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Abstract—The main problem in differentiator lesign is to com-
bine differentiation exactness with robustness in respect to
possible measurement errors and input noises. The proposed
differentiator provides for proportionality of the maximal
differentiation error to the square root of the maximal deviation
of the measured input signal from the base sign.l. Such an order
of the differentiation error is shown to be the best possible one
when the only information known on the base signal is an upper
bound for Lipschitz’s constant of the derivative. © 1998 Elsevier
Science Ltd. All rights reserved.

Introduction

Differentiation of signals given in real time is an old and well-
known problem. Construction of a special diferentiator may
often be avoided. For example, if the signal satisfies a certain
differential equation or is an output of some <nown dynamic
system, the derivative of the given signal may se calculated as
a derivative with respect to some known dynamic system. Thus,
the problem is reduced to the well-known cbservation and
filtration problems. In other cases constructior of a differenti-
ator is inevitable. However, the ideal differentia or could not be
realized. Indeed, together with the basic signal it would also
have to differentiate any small high-frequency noise which al-
ways exists and may have a large derivative.

The main approach to linear-differentiator ccnstruction is to
approximate the transfer function of the ideal cifferentiator on
a definite signal frequency band (Pei and Shy, 1989; Kumar
and Roy, 1988; Rabiner and Steiglitz, 1970). The frequency band
of the noise being known, low-pass filters are used to damp
noises. Stochastic features of the signal and the noise may also
be considered (Carlsson er al, 1991). In the atter case, the
stochastic models of both the signal and the noise are presumed
to be known. Linear observers (Luenberger, 1971) may be used.
In any case a linear differentiator with constant ¢ oefficients may
provide for asymptotically exact differentiation f>r a rather thin
class of inputs and does not calculate exact derivatives of other
noise-free signals.

If nothing is known on the structure of the sigr al except some
differential inequalities, then sliding modes (Urkin, 1992) are
used. In the absence of noise the exact information on the signal
derivative may be obtained by averaging 1igh-frequency
switching signals. Also, sliding observers (Slotine et al., 1987) or
observers with large gains (Nicosia et al., 1991) ¢ re successfully
employed. However, in all these cases the exact differentiation is
provided only when some differentiator parameters tend to
inadmissible values (like infinity). Thus, here too the resulting
differentiator cannot calculate exact derivative:. of noise-free
signals.
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The performance of the known differentiators follows the
following principle: only approximate differentiation is provided
in the absence of noise, at the same time the differentiator is
insensitive to any high-frequency signal components considered
to be noises. Thus, differentiation is robust but not exact, the
error does not tend to zero in the presence of vanishing noise at
any fixed time, and no asymptotic error analysis is sensible for
any fixed differentiator parameters and time.

Another principle employed here combines exact differenti-
ation (with finite transient time) for a large class of inputs with
robustness in respect to any small noises. A known approach
(Golembo et al., 1976} is chosen: high-quality tracking of f(r) by
x(t), X = u, having been provided, control u(f) may be used for
evaluation of f{t). The new result is attained here due to applica-
tion of a 2-sliding algorithm (Levantovsky, 1985; Emelyanov et
al., 1986; Levant (Levantovsky), 1993; Fridman and Levant,
1996) which forms continuous control u(r) providing for keeping
the equalities 6 = x — f(f) =0, 6 = u — f(1) = 0 after a finite-
time transient process. The purpose of this paper is

e to clear some inherent restrictions on exact robust differen-
tiation and its error asymptotics;

 to propose a robust first-order differentiator that is exact on
signals with a given upper bound for Lipschitz's constant of
the derivative;

e to ensure the best-possible error asymptotics order when
the input noise is a measurable (Lebesgue) bounded func-
tion of time.

Robust exact differentiation limitations

Let input signals belong to the space M [a, b] of measurable
functions bounded on a segment [a, b] and let || || = sup{f(®)l.
Define abstract differentiator as a map associating an output
signal with any input signal. A differentiator is called exact on
some input if the output coincides with its derivative. The
differentiator order is the order of the derivative which it pro-
duces. Differentiator D is called robust on some input f(¢) if the
output tends uniformly to Df(r) while the input signal tends
uniformly to f(r). A differentiator is called correct on some input
if it is exact and robust on it. The ideal differentiator cannot be
considered as an abstract one, for it does not operate for nondif-
ferentiable inputs.

Being exact on two inputs, any differentiator will actually
differentiate a difference between these inputs which may be
considered as a noise. Thus, differentiator design is a simple
trade-off: the denser the exactness class in M [a, b], the more
sensitive will the differentiator be to small noises. For example,
being correct on a thin class of constant inputs, the differentiator
producing identical zero is totally insensitive to noises. It is
easily seen that the correctness set of any abstract differentiator
cannot be locally dense in the set of continuous functions, other-
wise small noises with large derivatives would be exactly differen-
tiated, which contradicts robustness. In particular, no differenti-
ator is correct on all smooth functions or on all polynomials.

Let W(C, n) be the set of all input signals whose (n — 1)th
derivatives have Lipschitz’s constant C > 0. The statements
below are valid for any sufficiently small ¢ > 0 and noises not
exceeding ¢ in absolute value.
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Proposition 1. No exact on W (C, n), n > 0, differentiator of the
order i < n may provide for accuracy better than C'/"g™ 9/,

Proof. Consider noise v(t) =esin(C/g)'™t. It is easy to
check that sup|v?(t)] = C/"e" 9" for i=0, 1,...,n and
small ¢. The differentiator has to differentiate properly both
0 and 0 + (t).

Proposition 2. There are such constants y;(n) > 1, n=12, ...,
i=0,1,...,nyn = 1,7,(n) = 2, that for any i < n there exists
an ith-order differentiator D, correct on iny fe W(C, n), which
provides for the accuracy | D(f+ v) — fU | < 3,(n)C"e™"~ V" for
any noise v, |{v] <e.

Proof. Let A be a map associating with any g € M[a, b] some
function Ag closest to g in W (C, n). Such a function exists, for
any bounded subset of W(C, n) is precompact, but it is certainly
not unique. Define Dg = (Ag)™. The proposition is now a simple
consequence of Lemma 1. O

Lemma 1. There are such constants fin) =1, i=0,2,...,n,
Bo(n) = B,(n) = 1, that the following inec ualities hold:

Cilmgn=in < u sup | F9()| < Bi(m) Cingtn—in,
t

S
feW(C.n),sup f(t)i<e

Here and below all proofs are in the appendices. These are
some evaluations of f;(n): §;(2) = 2\/5, B3y =707, §,(3) = 6.24.

Remarks.

e With C =0 W(C, n) is the set of polynomials of the degree

n — 1. In that case Proposition 1 is trivial, Proposition 2 and

Lemma 1 are not valid. The restrictions discussed here do not

preclude possibilities to receive a better differentiation accu-

racy, provided another exactness set s considered. For in-
stance, it may be shown that the differer tiator suggested in the
proof of Proposition 2 provides for the accuracy linear on ¢ in
the case C = 0. The corresponding gain tends to infinity when

n— oo or the segment length tends to 0. W (0, n) being too thin

for reasonable n, such differentiators are suitable for local

usage only.

All the above reasonings are also true in the case when the

differentiators are allowed to have transient time uniformly

bounded by a constant less than the s¢gment length.

o The above results also hold for infin te time intervals, the
inputs being measurable locally bound :d functions and ¢ be-
ing any positive number. Only a minor change in the proof of
Proposition 2 is needed.

Practical first-order robust exact differentiator

The above abstract differentiators were not intended for
realization. Consider now a practical real-time differentiation
problem. Let input signal f(t) be a measurable locally bounded
function defined on [0, cv) and let it consist of a base signal
having a derivative with Lipschitz’s constant C > 0 and a noise.
In order to differentiate the unknown base signal, consider the
auxiliary equation

X =u (3)
Applying a modified 2-sliding algorithm (Levant, 1993) to keep
x — f(t) = 0, obtain
u=uy — Alx — f()]'?sign(.c — f (1)),
iy = — asign(x — f(1)),

where o, 4 > 0. Here u(f) is the output of the differentiator.
Solutions of system (3), (4) are understooc in the Filippov sense
(Filippov, 1988).

Define a function ®(a, A, C) = |W(z,.)|, vhere (Z(z), ¥(t)) is the
solution of

=T 4y,

“

1
—pl=0)

1 .
—ﬁ(a+C), —ZIV + ¥ <0,

—|ZIY" +¥ >0,

Z0)=0 Y(0) =1,

a>C,A#0,and t, = inf{t|t > 0, Z(z) = 0, (1) < 0}. It is easy
to check that r, < co. In practice, ®(x, 2, C) is to be calculated
by computer simulation.

Theorem 1 (convergence criterion). Let «a>C >0, A>0,
®(a, 4, C) < 1. Then, provided f(1) has a derivative with
Lipschitz’s constant C (fe W(C,2)), the equality u(t) = f(t)
is fulfilled identically after a finite-time transient process.
There is no convergence of u(t) to f(t) for some fe W(C,2) if
O(x, 4, C)> 1.

The less @(a, /2, C), the faster the convergence. ® is obviously
the same for all (, 4, C) with & = u;C, A = 4,C''? where y; > 1,
u, > 0 are some constants. Also, any increase of A decreases ®.

Following are the sufficient conditions for the convergence of

u(z) to f(t):

a+C

>C, 12> 4C .
x A poe

(6)

Condition (6) results from a very crude estimation. Calculation
of @ shows that many other values, e.g. A= CY2 a=1.1C
(@ =0.988), or A =0.5C"2, x =4C (® = 0.736), may also be
taken.

The conditions o > C >0, /2 >0, ® < 1 are assumed to be
satisfied in the following theorems.

Theorem 2. Let input signal be presented in the form
S (t) = fo(t) + v(2), where f,(t) is a differentiable base signal, fo(¢)
has a derivative with Lipschitz’s constant C > 0, and v(t) is
anoise, |v(t)| < e Then there exists such a constant b > 0 depen-
dent on (x — C)/4* and (x + C)/2? that after a finite time the
inequality |u(t) — fo(t)] < Abe'/? holds.

If 2 and o are chosen in the form « =u,C, A= pu,C'?
then the inequality |u(z) — fo(t}| < bC'2e'? holds for some
blpy, ptz) > 0.

Let £, x, u; be measured at discrete times with time interval 7,
and let 1;, t;+,, t be successive measurement times and the
current time, t € [t;,t;+,). As a result, achieve the following
modified algorithm:

X =u, (7

u=uy(t) ~ Alx(t) — £ ()] sign(x(z)) — f(t),

. . (3)
Uy = — asign(x(t;) — f(t;)).
Theorem 3. Provided f(r) has a derivative with Lipschitz’s
constant C >0, algorithm (7), (8) enables the inequality
|u(t) — (1)} < aA®t to hold after a finite-time transient process.
Here a >0 is some constant dependent on (x — C)/A* and
(o + C)/A%

If the discrete measurements are carried out with some
small measurement noise of magnitude ¢ and T« CY2!/2 (or
C'2¢'2« 1), then an infinitesimal of a higher order has to be
added to the right-hand side of the inequality in the statement of
Theorem 2 (or Theorem 3). It may be shown that in the general
case at least the accuracy of the order (t + ¢)'/2 is provided (very
crude estimation).

The transient process time is uniformly bounded if the initial
deviations |x(fg) — f(to)| and |u(te) — f(ty)| are bounded. This
may be attained by any inexact preliminary evaluation of f (o)
and f(to). In such a case the transient time may be arbitrarily
shortened.

Computer simulation

It was taken that 7, = 0, initial values of the internal variable
x(0) and the measured input signal 1(0) coincide, initial value of
the output signal u(0) is zero. The simulation was carried out by
the Euler method with measurement and integration steps
equaling 104,

Compare the proposed differentiator (3), (4) with a simple
linear differentiator described by the transfer function
p/(0.1p + 1)%. Such a differentiator is actually a combination
of the ideal differentiator and a low-pass filter. Let x =8,
4 = 6. Checking the convergence criterion, achieve ® = 0.064
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for C=2 and ® =020 for C=7. The output signals for
inputs f(t) =sint + 5z, f(t}) =sint + 5t + 0.0: cos 10t, and
f(ty=sint + 5t + 0.001cos 30t and ideal derivatives f(z) are
shown in Fig. 1. The linear differentiator is seen not to differenti-
ate exactly. At the same time it is highly insensitive: to any signals
with frequency above 30. The proposed differentiator handles
properly any input signal f with /'< 7 regardles; of the signal
spectrum.

Let o =22, A=2 Checking the convergence criterion
achieves @ = 0.596 for C = 2. The output for the input base
signal f(t) =sint + 5t + 1 in the presence of a measurement
high-frequency noise with magnitude 0.04 is shown in Fig. 2a.
Simulation shows the differentiation accuracy to take on suc-
cessively the values 0.426, 0.213, 0.106, 0.053, while the noise
magnitude takes on the values 0.04, 0.01, 0.0025, 6.25x 10™4,
respectively. Thus, the differentiation error is proportional to the
square root of the noise magnitude with the gain 2.13 (the same
gain is 5.9 for « =8, 1 =6). With precise measurements the

Proposed Differentiator
=8, A=6
df/dt, u

6.4

5.6
48
4.0

3.2
24
1.6
0.8

123 45678 910MN

f(h= St+sint,

df/dt, u
6.4

5.6
48
4.0

3.2
24
1.6
0.8

123 45673 910N

f(B= 5trsin t+0.01cos 10t,

df/dt, u
6.4

5.6
4.8
4.0

3.2
24
1.6
0.8 t

123 45678 910MN1

accuracy 1.2 x 107 * was achieved. Remind that the gain is not
less than 1 and in the absence of noise the accuracy is propor-
tional to the measurement time step (Proposition 1, Theorem 3).

The output signal of the differentiator consists, essentially, of
the accurate derivative and some small high-frequency noise.
Therefore, implementation of a smoothing element may be
practically useful if significant noise is assumed. Output u,,, of
the simple smoothing element p/(0.05p + 1) for the base signal
S(t) =sint + 5t + 1 and noise magnitude 0.04 is given in Fig. 2b
(the accuracy achieved is 0.054). However, the ideal differenti-
ation ability in the absence of noises is inevitably lost in this case
(the accuracy sup| f — | = 0.05 is achieved). Such a differenti-
ator is insensitive to high-frequency components of the input

signal.

Conclusions
Inherent restrictions on exact robust differentiation and its
error asymptotics were found. The existence of an arbitrary-order

Linear Differentiator
plO.1p+1)
df/dt
5.6
4.9
4.2
3.5
2.8
21
1.4
0.7

12 345678910M1
dfidt=5+cost

df/dt

5.6
49
4.2
3.5
28
2.1
1.4
0.7

12 3 456789101
dfidt=5+cos t-0.1sin10t

df/dt
5.6
4.9
4.2
3.5
2.8
2.1
1.4
0.7

123456789 10MN

A= 51t+si1£+0.001 cos 30¢, dfidt=5+cos t-0.03 sin 30t

Fig. 1. Comparison of the proposed differentiator with a linear one.
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df/dt, u
6.4
5.6
4.8
4.0
3.2
24
1.6
0.8

12 3 4 5 6 7 8 9 101
a. Before smoothing

df/dt, Usm
6.4

5.6
48
4.0
3.2
24
1.6

0.8

12 3 45 6 7 8 910N
b. After smoothing

Fig. 2. Smoothing the differentiator output in the presence of a significant noise.

robust differentiator with the optimal order of error asymptotics
was established.

A first-order robust exact differentiator was proposed provid-
ing for maximal derivative error to be pronortional to the square
root of the input noise magnitude after a finite-time transient
process. This asymptotics order was shown to be the best attain-
able in the case when the only restrictior on the input signal is
that Lipschitz’s constant of its derivative is bounded by a given
constant and the noise is a measurable bounded function of
time.

Discrete measurements with a small time step were shown not
to be destructive to the differentiator features. In the absence of
noises the differentiation error is proportional to the measure-
ment step.

The differentiator considered features a simple form and an
easy design. It may be employed both in real-time control
systems and for numeric differentiation. Its use is preferable in
high precision systems with small noiszs. In the presence of
considerable measurement noises a simple smoothing element
may be implemented. However, this leads to loss of ideal differ-
entiation in the absence of noises.

The differentiator allows, obviously, successive implementa-
tion for higher-order exact robust differc ntiation. However, the
optimal error asymptotics will not be attained in that case.
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Appendix: proofs

Proof of Lemma 1. The first inequality follows from the proof of
Proposition 1. The Lagrange Theorem implies that there are
constants L, satisfying the property that for any k-smooth
function f(z), | 1 < & and any T > 0 there is a point ¢, on any
segment of the length L, T where | f*(1,)| < 2%¢/T* Obviously,
Lo = O, Lk = 2Lk~1 + 1.

Denote Si(e, C. n) = SUP s ew (C.n), suplfn) <e SUP¢ ‘f‘”(n'- USing
identities S, (¢, C, n) = C, Sp(e, C, n) = ¢, the inequality S;(¢, C, n) <
Si(e, S,—1(5, C,n),n — 1), and minimizing with respect to T
the right-hand side of the inequality |/~ V() <2" g/
T" '+ CL,-,T, obtain a recursive-on-n definition of §;(n)

Bo(n) = Bu(m) = 1,
Bi(n) = Bi(n-1) B, - (my'* 1, i<n,

1 (n—1)/n
Bu-1(n) = A l)/"Lﬁyn—_ll)’/" l:( ) +(n— 1)””]- O

n—1

The plan of the theorems proofs is as follows. Using the
inclusion f € [ — C, C], true almost everywhere, system (3), (4) is
replaced by an autonomous differential inclusion on plane ¢4,
o = x — f(t). Intersections with axis ¢ having been studied, the
paths are shown to make an infinite number of rotations around
the origin converging to it in finite time. With a small measure-
ment step and in the presence of small noises a small attraction
set appears around the origin. After changing coordinates a
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linear transformation preserving the paths is found, which
allows to evaluate the attraction set asymptotics

Remind that according to the definition by Filippov (1988)
any differential equation Z = v(z), where z € R” and v is a locally
bounded measurable vector function, is replaced by an equiva-
lent differential inclusion Z € V(z). In the simplest >ase, when v is
continuous almost everywhere, V(z) is the convex closure of the
set of all possible limits of v(y) as y — z, while {y} are continuity
points of v. Any solution of the equation is lefined as an
absolutely continuous function z(r), satisfying tl at differential
inclusion almost everywhere. Also, any differential inclusion is
to be similarly replaced by a special one.

Proof of Theorem 1. Let ¢ = x — f(t). By calculating achieve

&= —f—1idlo|” 1% ~ asigno. ()]
It does not matter that f'exists almost everywhere, but not at any
t, for solutions are understood in the Filippov sense. Strictly
speaking, equation (9) is valid only for ¢ # 0. Nzvertheless, as
follows from (Filippov, 1988), solutions of systera (3), (4) (and,
therefore, also o(t) = x(¢) — f(t) and &(1) = u(r) -- f(1)) are well
defined for any initial conditions (a(to), 6(to)) and any t > 1,.

Remind that [f|<C. Denote R =ux+fsigno. Then
Refa~C,a+ C] and

= —1id|a|”"* — Rsigna. (10)

Any solution of equation (9) has to satisfy the foll¢wing differen-
tial inclusion understood in the Filippov sense:

e —3idlo| V2 — [« — C,a + C]signo. (11

The operations on sets are naturally understood here as sets of
operation results for all possible combinations ¢f the operand
set elements. Consider the trajectory of inclusion (11) on plane
od. Let ¢ =0, 6 = o > 0 at the initial momen! (Fig. 3). Any
trajectory I of (11) lies between trajectories I, I1 of (10) given,
respectively, by

R {a—C, o6 > 0, {a+C, 76 > 0,

x+C, 06<0, a—C, 16<0.
Extending trajectory I', achieve sequence dy, 6,, ... of success-
ive intersections I” with axis 4. It follows from Lcmma 2 below
that |d;.,/d;| < const < 1. Hence, 4; converge to ) as a geomet-
ric progression. Also, calculating trajectory I approximately,
achieve that (6) implies |4, (/d;] < const < 1. Th: last point to
be checked here is the finite time convergence of :he algorithm.

The state coordinates of system (3), (4) are x and u; . Consider
new coordinates ¢ = x — f(t)and & = u; — f(t). I these coordi-
nates system (3), (4) takes on the form

¢ = — Alo|"Y?signo + &,

&= —ft) — asigno,
and the corresponding differential inclusion is

¢ = — ila|'?signeo + ¢, (12)

¢e —[a—C,a+ Clsigno. (13)

As follows from equation (12), ¢ =6 when ¢ = 0. Hence, as
follows from (13), the convergence time is estinated by the
inequality

2 PO
T<—— Y ldi.
T—c L4l O

i=0

Lemma 2. The ratio of successive intersections of trajectory
I with axis ¢ is constant and coincides with the value of function
D(a, 4, C).

Proof. Let G,, n > 0 be an operator constituted by a combina-
tion of the linear coordinate transformation g,:(g,¢)—

S

Fig. 3. Phase trajectories of the differentiator.

(n*0,7&) and the time transformation ¢+ yt. It transfers any
vector v from the tangential space at the point {; = (4, &) into
the vector 1~ '[(dg,/d{)({e)]v at the point g, (o). It is easily
checked that inclusion (12), (13) is invariant with respect to this
transformation.

Introducing new coordinates T = ¢/4? and ¥ = &/2* and
taking sign ¢ = 1 for positive o, achieve that system (5) describes
trajectory [ with some special initial conditions. Let ¢y = d,
&1 = d, be the intersections of I with the axis ¢ = 0. It follows
from the invariance of the system with respect to transformation
G, that the value of |gl/do|~does not depend on the initial value
do. Hence, ® =¥ (1,)| =|d1/dol, @ = |d.1/d,]. a

Proofs of Theorems 2 and 3. Consider the case when both
measurement noises and discrete measurements are present. Let
the input signal consist of a base signal f,(z) and a measurement
noise not exceeding ¢ in absolute value, o = x — fo(r) and
& =u; — fo(t). Let also the measurements be carried out at
discrete times with time interval t and t € [1;, t;,,) where t,,
t;+; are successive measurement times and ¢ is the current time.
Then the following differential inclusion holds:

de— Ao+ [—e ]|V sign(o; + [— e )+ & (14)
e - [e — C,a + Clsign(o; + [— &, &]), tisy ~ t; =7. (15)

If the continuous measurement case is considered, any ap-
pearance of indices and t, t is to be omitted in inclusion (14), (15).

With ¢, 7 being zero, inclusion (14), (15) coincides with (12),
(13), whose trajectories converge in finite time to the origin. It is
easily seen that this implies the existence of a bounded invariant
set attracting all the trajectories in finite time, when &, 7 are
small. All that is needed now is to show that its size has the
asymptotics defined by the statements of the theorems when
e 170
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Applying operator G, (see the lemma 2 proof) to
inclusion (14), (15) achieve in the coordinates X = ¢/A*
and ¥ = &/i?

. 1 12 1
Te-— E.~+P[—n’e,n2£] Sign<21+ﬁ[-nzs,n2£]>+‘l‘,
(16)
. 1 A 1
Ye - [e~Ca+C] 51gn<2,- + pH [—n%, nzs]>,
y)
Livr —Li=1nT. (17

Consider the case when ¢ = 0 (Theorera 3). Fix some values of
the expressions (x — C)/A? and (x + C/A*> and measurement
step 1o. Let the attraction set of inclusion (14), (15) be given by
the inequalities |Z| < ky, || < k. Let ¢ be another measure-
ment step. After transformation G, with n = t/t, achieve
that |o| < A2kyn? = A%(k,/2d)12, || < A%kon = A%(ky /1), Here
k3/70, k1/18 are some constants. Theorem 3 follows now from the
equality ¢ = — 1|a;|}?signo; + £.

To prove Theorem 2 achieve from system (16), (17) the follow-
ing inclusion (continuous measurements are considered):

. 1 12 1
Ye— 2+?[—nzs, n%e] 51gn<):+15 [—n%, nze])+‘l',
(18)

Ye - ;113 [x—C,a+C] sign(E + ’—12 [~ n%, 1123]), (19)
Fix some values ¢q, A9, %9, Co and let the attraction set of (18),
(19) with # = 1 be given by the inequalities || < k;, [¥| < k,.
Consider other values e, 4, o, C, keeping the ends of
the segment (1/4%)[a — C, « + C] fixed. After transformation
G, with n={(g/eq)'*Ao/4 achieve that |o| < A%k;p® =

A2 (k1A3/e0)e/A* = (k1A3/ea)e, |E| < APkam = AlkaAo/ed*)s''?. Here
kyA3/e0, kodo/el/? are some constants. Taking into account that

de — Ao+ [—ee]|'?sign(o + [—&,¢6]) + ¢

achieve the statements of Theorem 2. Od



