sum Games 13

– K(x, y) = 1, if y < x or y > x+ 1/2.

– K(x, y) = 0, if y = x or y = x+ 1/2.

– K(x, y) = −1, if (x+ 1/2) > y > x.

We will show:

1. For any mixed strategy for player 1, x, player 2 has a pure strategy y that guarantees
a maximum loss of 1/3. Hence player 1 cannot guarantee more than 1/3. Hence
VI ≤ 1/3.

2. For any mixed strategy for player 2, y, player 1 has a pure strategt x that guarantees
a minimum payoff of 3/7. Hence VII ≥ 3/7.

Therefore, VII ≥ 3/7 > 1/3 ≥ VI , which is in constrast to Theorem 5.6.

Proof:

To prove (1), we split the analysis into two cases:

• Pr[x ∈ [0, 1/2)] > 1/3, then y can always choose 1/2 − ε for arbitrary small ε > 0.
Then E[K(x, y)] ≤ 2/3−1/3 (at least 1/3 of the cases will result the score −1, at most
2/3 of the cases will result in the score 1)

• Pr[x ∈ [0, 1/2)] ≤ 1/3 then y can always choose 1,hence E[K(x, y)] ≤ 1/3 (at most
1/3 of the cases the score is 1)

To prove (2), we analyze three cases:

• Pr[y = 1] ≤ 4/7 then x can always choose 1 , hence E[K(x, y)] ≥ 3/7 (at least 3/7 of
the cases the score is 1, otherwise the score is 0)

• Pr[y = 1] > 4/7 and Pr[y ∈ (0, 1/2)] ≤ 1/7 then x can always choose 0 , hence
E[K(x, y)] ≥ 4/7 − 1/7. (at least 4/7 of the cases the score is 1, at most 1/7 of the
cases the score is -1)

• Pr[y = 1] > 4/7 and Pr[y ∈ (0, 1/2)] > 1/7 then x can always choose 1/2− ε , hence
E[K(x, y)] ≥ 3/7 ( K(1/2 − ε, 1) = 1 , also if y ∈ (0, 1/2) then K(1/2 − ε, y) = 1 at
least 5/7 of the cases the score is 1, at most 2/7 of the cases the score is -1)

�
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5.8 Application of Zero Sum Games in Computer Sci-

ence

5.8.1 Deterministic vs. Random Algorithms

In this example Ω = {Ai} is a finite set of deterministic algorithms that can take as input
any element of the finite input set Λ = {xj}. We will denote by ∆(S) the set of probability
distributions over the set S, for any set S.

Definition Time(A,x) is the time complexity (measured, as usual in complexity, in the
means of number of commands) of running the deterministic algorithm A with the input x.
Also denoted T (A, x).

Definition A Random Algorithm is a probability distribution over the deterministic
algorithms, ~p ∈ ∆(Ω). We denote the probability for algorithm Ai by pi.

Definition RTime(~p,x) is time complexity of the random algorithm defined by distribution
~p for fixed input x. It is defined as the expected deterministic time complexity for the fixed
input x:

RTime(~p, x) =
∑
i

pi · T (Ai, x)

Definition AvgTime(A, ~q) is the time complexity of deterministic algorithm A given
distribution ~q over inputs. This is in essence an average-case complexity analysis for A.
It is defined as the expected time complexity for the deterministic algorithm A with input
distributed according to ~q:

AvgT ime(A, ~q) =
∑
j

qj · T (A, xj)

Complexity Analysis

Corollary 5.10 Deterministic worst-case time complexity is mini maxj T (Ai, xj).

Proof: The complexity of the problem is the minimum complexity over all relevant
algorithms (Ω). We must choose the deterministic algorithm before knowing the input.
Thus, the complexity of deterministic algorithm Ai is analyzed for the worst input, which
yields complexity maxj T (A, xj), and then the complexity of the problem is the complexity
of the best algorithm, which results in complexity mini maxj T (Ai, xj). �
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Corollary 5.11 Non-deterministic worst-case time complexity is maxj mini T (Ai, xj)

Proof: For non-deterministic algorithms we can guess the best deterministic algorithm
given the input. Thus, for input xj, the complexity is mini T (Ai, xj). We now analyze for
the worst case input, which yields complexity maxj mini T (Ai, xj). �

Corollary 5.12 Random worst-case time complexity is

RTime(Ω) = min
~p∈∆(Ω)

max
j
RTime(~p, xj)

Theorem 5.13 (Yao’s Lemma) For any distribution ~p on the algorithms and ~q on inputs

max
j
Ei∼~p [T (Ai, xj)] ≥ min

i
Ej∼~q [T (Ai, xj)]

Proof: We can view the complexity analysis as a 2-player zero sum game in the following
way. The max player pure strategies are the possible inputs, Λ. The min player pure
strategies are the deterministic algorithms Ω. The payoff is the time complexity T (Ai, xj).
Given such a game, the Minimax Theorem states:

min
~p∈∆(Ω)

max
~q∈∆(Λ)

Ei∼~p,j∼~q [T (Ai, xj)] = max
~q∈∆(Λ)

min
~p∈∆(Ω)

Ei∼~p,j∼~q [T (Ai, xj)] (5.14)

As in the previous game analysis, it is easily shown that the internal maximum and minimum
are obtained in deterministic points:

max
~q∈∆(Λ)

Ei∼~p,j∼~q [T (Ai, xj)] = max
j
Ei∼~p [T (Ai, xj)] (5.15)

min
~p∈∆(Ω)

Ei∼~p,j∼~q [T (Ai, xj)] = min
i
Ej∼~q [T (Ai, xj)] (5.16)

Using 5.14, and substituting using 5.15 and 5.16 we obtain:

min
~p∈∆(Ω)

max
j
Ei∼~p [T (Ai, xj)] = max

~q∈∆(Λ)
min
i
Ej∼~q [T (Ai, xj)] (5.17)

Hence for any ~p ∈ ∆(Ω):

max
j
Ei∼~p [T (Ai, xj)] ≥ max

~q∈∆(Λ)
min
i
Ej∼~q [T (Ai, xj)]

Thus for any ~p ∈ ∆(Ω) and ~q ∈ ∆(Λ):

max
j
Ei∼~p [T (Ai, xj)] ≥ min

i
Ej∼~q [T (Ai, xj)]

�
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Note that Yao’s Lemma is actually a result of the weaker inequality established in Lemma 5.3.

Corollary 5.14 In order to prove a lower bound for the worst-case expected time complexity
of any random algorithm for a given problem, it is sufficient to prove a lower bound for any
deterministic algorithm on some distribution over the input.

Proof: Using

Ei∼~p [T (Ai, xj)] = RTime(~p, xj)

Ej∼~q [T (Ai, xj)] = AvgT ime(Ai, ~q)

we can write Yao’s Lemma as:

max
j
RTime(~p, xj) ≥ min

i
AvgT ime(Ai, ~q)

So given a lower bound B on the complexity of any deterministic algorithm on some input
distribution ~q, we obtain:

B ≤ min
i
AvgT ime(Ai, ~q) ≤ max

j
RTime(~p, xj)

So B is a lower bound on the worst-case complexity of any random algorithm. �

Example - Sorting a List of Numbers

We wish to lower-bound the complexity of a random algorithm for sorting n numbers (com-
parison based sort). We can describe any deterministic comparison based sort algorithm as a
decision tree, where each internal node corresponds to a comparison the algorithm performs,
with 2 possible outcomes (we assume all elements are different). For a specific input, the
exectuion of the algorithm corresponds to a path from the root to a leaf. It is impossible
for 2 different permutations to result in the same path. The running time for the algorithm
over an input is the length of the path.

Therefore, the decision tree must have at least n! leaves. Thus the depth of the tree is
at least log(n!) = O(nlogn) nodes. The number of leaves whose depth is not greater than l
is ≤ 2l+1.

Thus, for any deterministic algorithm A, at least one half of the permutations are in
depth greater than l, where l + 1 = log(n!/2) (since then the number of leaves whose depth
is less than l is ≤ 2log(n!/2) = n!/2). l + 1 = log(n!/2) =⇒ l = log(n!)− 2 = O(nlogn).

We shall choose a uniform distribution ~q over the possible inputs (all permutations of n
numbers), and fix a deterministic algorithm A. The running time of A over this distribution
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is simply the average of the depths of the leaves for all possible inputs. But at least n!/2
inputs are of depth at least log(n!)− 1, so the average running time will be at least

n!
2
· (log(n!)− 1)

n!
= Ω(nlogn)

And using Yao’s lemma, the complexity of any random algorithm is also Ω(nlogn).

5.8.2 Weak vs. Strong Learning

Given a weak learner for a binary classification problem we will show that strong learning is
possible.

The model: f is the target function, H a function family.

f : X −→ {0, 1}

∀h ∈ H, h : X −→ {0, 1}

X is finite, and as a consequence H is finite (|H| ≤ 2|X|)

The ε-WL (weak learning) assumption: For every distribution D on X there exists
h ∈ H and ε > 0 such that:

PrD[h(x) = f(x)] ≥ 1/2 + ε (5.18)

Question: How will f be approximated by functions in H?

We represent the problem as a 2-player zero sum game as follows. The max player pure
strategies are the inputs X. The min player pure strategies are the functions H. The payoff
is an error indicator:

M(h, x) = { 0 if f(x) = h(x) (no error)
1 if f(x) 6= h(x) (error)

Note that M(h, x) = |(f(x)−h(x)|. The max player is trying to select a distribution over X
that will maximize the expected error, while the min player is trying to select a distribution
over H that will minimize it.

The WL proposition implies that for every D there exists a hypothesis and h ∈ H such that:

1/2− ε ≥ PrD[h(x) 6= f(x)] = PrD[M(h, x) = 1] = Ex∼D[M(h, x)]
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Thus

min
h
Ex∼D[M(h, x)] ≤ 1/2− ε

This means that

VX Player ≤ 1/2− ε

Since in a zero sum game, the values of both players are equal, we conclude that

VH Player ≤ 1/2− ε

Hence:

min
q

max
x

Eh∼q[M(h, x)] ≤ 1/2− ε

Therefore there exists a distribution q (the one which attains the minimum) such that:

max
x

Eh∼q[M(h, x)] ≤ 1/2− ε

Thus:

∀x ∈ X, Eh∼q[M(h, x)] ≤ 1/2− ε

In other words, for this q, for every x ∈ X,

1/2− ε ≥
∑
h∈H

q(h)M(h, x) =
∑
h∈H

q(h) |f(x)− h(x)|

We define an approximation G(x) =
∑

h∈H q(h) · h(x). Now, for all x ∈ X,

|f(x)−G(x)| =

∣∣∣∣∣∑
h∈H

q(h)[f(x)− h(x)]

∣∣∣∣∣ ≤∑
h∈H

q(h) |f(x)− h(x)| < 1/2

So by rounding G(x) to either 0 or 1 we obtain f(x), for all x ∈ X.

5.8.3 Correlated Equilibrium Existence

Consider a general strategic game of the form < [N ], (Ai)
N
i=1, (ui)

N
i=1 >. Here N denotes

the number of players,Ai denotes the set of strategies allowed for player i ∈ [N ] and
ui : ×Ni=1Ai → R denotes the utility function of player i ∈ [N ].
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Recall, that correlated equilibrium(CE) in strategic game is a random distribution Q over
×Ni=1Ai such that:

∀α ∈ Ai, α ∈ BR(Q|ai=α)

Equivalently,

∀α ∈ Ai, E[ui(a)− ui(a−i, β) | ai = α] ≥ 0

The expectation is taken w.r.t. Q.

Theorem 5.15 Every finite strategic game has at least one correlated equilibrium.

Proof: Let G be a finite strategic game < [N ], (Ai)
N
i=1, (ui)

N
i=1 >. Define the following

zero-sum game, played by two players: the row-player and the column player. Assume that
the row player’s objective is to maximize the utility value and the column player’s objective
is to minimize.

Strategies of the row player are from A = ×Ni=1Ai, namely the set of all joint strategies in the
original game. Strategies of the column player are all possible triplets (i, b1, b2), such that
b1, b2 ∈ Ai.

The utility function is given as a matrix M , where the rows correspond to the strategies of
the row-player and the columns correspond to the strategies of column player. M is defined
in the following way:

M(a, (i, b1, b2)) = ui(a)− ui(a−i, a′)

where

a′i = { b1 if ai = b2

ai otherwise

In terms of the original strategic game < [N ], (Ai)
N
i=1, (ui)

N
i=1 >, M(a, (i, b1, b2)) describes

the gain of player i from choosing strategy ai = b2, when the joint action is a, instead of
switching to b1, assuming the strategies of the rest of the players remain unchanged. Clearly,
the existence of a CE for < [N ], (Ai)

N
i=1, (ui)

N
i=1 > is equivalent to a non-negative game value.

Observe that the game value is at most 0, since the column player can choose a strategy of
the form (i, b, b). We are going to prove that the game value is exactly 0.

According to the Minimax theorem, it is sufficient to prove that the column player cannot
guarantee his loss to be less than 0. Indeed, let D be a mixed strategy for the column player.
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For all 1 ≤ i ≤ N , let Di denote the stochastic matrix, such that:

Di(b1, b2) = Pr(a′i = b1 | ai = b2, (i, ∗, ∗) chosen by column player).

If the probability of choosing (i, ∗, ∗) under D is zero, w.l.o.g. assume that Di(b1, b2) = 1
|Ai|

uniformly.

Denote Πi the stationary distribution vector of Di, such that DiΠ
T
i = ΠT

i .
Now, define a mixed strategy for the row player, that is distribution Π over A, as the carte-
sian product of all Πi, such that each player’s strategy ai is chosen independently from Ai
according to Πi.

Note, that if 1 ≤ i ≤ N fixed, row player chooses a ∼ Π and column player chooses
(j, b1, b2) ∼ D|(j,b1,b2)=(i,∗,∗), then ai and a′i have the same distribution by the definition of Πi

as the stationary distribution of Di.

The resulting game value is:

N∑
i=1

Ea∼Π,(j,b1,b2)∼D[Ui(a)− Ui(a−i, a′i) | j = i] · PrD((j, b1, b2) = (i, ∗, ∗))

which is zero, because ∀1 ≤ i ≤ N ,

Ea∼Π,(j,b1,b2)∼D[Ui(a)− Ui(a−i, a′i) | j = i] =

= Ea∼Π,(j,b1,b2)∼D[Ui(a) | j = i]− Ea∼Π,(j,b1,b2)∼D[Ui(a−i, a
′
i) | j = i] = 0

since ai and a′i have the same distribution. �
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