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Abstract— It is shown in the paper that the higher the order r of the homogeneous sliding mode the 

less sensitive it is to the presence of unaccounted-for fast stable actuators. In particular, the 

advantage with respect to standard sliding modes is revealed. With the actuator time constant µ << 1 

the sliding variable magnitude is proved to be proportional to µr.  
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I.     Introduction 

 Sliding mode control is one of the main control tools under heavy uncertainty conditions. It is 

accurate and insensitive to disturbances [4, 6, 31, 32, 33]. The main drawback of the standard sliding 

modes is mostly related to the so-called chattering effect (dangerous high-frequency system 

vibrations) caused by high, theoretically infinite control switching frequency, and much research was 

devoted to avoiding it [1, 5, 10, 11, 12, 14, 26, 29, 30, 32-34].  

 High order sliding modes (HOSMs) [2, 3, 6, 8, 17-19, 26-28] were created to remove the 

restrictions of standard sliding modes hiding the switching in the higher derivatives of the system 

coordinates. Their practical application requires the robustness to be shown with respect to various 

possible imperfections. Performance of the 2-sliding sub-optimal controller was recently studied in 

the presence of time delays [16]. The robustness of general homogeneous sliding modes was proved 

by Levant [19] with respect to various switching imperfections, small delays and noises. In all cases 

the sliding variable vibrations are shown to be small. 

 In reality the control does not directly influence the system, but enters a special device called 

actuator, being itself a dynamic system.  The purpose of the actuator is to properly transmit the input, 

and it performs well, when the input changes smoothly and slowly. For this end the actuator is to be 



fast, exact and stable. Presence of such actuators may however destroy the sliding mode. Indeed, a 

high frequency discontinuous input causes uncontrolled vibrations of the actuator and of its output. 

In particular, this causes vibrations of the 2-sliding control systems [5, 10-12].  

 The robustness of homogeneous HOSMs with respect to the presence of fast actuators is for the 

first time shown in this paper. The corresponding asymptotic sliding accuracy is estimated with 

respect to the small actuator time constant. The accuracy order appears to be determined by the 

sliding-mode order only. Thus, the higher the sliding-mode order the less sensitive is the HOSM to 

fast actuators. The homogeneity requirement is satisfied for almost all known HOSM controllers. 

Simulation confirms the theoretical results. 

II.     The problem statement 

Consider a smooth dynamic system with a smooth output function σ. Let the system be closed by 

some possibly-dynamical discontinuous feedback and be understood in the Filippov sense [9]. Then, 

provided that successive total time derivatives σ, σ& , ..., σ(r-1) are continuous functions of the closed-

system state-space variables; and the set σ = σ&  = ... =   σ(r-1) = 0 is a non-empty integral set, the 

motion on the set is called r-sliding (rth order sliding) mode  [17,18]. The standard sliding mode, 

used in the most variable structure systems, is of the first order (σ is continuous, and σ&  is 

discontinuous).  

 Consider a dynamic system 

          x&  = a(t,x) + b(t,x)v,    σ = σ(t, x),              (1) 

where x ∈ Rn, t ∈ R, the scalar system output σ(t, x) is measured in real time, v ∈ R is the input, n is 

uncertain. The task is to provide in finite time for keeping σ close to zero using sampled values of σ. 

Assumption 1º. Smooth uncertain functions a, b and σ are defined in some region Ω ⊂ Rn+1. It is 

supposed that provided the input v is a Lebesgue-measurable function of time, |v| ≤ vM, all solutions 

starting from an open region Ωx ⊂ Rn at t ∈ ta can be extended in time up to t = tb > ta without 

leaving the region Ω. The constant vM > 0 is defined in Assumption 4°.  



  Note that actually a weaker assumption is needed that any feasible trajectory does not leave Ω. 

Not all inputs can be realized. 

Assumption 2º. The relative degree r of the system is assumed to be constant and known.  That 

means that for the first time the input variable v appears explicitly in the rth total time derivative of 

σ [15]. It can be checked  [15] that 

         σ
(r) = h(t,x) + g(t,x)v,            (2) 

where h(t,x) = σ
(r)|v=0, g(t,x) = v∂

∂ σ
(r) are some unknown smooth functions, which can be expressed in 

the terms of Lie derivatives. The set Ωx at the time ta is supposed to contain r-sliding points, i.e. 

points satisfying σ = σ&  = ... =   σ(r-1) = 0. 

 The local consideration is natural here, since the asymptotic accuracy is searched for. Note that in 

the standard problem statement Ωx = Rn, tb = ∞, and the results are global [18,19,25]. 

Assumption 3º. It is supposed that  

      0 < Km ≤ v∂
∂ σ

(r) ≤ KM,  | σ(r)|v=0 | ≤ C            (3) 

hold in Ω for some Km, KM, C > 0. Conditions (3) are formulated in terms of input-output relations.  

The actuator is described by the equations 

          µ z&  = f(z, u),    v = v(z)          (4) 

where z ∈ Rm, u ∈ R is the control and the input of the actuator, v is a continuous output function, 

the time constant µ > 0 is a small parameter.  

 The control u is determined by a feedback 

            u = U(σ, σ& , ..., σ(r-1))         (5) 

where U is a function continuous almost everywhere, and bounded by some constant uM,  uM > 0, in 

its absolute value. Being applied directly to (1), i.e. with 

              v = u,               (6) 



it locally establishes the r-sliding mode σ ≡ 0. All differential equations are understood in the 

Filippov sense [9]. In order to apply (5) one needs to estimate σ and its derivatives.   

Assumption 4º. The actuator features Bounded-Input-Bounded-State (BIBS) property with µ = 1. 

Initial values of z belong to some compact set. Since |u| ≤ uM this provides for infinite extension in 

time of any solution of (4) and z belonging to some compact region Ωz independent of µ. Indeed, µ 

can be excluded by the time transformation τ = t/µ. This assumption causes also the actuator output v 

to be bounded in its absolute value by some constant vM > uM > 0. 

Assumption 5º. The dynamic output-feedback (5) is supposed to be r-sliding homogeneous [19], 

which means that the identity  

       U(σ, σ& , ..., σ(r-1)) ≡ U(κr
σ, κr-1

σ& , ..., κσ
(r-1))        (7)  

is kept for any κ > 0. Most known HOSM controllers [2, 17-21, 25] satisfy this assumption. It is also 

assumed that the control function U is locally Lipschitzian everywhere except a finite number of 

smooth manifolds comprising a closed set Γ in the space with coordinates Σ = (σ, σ& , ..., σ(r-1)). Note 

that due to the homogeneity property (7) the set Γ contains the origin Σ = 0, where the function U is 

inevitably discontinuous [19,20].  

As follows from (2), (3)  

         σ
(r) 

∈ [− C, C] + [Km, KM] v .         (8)  

This inclusion does not “remember” anything on system (1) except the constants r, C, Km, KM.  

Assumption 6º. It is assumed that with control (5) applied directly to inclusion (8) a finite-time 

stable inclusion (5), (6), (8) is created. This is the standard way to implement HOSM controllers 

[19].  

The differential inclusions are understood here in the Filippov sense. That means that the right-

hand vector set is enlarged in a special way [19] at the discontinuity points of U in order to satisfy 

certain convexity and semicontinuity conditions [9].  

Assumption 7º. The actuator is assumed exact in the following sense. With µ = 1 and any constant 



value of u the output v uniformly tends to u. That means that for any δ > 0 there exists T > 0 such 

that with any u, u = const, |u| ≤ uM, z(0) ∈ Ωz, the inequality |v - u| ≤ δ is kept after the transient time 

T. It is required also that the function f(z, u) in (4) be uniformly continuous in u, which means that 

||f(z, u) - f(z, u + ∆u)|| tends to 0 with ∆u → 0 uniformly in z ∈ Ωz, |u| ≤ uM. 

Note that any linear actuator with the transfer function P(µp)/Q(µp), where deg Q – deg P > 0, Q is 

a Hurwitz polynomial, P(0)/Q(0) = 1, satisfies Assumptions 4º, 7º.  While Assumptions 1°-7° can be 

considered natural, the next technical Assumption is to be separately checked for each controller (5). 

Assumption 8º. It is supposed that the change of (5), (6) at the set Γ to  

          v ∈




Γ∈Σ
Γ∉ΣΣ

  ],,[
  ),(

MM v-v
U

           (9) 

does not interfere with the finite-time convergence, i.e. (8), (9) is finite-time stable. Recall that Σ = 

(σ, σ& , ..., σ(r-1)). 

Note that while Filippov solutions of discontinuous differential equations do not depend on the 

values of the right-hand side on any set of the measure 0, it is not true with respect to differential 

inclusions. Since vM > uM, solutions of (8), (9) contain all solutions of (5), (6), (8). Note also that the 

inclusion (8), (9) is also r-sliding homogeneous, and, therefore, its asymptotic stability is equivalent 

to the finite-time stability [19,26]. 

 III.  Main results 

Theorem 1.  Let assumptions 1º - 8º hold. Then there exist a vicinity Q of the r-sliding set in Ωx at t 

= ta,  t1 ∈ (ta, tb) and a0, a1, ..., ar-1 > 0, such that with sufficiently small µ for any trajectory of (1), 

(4), (5) starting within Q at t = ta the inequalities |σ| < a0µ
r, | σ& | < a1µ

r-1, ..., |σ(r-1)| < ar-1µ are kept 

with t ≥  t1.  

Note that a global Theorem holds in the global case [19] with tb = ∞. Here and further the proofs 

are presented in Section IV. Assumption 8º is to be checked for each controller. Fortunately it holds 

for most known HOSM controllers. Consider some of them. 



Three known families of high-order sliding controllers are considered here 

          u =  - α Ψr-1,r(σ, σ& , ..., σ(r-1)),         (10) 

which are defined by recursive procedures. In the following α, β1,...,   βr-1 > 0 and i = 1,..., r-1. 

1. The following procedure defines the “nested” r-sliding controller (Levant 2003), based on a 

pseudo-nested structure of 1-sliding modes.  Let q be the least common multiple of 1, 2, ..., r. 

Controller (10) is built as follows: 

 Ni,r = (|σ|q/r+ | σ& |q/(r-1)+ ... + |σ(i-1)| q/(r-i+1))(r- i)/q ;  Ψ0,r = sign σ,    Ψi,r = sign(σ(i)+ βi Ni,r Ψi-1,r ).   

2. Controller (5) is called quasi-continuous (Levant, 2005b), if it can be redefined according to 

continuity everywhere except the r-sliding set  σ = σ& =  ... = σ
(r-1)= 0. The following procedure 

defines a family of quasi-continuous controllers (Levant, 2005b):  

  ϕ0,r = σ,  N0,r = |σ|,      Ψ0,r = ϕ0,r /N0,r = sign σ,  

  ϕi,r = σ(i)+βi
)1/()1(

,1
+−−

−
irr

riN Ψi-1,r,   Ni,r= |σ(i)|+βi
)1/()1(

,1
+−−

−
irr

riN ,     Ψi,r = ϕi,r / Ni,r.      

3. Let sat(z, ε) = min[1, max(-1, z/ε)]. Another family of quasi-continuous controllers (Levant, 

2005a) is obtained from the first family by the following homogeneous regularization:  

  Nr = (|σ|q/r+ | σ& |q/(r-1)+ ... + |σ(r-1)| q)1/q,   ψ0,r = sign σ,  ψi,r = sat([σ(i)+βi Ni,rψi-1,r]/ Nr
r-i,εi). 

Following are the nested sliding-mode controllers (of the first family) for r ≤ 4 with tested βi and q 

being the least multiple of 1,..., r: 

1. u = - α sign σ, 

2. u = - α sign( σ& + |σ|1/2sign σ), 

3. u = - α sign( σ&& + 2 (| σ& |3+|σ|2)1/6  sign( σ& + |σ|2/3sign σ)), 

4. u = - α sign{ σ&&& + 3( σ&&
6+ σ&

4+|σ|3)1/12 sign[ σ&& + ( σ&
4+|σ|3)1/6 sign( σ& +0.5 |σ|3/4sign σ )]}. 

It can be shown that the above sets of parameters βi with r ≤ 4 are valid for all 3 families of 

controllers, εi = 0.2 is chosen in that case for the third family. Note that while enlarging α increases 



the class (3) of systems, to which the controller is applicable, parameters βi, εi are tuned to provide 

for the needed convergence rate. The procedure of choosing the parameters is proposed in [24].  

Theorem 2. The listed 3 families of arbitrary-order sliding-mode controllers satisfy Assumption 8º.  

 Also generalized controllers [25] as well as all 2-sliding controllers from [17,21],  which do not 

require switching on the axis σ&  = 0, can be shown to satisfy Assumption 8º. The popular sub-

optimal 2-sliding controller [2,3,8] does satisfy Assumption 8º, though it has memory and, therefore, 

does not have the form (5). As follows from the proof, Theorem 1 is true also for it.  

 Unfortunately, the twisting controller  

       u =  - α1 sign σ -  α2 sign σ& ,    α1 > α2 > 0     (11) 

does not satisfy Assumption 8º. Indeed, the set Γ consists of the axes σ = 0, σ&  = 0, and (10) having 

been applied, the possibility of the sliding mode σ&  = 0 appears, preventing the convergence of σ to 

0. Nevertheless, the switching logic can be changed preserving the same trajectories, if the twisting 

controller (11) is considered as a particular case of the generalized sub-optimal controller with the 

switching parameter β = 0 [2]. Another way is to require the following assumption. 

Assumption 9º. There is a constant k > 0 such that for any ε > 0 with sufficiently small δ > 0 the 

reaction of the actuator output v(t) to a step-wise change ∆u of any constant input u at the moment t0 

with |v(t0) - u | < δ satisfies the inequality |v(t) - u| < ε + k |∆u| for any t > t0. 

 In the case of a linear actuator this assumption is satisfied if the overshoot of the reaction to a step 

function does not exceed 100 k %. 

 As follows from the Assumptions 1º, 2º, the rth derivative of the output σ is uniformly bounded 

by C + KMvM. Thus, an r-th order exact robust homogeneous differentiator [18] with finite-time 

convergence can be applied here, producing exact estimations of σ& , ..., σ
(r-1) and due to the 

homogeneity preserving the asymptotics from Theorem 1 [19]. It can be shown that the resulting 

system is robust with respect to small measurement noises. 



Remark 1. In practice, one cannot expect the output of the actuator to perform in the only possible 

way to prevent the convergence of the twisting controller by establishing sliding motion on the axis 

σ&  = 0. Therefore, Assumption 7º is probably redundant.  

Remark 2. A slightly generalized Assumption 7º can be considered, when the actuator instead of 

tracking the input u tracks γ u, where γ > 0 is some uncertain constant. The listed HOSM controllers 

are capable to compensate for such a systematic actuator error, if their output is proportionally 

increased. 

  III.      Proofs 

Lemma 1. Under assumptions 1º - 6º suppose that for some µ = µ0 there exist a ball B centered at Σ 

= 0 and a bounded invariant set  Θ in finite time attracting all trajectories of the inclusion (4), (5), 

(8) starting from B×Ωz0. Then the statement of Theorem1 holds. 

Proof of Lemma 1. Due to the homogeneity property (7) with κ > 0 the transformation  

  Gκ: (t, Σ, z, µ) a ( κ t, dκ Σ, z, κµ),  dκ: (σ, σ& , ..., σ(r-1)) a ( κr σ, κ(r-1)
σ& , ..., κ σ(r-1)),   (11) 

transfers the trajectories of the inclusion (4), (5), (8) into the trajectories of the same inclusion but 

with the actuator parameter changed from µ to κµ. Choose any t2, 0 < t2 < tb - ta. Let Θ ⊂ ΘΣ × Θz, 

where ΘΣ ⊂ Rr, Θz ⊂ Ωz are some bounded regions. With λ small enough get that with µ = λµ0 the 

trajectories starting from dλB×Ωz0 converge to the invariant set Θ1 ⊂ dλΘΣ × Θz in the time t2.  

 Let the set dλΘΣ × Θz satisfy the inequalities |σ(i)| ≤ γ, i = 0,..., r-1, and ||z|| ≤ γ, then for an 

arbitrary parameter µ and κ = µ/(λµ0) obtain that (11) transfers Θ1 ⊂ dλΘΣ × Θz into Θ2 ⊂ dκλΘ × Θz 

being the invariant set of (4), (5), (8). The set dκλΘ satisfies the inequalities |σ| < a0µ
r, | σ& | < a1µ

r-1, 

...,    |σ(r-1)| < ar-1µ with ai = γ(λµ0)
i-r. The new convergence time does not exceed µ t2/(λµ0). 

 Define Q ⊂ Ωx as the subset of points with Σ belonging to dλB at t = ta, and let t1 = ta + t2.n 

Lemma 2. Under Assumptions 2º, 5º let the input u(t) of the actuator (4) be a Lipschitz function of 

time u(t) with some fixed Lipschitz constant.  Then for any δ, ε > 0 with sufficiently small µ the 

inequality  |v - u| ≤ ε is established in the time δ and is kept afterwards. 



Proof. Let the Lipschitz constant of u(t) be L > 0. Consider the time transformation t = µ τ. Then (4) 

takes the form 

        z&  = f(z, u1(τ)),    v = v(z),  u1(τ) = u(µ τ).     

The function u1(τ) is also Lipschitzian, but with the Lipschitz constant µL. Fix some initial value t0 

of the time t corresponding to τ = t0/µ. Let T > 0 be the time τ needed to establish the inequality |v - 

u1| ≤ ε/4 with any constant u1= u0, |u0| ≤ uM. Take u0 = u1(t0/µ) = u(t0). With sufficiently small µ the 

change of u1 is arbitrarily small during the time 2Τ. Thus, since the function f is uniformly 

continuous in the actuator input, and due to the continuous dependence of the solution z(t) on the 

right-hand side, the inequality |v - u1| ≤ ε/2 is established in time Τ, and |v - u1| ≤ ε is kept during the 

next interval of the same length. Applying the same reasoning from the moment τ = t0/µ + Τ obtain 

taking u0 = u1(t0/µ + Τ) = u(t0+ µT) that |v - u1| ≤ ε holds also during the third interval. Continuing 

this reasoning, obtain that |v - u1| ≤ ε is kept forever. Returning to the original time t = µ τ obtain the 

statement of the Lemma. n  

Proof of Theorem 1. Consider some closed vicinity of the origin Σ = 0. Let t* be the maximal time 

of convergence to 0 for the trajectories of (8), (9) starting in this vicinity. The set Θ of points of the 

trajectory segments of the length t* starting in the chosen vicinity of Σ = 0 is a compact region [9], 

which is obviously invariant with respect to (8), (9). Moreover, due to the finite-time stability of the 

inclusion it attracts any trajectory of (8), (9) in finite time. The same is naturaly true with respect to 

(5), (6), (8), since its solutions satisfy also (8), (9). Note that, due to the homogeneity, any set dκΘ, κ 

> 0, features the same properties and dηΘ ⊂ dκΘ with κ > η > 0, where dκ is defined in (12). 

Denote d1+p = {dκ p | κ ≥ 1}, d+p = {dκ p | κ ≥ 0}, and let Oδ(p) be the closed δ-vicinity of the point p 

∈ Rr, i.e. the points distanced from p by not more than δ. Obviously d1+Γ = d+Γ = Γ, Oδ(0) ⊂. Oδ(Γ), 

since  0 ∈ Γ, and d1+Oδ(0) = Rr. 



 Take some small 1 > δ > 0. According to the definition of the control-singularity set Γ, the 

function U has a Lipschitz constant L valid in the whole precompact set Θ \ Oδ/2(Γ). Respectively, 

the functions U(Σ(t)) calculated along the trajectories of the inclusion σ(r) ∈ [-vM, vM] in Θ \ Oδ/2(Γ) 

have a common Lipschitz constant L. Then the functions U(Σ(t)) have the same Lipschitz constant in 

the whole set Rr\Hδ/2(Γ), where Hδ/2(Γ) = d1+[Θ∩Oδ/2(Γ)\Oδ/2(0)]∪Oδ/2(0). Indeed, any trajectory Σ(t) 

lying in Rr\Hδ/2(Γ) and passing through Σ(t0) can be locally represented as dκΣ1(κ(t - t0)), where Σ1(t - 

t0) ∈ Θ\Oδ/2(Γ), Σ(t0) = dκΣ1(0), κ ≥ 1. Thus, U(Σ(t)) = U(dκΣ1(κ
-1(t - t0))) = U(Σ1(κ

-1(t - t0))), and its 

Lipschitz constant is L/κ ≤ L. 

 It follows now from Lemma 2 that with sufficiently small µ after arbitrarily short transient, 

whose length is determined by µ, the trajectories of (4), (5), (8) satisfy (8) and 

        v ∈ 




Γ∈Σ−
Γ∉Σγγ−+Σ

δ

δ

)(  ],,[
)(  ],,[)(

Hvv
HU

MM
,         (13) 

where, as always, the inclusion (8), (13) is understood in the Filippov sense, i.e. is replaced by the 

minimal Filippov inclusion [19]. Indeed, v ∈ [vM, vM] is always true; the velocity Σ&  is uniformly 

bounded; and the minimal distance between Hδ/2(Γ) and Rr\Hδ(Γ) is actually determined inside the 

region Θ, since dκ enlarges distances with κ > 1. Thus, the minimal time needed to reach Rr\Hδ(Γ) 

from Hδ/2(Γ) is separated from zero by some τm > 0. Now, starting from the initial time plus τm, any 

point of the trajectory of (4), (5), (8) in Rr\Hδ(Γ) is preceded by a trajectory segment of the time 

length τm which lies in Rr\Hδ/2(Γ). According to Lemma 2, it is sufficient now to take µ so small that 

the transient time, corresponding to the Lipschitz constant L, be less than τm, providing for  |v - u| ≤ γ 

thereafter. 

 Thus, differential inclusion (8), (13) is to be considered now, which in its turn is a perturbation of 

(8) and 



          v ∈ 




Γ∈Σ−
Γ∉Σγγ−+Σ

δδ+

δδ+

))0(\)((  ],,[
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Differential inclusion (8), (14) can be considered as a small homogeneous perturbation of the r-

sliding homogeneous finite-time-stable differential inclusion (8), (9). Therefore, (8), (14) is also 

finite-time stable with sufficiently small γ and δ [19]. The Theorem follows now from Lemma 1, 

since (13) and (14) differ only in the vicinity Oδ(0) of the origin.n 

Proof of Theorem 2. The change of (5), (6), (8) to (8), (9) can generate new motions only on the 

singularity set Γ. Supposing that the trajectory immediately leaves Γ obtain a trajectory which 

satisfies (5), (6), (8) almost everywhere, i.e. one of the solutions of (5), (6), (8). Thus, any new 

motion is to remain on Γ during some time interval. It means that such motion can appear only in the 

points Σ ∈ Γ, where the vector set ( σ& , ..., σ(r-1), [-vM, vM])t contains a vector tangential to Γ. Call it 

the tangentiality condition. 

 In the case of the nested r-sliding controller (the first family) Γ consists of the discontinuity set of 

the control and of the points where Ni,r = 0, i = 1,..., r - 1,  and, therefore, the control is not 

Lipschitzian. The set Ni,r = 0 is the set σ = σ& = ... = σ(i-1) = 0, and the above tangentiality condition 

requires Σ ≡ 0. Such a motion satisfies also (5), (6), (8) and is not a new one.  

 Consider now the discontinuity set. The main point of the convergence proof for the first family 

of controllers is that after some transient the trajectory never leaves some relatively small vicinity of 

the discontinuity set determined by the control gain α [18]. Any new motions on the discontinuity set 

do not interfere with this proof, which establishes the Lemma for the first family. 

 In the case of the second family of controllers Γ contains only points where Ni,r = 0, i = 1,..., r – 1, 

with differently defined Ni,r (see Section III). It can be shown by induction that Ni,r = 0 iff σ = σ& = ... 

= σ(i) = 0. Thus, the tangentiality condition requires Σ ≡ 0. This is not a new motion. Thus, in this 

case solutions of (5), (6), (8) and (8), (9) coincide. 



 The singularity set Γ of the third family consists only of the origin σ = σ&  = ... = σ(r-1)= 0, which 

makes the Theorem trivial in that case. n 

 ` IV.       Simulation 

Already traditional example of the kinematic car model  

      x&  = v cos ϕ,    y&  = v sin ϕ,        ϕ& = l
v  tan θ,    θ& = uact, 

is chosen. Here x and y are Cartesian coordinates of the rear-axle middle point, ϕ is the orientation 

angle, v is the longitudinal velocity, l is the length between the two axles and θ is the steering angle 

(Fig. 1a), uact is the actuator output. The task is to steer the car from a given initial position to the 

trajectory y = g(x), while g(x) and y are assumed to be measured in real time. Let v = const = 10 m/s, 

l = 5 m, g(x) = 10 sin(0.05x) + 5, x = y = ϕ = θ = 0 at t = 0.  

 Define σ = y - g(x). The relative degree of the system is 3 and 3-sliding controller can be applied 

here. A representative of the less known third family was chosen for demonstration. The resulting 

output-feedback controller (7), (8) is defined as  

N3 = (|w0|
2 + |w1|

3+ | w2|
6)1/6,    sat(p,0.2) = min[1, max(-1, 5p)], 

u = - 0.5 sat{[ w2+2(|w1|
3+|w0|

2)1/6sat((w1+|w0|
2/3sign σ) /N3,0.2)]/N3, 0.2}, 

where wi are the real time estimations of the derivatives σ(i),  i = 0, 1, 2, obtained by the differentiator 

0w&  = ξ0,      ξ 0 = - 9 | w0 - σ| 2/3 sign(w0 - σ) + w1, 

1w&  = ξ 1,  ξ 1 = - 15 | w1 - ξ 0|
 1/2  sign(w1 - ξ 0) +w2, 

2w& = - 110 sign(w2 - ξ 1). 

The initial conditions of the differentiator are w0(0) = σ(0), w1(0) = w2(0) = 0.  

The control is applied only starting from t = 1 in order to provide some time for the differentiator 

convergence. The actuator is described by the transfer function 

        F(s) = 
122

1
2233 +µ+µ+µ

+µ

sss
s  



realized in the form 

   µ 1z& = z2,  µ 2z& = z3,  µ 3z& = - z1- 2 z2 - 2 z3 + u,   uact =  z1 + z2, 

with zero initial conditions. 

The integration was carried out according to the Euler method (the only reliable integration method 

with discontinuous dynamics), the sampling step being equal to the integration step t = 10-4. Tracking 

accuracies are listed in Table 1. It is seen that the accuracies of Σ, σ& , σ&&  are proportional to µ3, µ2, 

and µ respectively (Fig. 1d, e, f). It is seen from Fig. 1c that the differentiator convergence takes 

about 0.9 s. The system performs remarkably well with a rather large actuator time constant µ = 0.08. 

Indeed, the tracking deviation is only 4 cm. (Fig. 1b).  

TABLE I:   TRACKING ACCURACIES WITH DIFFERENT ACTUATOR TIME CONSTANTS 

µ Sup |σ| Sup | σ& | Sup | σ&& | 

0.01  0.0000765 0.00294 0.189 

0.02 0.000644 0.0102 0.374 

0.04 0.00529 0.0408 0.746 

0.08 0.0433 0.182 1.50 

 

 The actuator performance and the resulting steering angles are demonstrated in Fig. 2. Since 

sliding control signals are actually very fast, one can see from Fig. 2b, d that the actuator performs as 

a low-pass filter. On the first glance this contradicts the idea of the proofs that the actuator tracks the 

input with good precision, if the coordinates are distanced from the 3-sliding manifold. In fact, such 

tracking would be observed here only with very small µ, which in its turn also requires a very small 

integration step.  

 Actuators with other transfer functions were also considered providing for similar simulation 

results. 

  



 

Fig. 1: Car model (a), trajectory tracking (b) and differentiator convergence (c) with µ = 

0.08; comparison of 3-sliding deviations with µ = 0.08, 0.04, 0.02 (d, e, f) 



 

Fig. 2: Steering angle (a, c) and actuator performance (b, d) with  µ =  0.04, 0.02 

 

  V.    Conclusions 

The main conclusion is that stable fast actuators do not really destroy the performance of 

homogeneous high-order sliding-mode controllers. The resulting asymptotic sliding accuracy does 

not depend on the relative degree of the actuator and is only determined by the sliding order and the 

actuator time constant. The only exclusion is a rare case, when an asymptotically stable sliding mode 

σ ≡ 0 arises with the sliding order being equal to the sum of the system and actuator relative degrees. 

In such a case the residual chattering gradually disappears, and, though the Theorems are surely still 

valid, the coefficients ai can be taken arbitrarily small in Theorem 1. Probably, it is only possible 

when both relative degrees equal one [13]. 

 One can consider application of smoothing filters at the input of an actuator device, which does 



not accept discontinuous inputs. If the time constant of the additional artificial actuator is sufficiently 

small, the resulting actuators will still provide for good performance due to the high sliding order 

(Fig. 1b).  

 The most widely used application of high-order sliding modes is based on the artificial increase 

of the relative degree, when the control derivative is treated as a new control. This results in a 

smooth control entering an actuator. Also noisy fast stable sensors are to be considered at the output 

of the system.. Due to the restrictions of the brief paper framework the proof of the HOSM 

robustness in all these cases will be published in a separate paper. 
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