Problem 2

The system to be stabilized is a third-order disturbed integrator,

$$\ddot{\sigma} = h_0(t, \vec{\sigma}_2) \| \vec{\sigma}_2 \|_h^{1+3q} + g(t, \vec{\sigma}_2) u, \quad \sigma, u \in \mathbb{R}, \vec{\sigma}_2 = (\sigma, \dot{\sigma}, \ddot{\sigma}), \quad |h_0(t, \vec{\sigma}_2)| \le C, \quad 0 < K_m \le g(t, \vec{\sigma}_2) \le K_M,$$
(1)

where $\|\vec{\sigma}_2\|_h$ is a homogeneous norm corresponding to the weights

$$\deg \sigma = 1$$
, $\deg \dot{\sigma} = 1 + q$, $\deg \ddot{\sigma} = 1 + 2q$, $q \ge -1/3$,

and $h_0, g : \mathbb{R}^4 \to \mathbb{R}$ are some Lebesgue-measurable functions, $t \ge 0$. The functions $h_0, g, ||\cdot||_h$ are concretized further.

The task is as follows:

- 1. To develop a universal homogeneous control template $u = \alpha U_3(\vec{\sigma}_2, \beta, q)$, $\beta \in \mathbb{R}^k, \alpha \in \mathbb{R}$, globally asymptotically stabilizing system for each q for some properly chosen parameters α, β and the whole state $\vec{\sigma}_2(t)$ available. The β dimension k is chosen by the student.
- 2. To find appropriate values of α, β for q = -1/3 by simulation. Two-three initial values of the form $\vec{\sigma}_2(0) = (\pm 2, \pm 2, \pm 2)$ are to be taken.
- 3. To apply a homogeneous output-feedback control including a filtering differentiator of the differentiation order $n_d = 2$ and the filtering order $n_f \ge 5$. To show the exact finite-time stabilization for only $\sigma(t)$ available by simulation, zero differentiator initial values and **some** $\vec{\sigma}_2(0) = (\pm 2, \pm 2, \pm 2)$.
- 4. To show the robustness of the system with respect to some large noise in sampled $\sigma(t)$ (random noise of the magnitude ~ 0.1, high-frequency noise $A\cos(\omega t)$ for $\omega \sim 10^5$ and $A \sim 10^3$ or even larger).
- 5. The integration is performed by the Euler method with the sampling/integration step $\tau \le 10^{-4}$. In the presence of sampling noises, if the noise contains a random component, $\tau \le 10^{-6}$ is to be taken for better results. Harmonic components $A\cos(\omega t)$, $A, \omega \gg 1$, usually require $\tau \le 10^{-5}$.

The report should contain the template development, parametric values, essential graphs and the maximal values of $|\sigma|, |\dot{\sigma}|, |\ddot{\sigma}|$ over the last 1/3 of the simulation interval for $\tau = 10^{-4}, 10^{-5}$.

The functions from (1) are as follows:

$$h_{0} = \frac{\sigma^{2} - \dot{\sigma}^{2} \operatorname{sign} \ddot{\sigma} + \ddot{\sigma}^{2} \operatorname{sign} \sigma}{\sigma^{2} + \dot{\sigma}^{2} + \ddot{\sigma}^{2}} \sin(100t), \quad g = 2 + \frac{(\sigma - \dot{\sigma} + \ddot{\sigma} \operatorname{sign} \dot{\sigma}) \cos(49t)}{|\sigma| + |\dot{\sigma}| + |\ddot{\sigma}|}, \quad ||\vec{\sigma}_{2}||_{h} = [|\sigma|^{2} + |\dot{\sigma}|^{\frac{2}{1+q}} + |\ddot{\sigma}|^{\frac{2}{1+2q}}]^{\frac{1}{2}}$$

Essential information appears in the document

https://www.tau.ac.il/~levant/Levant-SMC2019 for students.pdf

Any questions are welcome.

בהצלחה!