Problem 6

The system to be stabilized is a third-order disturbed integrator,

$$
\begin{align*}
& \dddot{\sigma}=h_{0}\left(t, \vec{\sigma}_{2}\right)\left\|\vec{\sigma}_{2}\right\|_{h}^{1+3 q}+g\left(t, \vec{\sigma}_{2}\right) u, \quad \sigma, u \in \mathbb{R}, \tag{1}\\
& \vec{\sigma}_{2}=(\sigma, \dot{\sigma}, \ddot{\sigma}),\left|h_{0}\left(t, \vec{\sigma}_{2}\right)\right| \leq C, 0<K_{m} \leq g\left(t, \vec{\sigma}_{2}\right) \leq K_{M},
\end{align*}
$$

where $\left\|\vec{\sigma}_{2}\right\|_{h}$ is a homogeneous norm corresponding to the weights

$$
\operatorname{deg} \sigma=1, \operatorname{deg} \dot{\sigma}=1+q, \operatorname{deg} \ddot{\sigma}=1+2 q, q \geq-1 / 3,
$$

and $h_{0}, g: \mathbb{R}^{4} \rightarrow \mathbb{R}$ are some Lebesgue-measurable functions, $t \geq 0$. The functions $h_{0}, g,\|\cdot\|_{h}$ are concretized further.

The task is as follows:

1. To develop a universal homogeneous control template $u=\alpha U_{3}\left(\vec{\sigma}_{2}, \beta, q\right), \beta \in \mathbb{R}^{k}, \alpha \in \mathbb{R}$, globally asymptotically stabilizing system for each q for some properly chosen parameters α, β and the whole state $\vec{\sigma}_{2}(t)$ available. The β dimension k is chosen by the student.
2. To find appropriate values of α, β for $q=-1 / 3$ by simulation. Two-three initial values of the form $\vec{\sigma}_{2}(0)=(\pm 2, \pm 2, \pm 2)$ are to be taken.
3. To apply a homogeneous output-feedback control including a filtering differentiator of the differentiation order $n_{d}=2$ and the filtering order $n_{f} \geq 5$. To show the exact finite-time stabilization for only $\sigma(t)$ available by simulation, zero differentiator initial values and some $\vec{\sigma}_{2}(0)=(\pm 2, \pm 2, \pm 2)$.
4. To show the robustness of the system with respect to some large noise in sampled $\sigma(t)$ (random noise of the magnitude ~ 0.1, high-frequency noise $A \cos (\omega t)$ for $\omega \sim 10^{5}$ and $A \sim 10^{3}$ or even larger).
5. The integration is performed by the Euler method with the sampling/integration step $\tau \leq 10^{-4}$. In the presence of sampling noises, if the noise contains a random component, $\tau \leq 10^{-6}$ is to be taken for better results. Harmonic components $A \cos (\omega t), A, \omega \gg 1$, usually require $\tau \leq 10^{-5}$.

The report should contain the template development, parametric values, essential graphs and the maximal values of $|\sigma|,|\dot{\sigma}|,|\ddot{\sigma}|$ over the last $1 / 3$ of the simulation interval for $\tau=10^{-4}, 10^{-5}$.

The functions from (1) are as follows:
$h_{0}=\frac{\sigma^{2} \operatorname{sign} \dot{\sigma}-2 \dot{\sigma} \operatorname{sign} \ddot{\sigma}+\ddot{\sigma}^{2} \operatorname{sign} \sigma}{\sigma^{2}+2|\dot{\sigma}|+\ddot{\sigma}^{2}} \sin (88 t), g=2+\frac{(\sigma \operatorname{sign} \dot{\sigma}-\dot{\sigma}+\ddot{\sigma} \operatorname{sign} \sigma) \cos (50 t)}{|\sigma|+|\dot{\sigma}|+|\ddot{\sigma}|},\left\|\vec{\sigma}_{2}\right\|_{h}=\left[|\sigma|^{\frac{1}{3}}+|\dot{\sigma}|^{\frac{1}{3(1+q)}}+|\ddot{\sigma}|^{\frac{1}{(1+2 q)}}\right]^{3}$

Essential information appears in the document

https://www.tau.ac.il//levant/Levant-SMC2019 for students.pdf

Any questions are welcome.

