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How phenotypic defection stabilises indirect reciprocity: 
 
To explore our simulation results from a theoretical perspective we proceed as 
follows: 
 
In Appendix A we present a basic game theory model which assumes that opponents 
are able to classify one another correctly. We show that in the absence of phenotypic 
defectors, the model has no ESS solution, but that in the presence of phenotypic 
defectors a cooperative ESS (SA) is achieved.  
 
In Appendix B we now extend the original model to account for  the possibility of 
uncertainty  in the classification of opponents. We focus on the relevant case in which 
SA players misclassify other SA players as defectors and thus fail to provide help.  
We suppose that correct classification occurs with probability p. These “type 1” 
mistakes occur (with probability (1-p))  because SA players are capable of 
accumulating negative image as a result of past interactions with defectors. 
 
In Appendix C we consider a more complex scheme for characterising uncertainty in 
the classification of opponents. Now we are also concerned with “type 2” mistakes 
which occur in the absence of information of the opponents’ image (e.g. in the first 
round of each generation). We assume that in such situations (eg., when the 
opponent’s image is “0” in the N&S model), SA players provide help, and thus may 
erroneously help defectors (as frequently happens in N&S simulation). 
 
In Appendix D we take an alternative route to illustrate the stabilising effect of 
phenotypic defection. We modify N&S analytical model2 and show that in the 
presence of phenotypic defectors there will be a stable cooperation by selective 
altruists. 
 
General methods for the game theory model (Appendix A-C) are detailed in 
Appendix F.  
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APPENDIX A – The basic model 
 
Similar to Nowak & Sigmund1,2 consider three strategy types: Unconditional 
Altruists (UA) who always cooperate; Unconditional Defector (UD) who never 
cooperate; Selective Altruists/Discriminators (SA) who help other cooperators, but 
not defectors . We will show that SA is the single Evolutionary Stable Strategy (ESS) 
and occurs only if there are phenotypic defectors in the game. To simplify our 
calculations it is convenient to assume that interactions are based on a correct 
classification of opponents, and that the number of interactions is sufficient to 
provide information for such classification. (Indeed if indirect reciprocity plays a role 
in the lives of social animals, classification mechanisms should be subject to 
selection, and thus improves the probability of correct classification.) Nevertheless, 
we emphasise that very similar results emerge even when these assumptions are 
considerably relaxed and there are uncertainties in classification (see appendices 
B&C). 

Denoting the (per capita ) benefits over a lifetime by B, and the lifelong costs 
by C , we have the following  payoff matrix: 

 
For the case B > C (as in N&S), system (A.1) has no ESS solutions (see analysis 
below). 
 

Assume now that phenotypic defectors with the frequency of 0 < q < 1 enter 
the game. The payoff matrix is then: 

 
UA is  strictly dominated by SA (every term in row-3 is greater than its 
corresponding term in row-1), implying that UA will disappear from the population 
(Weibull 1996)3. UA can thus be neglected, leaving the following payoff matrix: 
 

 
Denoting the frequency of UA, UD, and SA as x1, x2, and x3 respectively, the 
replicator equation for system (1.3) is:  
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Since B > C, system (2.2) has a single globally attractive ESS solution SA.  
  
 
No ESS in the absence of phenotypic defectors (system A.1): 
 
Here we show that in the absence of phenotypic defectors (D=0), the model described 
in system A.1. has no ESS solutions (see Appendix D for a description of general 
methods). 
 
Let us denote the frequency of UA, UD, and SA by x1, x2, and x3 respectively. 
The replicator equations for the system with payoff matrix P given by 1.1 are: 

 
where {e1, e2, e3} is the standard basis of ℜ3. 
This set of replicator equations has two stationary potential ESS solutions (obtained 
as described in Appendix D):  
a point solution x1 = e2, and a set solution xξ ∈ Ω = {ξ e 1 + (1 − ξ) e 3  0 < ξ < 1}. 
We test these stationary solutions using the ESS criterion (D1, of Appendix D).  One 
sees that: 

 
Hence x = x1 is not an ESS. 
 
To test the set solution Ω, choose:  

 
Hence Ω is not an Evolutionary Stable set. 
 
We conclude that in the absence of phenotypic defectors the game has no ESS 
solution. 
 
 
APPENDIX B 
 
We now consider our original model (Appendix A) when the assumption of correct 
classification of opponents is relaxed. Recall that in the N&S model, the level of 
uncertainty in the classification of opponents is an outcome of the specific “image 

(A.4)                           )()e,(  and ,0)e,(:e 31131031 CB −−=Γ=Γ≠ xxx

(A.5)                                  

0
2

),(  and

,  
22

2

2
#

0

231
#

<−=Γ

Ω∉Ω∈+
−

=

C

B
C

B
CB

ex

eeex

2
331

t
33

'
3

'
3

'
1

'
2

1313
t

11
'
1

)1)((P)e()(

)1]()[(P)e()(

xxxCBfx

xxx

xxxCxCBfx

−−−=≡=

−−=

−−−−=≡=

xx-x

xx-x

oo

oo



 

 

 

4

scoring” mechanism assumed. However, rather than postulating a specific mechanism 
that produces some level of mistakes in classification, here we take an alternative 
approach which directly introduces the probability of such mistakes as a parameter in 
the model. 
 
Among the three strategies, only selective altrusits (SA) base their responses on 
classification of opponents and therefore they are the only players that are likely to 
make mistakes. Hence we first consider the possibility that SA players will not help 
those SA players who they have erroneously misclassified as defectors. This “type 1” 
mistake will happen when SA players accumulate negative image as a result of past 
interactions with defectors (with real genetic defectors, phenotypic defectors, or other 
SA players perceived as defectors). 
 
Let us denote the probability of correct classification of a SA by another SA  
by 0 < p < 1. The (per capita) benefits of receiving help over a lifetime by B, and the 
lifelong costs of donating favours by C < B.  In these terms we have the following 
payoff matrix. 
,,,,,,, 

 
        
Proceeding as in Appendix A, we can show that  system (B.1) does not have any ESS 
solutions.  
 
Now let us introduce phenotypic defectors at frequency 0 < q < 1. Then we have a 
3×3 interaction matrix, Pas given by (B.1), for the three strategies plus a 3×1 
matrix, P’, for their interactions with phenotypic defectors. And therefore we have the 
payoff function: 

 
 
Using the methods described in Appendix D we can show that the properties of 
system (B.2) depend on the magnitudes of p and q. (Full details are available upon 
request. Also see Appendix C, in which we provide a full analysis of a more general 
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model.) The following scheme summarises the results for all possible values of the 
parameters. Here endpoints represent the ESS associated with the region of the 
parameter space described by the inequalities on the path leading from the origin (•) 
to that endpoint. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In conclusion, while in the absence of phenotypic defectors there is no stable 
solution to the model, the introduction of phenotypic defectors can, under some 
conditions, stabilise a population of Selective Altruists.  
 
We briefly comment on the two conditions which lead to an ESS of SA players in this 
model, as specified in the above diagram. 

 
The first condition (q > θ) requires that either the frequency of phenotypic defectors 
(q) or the cost of cooperation (C) will be relatively large. In simple terms, when q is 
large, SA players can do better than UA players by saving the accumulated small 
costs when refusing to help many phenotypic defectors. When C is large SA players 
have the advantage over UA since they save high costs by refusing to help phenotypic 
defectors.  
 
When q is small  (q < θ), the second condition requires (p > π) i.e.,  the probability 
(p) of correct classification of a SA by another SA will be sufficiently high (e.g. when 
B =1, C = 0.35, q = 0.2, then p > 0.87).  
 
Note that the first condition above is inconsistent with our simulation results. It 
predicts a stable cooperation by selective altruists even when the cost of cooperation 
is high. Our simulation, on the other hand, failed to produce cooperation when the 
cost of cooperation was high, no matter how many phenotypic defectors we added 
(see Figure 1e). The reason for this discrepancy is that the model above ignores a 
second type of mistake in opponents’ classification, which was in fact common in the 
simulation: in the absence of information on opponents’ image (e.g. in the first round 
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of each generation), discriminate altruists (k=0) occasionally provided help to 
defectors. In Appendix C below we shell extend the above model to account also for 
this type of mistakes. 
 
 
Appendix C 
 
We now extend the model described in Appendix B to consider “type 2 mistakes” 
which may occur when SA players have no information about their opponents’ image 
(e.g. first round in a model of non-overlapping generations, where all players have 
image of “0” at birth). We assume that in situations where information about image is 
lacking, SA players provide help, and thus may erroneously help defectors (as 
frequently occurs in the N&S simulation model). 
 
As in Appendix B, we denote 0 < p < 1 as the probability of SA classifying correctly 
another SA and thus helping him. In addition, we denote 0 < r < 1 as the probability 
of SA helping a defector. We now proceed with the analysis. 
 
I)  No phenotypic defectors.  
 
In these terms the payoff matrix is given by: 

 
System (C.1) has five potential ESS solutions. 

 
Using the methods described in Appendix D, we now examine which of these are 
ESS solutions: 
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Hence x2 ≡ UD is an ESS whenever r > 0. 

 
Hence x3 is not an ESS. 

 
Hence x4 is not an ESS. 

 
Hence x5 is not an ESS. 
 
 
In conclusion:  In the absence of phenotypic defectors, and when both type-1 and 
type-2 mistakes are allowed for (r > 0; p < 1), there is a single ESS solution UD i.e., 
the frequency of defectors is unity. Since an ESS is an asymptotically stable 
equilibrium solution on the set X, and X is closed; by the corollary to the 
Poincaré−Bendixon Theorem, all solutions will converge to e2. 
 
 
II With phenotypic defectors. 
 

 

 
 
There are six potential ESS solutions to be checked using the methods described in 
Appendix D: 
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Hence x1 is not an ESS. 

 
Hence x2 ≡ UD is an ESS whenever r > 0. 
 

 
Hence x3 ≡ SA is an ESS whenever r < min{ρ1, ρ2}, or equivalently, whenever any 
of the following conditions holds: 
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Hence x5 is not an ESS. 
 
,,,,,,, 

 
Hence x6 ≡ UA ⊕ SA is an ESS whenever any of the following conditions holds: 
 
(⊕ denote a mixed ESS solution) 

 
 
In conclusion: Without phenotypic defectors, the only ESS solution is of a 
population of unconditional defectors (UD). However, the introduction of phenotypic 
defectors creates two additional ESS solutions that allow stable cooperation, 
depending on parameter values and initial conditions. In fact, a shift between two 
solutions (UD and SA) may be illustrated by our computer simulation in Figure 1b. 
 
The analysis above presents some features that are qualitatively similar to our 
simulation results. First, under some conditions, the introduction of phenotypic 
defectors can stabilise a population of Selective Altruists. As in the earlier model of 
Appendix B, for SA to be an ESS, the probability of correct classification of SA by 
another SA has to be sufficiently high (under all three ESS conditions specified in 
system (C.II.4) above, p has to be greater than π, or greater than πσ). In addition, 
here, the probability of type-2 classification mistakes (that SA help UD) has to be 
lower than a critical value (r<ρ1 or r<ρ2). 
 
These ESS conditions may account for the stability of discriminate altruism in our 
simulation. For example, under parameter values analogous to those we used in the 
simulation (B=1, C=0.35, q=0.2) SA will be an ESS if  p>0.94  and r<0.56. In fact 
these are not unreasonable estimates of  the type-1 and type-2 mistakes occurring in 
the simulation model where all players have zero image at the beginning of each 
generation. Discriminate altruists help all players in the first round, making the 
probability of an SA player with k=0 to develop a negative image (and consequently 
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to be classified as a defector) very low. Hence  the probability of an SA 
misclassifying an SA,  p > 0.94 does not seem unreasonable for the simulation. 
Consider now type-2 errors: when the SA population is close to ESS i.e., the 
population mostly consist of discriminators some of which are phenotypic defectors. 
Hence the frequency r of helping a defector (type-2 mistake) will largely depend on 
and correspond to the frequency of phenotypic defectors present, which is q=0.2 in 
our simulation. This is well within the ESS condition  r<0.56.  
 
Finally, the fact that our simulations failed to produce cooperation when the cost of 
cooperation was high (which was inconsistent with the results of our earlier model in 
Appendix B), is predicted by the current model. This is simply because ρ2 decreases 
when the cost of cooperation increases (see the definition of ρ2 in the ESS conditions 
above). In simple terms, the increase in the cost of cooperation causes SA players to 
lose more each time they help a defector by mistake, and as a result, a smaller 
frequency of type-2 mistakes r can be tolerated. 
 
 
 
APPENDIX D: 
 
We follow Nowak & Sigmund analytical model2, equations 26,27 (page 567): 
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Thus, since c < b, we have three possibilities. 
 
(i) )1,0(,0'102 ∈∀<⇒>ζ⇒<<θ⇒< zzqcb i.e., system (1.4) converges to  
    z = 0. Hence, system (1.4); and hence system (1.1); has a unique ESS solution D  
    for defection. 
(ii) If 102 <θ<⇒> cb and q < θ, then  
      (iia) ζ<)0(z implies convergence to z = 0 i.e., defection. 
      (iia) ζ>)0(z implies convergence to z = 1 i.e., to an ESS solution SA for  
              selective altruism. 
(iii) If cb 2> and q > θ, then again defection is the only ESS. 
 
These results can be summarized in the following scheme:  
 
 
 
 
 
 
 
 
 
 
 
 
Appendix F: General methods 
 
Let {e1, e2, e3} be the standard basis of ℜ3, and let us define the strategy set by 

 
That is, e1, e2, and e3 will be used to denote pure strategies UA, UD, and SA, and 
their convex combinations will denote mixed strategies.  
 
The ESS Criterion (Cressman, 1992)  

 
x* ∈ X is an ESS if for any x ∈ X : x ≠ x* implies                                             

 
A set Ω ⊂ X is Evolutionary Stable (Cressman, 1992)4 
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where P is the payoff matrix of the game. 
 

 
To find the ESS solutions, we use the fact that every ESS is a steady state solution of  
the replicator equations associated with the game prescribed by the payoff matrix P. 
We find these solutions, then test them with the ESS criterion. 
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