
Preprint submitted to Automatica  1 9 October 2006 

Principles of 2-Sliding Mode Design ○ 

Arie Levant*a 
 

○ This paper was not presented at any IFAC meeting. 
* Corresponding author. Phone +972-3-6408812. Fax +972-3-6407543. 

a School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel, E-mail: levant@post.tau.ac.il 

 
 

Abstract 

Second order sliding modes are used to keep exactly a constraint of the second relative degree or just to avoid chattering, i.e. 
in the cases when the standard (first order) sliding mode implementation might be involved or impossible. Design of a num-
ber of new 2-sliding controllers is demonstrated by means of the proposed homogeneity-based approach. A recently devel-
oped robust exact differentiator being applied, robust output-feedback controllers with finite-time convergence are pro-
duced, capable to control any general uncertain single-input-single-output process with relative degree 2. An effective sim-
ple procedure is developed to attenuate the 1-sliding mode chattering. Simulation of new controllers is presented. 
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1. Introduction 

Sliding mode control (Utkin, 1992; Zinober, 1994; Ed-
wards and Spurgeon, 1998) is considered to be one of the 
main methods effective under uncertainty conditions. The 
approach is based on keeping exactly a properly chosen 
constraint by means of high-frequency control switching, 
and is known as robust and very accurate. Unfortunately, 
its standard application is restricted: if an output σ is to be 
zeroed, the standard sliding mode may keep σ = 0 only if 
the output’s relative degree is 1 (i.e. if the control appears 
explicitly already in σ& ). High frequency control switching 
may also cause the dangerous chattering effect (Fridman, 
2001, 2003; Lee & Utkin, 2006; Boiko, Fridman & Castel-
lanos, 2004; Boiko, 2005). 

Consider a smooth dynamic system with a smooth out-
put function σ, and let the system be closed by some pos-
sibly-dynamical discontinuous feedback. Then, provided 
the successive total time derivatives σ, σ& , ..., σ

(r-1) are 
continuous functions of the closed-system state-space vari-
ables, and the set σ = σ& = ... = σ(r-1) = 0 is non-empty and 
consists locally of Filippov trajectories (Filippov, 1988), 
the motion on the set σ = σ& = ... = σ(r-1) = 0 is said to exist 
in r-sliding mode (rth order sliding mode) (Levant, 1993, 
2003). The rth derivative σ(r) is mostly supposed to be dis-
continuous or non-existent. 

The standard sliding mode is of the first order ( σ&  is 
discontinuous). Higher-order sliding modes (HOSM) re-
move the above-mentioned relative-degree restriction and, 
being properly used, can practically eliminate the chatter-
ing. Asymptotically stable HOSMs appear in many sys-
tems with traditional sliding-mode control (Fridman, 2001, 
2003) and are deliberately introduced in systems with dy-
namical sliding modes (Sira-Ramírez, 1993). Finite-time 

convergent HOSMs preserve the features of the standard 
(first order) sliding modes and improve their accuracy in 
the presence of switching delays and discrete measure-
ments (Levant, 1993).  

While finite-time-convergent arbitrary-order sliding-
mode controllers are mostly still theoretically studied (Le-
vant, 2001, 2003; Floquet, Barbot and Perruquetti, 2003), 
2-sliding controllers with finite-time convergence have al-
ready been successfully implemented for solution of real 
problems (Bartolini, Ferrara & Punta, 2000; Bartolini, Pis-
ano, Punta & Usai, 2003; Levant, Pridor, Gitizadeh, Yaesh 
& Ben-Asher, 2000; Sira-Ramírez, 2002; Orlov, Aguilar & 
Cadiou, 2003; Khan, Goh & Spurgeon, 2003; Shkolnikov 
& Shtessel, 2002; Shkolnikov, Shtessel, Lianos, & Thies, 
2000; Shtessel & Shkolnikov, 2003; Shtessel, Shkolnikov 
& Brown,  2004). There are only few widely used 2-sliding 
controllers: the sub-optimal controller (Bartolini et al., 
1998), the terminal sliding mode controllers (Man, Pap-
linski & Wu, 1994), and the twisting controller (Levant 
1993). 2-3 more controllers are presented in (Levant, 1993, 
Khan et al., 2003), in particular, the super-twisting control-
ler is used in differentiators (Levant, 1998, 2003).  

Generally speaking, 2-sliding controllers are used to 
keep at zero outputs of the relative degree 2 or to avoid 
chattering while zeroing outputs of the relative degree 1. 
The main difficulty of their implementation is the necessity 
to use the first time derivative of the output, which causes 
possible sensitivity of the approach to sampling noises. 
These three subjects are studied in the present paper, and 
some standard solutions are proposed.  

1. The homogeneity-based approach (Levant, 2005a) is 
proposed in this paper to regularize the construction of new 
finite-time convergent 2-sliding controllers featuring the 
highest possible accuracy of 2-sliding control (Levant, 
1993). The simplicity of such controller design is demon-
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strated, and a few new controllers are developed, some of 
which feature new advantageous properties. In particular, 
the so-called quasi-continuous controllers have better per-
formance, being continuous everywhere except the 2-
sliding set σ = σ& = 0. The main features of known 2-
sliding controllers (Levant, 1993; Bartolini et al., 98, 2003) 
are proved to be valid for general finite-time-convergent 
homogeneous 2-sliding controllers. 

2. A number of approaches were developed to avoid the 
dangerous chattering often featuring standard (1-sliding) 
modes. In particular, high-gain control with saturation is 
used to approximate the sign-function in a boundary layer 
around the switching manifold (Slotine & Li, 1991), the 
sliding-sector method (Furuta & Pan, 2000) is suitable to 
control disturbed linear time-invariant systems.  

Another standard way is to avoid chattering by means of 
2-sliding mode control, treating the input u of the system 
as a new state variable, while using its time derivative u&  
as the actual control ((Emelyanov, Korovin & Levant, 
1993; Levant, 1993; Bartolini et al., 1998). In that case u&  
has to dominate in the equation for σ&& . Regretfully, in gen-
eral, the expression for σ&&  contains terms with u.  Thus, u&  
is to dominate over u itself, which looks problematic. For-
tunately, in the vicinity of the 2-sliding mode u is close to 
the so-called equivalent control ueq(t, x) (Utkin, 1992), 
where t, x denote the time and the state variables. The 
function ueq is defined from the equation σ& = 0 and is in-
dependent of u& . Thus, the approach is always valid in 
some vicinity of the 2-sliding set σ = σ&  = 0, or, in other 
words, in a vicinity of the set σ = 0, u = ueq(t, x). Since ueq 
is typically unknown, the system stability is nevertheless 
difficult to guarantee. A simple effective procedure previ-
ously established only for the twisting controller is proved 
in this paper to resolve the problem by means of all known 
and newly-developed 2-sliding controllers. 

3. In practice the sampled values of the output σ are cor-
rupted by noises. The controller robustness with respect to 
sampling noises is especially important, since most of 2-
sliding controllers explicitly use possibly unavailable σ&  or 
sign σ& . Historically the first way to get the lacking infor-
mation was to use finite differences instead of the deriva-
tive. That approach is simple and valid for all 2-sliding 
homogeneous controllers, but, unfortunately, it is sensitive 
to large noises or small sampling intervals. Following Le-
vant (2005a), this paper suggests to use a recently devel-
oped robust exact differentiator (Levant, 1993, 2003) as a 
standard part of all 2-sliding homogeneous controllers, 
producing robust output-feedback control. The resulting 
output-feedback controllers preserve the ultimate accuracy 
and finite-time convergence of the original controllers and 
do not require any information on the noises. The corre-
sponding asymptotic accuracies are estimated.  

All contemporary applications are computer-based and 
use discrete-time sampling. The corresponding general-
case asymptotic accuracies are also calculated.   

The results of this paper were partially presented at a 
conference (Levant, 2002), and can be also considered as a 
demonstration of the general homogeneity-based HOSM 
controller design (Levant, 2005a) in the simplest case of 

the sliding order 2. Simulation demonstrates the feasibility 
of new controllers. 

2. The problem statement 

Consider a dynamic system of the form 

   x&  = a(t,x) + b(t,x)u,    σ = σ(t, x),             (1) 

where x ∈ Rn, u ∈ R is control, σ is the only measured 
output, smooth functions a, b, σ and the dimension n are 
unknown. The relative degree of the system (Isidori, 1989) 
is assumed to be 2. The task is to make the output σ vanish 
in finite time and to keep σ ≡ 0 by means of a discontinu-
ous globally-bounded feedback control. System trajectories 
are supposed to be infinitely extendible in time for any 
bounded input. The system is understood in the Filippov 
sense.  
 Calculating the second total time derivative σ&&  along the 
trajectories of (1) achieve that under these conditions 

σ&& = h(t,x) + g(t,x)u,   h = 0=
σ u
&& ,   g = σ∂

∂ &&u  ≠ 0    (2) 

where the functions g, h are some unknown smooth func-
tions. Suppose that the input-output termed conditions 

          0 < Km ≤ σ∂
∂ &&u  ≤ KM,       | 0=

σ u
&& | ≤ C.          (3) 

hold globally for some Km, KM, C > 0. Note that at least 
locally (3) is satisfied for any smooth system (1) with the 
well-defined relative degree 2.  

Obviously, no continuous feedback controller can solve 
the stated problem. Indeed, any continuous control u = 
ϕ(σ, σ& ) providing for σ ≡ 0, has to satisfy the equality 
ϕ(0, 0) = - h(t, x)/g(t, x), whenever σ = σ&  = 0 holds. The 
problem uncertainty prevents it, for the controller will not 
be effective for the simple autonomous linear system σ&& =  
c + ku, Km ≤ k ≤ KM, |c| ≤ C, with ϕ(0,0) ≠ - c/k. In other 
words, the 2-sliding mode σ = 0 is to be established.  

Assume now that (3) holds globally. Then (2), (3) imply 
the differential inclusion 

    σ&& ∈ [-C, C] + [Km, KM]u.            (4) 

Most 2-sliding controllers may be considered as control-
lers for (4) steering σ, σ&  to 0 in (preferably) finite time. 
Since inclusion (4) does not “remember” the original sys-
tem (1), such controllers are obviously robust with respect 
to any perturbations preserving (3). 

Hence, the problem is to find such a feedback 

       u = ϕ(σ, σ& ),            (5) 

that all the trajectories of (4), (5) converge in finite time to 
the origin σ = σ& = 0 of the phase plane σ, σ& .  
 Differential inclusion (4), (5) is understood here in the 
Filippov sense (Filippov, 1988), which means that the 
right-hand vector set is enlarged in a special way in order 
to satisfy certain convexity and semi-continuity conditions 
(Levant, 2005a). In particular, in the case when ϕ is con-
tinuous almost everywhere, a set Φ(σ, σ& ) is substituted for 
u in (4), Φ being the convex closure of all possible limit 
values of ϕ(σ1, 1σ& ) obtained when the continuity point 
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(σ1, 1σ& ) approaches (σ, σ& ). The function ϕ is assumed to 
be a locally bounded Borel-measurable function (actually 
all functions used in sliding-mode control satisfy that re-
striction). Solution is any absolutely continuous vector 
function (σ(t), σ& (t)) satisfying (4), (5) for almost all t. 

3. 2-sliding homogeneity and finite-time 
stability 

The general notion of homogeneous differential equa-
tion, review of the corresponding theoretical results and 
numerous references can be found in (Bacciotti & Rosier, 
2001). Introduce a few auxiliary notions and theorems 
adopted from (Levant, 2005a), where they are formulated 
for general homogeneous Filippov differential inclusions 
with negative homogeneity degrees. The combined time-
coordinate transformation  

 Gκ:     (t, σ, σ& ) a ( κt, κ2
σ, κ σ& )       (6) 

transfers solutions of (4), (5) into the solutions of the trans-
formed inclusion 

  σ&& ∈ [-C, C] + [Km, KM] ϕ(κ2
σ, κ σ& ).    

Inclusion (4), (5) and controller (5) itself are called 2-
sliding homogeneous (Levant, 2005a) if these two differen-
tial inclusions are equivalent for any σ, σ&  and κ > 0 (i.e. 
have the same solutions). The mapping dκ(σ, σ& ) = 
(κ2

σ, κ σ& ), κ > 0  is called the homogeneity dilation (Bac-
ciotti et al., 2001). Obviously, (5) is 2-sliding homogene-
ous if  

    ϕ(κ2
σ, κ σ& ) ≡ ϕ(σ, σ& )        (7) 

holds for any κ > 0. Such a function ϕ is called 2-sliding 
homogeneous with the homogeneity degree 0. For exam-
ple, the following controllers are 2-sliding homogeneous: 

     u =  - sign σ = - sign κ2
σ, 

     u = (2σ - 2σ& )/(|σ| + 2σ& ) =  
         (2 κ

2
σ - (κ σ& )2)/(|κ2

σ| + (κ σ& )2). 

Surely these controllers do not solve the stated problem.  
Since the Filippov solutions do not depend on the values 

of ϕ on any set of the zero measure, any changes of ϕ on 
such a set do not change the homogeneity properties of the 
controller.  It is assumed in this paper that (7) holds for any 
σ, σ&  and κ > 0. Note that (7) requires global boundedness 
of ϕ (excluding possibly a zero-measure set), otherwise it 
is unbounded in any vicinity of 0 and Filippov’s definition 
is not applicable to (1), (5).  
1°. Differential inclusion (4), (5) is called further globally 
uniformly finite-time stable at 0 if it is Lyapunov stable 
and for any R > 0 exists T > 0 such that any trajectory start-
ing within the disk ||(σ, σ& )|| < R stabilizes at zero in the 
time T. 
2°. Differential inclusion (4), (5) is called further globally 
uniformly asymptotically stable at 0, if it is Lyapunov 
stable and for any R > 0 and ε > 0 exists T > 0, such that 
any trajectory starting within the disk ||(σ, σ& )|| < R enters 
the disk ||(σ, σ& )|| < ε in the time T to stay there forever. 

A set D is called dilation-retractable if  0 ∈ D, and  
dκ D ⊂ D for any κ < 1. For example any disk centered at 
the origin is dilation-retractable. 
3°. The homogeneous differential inclusion (4), (5) is 
called further contractive if there are 2 compact sets D1, D2 
and T > 0 such that D2 lies in the interior of D1 and con-
tains the origin; D1 is dilation-retractable; and all trajecto-
ries starting at the time 0 within D1 are localized in D2 at 
the time moment T. 

Most of known 2-sliding controllers (Levant, 1993, Bar-
tolini et al., 2003) satisfy these properties. The following 
Theorem is actually true for any homogeneous differential 
inclusion of a negative homogeneity degree (Levant, 
2005a). 
Theorem 1. Let controller (5) be 2-sliding homogeneous, 
then properties 1°, 2° and 3° are equivalent. 
 Explain the Theorem in few words. Since 1° implies 2° 
and 3°, it is sufficient to show that 3° implies 1°. The ho-
mogeneity of the system (4), (5) means that it is invariant 
with respect to the transformation (6). Thus, the behavior 
of the system trajectories is geometrically the same in all 
points, which can be transferred one into another by means 
of a simple linear transformation dκ(σ, σ& ) = (κ2

σ, κ σ& ), κ 
> 0 (the dilation). The only difference is that the corre-
sponding motion near the origin requires proportionally 
less time, according to (6). Hence, using the contractivity 
property 3°, a chain of embedded domains can be con-
structed, retracting to the origin. The corresponding system 
motion is actually shown to be a finite-time collapse to-
wards the origin.  
 It is natural to call the controller u = φ(σ, σ& ) a small 
homogeneous perturbation of (5) if the difference φ – ϕ is a 
2-sliding homogeneous function with the homogeneity de-
gree 0, small in some fixed vicinity of the origin.  
Corollary 1. Global uniform finite-time stability of the     
2-sliding homogeneous controller (5) is robust with respect 
to small homogeneous perturbations of the controller. 

Indeed, it follows from the robustness of property 3°. 
The following theorems consider the robustness of homo-
geneous controllers with respect to sampling errors, which 
are supposed to be some bounded Lebesgue-measurable 
functions of time of any nature. No features of the noises 
are assumed to be known. 
Theorem 2 (Levant, 2005a). Let the noise magnitudes of 
measurements of σ, σ&  be less than β0δ and β1δ

1/2 respec-
tively with some positive constants β0 and β1. Then any fi-
nite-time-stable 2-sliding-homogeneous controller (5) pro-
vides in finite time for keeping the inequalities |σ| < γ0δ, 
| σ& | < γ1δ

1/2
  with the same positive constants γ0, γ1 for any 

δ>0.  
Controller (5) requires availability of σ& . That informa-

tion can be obtained by means of the real-time robust fi-
nite-time-convergent exact differentiator (Levant, 1998, 
2003) as follows: 

   u  = - ϕ(z0, z1),                          (8) 
  0z&  = - λ2 L

1/2 | z0 - σ| 1/2 sign(z0 - σ) + z1,      (9) 
  1z&  = - λ1 L sign(z0 - σ).           (10) 
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Here z0, z1 are the estimations of σ and σ&  respectively. 
The parameters of the differentiator λi are to be chosen in 
advance, in particular λ1 = 1.1, λ2 = 1.5 is a good choice 
(Levant, 1998). L is the only differentiator parameter to be 
tuned, and it has to satisfy the only condition | σ&& | ≤ L, i.e. L 
≥ C + KM sup|ϕ| (recall that ϕ is bounded). 
Theorem 3 (Levant, 2005a). Suppose that controller (5) is 
2-sliding homogeneous and finite-time stable, then the out-
put-feedback controller (8) - (10) provides in finite time for 
keeping σ = σ& = 0. If σ is sampled with a constant sam-
pling interval τ > 0, the inequalities |σ| < γ0τ

2, | σ& | < γ1τ 
are established with some positive constants γ0, γ1. If σ is 
sampled (continuously) with a noise being a Lebesgue-
measurable function of time of the magnitude ε > 0, the 
inequalities |σ| < µ0ε, | σ& | < µ1ε

1/2 are established with 
some positive constants µ0, µ1. 

  There is another way to estimate σ&  with discrete sam-
pling. Indeed, let 

  u = ϕ(σ, ∆σi/τ) = ϕ(τ2
σ, ∆σi),        (11) 

where σi = σ (ti, x(ti)), ∆σi = σi- σi-1, t ∈ [ti, ti+1). 
Theorem 4 (Levant, 2005a). Let controller (5) be 2-sliding 
homogeneous and finite-time stable, then in the absence of 
measurement noises controller (11) provides in finite time 
for keeping the inequalities |σ| < γ0τ

2, | σ& | < γ1τ  with some 
positive constants γ0, γ1. 

 Note that 1-sliding mode provides only for the accu-
racy proportional to τ. The accuracy described in Theo-
rems 3, 4 is the best possible with discontinuous control 
and the relative degree 2 (Levant, 1993).  

Due to the finite-time convergence of the controllers, 
Theorems 2 - 4 have obvious local analogues in the case 
when (3) holds only locally. Recall that 2-sliding point is a 
point where σ = σ& = 0. Then in the absence of noises all 
trajectories of (1), (5) (respectively (1), (8) – (10) or (1), 
(11)) starting from some vicinity of a 2-sliding point with 
well-defined relative degree 2 converge in finite time to the 
2-sliding mode σ ≡ 0, or the corresponding inequalities are 
established in the case of noisy measurements or discrete 
sampling. The long-term motion is determined by the sys-
tem properties, especially by its zero dynamics (Isidori, 
1989).  Note that in the case, when σ∂

∂ &&u  is negative the 
same controller (5) is to be used, but with the opposite 
sign. 

The popular sub-optimal controller (Bartolini et al., 
1998, 2003) is defined by the formula 

 u = - r1 sign (σ - σ*/2) + r2 sign σ*,     r1 > r2 > 0, 

where σ* is the value of σ detected at the closest time in 
the past when σ&  was 0. The initial value of σ* is 0. The 
corresponding convergence conditions are  

 2[(r1 + r2)Km - C ] > (r1 - r2)KM + C,   (r1 - r2)Km > C.  

Usually the moments when σ&  changes its sign are 
detected using finite differences. The control u depends 
actually on the whole history of measurements of σ&  and σ, 
and does not have the feedback form (5). Nevertheless, the 
homogeneity transformation (6) preserves its trajectories, 
and it is natural to call it 2-sliding homogeneous in the 

broad sense. Also the statements of Theorems 2 - 4 remain 
valid for this controller.  

Results similar to Theorems 1 - 4 are formulated and 
proved in (Levant, 2005a) for any relative degree r and     
r-sliding homogeneous controllers. At the same time de-
sign of new r-sliding controllers is rather difficult with r > 
2 due to the complicated geometry of Rr (Levant, 2003,  
2005b, Floquet et al., 2003).  

4. Design of 2-sliding controllers 

As follows from the previous Section it is sufficient to 
build a 2-sliding-homogeneous contractive controller. De-
sign of such 2-sliding controllers is greatly facilitated by 
the simple geometry of the 2-dimensional phase plane with 
coordinates σ, σ& : any smooth curve locally divides the 
plane in two parts.  

A number of known 2-sliding controllers may be con-
sidered as particular cases of a generalized 2-sliding ho-
mogeneous controller 

  u = - r1 sign(µ1 σ& +λ1|σ|1/2sign σ)  
     - r2 sign(µ2 σ&  + λ2|σ|1/2sign σ),  r1, r2 > 0.       (12) 

Drawing the two lines µi σ&  + λi|σ|1/2sign σ = 0, µi
2 + λi

2 
> 0, µi, λi ≥ 0, i = 1, 2, µ1

2 + µ2
2 > 0, λ1

2 + λ2
2 > 0, in the 

phase plane, and considering various possible cases, one 
can readily check that r1, r2 can always be chosen so that 
controller (12) be finite-time stable. Indeed, if, for exam-
ple, µ1, λ1 > 0, then a 1-sliding mode can easily be organ-
ized on the line µ1 σ&  + λ1|σ|1/2sign σ = 0. Sliding mode 
conditions being fulfilled at one point of the line, they 
automatically hold along the whole line due to the homo-
geneity properties. If for each i one of the coefficients is 
zero, the twisting controller (Levant, 1993)  

u = - (r1 sign σ + r2 sign σ& ), 

is built. Its convergence condition is   

  (r1 + r2)Km - C > (r1 - r2)KM + C,   (r1 - r2) Km > C.  

A typical trajectory in the plane σ, σ&  is shown in Fig. 1a. 
Controller (12) may be considered as a generalization of 
the twisting controller, when the switching takes place on 
parabolas µ1 σ&  + λ1|σ|1/2sign σ = 0 instead of the coordi-
nate axes. 

Thus, the resulting controller satisfies Theorem 1, and 
its discrete-sampling version 

u = - r1 sign(µ1 ∆σi  + λ1τ |σi|
1/2sign σi)  

               - r2 sign(µ2 ∆σi  + λ2τ |σi|
1/2sign σi).            (13) 

provides for the accuracy described in Theorem 4, i.e. σ ~ 
τ

2, σ&  ~ τ. Similarly, the noisy measurements lead to the 
accuracy provided by Theorems 2, 3. 

Consider special interesting cases of controller (12), 
(13). With µ1 = λ2 = 0, r2 > r1 > 0, achieve the drift 
controller (Levant, 1993) from (13) (it does not converge 
with continuous measurements). A homogeneous form of 
the controller with prescribed convergence law (Levant 
1993) arises when µ1 = µ2, λ1 = λ2:   



Preprint submitted to Automatica  5 9 October 2006 

   u = - α sign( σ&  + β|σ|1/2sign σ),           (14) 

where α = r1 + r2, β = λ1/µ1. This controller is a 2-sliding 
homogeneous analogue of the terminal sliding mode con-
troller originally featuring a singularity at σ = 0 (Man et 
al., 1994). The complete elementary proof of the following 
simple proposition was actually never published. 

 
Fig. 1. Convergence of various 2-sliding 

homogeneous controllers 

Proposition 1. With αKm - C > β2/2 controller (14) pro-
vides for the establishment of the finite-time stable            
2-sliding mode σ ≡ 0. 
Proof. Differentiating the function Σ = σ&  + β|σ|1/2sign σ 
along the trajectory, obtain 

 Σ&  ∈ [-C, C] - α [Km, KM] sign Σ + 2
1 β σ& |σ| -1/2. 

Checking the condition Σ& sign Σ < const < 0 in a vicin-
ity of each point on the curve Σ = 0, obtain using σ&  =        
-β|σ|1/2sign σ that the 1-sliding-mode existence condition 
holds at each point except of the origin, if αKm - C > β2/2.  

The trajectories of the inclusion inevitably hit the curve 
Σ = 0 due to geometrical reasons. Indeed, each trajectory, 
starting with Σ > 0, terminates sooner or later at the semi-
axis σ = 0, σ&  < 0, if u = -α sign Σ keeps its constant value 
-α (Fig. 1b). Thus, on the way it inevitably hits the curve Σ 
= 0. The same is true for the trajectory starting with Σ < 0. 
Since that moment the trajectory slides along the curve Σ = 
0 towards the origin and reaches it in finite time. Obvi-
ously, each trajectory starting from a disk centered at the 
origin comes to the origin in a finite time, the convergence 
time being uniformly bounded in the disk. 

Consider the region Ωε confined by the lines  σ&  = ± ε 
and the trajectories of the differential equations σ&& = -C + 
Kmα with initial conditions  σ = ε2/β2, σ&  = - ε, and σ&& =    
C - Kmα with initial conditions  σ = - ε

2/β2, σ&  =  ε       

(Fig. 1b). No trajectory starting from the origin can leave 
Ωε. Since ε can be taken arbitrarily small, the trajectory 
cannot leave the origin. The same reasoning proves the 
Lyapunov stability of the origin. n 

The 2-sliding stability analysis is greatly simplified by 
the fact that all the trajectories in the plane σ, σ&  which 
pass through a given continuity point of u = ϕ(σ, σ& ) are 
confined between the properly chosen trajectories of the 
homogeneous differential equations σ&& = ±C + KMϕ(σ, σ& ) 
and σ&& = ±C + Kmϕ(σ, σ& ). These border trajectories cannot 
be crossed by other paths, if ϕ is locally Lipschitzian, and 
may be often chosen as boundaries of appropriate dilation-
retractable regions. The rule is to take trajectories satisfy-
ing σ&&  = C + KMϕ(σ, σ& ) and σ&&  = - C + Kmϕ(σ, σ& ) with 
ϕ(σ, σ& ) > 0, and σ&&  = - C + KMϕ(σ, σ& ) and σ&&  = C + 
Kmϕ(σ, σ& ) when ϕ(σ, σ& ) < 0. Recall that a region is dila-
tion-retractable iff, with each its point (σ, σ& ), it contains 
all the points of the parabolic segment (κ2

σ, κ σ& ), 0 ≤ κ ≤ 
1. 

As follows from Corollary 1 a small violation of the 
conditions of Proposition 1 preserves the finite-time stabil-
ity of controller (14), if  αKm - C < β2/2, but still αKm > C. 

 
Fig. 2. Contraction property of some 2-sliding 

homogeneous controllers 

Proposition 2.  Let  C < αKm ≤ C + β2/2. Then with suffi-
ciently small C + β2/2 - αKm controller (14) provides for 
the twisting-like convergence to the finite-time stable        
2-sliding mode σ ≡ 0. 
Proof. The corresponding trajectories and dilation-
retractable sets are shown in Fig. 2b. Define once more Σ = 
σ&  + β|σ|1/2sign σ. The boundaries of the regions are the 
trajectories of the differential equation σ&& = -C + Kmα with 
Σ > 0 and σ&& = C - Kmα with Σ < 0. Consider the combined 
curve 1-2-3-4 (Fig. 2b). With sufficiently small C + β2/2 - 
αKm point 4 is closer to zero than point 1. This requirement 
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forms the convergence condition. Due to the homogeneity 
of the system, this geometric condition does not depend on 
the placement of point 1 on the axis σ& . Direct calculation 
will replace it with an algebraic condition. The absolute 
value | σ&& | is separated from zero by Kmα - C. Therefore, 
the convergence time to the smaller set is estimated by 
3 Mσ& /(Kmα - C), where Mσ&  is the maximal value of | σ& | 
in the corresponding dilation-retractable set. Hence, the 
finite time stability is obtained due to Theorem 1. n 

 A new controller is obtained when (λ1, µ1) ≠ (λ2, µ2) 
and all components are not zero, especially interesting are 
the cases when 

   r1 = r2 ,  4r1Km - 2C  >  max(λ1
2/ µ1

2, λ2
2/ µ2

2). 

In that case the trajectory is confined between two para-
bolic segments (Fig. 1c, 2a). The control vanishes in that 
region. The corresponding dilation-retractable sets are 
shown in Fig. 2a. The convergence time to the smaller set 
is estimated by 2 Mσ& /(2Kmr1 - C), where Mσ&  is the maxi-
mal value of | σ& | in the corresponding dilation-retractable 
set. The idea of that controller is close to that of the sliding 
sector control (Furuta et al., 2000). The corresponding 
proposition as well as its proof are obvious and are omit-
ted. 

 An important class of HOSM controllers comprises 
recently proposed so-called quasi-continuous controllers, 
featuring control continuous everywhere except of the 
HOSM σ = σ& = ... = σ

(r-1) = 0 itself. Since the r-sliding 
condition has the codimension r, with the sliding order r > 
1 the general-case trajectory does never hit the r-sliding 
manifold. Hence, the condition σ = σ& = ... = σ

(r-1) = 0 is 
never fulfilled in practice with r ≥ 2, and the control re-
mains continuous function of time all the time. As a result, 
the chattering is significantly reduced. Following is the 2-
sliding controller from such a family of arbitrary-order 
sliding controllers (Levant, 2005b): 

     u = - α 2/1

2/1

||||
sign||

σβ+σ
σσβ+σ

&

&
.         (15) 

This control is continuous everywhere except of the ori-
gin. It vanishes on the parabola σ&  + β|σ|1/2sign σ = 0. With 
sufficiently large α there are such numbers ρ1, ρ2, 0 < ρ1 < 
β < ρ2 that all the trajectories enter the region between the 
curves σ&  + ρι|σ|1/2sign σ = 0 and cannot leave it (Fig. 1c). 
Note that no explicit conditions on the parameter choice 
are obtained in (Levant, 2005b). 
Proposition 3. Let  

     α, β > 0,  αKm - C  > 0       (16) 

and the inequality  

   αKm - C  - 2 αKm 
β+ρ

β  - 2
1 ρ

2  > 0    (17) 

hold for some positive ρ > β (which is always true with suf-
ficiently large α), then controller (15) provides for the es-
tablishment of the finite-time stable 2-sliding mode σ ≡ 0. 

Conditions of the proposition can be solved for α, but 
the resulting expressions are redundantly cumbersome. 

Proof. Denote ρ =  - σ& /|σ|1/2. Calculations show that  u =  
α (ρ - β)/(|ρ| + β) and 

ρ& ∈ ([-C, C] - [Km, KM]α
β+ρ

β−ρ
||

 + 2
1 ρ

2sign σ) |σ| -1/2. 

Due to the symmetry of the problem, it is enough to 
consider the case σ > 0, -∞ < ρ < ∞. With negative or 
small positive ρ the rotation velocity ρ&  is always positive 
due to (16), thus there is such positive ρ1 < β that the tra-
jectories enter the region ρ > ρ1. It is needed to show now 
that there is ρ2 > β such that in some vicinity of ρ = ρ2 the 
inequality ρ& < 0 holds. That is exactly condition (17). 
Thus, conditions (16), (17) provide for the establishment 
and keeping of the inequality ρ1 < ρ < ρ2.n 

 Following is another example of a quasi-continuous 
2-sliding controller: 

u=




=σσα−
≠σσβ+σσγ−α−α

0                                                      ,sign
0   ,)}sign||/(,max[,min{ 2/1

&

&
,(18) 

where α, γ, β > 0, αKm - C > β2/2 , γβ > α. The definition 
of the control u with σ = 0 is made by continuity and does 
not influence the system trajectories, since it only influ-
ences values on a zero-measure set. Enlarging γ one com-
pels the trajectories to get closer to the parabola σ&  + 
β|σ|1/2sign σ = 0 without increasing the control magnitude 
(Fig. 1d). Also here the discontinuity is concentrated at σ = 
σ&  = 0. Thus, in the presence of measurement errors the 
motion takes place in some vicinity of the mode σ = σ&  = 0 
without entering it, and the control signal turns out to be 
continuous. 

Moreover, let ζ(y) be any monotonously growing posi-
tive continuous function of a non-negative argument, then 
the following controller generalizes (18) 

uζ = min{α,max[- α,-γζ(| σ& |/|σ|1/2)sign σ& +ζ(β)sign σ)]}, 

u = 




=σσα−
≠σσσς

0  ,sign
0   ),,(

&

&u
.              (19) 

Proposition 4. Let α, β, γ > 0, αKm - C > ζ(β)
2/2 , γζ(β) > 

α and γ be sufficiently large, then controller (19) provides 
for the establishment of the finite-time stable 2-sliding 
mode σ ≡ 0. 

The proof is very similar to that of Proposition 3. 
Enlarging γ one compels the trajectories to get closer to the 
parabola σ&  + ζ(β) |σ|1/2sign σ = 0 without increasing the 
control magnitude (Fig. 1d). Like other listed controllers, 
this one also provides for the finite-time convergence to 
the 2-sliding mode and the accuracies corresponding to 
Theorems 2 - 4.  
Chattering attenuation.  The standard problem of classi-
cal (first order) sliding-mode control is attenuation of the 
chattering effect (Slotine et al, 1991; Furuta et al., 2000; 
Fridman, 2003). 2-sliding mode control provides effective 
tools for the reduction or even practical elimination of the 
chattering without compromising the benefits of the stan-
dard sliding mode (Boiko & Fridman, 2005; Boiko, Frid-
man, Iriarte, Pisano & Usai, 2006). Let the relative degree 
of the system (1) be 1, i.e. (2) is replaced by  
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σ& = h(t,x) + g(t,x)u,     0 < Km ≤ g ≤ KM,       |h| ≤ C,   (20) 

where the functions g, h are some unknown smooth func-
tions. Let also the control u = - k sign σ solve the problem 
of establishing and keeping σ ≡ 0. In particular, 

             kKm  - C  > 0             (21) 

is assumed. Consider u&  as a new control, in order to over-
come the chattering. Differentiating (20) achieve 

σ&& = h1(t,x,u) + g(t,x) u& ,    
h1 = th′ + xh′ ⋅(a + bu) + ( tg′ + xg ′ ⋅ (a + bu)) u . 

 Assume that with |u| ≤ k1, k1 > k, the function h1(t,x,u) is 
bounded: 

     
1||

sup
ku ≤

|h1(t,x,u)| ≤ C1  .       (22) 

Any listed controller u = φ(α, σ, σ& ) can be used here in 
order to overcome the chattering and improve the sliding 
accuracy of the standard sliding mode. Indeed, define  

    u& = 




≤σσαφ
>−

.||),,,(
||,

ku
kuu

&
       (23) 

Theorem 5. Let φ be anyone of controllers (14), (15), (18), 
(19) and the controller parameters be chosen in accor-
dance with the corresponding Propositions 1, 2, 3 or 4. 
Then with sufficiently large α controller (23) provides for 
the establishment of the finite-time-stable 2-sliding mode σ 
≡ 0. Also the statements of Theorems 2 - 4 are valid with 
sufficiently small noises or sampling intervals.  

Controller (23) keeps |u| ≤ k, and on certain time inter-
vals u ≡ k or u ≡ -k is kept in 1-sliding mode. Note that 
though Theorem is not formulated for arbitrary 2-sliding 
homogeneous controllers, it is valid for all standard con-
trollers (Levant, 1993, Bartolini et al., 1998).  
Proof. It follows from (20), (21) that the inequality | σ& | < 
kKm - C implies |u| < k. Thus, within the set | σ& | < kKm - C 
the system is driven by the controller u&  = φ(α, σ, σ& ). 
Lemma 1. Any trajectory of the system (1), (23) hits in fi-
nite time the manifold σ = 0 or enters the set σ σ& < 0,       
|u| ≤ k. 

Indeed, suppose that σ does not change its sign. Obvi-
ously, the inequality |u| ≤ k is established in finite time. If 
the condition σ σ& < 0 is attained, the statement of the 
Lemma is true. Suppose that σ σ& ≥ 0 holds, then, according 
to (23), u moves towards u = -k sign σ with | u& | ≥ min (α, 
k), both if |u| > k or |u| ≤ k. The remark that u = -k sign σ 
can be established only with σ σ& < 0 proves the Lemma. n 
Lemma 2. With sufficiently large α any trajectory of the 
system (1), (23) hits in finite time the manifold σ = 0. 
Proof. Denote S the set defined by the inequalities | σ& | < 
kKm - C, σ σ& < 0. There is a specific set Θ for each control-
ler, adjacent to the axis σ = 0, and lying in the strip S, such 
that any trajectory entering it, either converges in finite 
time to σ = σ&  = 0, or hits the axis σ = 0; also no trajectory 
can enter S outside of Θ. For example, Θ is defined by the 
inequalities ( σ&  + β|σ|1/2sign σ)σ ≤ 0, | σ& | < kKm - C for 
controller (14).  Any trajectory starting in S either leaves it 
in finite time, or enters Θ. Thus, there are 2 options: from 

some moment on a trajectory stays out of S, which means 
that | σ& | ≥ kKm - C, σ σ& < 0, or it enters Θ. In both cases the 
trajectory hits σ = 0. n 

The following Lemma is obviously true for any conver-
gent 2-sliding controller. 
Lemma 3. There is a vicinity Ω of the origin within the 
strip | σ& | < kKm - C, which is invariant with respect to the 
controller u&  = φ(α, σ, σ& ).  
Proof. Consider the auxiliary problem, when (22) holds 
independently of the control value, and the corresponding 
differential inclusion. Since all trajectories starting in a 
closed disk centered at the origin, converge to the origin in 
finite time, the set, which comprises these transient trajec-
tory segments, is an invariant compact for the controller u&  
= φ(α, σ, σ& ) (Filippov, 1988). Applying now the homoge-
neity transformation, the set can be retracted into the strip 
| σ& | < kKm - C, where (22) is really kept. n  
Lemma 4. With sufficiently large α any trajectory starting 
on the manifold σ = 0 with |u| ≤ k enters the invariant set 
Ω. 
Proof. Any trajectory starting with σ = 0 and σ& ≠ 0 inevi-
tably enters the region σ σ& > 0, |u| < k. Within this region 
u&  = -α sign σ. Hence, the control u moves towards the 
value - k sign σ, and on the way the trajectory hits the set 
σ&  = 0, which still features |u| < k. As follows from (20), |u| 
≤ k implies the global bound | σ& | ≤ kKM + C. That restric-
tion is true also at the initial point on the axis σ = 0. Simple 
calculation shows that the inequality |σ| ≤ 2

1 (kKM + C)2 

/(αKm - C1) takes place at the moment when σ&  vanishes. 
With sufficiently large α that point inevitably belongs to 
Ω. n 

Once the trajectory enters Ω, it continues to converge to 
the 2-sliding mode according to the corresponding            
2-sliding homogeneous dynamics. This proves the conver-
gence to the 2-sliding mode. In the presence of small 
noises and sampling intervals the resulting motion will 
take place in a small vicinity of the 2-sliding mode σ = σ& = 
0. Thus, if this motion does not leave Ω, the homogeneous 
dynamics is still in charge, and the statements of Theorems 
1 - 4 are true. n 

5. Simulation results 

A number of new controllers from the previous Section 
are demonstrated here. Consider an academic example of a 
variable-length pendulum with motions restricted to some 
vertical plane. A load of a known mass m moves without 
friction along the pendulum rod (Fig. 3a). Its distance from 
O equals R(t) and is not measured. An engine transmits a 
torque u, which is considered as control. The task is to 
track some function xc given in real time by the angular 
coordinate x of the rod. 

The system is described by the equation 

      x&& = - 2 
R
R& x& - g

R
1 sin x + 2

1
mR

u,            (24) 
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where m = 1 and g = 9.81 is the gravitational constant. Let 
0 < Rm ≤ R ≤ RM, R& , R&& , cx&  and cx&&  be bounded, σ = x-xc 
be available. Following are the "unknown" functions R and 
xc considered in the simulation: 

   R = 0.8 + 0.1 sin 8t + 0.3 cos 4t,     
   xc = 0.5 sin 0.5t + 0.5 cos t .  

Let σ = x-xc. The relative degree of the system equals 2. 
The assumptions (3) are fulfilled here only locally, and the 
controllers to be applied are effective only for some 
bounded set of initial conditions. Choosing the controller 
parameter α the convergence region can be made arbitrar-
ily large.  
 Both main applications of 2-sliding modes are demon-
strated: the straight-forward implementation of 2-sliding-
mode controllers leading to discontinuous control and pos-
sibly dangerous chattering, and the standard practical re-
moval of chattering by means of 2-sliding mode. In the lat-
ter case a redefinition of the output and input are needed. 
Note that the 3-sliding-mode controllers (Levant, 2003, 
2005b) are probably more effective in that case, but are out 
of the scope of this paper.  
 The Euler integration method was used, being the only 
method valid for sliding-mode simulation. The parameters 
of the controllers were found by simulation, since the di-
rect calculation of the constants C, Km, KM is difficult and, 
inevitably, not precise.  

Discontinuous control  

The controllers include a real-time differentiator and 
have the form 

     u = ϕ(z0, z1),      σ = x-xc , 
   0z& = - 10.61 | z0 - σ| 1/ 2sign(z0 - σ)+ z1,    (25) 
   1z& = - 55 L sign(z0 - σ),        (26) 

where z0, z1 are real-time estimations of σ, σ&  respectively. 
Differentiator (25), (26) is exact for input signals σ with 
second derivative not exceeding 50 in absolute value. 

 The initial conditions x(0) = x& (0) = 0 were taken, z0(0) 
= x(0) - xc(0) = - 0.5, z1(0) = 0, the sampling step τ and the 
integration steps being the same, τ = 0.0001.  

Consider a controller of the form (14) 

  u  =  - 10 sign( z1 + 11| z0|
1/2 sign z0 ).     (27) 

The magnitude of the control is not sufficiently large here 
to establish a 1-sliding mode on the curve σ& +11|σ| sign σ 
= 0, nevertheless the 2-sliding mode σ = σ&  = 0 is estab-
lished here in finite time according to Proposition 2. Note 
that it is the first time when such a twisting-type conver-
gence is demonstrated for this controller. The phase trajec-
tories in the plane σ, σ&  and the first 0.1 seconds of the dif-
ferentiator convergence are shown in Fig. 3b,c respec-
tively, the corresponding accuracies being |σ| = | x - xc | ≤ 
4.2⋅10-5, | σ& | = | x& - cx& | ≤ 2.7⋅10-2. After the sampling step τ 
was reduced from 10-4 to 10-5 the resulting accuracies 
changed to | x - xc | ≤ 4.8⋅10-7, | σ& | = | x& - cx& | ≤ 3.1⋅10-3 
which corresponds to Theorem 4. The differentiator con-
vergence is demonstrated in Fig. 3f. 

 
Fig. 3: Pendulum and performance of controllers  
(25), (26), (27) (b, f) and (25), (26), (28) (c, d, e) 

 
Fig. 4: Performance of the controller (28), (25), (26) 

with noisy measurements 

 Consider the quasi-continuous controller 

       u = - 10 
2/1

2/1

||||
sign||

σσ

σσσ

+

+
&

&
.    (28) 

The trajectory and 2-sliding tracking performance in the 
absence of noises are shown in Figs. 3d, and 3c respec-
tively, the corresponding accuracies being |σ| = |x - xc| ≤ 
5.4⋅10-6, | x& - cx& | ≤ 1.0⋅10-2 with τ = 0.0001. Control (28) is 
demonstrated in Fig. 3e. It is seen from the graph that the 
control remains continuous until the entrance into the 2-
sliding mode σ = σ&  = 0. 

The tracking results of (25), (26), (28) and the differ-
entiator performance in the presence of a noise with the 
magnitude 0.01 are demonstrated in Figs. 4c,d respec-
tively, the tracking accuracy being |σ| = | x - xc | ≤ 0.036. 
The noise was a periodic nonsmooth function with nonzero 
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average. The performance does not significantly change, 
when the frequency of the noise varies from 10 to 100000. 
These results correspond to Theorem 3. 

Chattering attenuation  

The controller includes a real-time second-order differ-
entiator (Levant, 2003) 

 0z& = v0 = - 13.4 | z0 - σ| 2/ 3sign(z0 - σ)+ z1,    (29) 
 1z& = v1 = - 26.0 | z0 - v0|

 1/ 2sign(z0 - v0)+ z2,   (30) 
 2z& = - 330 sign(z2 - v1),  σ = x-xc ,     (31) 

where z0, z1, z2 are real-time estimations of σ, σ& , σ&&  re-
spectively. Differentiator (29) - (31) is exact for input sig-
nals σ with the third derivative not exceeding 300 in abso-
lute value. The initial values z0(0) = σ(0),  z1(0) = z2(0) = 0 
were taken. 

Consider a controller of the form (19), (23) which estab-
lishes in finite time the 2-sliding mode Σ = Σ& = 0, where   
Σ = σ + σ& . Substituting the estimations z0, z1, z2 of the de-
rivatives σ, σ& , σ&&  obtain the controller 

u& = min{30, max[-30, - 40 (ln(|s1|/|s0|
1/2

 + 1) ⋅ sign s1 + 
  ln 2 ⋅ sign s0)]}   with  |u| < 10, |s1| < 100|s0|

1/2,   (32) 

u& = -30 sign s1 with  |u| < 10, |s1| ≥ 100|s0|
1/2,      (33) 

u& = - u   with  |u| ≥ 10,  s0 =  z0 + z1,   s1 =  z1 + z2,     (34) 

where the function ζ(∗) = ln(∗ + 1) is chosen, u(0) = 0. 
Without changing the control values, (33) is constructed so 
that the overflow be avoided during the computer simula-
tion (or practical implementation).  

In the absence of noises the controller provides in finite 
time for keeping σ + σ&  ≡ 0. As a result the asymptotically 
stable 3-sliding mode σ = σ&  = σ&& = 0 is established. Note 
that since (19) is quasi-continuous, the applied controller 
(29) – (34) produces the control u, whose derivative u&  
remains continuous until the entrance into the 2-sliding 
mode Σ = Σ& = 0. The graph of u&  is very similar to Fig. 3e 
and is omitted. The graphs of 3-sliding deviations σ, σ& , σ&&  
and the control u are demonstrated in Figs 5a,c respec-
tively. The 2-sliding convergence in the plane Σ, Σ& is 
demonstrated in Fig. 5b. It is seen from Fig. 5d that σ + σ&  
≡ 0 is kept in 2-sliding mode. Due to this equality the accu-
racies achieved at t = 10 are of the same order: |σ| =            
| x - xc | ≤ 4.0⋅10-4, | σ& | = | x& - cx& | ≤ 4.0⋅10-4,  | σ&& | = | x&& - cx&& | ≤ 
4.0⋅10-4. 

6. Conclusions 

2-sliding homogeneity and contractivity are shown to 
provide for all needed features of 2-sliding mode control-
lers (Theorems 1-4). Construction of controllers is not dif-
ficult due to the simplicity of the plane geometry. New fi-
nite-time stable 2-sliding controllers were obtained in such 
a way, significantly increasing the choice of known 2-
sliding controllers. In particular, the quasi-continuous con-
trollers (15), (18), (19) have probably better performance 
than the standard 2-sliding controllers popular today. 

 
Fig. 5: Chattering attenuation 

The number of such 2-sliding homogeneous controllers 
is obviously infinite, and one can adjust a controller to his 
needs. Unfortunately, design of higher-order sliding con-
trollers is much more difficult due to the higher dimension 
of the problem (Levant, 2003, 2005b). 

A simple efficient procedure was developed for the 
chattering attenuation in the systems with standard (first 
order) sliding modes based on their replacement by          
2-sliding modes (Theorem 5). The resulting continuous 
lipschitzian control can be used to keep auxiliary con-
straints, and, when solving practical control problems, is 
readily combined with different control technique (Levant 
et al., 2000). 

The main results known for the known 2-sliding con-
trollers are extended to any finite-time-stable 2-sliding-
homogeneous controllers.  

A real-time robust exact differentiator having been used 
as a standard part of the 2-sliding controllers, the full sin-
gle-input-single-output control is achieved based on the 
input measurements only. The resulting controllers are lo-
cally applicable to any uncertain smooth process of relative 
degree 2, and they are globally applicable, if the bounded-
ness conditions (3) hold globally.  

The resulting robust output-feedback controllers pre-
serve the ultimate accuracy of the original 2-sliding con-
trollers with direct measurements of the input derivative 
(Theorem 3). In the absence of noises the tracking accu-
racy proportional to τ2 is provided, τ being a sampling pe-
riod. That is the best possible accuracy with discontinuous 
second output derivative (Levant, 1993). In the presence of 
a measurement noise the tracking accuracy is proportional 
to the unknown noise magnitude. That result does not de-
pend on the noise features. 

The differentiator is to be used whenever the sampling 
step can be taken small. At the same time in the practically 
important case, when the sampling step is sufficiently large 
compared with the noises, the differentiator is successfully 
replaced by the first finite difference (Theorem 4). 
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