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1.    Introduction 

Sliding mode control remains one of the most robust and effective tools to cope with heavy 

uncertainty conditions [1-3]. The approach is based on keeping exactly a properly chosen constraint 

by means of high-frequency control switching, and is known as robust and very accurate. Once the 

constraint is chosen the main problem of the standard sliding mode application is mostly related to 

the so-called chattering effect caused by the control switching [4-8]. 

Let s be the output variable of an uncertain single-input-single-output (SISO) dynamic system 

and w(t) be an unknown-in-advance smooth input, both available in real time. Suppose that the task 

be to establish and keep σ = s - w(t) = 0. The standard sliding-mode control u = -k sign σ is 

applicable if the relative degree is 1, i.e. if σ&  explicitly depends on the control u, and σ∂
∂ &u  > 0. 

High-order sliding mode (HOSM) [9-11] generalizes the standard sliding mode notion to the case, 

when the discontinuity appears for the first time in the rth total time derivative σ
(r). A motion 

keeping σ ≡ 0 is called in that case rth order sliding mode. It follows from the continuity of the 

lower derivatives that in such a case inevitably σ ≡ σ&  ≡ ... ≡ σ(r-1) ≡ 0. Such motions can be stable, 
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asymptotically stable or unstable, also including motions well known from the past. The most 

attractive though is a new-type motion featuring finite-time stability.  

HOSM was shown capable to control SISO uncertain systems of arbitrary relative degrees [9-20]. 

The corresponding finite-time-convergent controllers (r-sliding controllers) require actually only the 

knowledge of the system relative degree r. The produced control [10, 12, 13] is a bounded 

discontinuous function of the tracking error σ and of its real-time-calculated successive derivatives 

σ, σ& , σ&& , ..., σ(r-1). The accuracy in the presence of switching delays is improved. The chattering 

effect is successfully treated, using the control derivative as a new control input [9, 11]. Another 

application of HOSM is the construction of arbitrary-order robust exact finite-time-convergent 

differentiators [10, 21]. An output-feedback controller is obtained, combined with that 

differentiator, providing for the exact tracking σ ≡ 0.  

Recent development reveals that almost all known HOSM controllers feature some special 

homogeneity. Construction of new controllers is simplified, if such homogeneity is assumed in 

advance [12]. Especially promising are so-called quasi-continuous controllers yielding control being 

continuous everywhere except the set σ = σ&  = ... = σ
(r-1) = 0. In practice, in the presence of 

unaccounted for actuators, sensors, noises, etc. the control remains continuous all the time, for these 

equalities are never fulfilled simultaneously with r > 1. 

A new class of homogeneous quasi-continuous HOSM controllers is proposed in this paper, 

featuring large freedom in its construction. A procedure is proposed for the numeric parameters' 

adjustment of the new and previously known controllers. Such a procedure was long time lacking 

and is especially important for higher relative degrees, when the number of parameters is 

significant. A valid set of parameters is for the first time found for r = 5, and a finite-time stable 5-

sliding mode is for the first time demonstrated in the simulation section.  
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2.    Basic definitions and the problem statement 

Definition 1. Consider a discontinuous differential equation x& = f(x) (Filippov differential inclusion 

x&  ∈ F(x)) with a smooth output function σ = σ(x), and let it be understood in the Filippov sense 

[22]. Let 1) successive total time derivatives σ, σ& , ..., σ(r-1) be continuous functions of x;  2) the set  

     σ = σ&  = σ&&  = ... = σ(r-1) = 0      (1) 

be a non-empty integral set, 3) the Filippov set of admissible velocities at the r-sliding points 

contain more than one vector. Then the motion on set (1) is said to exist in r-sliding (rth-order 

sliding) mode [9, 10]. Set (1) is called r-sliding set. It is said that the sliding order is strictly r, if the 

next derivative σ
(r) is discontinuous or does not exist as a single-valued function of x. The non-

autonomous case is reduced to the considered one introducing the fictitious equation t&  = 1. 

 Note that the third requirement is not standard here: it means that set (1) is a discontinuity set of 

the equation, and it is introduced here only to exclude extraneous cases of integral manifolds of 

continuous differential equations. The standard sliding mode used in the most variable structure 

systems is of the first order (σ is continuous, and σ&  is discontinuous).  

Consider a dynamic system of the form 

        x&  = a(t,x) + b(t,x)u,    σ = σ(t, x),        (2) 

where x ∈ Rn, a, b and σ: Rn+1 → R are unknown smooth functions, u ∈ R, n is also uncertain. The 

task is to provide in finite time for exact keeping of σ ≡ 0. 

The relative degree r of the system is assumed to be constant and known. In other words [23], for 

the first time the control explicitly appears in the rth total time derivative of σ and 

     σ
(r) = h(t,x) + g(t,x)u,      (3) 

where h(t,x) = σ
(r)|u=0, g(t,x) = u∂

∂ σ
(r) ≠ 0 are some unknown functions. It is supposed that for some 

Km, KM, C > 0 

     0 < Km ≤ u∂
∂ σ

(r) ≤ KM,         | σ(r)|u=0 | ≤ C ,              (4) 
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which is always true at least locally. Trajectories of (2) are assumed infinitely extendible in time for 

any Lebesgue-measurable bounded control u(t, x). 

Finite-time stabilization of smooth systems at an equilibrium point by means of continuous 

control is considered in [24]. In our case any continuous control  

     u =  ϕ(σ, σ& , ..., σ(r-1))       (5) 

providing for σ ≡ 0, would satisfy the equality ϕ(0,0, ..., 0) = - h(t,x)/g(t,x), whenever (1) holds. 

Since the problem uncertainty prevents it, the control has to be discontinuous at least on the set (1). 

Hence, the r-sliding mode σ = 0 is to be established.  

 As follows from  (3), (4) 

     σ
(r) 

∈ [−C, C] + [Km, KM] u .       (6) 

The differential inclusion (5), (6) is understood here in the Filippov sense, which means that the 

right-hand vector set is enlarged at the discontinuity points of (5), in order to satisfy certain 

convexity and semicontinuity properties [22, 12]. The obtained inclusion does not “remember” 

anything on system (2) except the constants r, C, Km, KM. Thus, the finite-time stabilization of (6) at 

the origin solves the stated problem simultaneously for all systems (3) satisfying (4). The 

controllers, which are designed in this paper, are bounded and r-sliding homogeneous [12]. 

    3. Homogeneity and finite-time stability of sliding-modes 

The combined time-coordinate transformation  

    Gκ:     (t, σ, σ& , ..., σ(r-1)) ≡ ϕ(κt, κr
σ, κr-1

σ& , ..., κσ
(r-1))   (7) 

transfers solutions of (5), (6) into the solutions of the transformed inclusion 

   σ
(r)

∈ [-C, C] + [Km, KM] ϕ(κr
σ, κr-1

σ& , ..., κσ
(r-1)).    

Definition 2. Inclusion (5), (6) and controller (5) itself are called r-sliding homogeneous [12], if 

these two differential inclusions are equivalent for any σ, σ& , ..., σ(r-1) and κ > 0 (i.e. have the same 
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solutions). The mapping dκ(σ, σ& , ..., σ
(r-1)) = (κr

σ, κ
r-1

σ& , ..., κσ
(r-1)), κ > 0  is called the 

homogeneity dilation [24].  

 If the inclusion (5), (6) is r-sliding homogeneous and finite-time stable, the corresponding          

r-sliding mode is also called homogeneous. Denote Σs = (σ, σ& , ..., σ
(s-1)). The function ω(Σs) is 

called r-sliding homogeneous with the homogeneity degree (weight) m if the identity  ω(dκΣs) 

≡ κ
m
 ω(Σs) holds for any κ > 0. The differential equation σ(s) = f(Σs) (inclusion σ(s) ∈ F(Σs)), s ≤ r, is 

called r-sliding homogeneous if κr-sf(Σs) = f(dκΣs) (respectively κ(r-s)F(dκΣs) = F(Σs)). 

 Obviously, (5) is r-sliding homogeneous, provided the function ϕ itself is r-sliding homogeneous 

with the homogeneity degree 0, i.e. if 

    ϕ(κt, κr
σ, κr-1

σ& , ..., κσ
(r-1)) ≡ ϕ(σ, σ& , ..., σ(r-1))     (8) 

holds for any κ > 0. For example, the following controllers are 2-sliding homogeneous, but surely 

do not solve the stated problem: 

  u =  - sign σ = - sign κ2
σ;    u = (2σ - 2σ& )/(|σ| + 2σ& ) = (2 κ

2
σ - (κ σ& )2)/(|κ2

σ| + (κ σ& )2). 

 Since the Filippov solutions do not depend on the values of ϕ on any set of the zero measure, 

also the homogeneity properties of the controller are preserved. It is assumed in this paper that (8) 

holds for any σ, σ& , ..., σ(r-1) and κ > 0. Note that (8) implies global boundedness of ϕ (excluding 

possibly a zero-measure set), otherwise the Filippov set of admissible velocities is unbounded in any 

vicinity of 0, and Filippov's definition is not applicable to (2), (5).  

 The general notion of homogeneous differential equation, review of the corresponding theoretical 

results and numerous references can be found in [24], finite-time stability in discontinuous 

differential equations is considered in [25, 12]. It is proved in [12] that the notions of the finite-time 

and asymptotic stability are equivalent for general homogeneous Filippov differential inclusions 

with negative homogeneity degrees and are robust with respect to small homogeneous perturbations. 
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 Controller (5) requires availability of σ& , ..., σ(r-1). That information can be obtained in real time 

by means of an (r-1)th order differentiator [19, 10, 26-29] producing an output-feedback controller.  

In order to preserve the demonstrated exactness, finite-time stability and the corresponding 

asymptotic properties, the natural way is to calculate the derivatives by means of a robust finite-time 

convergent exact homogeneous differentiator [10]. Its application is possible due to the 

boundedness of σ(r) provided by the boundedness of the feedback function ϕ in (5).  

 It is known that the differentiation accuracy rapidly deteriorates with the growth of the 

differentiation order [21, 10]. Thus, it is desirable to measure directly as many derivatives as 

possible. Let σ, σ& , ..., σ(k) be directly measured producing the estimations σ̂ , σ̂& , …, )(ˆ kσ , 0 ≤ k ≤ r 

- 1, and the rest of the derivatives be obtained by means of the (r – k - 1)th order differentiator [10]. 

The resulting dynamical feedback takes the form 

  u = ϕ ( σ̂ , σ̂& , …, )(ˆ kσ , zk+1, ..., zr-1),               (10) 

 1+kz&  = v k+1,   v k+1 = - λ r-k-1 L
1/(r-k) | z k+1 - 

)(ˆ kσ | (r-k-1)/r sign(z k+1 - 
)(ˆ kσ ) + zk+1,          (11) 

 ikz +&  = vk+i,    vk+i = - λr-k-i L
1/(r-k-i)|zk+i - vk+i-1|

(r-k-i-1)/ (r-k-i)sign(zk+i - vk+i-1) + zk+i+1,          (12) 

 1−rz& = - λ1 L sign(zr-1 - vr-2),  i = 1, ..., r-k-2,              (13) 

where the parameters of the differentiator (11) - (13) are chosen with respect to the inequality |σ(r)| ≤ 

L, where L ≥ C + αKM, and zk+1, …, zr-1 are the estimations of σ
(k+1), ..., σ

(r-1) respectively. The 

sequence λi is chosen in advance [10]. Hence, in the case when C and Km , KM are known, only one 

parameter α is really needed to be tuned. Usually, both L and α are found by computer simulation. 

In particular, the computer-tested values λ1 = 1.1, λ2 = 1.5, λ3 = 2, λ4 = 3, λ5 = 5, λ6 = 8 can be 

chosen. Due to the recursive form of the differentiator, these values are sufficient for up to the 5th 

order differentiation and r - k ≤ 6. The lacking values need to be tuned in the unlikely case r - k > 6. 

The following result is a simple generalization of results from [12] and shows the robustness of 

homogeneous controllers with respect to sampling noises and discretization. The differentiator (11) 
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– (13) is realized by the Euler scheme with discrete sampling. The control value u is kept constant 

during the current sampling interval. Sampling noises are supposed to be any bounded Lebesgue-

measurable functions of time. No other features of the noises are needed to be known. 

Theorem  1. Let the noise magnitudes of the measurements of σ, σ& , ..., σ(k), be less than β0ε,  β1ε
(r-

1)/r, …,  βkε
(r-k)/r

 respectively with some positive constants β0, …, βk, and the rest of derivatives be 

estimated by means of the (r – k - 1)th order differentiator. Let also sampling intervals not exceed τ 

= ε1/r > 0. Then if (5) is finite-time stable and the differentiator parameters are properly chosen, 

controller (10) – (13) provides in finite time for keeping the inequalities |σ| < γ0τ
r= γ0ε, |σ& | < γ1τ

r-1 

= γ1ε
(r-1)/r, …, |σ(r-1)| < γr-1τ = γr-1ε

1/r with some positive constants γ0, …, γr-1  independent of ε  > 0.  

In particular, exact sliding mode σ ≡ 0 is obtained with continuous sampling in the absence of 

noises. The obtained accuracy is also the best possible in the case of a constant sampling interval τ 

with discontinuous σ(r) separated from zero [9].  

Due to the finite-time convergence of the controllers and differentiators, Theorem 1 has obvious 

local analogues in the case when (4) is only locally valid. Recall that r-sliding point is a point where 

(1) holds. Then in the absence of noises all trajectories of (2), (5) (respectively (2), (10) - (13)) 

starting from some vicinity of an r-sliding point with well-defined relative degree r converge in 

finite time to the r-sliding mode σ ≡ 0, or the corresponding inequalities are established in the case 

of noisy measurements and discrete sampling. The long-term motion is determined by the system 

properties, especially by its zero dynamics [23].   

 Note that in the case, when )(r
u σ∂
∂  is negative the same controller (5) is to be used, but with the 

opposite sign. The statement of Theorem 1 remains valid for the sub-optimal controller [11, 14].  

4.    Arbitrary-order controller design 

Two known families of arbitrary-order finite-time-convergent sliding-mode controllers are lised 

below and a new class of controllers is introduced preserving much freedom of design.  
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I. Nested sliding-mode controllers [10]. That is the most simple controller family. Let q be the least 

common multiple of 1, 2, ..., r, and β1,...,   βr-1 > 0. Define 

Ni,r = (|σ|q/r+ |σ& |q/(r-1)+ ... + |σ(i-1)| q/(r-i+1))(r- i)/q ; 

Ψ0,r = sign σ,    Ψi,r = sign(σ(i)+ βi Ni,r Ψi-1,r ),  ϕi,r = σ(i)+ βi Ni,r Ψi-1,r ,   i = 1,..., r-1. 

Then  

    u = - α Ψr-1,r (σ, σ& , ..., σ(r-1))              (14) 

defines the nested  r-sliding controller. Its r-sliding homogeneity is easily checked. Here βi can be 

chosen only once for each r, and the magnitude α > 0 is adjusted with respect to C, Km, KM in order 

to stabilize (6) in finite time. Note that its transient features infinite number of control switchings, 

which inevitably exaggerates the chattering [10, 12]. The functions ϕi,r are used further in Theorem 

3. Controllers with r ≤ 4 are listed in [10]. 

II. Quasi-continuous sliding-mode controllers [13]. An r-sliding controller is called quasi-

continuous if the produced control is a continuous function of the state variables everywhere except 

the r-sliding set  

    σ = σ&  = σ&&  = ... = σ(r-1) = 0.                   (15) 

In the presence of errors in evaluation of the output σ and its derivatives, a motion in some vicinity 

of (15) takes place. Therefore, control is practically a continuous function of time, for the trajectory 

never hits the manifold (1) with r > 1. 

 Let i = 0,..., r-1. Denote   

 ϕ0,r = σ,  N0,r = |σ|,      Ψ0,r = ϕ0,r /N0,r = sign σ,  

 ϕi,r = σ(i)+ βi
)1/()(

,1
+−−

−
irir

riN Ψi-1,r.,  Ni,r= |σ(i)|+βi
)1/()(

,1
+−−

−
irir

riN ,    Ψi,r = ϕi,r / Ni,r 

where β1,..., βr-1 are positive numbers, obviously ϕi,r = σ(i)+βi
)1/(1

,1
+−−

−
ir

riN ϕi-1,r. Also here the control 

is defined by (14). 
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Each choice of parameters β1,..., βr-1 determines a controller family applicable to all systems (2) 

of the relative degree r. The parameter α is chosen specifically for any fixed C, Km, KM, most 

conveniently by computer simulation in order to avoid redundantly large estimations of C, Km, KM. 

Obviously, α is to be negative with u∂
∂ σ

(r) < 0. The 5-sliding controller from this family is 

demonstrated for the first time in the simulation section. Controllers with r ≤ 4 are listed in [13]. 

According to authors’ experience, these controllers posses superior qualities for all r, compared 

with other r-sliding controllers, including also the case r = 2.  

III. Generalized quasi-continuous controllers. A new class of quasi-continuous controllers is 

introduced here, containing the previous family as a particular case. There are infinite number of 

such controller families, and one, probably, can find controllers with better properties. The result is 

very new, and such research still has not been performed. 

 Let once more i = 0,..., r-1, α, β1,...,   βr-1 > 0. Denote 

    ϕ0,r = σ,  H0,r = |σ|-1/r,      Ψ0,r = ϕ0,r H0,r = |σ|(r-1)/r sign σ, 

  ϕi,r = σ(i)+ βi Ψi-1,r, Ψi,r = ϕi,r Hi,r(σ, σ& , ..., σ(i)), 

where Hi,r(σ, σ& , ..., σ
(i)) is any positive r-sliding homogeneous function of the degree    -1, 

continuous everywhere except σ = σ& = ... = σ(i) = 0. As previously, the control is given by (14). In 

fact, the resulting controller takes the form 

 u = - αH r-1,r (σ
(r-1) + β r-1H r-2,r(σ

(r-2) + β r-2H r-3,r(… + β2H1,r ( σ&  + β1 H0,rσ)…))).  

Controllers of class II correspond to Hi,r = )/(1
,

ir
riN −− , where Ni,r is defined in the description of class 

II. The following Proposition shows that the control (14) is indeed  r-sliding homogeneous and 

quasi-continuous. Recall that, according to the Filippov definition, the control values on any set of 

the zero Lebesgue measure do not influence the solutions. 
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Proposition 1. Consider a controller of class III. Then the function Ψr-1,r(σ, σ& , ..., σ(r-1)) is r-sliding 

homogeneous of the degree 0, globally bounded and continuous everywhere except the point set  σ 

= σ& = ... = σ(r-1) = 0 (i.e. it can be redefined by continuity at any point). 

Proof. Obviously, with i = 0 the functions ϕ0,r and N0,r are continuous, and Ψ0,r is continuous and 

homogeneous of the degree r - 1. By induction easily obtain that the functions Ψk-1,r are 

homogeneous of the degree r - k, k = 0, ..., r - 2. Then ϕr-1,r is continuous and homogeneous of the 

degree 1, and  Ψr-1,r = ϕr-1,rHr-1,r is continuous and homogeneous of the degree 0. Thus, Ψr-1,r is 

continuous and bounded on any sphere centered at the origin, which implies the global boundedness 

of the function due to its homogeneity of the degree 0. n 

Theorem 2. The controller  u =  - α Ψr-1,r(σ, σ& , ..., σ(r-1)) is r-sliding homogeneous in all 3 cases 

and, provided β1,..., βr-1, α > 0 are chosen sufficiently large in the list order, ensures the finite-time 

stability of (5), (6). The finite-time-stable r-sliding mode σ ≡ 0 is established in the system (2), (6). 

As follows from Theorem 2, Theorem 1 is valid for controllers I - III. The following Theorem 

defines a recursive procedure of the parameter choice for controllers I - III.  

Theorem 3. 1. Provided the differential equation ϕr-1,r(σ, σ& , ..., σ(r-1)) = 0 is finite-time stable, the 

corresponding values of the parameters β1,..., βr-1 constitute a valid set of parameters for the 

controller (14).  

2. Let parameters β1,..., βk > 0 provide for the finite time stability of the differential equation ϕk,r = 

0 with some k, 1 ≤ k ≤ r - 2, then  any sufficiently large βk+1 provides for the finite time stability of 

the equation ϕk+1,r = 0.  

 Note that equations ϕk,r = 0, 1 ≤ k ≤ r – 1, do not contain uncertainties. The parameters are found 

by means of computer simulation of these equations, adding one parameter at each step. 
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5.    Proofs of Theorems 2, 3 

Proof of Theorem 2. Consider the third class of controllers, since the Theorem is already proved 

for the first class [10], and the second class is a particular case of the third. The proof is based on a 

few Lemmas. Only the main proof points are listed below. Assign the weights (homogeneity 

degrees) r - i to σ(i), i = 0, ..., r - 1 and the weight 1 (minus system homogeneity degree [24]) to t, 

which corresponds to the r-sliding homogeneity.   

Lemma 1. Let W(σ, σ& , ..., σ
(i)) be an r-sliding homogeneous positively definite function of some 

positive homogeneity degree. Then each homogeneous locally-bounded function w(σ, σ& , ..., σ(i)) of 

the same weight satisfies the inequality | w | ≤ c W for some c > 0. If  w is also positive-definite, then 

c1 W ≤ w ≤ c2 W for some c1, c2 > 0. 

 Indeed, w / W is bounded on a unit sphere and, therefore, everywhere. 

Lemma 2. Let σ, β, M, Ψ ∈ R, β, M > 0, |Θ| ≤ ω, then with ξ ≤ 1/3 the inequality | σ + βMΘ|/(| σ | + 

βM ω) ≤ ξ implies | σ + βMΘ| ≤ 3ξωM. 

 Indeed, it is sufficient to consider 2 cases: | σ | > 2βMω and | σ | ≤ 2βMω. The first case 

contradicts the Lemma conditions and the second implies the needed inequality. 

 Denote N0,r = |σ|, Ni,r= |σ(i)| + βi Ni-1,r Hi-1,r, i = 1, ..., r - 1. Obviously, Ni,r is a continuous 

positive-definite homogeneous function of the degree r - i. It is easy to see that 

 ϕi,r = σ(i) + βi Mi-1,rΘi-1,r,  where  Mi-1,r = Ni-1,r Hi-1,r,  Θi-1,r = ϕi-1,r/Ni-1,r . 

Lemma 3. The function Θi,r(σ, σ& , ..., σ(i)) is homogeneous of the degree 0, continuous everywhere 

except the set σ = σ& = ... = σ(i) = 0, | Θi,r| ≤ 1. The function Mi,r(σ, σ& , ..., σ(i)) is a continuous positive-

definite homogeneous function of the degree r - i - 1. 

Proof.  The homogeneity degrees are trivially calculated. Obviously Θ0,r = sign σ and therefore  

|Θ0,r| ≤ 1. Thus, by induction 

  |ϕi,r| = |σ(i) + βi Mi-1,rΘi-1,r| = |σ(i) + βi Ni-1,r Hi-1,r Θi-1,r| ≤ Ni,r, 
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and |Θi,r| ≤ 1. n 

Lemma 4. Let 1 ≤ i ≤ r-2, then for any positive βi, γi, γi+1 with sufficiently large βi+1 > 0 the 

inequality |σ(i+1) + βi+1Mi,rΘi,r| ≤ γi+1Mi,r provides for the finite-time establishment and keeping of the 

inequality |σ(i) + βi Mi-1,rΘi-1,r | ≤ γi Mi-1,r. 

Proof. Denote the point set Ω(ξ) = {(σ, σ& , ..., σ
(i))| |Θi,r| ≤ ξ},  ξ > 0, and recall that |Θi,r| < 1 

(Lemma 3). Due to Lemma 1, for any ξ1 > 0 with sufficiently small ξ the set Ω(ξ) lies in Γ(ξ1), 

where Γ(ξ1) = {(σ, σ& , ..., σ(i))| |ϕi,r/(|σ
(i)| + βi Mi-1,r)| ≤ ξ1}. Let ξ1 < 1/3, ξ1 < γi/(3βi). Then, according 

to Lemma 2, the inequality |Θi,r| ≤ ξ implies Ω(ξ) ⊂ Ω1(ξ1), where Ω1(ξ1) is defined by the 

inequality  

|σ(i) + βi Mi-1,rΘi-1,r | ≤ 3ξ1 βi Mi-1,r. 

That is equivalent, in its turn, to  φ- ≤ σ(i) ≤ φ+ , where φ-, φ+ are homogeneous functions of σ, σ& , ..., 

σ
(i-1) of the weight r - i. Restricting φ- and φ+ to the homogeneous sphere of the radius ρ = 1, where 

ρ
p = σp/r + σ&

p/(r-1)
+ ...+ (σ(i-1)) p/(r-i+1), p = 2r!, achieve some continuous on the sphere functions φ1- 

and φ1+. Functions φ1- and φ1+ can be approximated on the sphere by some smooth functions φ2- and 

φ2+ from beneath and from above respectively.  

 Any function φ defined on the homogeneous sphere ρ = 1 is uniquely extended to the function Φ 

of the weight w > 0 defined in the whole space σ, σ& , ..., σ
(i-1) by the formula Φ(σ, σ& , ..., σ

(i-1)) 

= ρ
w
φ(ρ-r

σ, ρ-r+1
σ& , ..., ρ(-r-i+1)

σ
(i-1)), where the function ρ is defined above. Thus, functions φ2- and 

φ2+ are extended by homogeneity to the continuous homogeneous functions Φ- and Φ+ of σ, σ& , ..., 

σ
(i-1) of the weight r - i, smooth everywhere except 0, so that Ω(ξ) ⊂ Ω2 = {(σ, σ& , ..., σ(i-1))| Φ- ≤ σ(i) 

≤ Φ+}. 

Prove now that Ω2 is invariant and attracts the trajectories with large βi+1. The “upper” boundary 

of Ω2 is given by the equation π+ = σ(i) - Φ+ = 0. The inequality |Θi,r| ≥ ξ is assured outside of Ω2. 
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Suppose that at the initial moment π+ > 0 and, therefore, Θi,r ≥ ξ. Taking into account that σ(i+1) is 

homogeneous of the weight r - i -1 and, according to Lemma 1, | +Φ& | ≤ κ Mi-1,r, and |π+| ≤  κ1 Mi,r 

for some κ, κ1 > 0, achieve differentiating that with sufficiently large βi+1 

+π&  ≤ (-βi+1 ξ + γi+1) Mi-1,r - +Φ&  ≤ (-βi+1 ξ + γi+1 + κ) Mi-1,r 

           ≤ (-βi+1ξ + γi+1 + κ) (κ1
-1

π+)(r-i-1)/(r-i). 

Hence π+ vanishes in finite time with βi+1 large enough. Thus, the trajectory inevitably enters the 

region Ω2 in finite time. Similarly, the trajectory enters Ω2, if the initial value of π+ is negative and, 

therefore, Θi,r ≤ - ξ. Obviously, Ω2 is invariant. 

      Choosing Φ- and Φ+ sufficiently close to φ- and φ+ on the homogeneous sphere and βi+1 large 

enough, achieve from Lemma 1 that Ω2 ⊂ Ω1(γi/(3 βi)) and the statement of Lemma 4.n 

Since N0,r = |σ|, ϕ0,r = σ, Lemma 4 is replaced by the next simple Lemma with i = 0. 

Lemma 5. The inequality |σ&  + β1M1,r(σ) sign σ| ≤ γ1 M1,r(σ) provides with 0 ≤ γ1< β1 for the 

establishment in finite time and keeping of the equality σ ≡ 0. 

 Indeed, it follows from the inequalities µ1|σ|(r-1)/r ≤ M1,r(σ) ≤ µ2|σ|(r-1)/r, which are true for some 

µ1, µ2 (Lemma 1). 

The Theorem proof is now finished by the following Lemma similar to Lemma 4. 

Lemma 6. With any γ > 0 the inequality |σ(r-1) + βr-1 Mr-1,rΘr-2,r | ≤ γ Mr-1,r is established in finite 

time and kept afterwards, provided α is sufficiently large. n 

Proof of Theorem 3.  As follows from [12] the finite-time stability of the homogeneous differential 

equation ϕr-1,r = 0 implies finite-time stability of the homogeneous differential inclusion |ϕr-1,r|  ≤ γ 

Mr-1,r with any sufficiently small γ. The first statement follows now from Lemma 6. Similarly, the 

second statement is the consequence of Lemma 4. The proof in the case of the nested controllers is 

similarly extracted from the proof in [10].n 
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6.   Simulation 

 Following is the first demonstration of a finite-time stable 5-sliding mode. Consider a classical 

example of nonlinear dynamic system [23] describing a one-link robot arm with a joint elasticity 

(Fig. 1a) 

  J1 1q&& + F1 1q& - 
N

tK )( (q2 - N
q1 ) = u, 

  J2 2q&& + F2 2q& - K(t)(q2 - N
q1 ) +  mgd cos q2 = 0, 

where q1 and q2 are the angular positions; J1 and F1 represent inertia and viscous constants of the 

actuator, K(t) is the elasticity of the spring, which depends in an uncertain way on the environment 

conditions, N is the transmission gear ratio. Control u is the torque produced at the actuator axis. 

Similarly J2 and F2 are the corresponding constants of the link; m and d represent the mass and the 

distance to the gravity center of the link.  

 

Fig. 1:  One-link robot arm [23], and the 4th-order differentiator convergence  

 The system output is q2, and the relative degree is 4, which means that it would be feedback-

linearizable, if there were no uncertainty K(t). The task is to make the output q2 to track a reference 

signal q2c(t) given in real time (aiming). Since the actuator does not accept discontinuous inputs, u&  

is considered as the actual control, which means that the relative degree is increased to 5. It is 

supposed that K(t) is bounded together with its two derivatives. The proposed control has local 

character, since condition (4) is only locally valid here. 
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 Let F1 = F2  = 0.5, J1 = 0.5, J2 = 1.5,  N = 10, m = 0.5, d = 0.5, g = 9.8. The “unknown” function 

K(t), the signal q2c(t) to be tracked and the sliding variable σ are chosen as  K(t) = 5 + sin t,  q2c(t) = 

sin 0.5t + 2 cos 0.3t,  σ = q2 - q2c(t). 

 The initial values are q1 = q2 = 1,  1q& = 2q& = -1. The derivatives of σ are estimated by means of 

the fourth order differentiator with L = 200 and parameters λ1 = 1.1, λ2 = 1.5, λ3 = 2, λ4 = 3, λ5 = 5. 

It is taken that z0(0) = σ(0), other initial values of zi are zeroed.  

 Building a generalized quasi-continuous 5-sliding mode controller, the authors did not try to find 

a controller with the best performance. The only goal was to demonstrate for the first time a finite-

time-convergent 5-sliding controller, and to demonstrate the free form of such a controller. The 

generalized 5-sliding quasi-continuous controller was taken in the form 

 u&  = - 100 H4,5{z4 + 8 H3,5 [z3 + 2 H2,5(z2 + 0.8H1,5(z1 + 0.5 H0,5 z0))] } 

where Hi,5(σ, σ& , ..., σ(i)) are the following 5-sliding homogeneous functions of the degree -1 with zj 

= σ(j): 

 H0,5 = |z0|
-1/5, H1,5 = (z0

4 + |z1|
5)3/20 (|z1| + 0.5 z0

4/5) -1, H2,5 = (|z2| + 0.8 (z0
4 + |z1|

5)3/20)-1/3, 

 H3,5 = (z0
12 + |z1|

15 + z2
20 + z3

30)1/60 (|z3| + 2(|z2| + 0.8 (z0
4 + |z1|

5)3/20) 2/3) -1,  

 H4,5 = (|z4| + 8(z0
12 + |z1|

15 + z2
20 + z3

30)1/60) -1. 

The coefficients 0.5, 0.8, 2, 8 were chosen recursively, according to Theorem 3, so that the finite-

time stability is provided of the 4th-order differential equation 

 z4 + 8 H3,5 [z3 + 2 H2,5(z2 + 0.8H1,5(z1 + 0.5 H0,5 z0))] = 0,          zi = σ(i), i = 0, ..., 4. 

During the first second the control was kept at zero to provide some time for the differentiator 

convergence (a reasonable, but not necessary step). The first 2 seconds of the 4th-order 

differentiator convergence are shown in Fig. 1b. Graphs of z0 and σ are undistinguishable, and are 

not shown. Convergence of the 5-sliding-mode deviations σ, σ& , σ&& , σ&&& , σ(4) to zero is shown in Fig. 

2a.  Tracking of the 4th signal derivative is demonstrated in Fig. 2c, the graphs of u& and u is shown 
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in Figs. 2b,d. It is clearly seen from the graph that u&  remains continuous until the very entrance into 

the 5-sliding mode. The accuracies  |σ| ≤ 6.2⋅10-12, |σ& | ≤ 9.0⋅10-10, |σ&& | ≤ 2.6⋅10-7, |σ&&& | ≤ 1.2⋅10-4, |σ(4)| 

≤ 7.2⋅10-2 were obtained with τ = 10-4 in the absence of noises.  

 

Fig. 2: Generalized 5-sliding quasi-continuous controller in the absence of noises. 

The resulting output-feedback controller appears to be rather sensitive to noises, which means 

that, though Theorem 1 is surely valid, the proportionality coefficients are large. Thus, the case was 

considered usual in practice, when σ and σ&  are measured with the noise not exceeding 0.001 in its 

absolute value, i.e. | z0 - σ|, | z1 - σ& | ≤ 0.001, and the rest estimations are obtained by means of the 

3rd-order differentiation of the measured value z1 with the parameter L = 1000: 

 1ς&   =  v1 ,   v1    =  - 16.87 | ζ1 - z1|
 3/4 sign(ζ1 - z1) + z2 , 16.87 = 3⋅10001/4; 

 z& 2   =  v2 ,    v2    =  -20 | z2 - v1|
 2/3 sign(z2 - v1) + z3 ,    20 = 2⋅10001/3 ; 

 z& 3  =  v3 ,    v3    =   -47.43 | z3- v2|
 1/2 sign(z3- v2) + z4 , 47.43 = 1.5⋅10001/2; 

 z& 4  =   -1100 sign(z4 - v3),     1100 = 1.1⋅1000. 
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Fig. 3:  Performance in the presence of noisy measurements of σ and σ& . 

The differentiator parameters are the same as previously, only L is changed. The additional auxiliary 

variable ζ1 approximates σ&  as well as z1. The resulting tracking accuracies are |σ| ≤ 0.03, |σ& | ≤  

0.06, |σ&& | ≤ 0.2, |σ&&& | ≤ 1, |σ(4)| ≤ 8. The graph is shown in Fig. 3a of tracking q2c(t) and )(2 tq c& . The 

convergence of the above third-order differentiator in the presence of noises is demonstrated in    

Fig. 3c. Control u and its derivative u&  are shown in Figs. 3b,d respectively. It is seen that u&  remains 

continuous all the time. The stable vibration frequency is about 1 Hertz. 

 Also the 5-sliding controller of family II [13] was applied to the above robot tracking model with 

α = 80, β1 = 0.5, β2 = 0.8, β3 = 2, β4 = 4. The graphs are similar to the corresponding graphs for the 

presented generalized quasi-continuous controller, though the performance of the latter seems to be 

a bit worse. 

7.   Conclusions 

 A new class of generalized quasi-continuous arbitrary-order sliding mode controllers is proposed 

featuring free functional parameters. The proposed bounded SISO sliding-mode controller provides 
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for the finite-time stable sliding motion on the zero-dynamics manifold by means of control 

continuous everywhere except this manifold. As a result the chattering effect is significantly 

reduced. Further study is needed to choose the most perspective controllers of this class.   

 A recursive numeric procedure is proposed of finding valid parameter sets for high-order sliding-

mode controllers. A valid parameter set for the relative degree 5 is for the first time presented for 

controllers [13]. The finite-time stable 5-sliding mode is for the first time demonstrated using a 

controller from [13] and a newly constructed controller as well. 

 The accuracy of the high-order-sliding homogeneous finite-time-stable controllers is estimated in 

the presence of discrete sampling and measurement noises, when the differentiator [10] is applied to 

calculate the lacking derivatives of the output. 
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