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Abstract - Integral sliding mode approach is extended to arbitrary-order sliding modes. As a result

any high-order sliding-mode transient dynamics can be chosen, the transient time can be prescribed

in advance as a function of initial conditions. The resulting controller is robust and capable to

control the output of any smooth uncertain SISO system of a known permanent relative degree. The

control smoothness can be deliberately increased without loss of convergence.

Index Terms -  high-order sliding mode, robustness, output feedback control, finite-time stability

I.  Introduction

Sliding modes are used to control uncertain systems keeping a properly chosen constraint by

means of high-frequency control switching. Let the constraint be given by the equation σ = 0, where

σ  is the output of an uncertain single-input-single-output (SISO) dynamic system.  Then the

standard sliding-mode control of the form  u = - k sign σ solves the problem, if the relative degree is

1, i.e. if σ&  explicitly depends on the control u and k σ∂
∂ &
u  > 0. Featuring robustness and high

accuracy [6, 28], the standard sliding mode usage is however restricted due to the chattering effect

caused by the control switching [9,  10], and the necessity of the relative degree to be 1.

A number of approaches [27, 11] were developed to withstand the dangerous chattering effect.

High-order sliding mode (HOSM) approach suggests to treat the input u of the system as a new state

variable, using its time derivative u&  as a new control [2, 16, 5], thus increasing the relative degree

and hiding the switching in the control derivative. HOSM [16, 19, 20] is applicable with arbitrary

relative degree r,  i.e. when u explicitly appears for the first time in σ(r) and )(r
u σ∂
∂  is separated
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from zero. The corresponding finite-time-convergent controllers (r-sliding controllers) [17, 19, 20]

produce control being a bounded discontinuous function of σ and its real-time-calculated successive

derivatives σ& , σ&& , ..., σ
(r-1). The control is predefined for any r, and provides in finite time for

keeping the equalities σ = σ&  =  ... = σ(r-1) = 0 (the r-sliding mode [16-20]). The lacking derivatives

can be produced by the recently proposed robust exact finite-time-convergent differentiators [13, 17,

19, 24, 25] generating output-feedback controllers [17, 19, 20, 21]. The approach provides also for

higher accuracy with discrete sampling [15, 19].

Some realization problems of higher-order sliding modes are caused by the complicated structure

of the transient process, which is difficult to monitor with r > 2 [8, 15, 19, 21, 22]. Another specific

problem concerns the above smoothing-control procedure, which supposes the control derivative to

be treated as a new control. Due to the control interaction any applied (r + 1)-sliding controller is

effective only in some vicinity of the (r + 1)-sliding mode σ = σ&  =  ... = σ
(r) = 0. The global

convergence is so far assured only for the transfer from r = 1 to r = 2 by a suitable controller

modification [16].

The above issues can be resolved eliminating the transient process. The corresponding technique

is known for the (standard) 1-sliding mode, is called integral sliding mode and has a lot of

successful applications [29, 30]. The idea is to construct such a smooth function Σ(t, x) of the

relative degree 1, which equals zero at the initial point, and provides for the solution of the original

problem, if Σ(t, x) ≡ 0 is kept. Contrary to that approach its r-sliding generalization proposed in the

paper, introduces the function Σ of the relative degree r and the equality Σ(t, x) ≡ 0 is kept in the r-

sliding mode. As a result, any transient dynamics can be prescribed to HOSM,  the transient time

can be chosen as a function of initial conditions. The semi-global convergence is assured when the

control smoothness is risen artificially increasing the relative degree.

II. The problem statement and the integral r-sliding mode conception

Consider a dynamic system of the form
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   x&  = a(t,x) + b(t,x)u,    σ = σ(t, x),         (1)

where x ∈ Rn, a, b and σ: Rn+1 → R are unknown smooth functions, u ∈ R, n can be also uncertain.

The task is to establish and keep the equality σ = 0. All differential equations are understood in the

Filippov sense [7], which means that discontinuous dynamics is acceptable.

The relative degree r of the system is assumed to be constant and known, which means [12] that

the control appears first time explicitly in the rth total time derivative of σ and

σ
(r) = h(t,x) + g(t,x)u, (2)

where h(t,x) = σ
(r)|u=0, g(t,x) = u∂

∂ σ
(r) are some unknown functions. It is supposed that

0 < Km ≤ u∂
∂ σ

(r) ≤ KM,  | σ(r)|u=0 | ≤ C               (3)

for some Km, KM, C > 0. Trajectories of (2) are assumed infinitely extendible in time for any

Lebesgue-measurable bounded control u(t, x). It is not required, but often needed in practice that the

system be weakly minimum phase.

The above problem statement is standard and is solved by known r-sliding controllers [19 - 22]

u = αΨr(σ, σ& , ...,  σ(r-1)), (5)

which actually solve the problem for the differential inclusion σ(r) 
∈ [−C, C] + [Km, KM]u instead of

(2), (3). Here Ψr is a bounded discontinuous function. Only the control gain α > 0 needs to be

adjusted for the concrete values of C, Km, KM, providing for the finite-time convergence of the

inclusion trajectories to zero.

Suppose that it is needed to avoid the uncertainty of the transient process, and/or some transient

time restrictions or maximal admissible values of the coordinates during the transient are required.

Let these requirements be fulfilled by a transient trajectory σ(t, x(t)) = ϕ(t), which means that

ϕ(t0) = σ(t0),   ϕ& (t0) = σ& (t0),   ...,   ϕ
(r-1)(t0) = σ(r-1)(t0),   ϕ(t) = 0    with t ≥ tf, (6)

where t0 and tf > t0 are respectively the initial and the final times. Alternatively, some dynamics

σ
(i) = z(i),   z(r) = V(z, z& , ..., z(r-1)),    z(i)(t0) = σ(i)(t0),    i = 0, ..., r - 1, (7)
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can be required. Here and further, for the sake of brevity, σ(t) is written instead of σ(t, x(t))

whenever the ambiguity is avoided.

Standard integral sliding mode. A stable polynomial µr-1 + d1 µ
r-2 + ... + dr-1  is chosen, and the

auxiliary function Σ = σ(r-1) - ϕ(r-1) + d1 (σ
(r-2) - ϕ(r-2)) + ... + dr-1 (σ - ϕ) is introduced. Alternatively,

Σ = σ(r-1) - z(r-1) + d1 (σ
(r-2) - z(r-2)) + ... + dr-1 (σ - z), if (7) is to be maintained. The problem is solved

by means of the 1-sliding-mode control u = -k(t, x) sign Σ. Theoretically, the equality Σ = 0 is kept

from the very beginning and forever. In practice, nevertheless, any initial measurement error will

lead to asymptotic convergence only. Moreover, the control inevitably depends on all derivatives of

σ and is, therefore, not bounded. The final accuracy is proportional to the sampling time interval [].

Integral r-sliding mode. Let ϕ
(r-1)(t) be a Lipschitz function, then almost everywhere it has a

globally bounded derivative ϕ
(r)(t), and the new output Σ(t, x) = σ(t, x) - ϕ(t) satisfies conditions (2),

(3) with some changed constants Km, KM, C > 0. Alternatively, Σ = σ - z is taken, if (7) is to be

maintained with any globally bounded function V. Thus, Σ ≡ 0 can be kept by the controller u =

αΨr(Σ, Σ& , ...,  Σ(r-1)), and the considered problem is solved by means of a globally bounded control.

Due to the finite-time convergence of the controller, any small initial measurement error is

practically immediately compensated. The accuracy |σ(i) - ϕ
(i)| ≤ γi τ

r-i  is provided, τ being the

sampling time interval, i = 0, ..., r - 1 [].

The lacking derivatives of  σ can be calculated on-line by means of the robust exact

differentiators [13, 19, 24, 25] with finite-time convergence. Since they require the boundedness of

σ
(r), their convergence is global in the case of the bounded r-sliding control, and the inequalities of

the form |Σ(i)| ≤ µi ε
(r - i)/r  are assured with the sampling noise of the magnitude ε [21]. Only local

convergence takes place in the case of the above standard integral-sliding-mode approach.

III. Applications of high-order integral sliding modes

Transient time assignment for r-sliding mode. Introduce few notions to be used further. Denote
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σ
r = (σ, σ& , ..., σ(r-1))t ,   dκ σ

r = (κr
σ, κr-1

σ& , ..., κσ
(r-1))t.   

The linear transformation dκ: Rr → Rr is called the homogeneity dilation [1]. A function f( σ
r ) is

called r-sliding homogeneous with the homogeneity degree (weight) m if the identity f(dκ σ
r ) =

κ
mf( σ

r ) holds for any σ
r  and any positive κ. Controller (5) is called r-sliding homogeneous [20] if

the identity Ψr( σ
r ) = Ψr(dκ σ

r ) holds for any σ
r  and any positive κ. In other words, Ψr( σ

r ) is a

homogeneous function of the weight 0.

Let the (r-1)-smooth function ϕ(t) satisfying (6) be represented in the form

ϕ = (t - tf)
r f(t),         f(t) = c0 + c1(t - t0) + ...+ cr-1(t - t0)

r-1. (8)

Parameters ci are now to be found from the conditions (6), (7) after tf is assigned. As a result, the

function ϕ turns out to be a function of t and initial conditions )( 0tσ
r . Obviously, any constant value

of the transient time tf - t0 requires unacceptably large control values in order to steer the trajectory

to the r-sliding mode from far distanced initial values and leads to very low convergence rate if

)( 0tσ
r  is close to zero. Thus, let tf - t0 be a continuous positive-definite r-sliding homogeneous

function of the initial conditions )( 0tσ
r  of the degree 1, i.e.

tf - t0 = T( )( 0tσ
r ),      ∀κ > 0  T(dκ σ

r ) ≡ κ T( σ
r ). (9)

In particular, the choice tf - t0 = T( )( 0tσ
r ) = λ (|σ(t0)|

 p/r+ |σ& (t0)|
 p/(r-1)+ ... + |σ(r-1)(t0)|

 p )1/p is valid,

where p is the least common multiple of 1, 2, ..., r, and  λ > 0.

Theorem 1. Conditions (6), (8), (9) define a unique function ϕ(t, )( 0tσ
r ). With sufficiently large α

the controller

u = αΨr(Σ, Σ& , ...,  Σ(r-1)) ,    Σ(t, x) = 




≥σ
≤≤σϕ−σ

f

f

ttxt
tttttxt

           ),,(
   )),(,(),( 00

r

(10)

 establishes the globally finite-time-stable r-sliding mode σ ≡ 0 with the transient time (9). The

equality σ(t, x(t)) = ϕ(t, )( 0tσ
r ) is kept during the transient process.
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Proof. The Theorem actually means that the parameter α can be taken independently of the initial

conditions, which follows from the global boundedness of the function ),( σϕ
∂
∂ rtr

r

t
. The proof is

based on a few Lemmas.

Lemma 1. The fractions σ(i)/T r-i( σ
r ) , i = 0, ..., r, are uniformly bounded for all σ

r
∈ Rr.

Proof. Consider the values of the function ξ( σ
r ) = σ(i) /T r-i on the homogeneous sphere Ω = { σ

r

|T( σ
r ) = 1}. Obviously Ω is a closed set. Its boundedness follows from the continuity and

homogeneity of T( σ
r ), and from the equality T(0) = 0. Thus Ω is compact, which implies the

boundedness of the continuous function ξ( σ
r ) on Ω. The function ξ( σ

r ) has the homogeneity degree

0, which means that it is invariant with respect to the dilation (13), i.e. ξ(dκ σ
r ) ≡ ξ( σ

r ) is kept for

any κ > 0. Since there is always µ > 0 such that T(dµ σ
r ) = 1, the function ξ( σ

r ) is globally bounded.

n

Differentiating (8) obtain

ϕ
(i) = )(

0
)( jr

fji

jii

j
ftt

dt
d

j
i

−







−

−

=
∑ ,       i = 0, ..., r .

Let T( )( 0tσ
r ) be the right-hand side of (13), and )( 0tσ

r  ≠ 0. Denote Fi = f (i)(t0) = i!ci. Taking t = t0

obtain from (6)

σ
(i)(t0) = j

jir
i

j
FT

jir
r

j
i +−

=
−

+−






∑ )(
)!(

!

0
,      i = 0, ..., r.    (11)

Lemma 2. Equations (11) can be solved for Fi = Fi( )( 0tσ
r ). The functions Fi ( σ

r ) are r-sliding

homogeneous of the degree - i, and the expressions |Fi ( σ
r )T i( σ

r ) | are uniformly bounded.

Proof. Solving the equations for Fi, obtain that Fi  can be found recursively as

F0 = (-T)-r
σ(t0),

F1 = (-T)-r [ σ& (t0) - r (-T)r-1
 F0], ...,
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Fi = 











−

+−







−σ− +−

−

=

− ∑ j
jir

i

j

ir FT
jir

r
j
i

tT )(
)!(

!)()(
1

0
0

)( , i = 0, ..., r - 1,

Fr = 0.

Thus, equations (11) are satisfied by some functions Fi( σ
r ) continuos everywhere except the origin

σ
r  = 0. Applying the homogeneity dilation and taking into account that σ(i) and T are homogeneous

functions of the weight r - i and 1 respectively, obtain that Fj( σ
r ) are also homogeneous of the

weight - j.  Due to the continuity of Fi( σ
r ) on the compact set T = 1 obtain the global boundedness

of the homogeneous function Fi ( σ
r )T i( σ

r ) of the weight 0 (see the proof of Lemma 1). n

Lemma 3. Conditions (6), (8), (9) define a unique function ϕ(t, )( 0tσ
r ), such that the expressions

ϕ
(i)(t, )( 0tσ

r ) T -(r-i)( )( 0tσ
r ) are globally uniformly bounded with t0  ≤ t ≤ tf.( )( 0tσ

r ), i = 0, ..., r.

Functions ϕ
(i)(t, σ

r ) are homogeneous functions of the weight r - i with respect to the extended

homogeneity dilation κd~ : (t, σ
r )  a (κt, dκ σ

r ).

Proof. As follows from the Taylor formula

  f (i)(t, )( 0tσ
r ) = 

)!1(
)(...

!1

1
0

1
0

1 −−
−

++
−

+
−−

−+ ir
ttFttFF

ir

rii , i = 0, ..., r -1;     f (r)(t, )( 0tσ
r ) ≡ 0.    (12)

By virtue of the trivial inequality  |t - t0|/T ≤ 1 and Lemma 2, changing i to j, obtain that

f (j)(t, )( 0tσ
r )T-j( )( 0tσ

r ) are uniformly bounded with t - t0  < T and j = 0, ..., r. As follows now from

the formula

ϕ
(i)(t, )( 0tσ

r ) = ))(,()))(((
)!(

!
0

)(
0

0
ttftT

jir
r

j
i jjir

i

j
σσ−

+−






 +−

=
∑ rr ,    i = 0, ..., r , (13)

ϕ
(i)(t, )( 0tσ

r ) is homogeneous and ϕ(i)(t, )( 0tσ
r )T -(r-i)( )( 0tσ

r ) is globally bounded. n

The Theorem follows now from Lemma 3 with i = r. n

The calculations of the coefficients Fi( )( 0tσ
r ) are easily performed by computer in real time at the

moment t0. Afterwards, the real-time calculation of ϕ
(r)(t, )( 0tσ

r ) is performed according to (12),
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(13). The corresponding formulas are listed in the simulation Section for r = 4.

Suppose that sampling noises are present being bounded Lebesgue-measurable functions of time

of any nature, and  sampling is carried out with some sampling intervals. Suppose that the noise

magnitudes of the measurements of σ, σ& , ..., σ
(l) do not exceed β0ε, β1ε

(r-1)/r, …,  βkε
(r-l)/r

respectively with some constants β0, …, βl,> 0  and the rest of derivatives be estimated by means of

the (r - l)th order differentiator [] with a proper parameter set. Let also sampling intervals not

exceed τ = ε
1/r > 0. Then, as follows easily from Theorem 2 in [20], under the conditions of

Theorem 1 the inequalities |σ| < γ0τ
r= γ0ε, |σ& | < γ1τ

r-1 = γ1ε
(r-1)/r, …, |σ(r-1)| < γr-1τ = γr-1ε

1/r are

established with some positive constants γ0, …, γr-1  independent of ε  > 0.

Rising the control smoothness degree.  Choose some integer k > r and consider u(k-r) as a new

control. The new relative degree is k. Introduce the function ϕ satisfying the conditions

 ϕ(t0) = σ(t0), ..., ϕ
(k-1)(t0) = σ(k-1)(t0) , ϕ(t) = (t - tf)

k (c0 + c1(t - t0) + ...+ ck-1 (t - t0) 
k-1) (14)

tf - t0 = T(σ(t0), σ& (t0),  ..., σ
(k-1)(t0)), T(σ, σ& ,  ..., σ(k-1)) ≡ T(κr

σ, κr-1
σ& ,  ..., κσ

(k-1)) ,     (15)

where κ > 0 and T is continuous and positive definite. Let  the bounded feedback control be

  u(k-r) = αΨk(Σ, Σ& , ...,  Σ(k-1)),    Σ = 




>σ
≤≤ϕ−σ

f

f

ttxt
ttttxt

             ),,(
   ),(),( 0 (16)

with arbitrary initial values u(t0), ..., u(k-r-1)( t0), where Ψk is a finite-time convergent r-sliding

homogeneous controller.

Define the smooth function ueq(t, x) = - h(t, x)/g(t, x) from (2) and the condition σ(r) = 0. Denote

by ζ(t, x) the (k-r)th total derivative of ueq(t, x) with respect to the equation

x&  = a(t,x) + b(t,x) ueq(t, x).

Theorem 2. Let the initial conditions t0, x(t0), u(t0), ..., u
(k-r-1)( t0) belong to some compact set in

Rn+k-r+1 and ζ(t, x) be uniformly bounded. Then with sufficiently large α controller (16) establishes

the k-sliding mode σ ≡ 0 with the transient time (15). The equality σ(t, x(t)) = ϕ(t, )( 0tσ
r ) is kept
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during the transient process.

Proof. Differentiating (2) obtain

   Σ(k) = h~ (t, x, u, ..., u(k-r-1)) + g(t, x) u(k-r) (17)

where h~  can be expressed using the Lie derivatives and is, therefore, a difference between a smooth

function and the uniformly bounded function ϕ(k)(t, )( 0tσ
r ), t0 ≤ t ≤  tf( )( 0tσ

r ). The motions in the k-

sliding mode Σ ≡ 0 are described by the replacement of the new control ξ = u(k-r) by its equivalent

value

u(k-r) =  ξeq = - h~ (t, x, u, ..., u(k-r-1))/g(t, x).

From the equation Σ(r) = 0 obtain that the k-sliding motion Σ = 0 implies the equality  u = equ~ (t, x),

where

equ~ (t, x) = 






σ>
σ≤≤σϕ+

))((                           ),,(
))((  )),(,(/))(,(),(

0

000
)(

tttxtu
tttttxtgttxtu

feq

f
r

eq
r

rr

.

Differentiating k - r - 1 times the equation Σ(r) = 0 obtain that

ξeq = )(~ rk
equ − (t, x),

where )(~ rk
equ −  is  the (k-r)th total derivative of equ~  with respect to the equation

x&  = a(t,x) + b(t,x) equ~ (t, x).  (18)

The points of the trajectories of

x&  = a(t,x) + b(t,x)u ,      u(k-r) = )(~ rk
equ − (t, x)

starting from the given compact set Ω of initial values with 
Ω

min t0 ≤ t ≤ 
Ω

max tf( )( 0tσ
r ) form a

compact set Φ in the space t, x, u, ..., u(k-r-1) [7]. Let Φ~  be some compact set containing Φ in its

interior, C~  = KM max {sup |ζ(t, x)|+1, 
Φ~

max | ξeq|}. Then, due to (18), inequalities  |h~ | ≤ C~ and Km ≤

g ≤ KM hold on the trajectories of (1), (16), which provides for the local k-sliding convergence [19]
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with α large enough. n

As follows from the Theorem, the problem of the interaction between the control and its

derivatives is solved here. Indeed, due to the transient absence, control and its derivatives track the

smooth function equ~  and its successive total time derivatives calculated with respect to the

corresponding zero-dynamics system.

IV. Simulation example

Consider a variable-length pendulum control problem. Friction is assumed absent. All motions

are restricted to some vertical plane. A load of known mass m is moving along the pendulum rod

(Fig. 1). Its distance from O equals R(t) and is not measured. An engine transmits a torque w, which

is considered as control. The task is to track some function xc given in real time by the angular

coordinate x of the rod.

The system is described by the equations

     x&&  = - 2 
R
R& x& - g

R
1 sin x + 2

1
mR

w,      w&& =  u. (19)

where g = 9.81 is the gravitational constant, m = 1. Let R, R& , R&& , cx&  and cx&&  be bounded, R be

separated from 0, σ = x - xc , σ&  = x&  - cx& be available. The initial conditions are x(0) = x& (0) = 0.

The natural relative degree of the system is 2, but it is artificiallly raised to 4, using w&& =  u as the

new control, in order to avoid dangerous control switching.

Let w(0) = w& (0) = 0. Since x&& |u=0 linearly depends on x& , it is not uniformly bounded.

Nevertheless all requirements of the Theorems are satisfied in any bounded vicinity of the origin x =

x&  = 0, which provides for the local application of the method [20]. Following are the functions R

and xc considered in the simulation:

R = 1 + 0.25 sin 4t + 0.5 cos t,       xc = 0.5 sin 0.5t + 0.5 cos t .

While parameters of the controllers demonstrated further may be evaluated with respect to the
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above-mentioned restrictions on unknown functions R(t), xc(t), their derivatives and some chosen

bound on x& , they are usually excessively large in this case. The best way is to tune the parameters

during simulation. Surely, the controlled class is somewhat smaller, but it still allows significant

disturbances of the considered realizations of R and xc.

The transient dynamics is chosen according to (6), (8) - (9):

ϕ(t) = (t - tf)
4(c0 + c1(t - t0) + c2(t - t0)

2 + c3(t - t0)
3), T = tf - t0 = λ(|s0(t0)|

3+s1(t0)
4+| s2(t0)|

6+s3(t0)
12)1/12,

c0 = s(t0) T
 -4,    c1 = s1(t0) T

 -4+ 4 s(t0) T
 -5,  c2 = [s2(t0) T

 -4+ 8 s1(t0) T
 -5 + 20 s(t0) T

 -6] /2,

c3 = [s3(t0)T
 -4+12 s2(t0)T

 -5 + 60 s1(t0) T
 -6+ 120 s(t0)T

 -7] /6.

Here s0, s1 are some noisy measured values of σ and σ& , s2, s3 are the outputs of the 2nd-order

differentiator estimating σ&& , σ&&&  respectively. The above parameters of the function ϕ are calculated

at the moment t0 chosen to provide sufficient time for the differentiator convergence.  Function ϕ

and its derivatives are calculated further analytically according to (13). The output-feedback

controller takes now the form

ξ(t) = 




∈ϕ
∉

],[   with)(
],[       with0

0

0

f

f

tttt
ttt

;   u = 




∈ξ−ξ−ξ−ξ−Ψα
<

],[   with),,,(
       with0

032104

0

ftttssss
tt
&&&&&&  ,

where the function Ψ4 is to be defined further. The 2nd-order finite-time convergent differentiator

[19] supplies estimates of σ, σ& , σ&& , σ&&& :

y&  = v1,  v1 = - 2 L1/3 | y - s1|
 2/3  sign(y - s1) + s2,

2s&  = v2,  v2 = - 1.5 L1/2 | s2 - v1|
 1/2  sign(s2 - v1) + s3,

3s& = - 1.1 L sign(s3 - v2).

Here L is to be larger than sup|σ(4)|, which exists due to Theorem 4, y is an auxiliary variable

approximating σ& . The initial values of the differentiator are taken y(0) = s1(0), s2(0) = s3(0) = 0.

Denote zi = si - ξ
(i), i = 0, 1, 2, 3. The 4-sliding homogeneous quasi-continuous controller [22]
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H1 = z3 + 3[|z2| +(|z1| + 0.5|z0|
3/4)-1/3| z1 + 0.5 |z0|

3/4sign z0|] [|z2| +(| z1| + 0.5|z0|
3/4)2/3] -1/2,

H2 = | z3| + 3[|z2| + (| z1| + 0.5| z0|
3/4)2/3] 1/2,  u = αΨ4(z0, z1, z2, z3) = - H1 / H2 .

was considered. It is continuous (or can be redefined according to continuity) everywhere except the

set z0 = z1 = z2 = z3 = 0 [22]. The parameters which are still lacking are taken as follows: α = 70,   L

= 300, t0 = 1. The convergence-time parameter λ takes on values 2, 4, 6.

The integration was carried out according to the Euler method (the only reliable method with

discontinuous dynamics). The 4-sliding deviations for λ = 2, 6, the tracking performance, the torque

and the differentiator convergence in the absence of output noises with λ = 2 are shown in Fig. 1.

The accuracies |σ| ≤ 8.4⋅10-15, |σ& | ≤  2.7⋅10-11, |σ&& | ≤ 2.0⋅10-7, |σ&&& | ≤  0.0036 were obtained with the

sampling step τ = 10-5. It is seen that the accurate differentiation is ensured already with t = 0.15.

Check now the robustness of the method. The accuracies changed to |σ| ≤ 4.4⋅10-4, |σ& | ≤ 2.8⋅10-3,

|σ&& | ≤  0.054, |σ&&& | ≤ 1.7 with τ = 0.005 (Fig. 2). The tracking accuracy |σ| ≤ 0.013 was obtained with

τ = 10-5 in the presence of non-smooth non-centered noises with the same magnitude ε = 0.01, the

accuracy |σ| ≤ 0.052 was obtained with τ = 0.005, ε = 0.01 (Fig. 2). The graph of the torque w(t)

shows that, while noises and discrete sampling lead to the loss of accuracy, no significant chattering

is observed. The results practically do not depend on the noise frequencies.

Following are the simulation results of the plain controllers [13, 15] given for the comparison of

transient processes. In the absence of output noises the tracking accuracies |σ| ≤ 6.8⋅10-13, |σ& | ≤

5.8⋅10-10, |σ&& | ≤ 1.9⋅10-6, |σ&&& | ≤  0.013 were attained after application of the quasi-sliding controller

with λ = 2 (Fig. 3) and τ = 10-5. Similar accuracies were obtained in all cases. The nested-sliding-

mode controller is slightly less precise. In particular, the tracking accuracies |σ| ≤ 2.0⋅10-12, |σ& | ≤

1.3⋅10-9, |σ&& | ≤    2.3⋅10-6, |σ&&& | ≤ 0.016 were attained after application of the standard controller with

λ = 2 and τ =  10-5.
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VII. Conclusions

The integral sliding mode approach allows to prescribe any needed transient dynamics to high-

order sliding-mode systems. In particular, any positive definite r-sliding homogeneous function of

initial conditions in the space of the output and its derivatives can be realized as a settling-time

function. The same approach allows to solve the long-lasting problem of the control interaction in

the control smoothing based on the artificial increase of the relative degree. A robust output-

feedback controller is obtained when combined with robust exact differentiator.

Fig. 1: 4-sliding pendulum control and transient adjustment
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Fig. 2: Performance with various values of the noise amplitude ε and sampling step τ
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Fig. 3:  Straight-forward 4-sliding pendulum control
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