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Abstract

General features of finite-time-stable (FTS) homogeneous differential inclusions (DIs) are investigated in the context of sliding-
mode control (SMC). The continuity features of the settling-time functions of FTS homogeneous DIs are considered, and the
system asymptotic accuracy is calculated in the presence of disturbances, noises and delays. Performance of output-feedback
multi-input multi-output homogeneous SMC systems is studied in the presence of relative degree fluctuations. The bifurcation
of the kinematic-car-model relative degree is analyzed as an example.
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1 Introduction

Sliding mode (SM) control (SMC) [32,11] is based on
keeping σ ≡ 0 for an appropriate vector output σ called
the sliding variable. It results in possibly dangerous high-
frequency switching (chattering) [32,13,8]. The relative
degree of the components of σ should be 1, i.e. already σ̇
should contain controls. Recall that the relative degree
[16] is roughly the lowest order of the output’s total time
derivative containing controls with non-zero coefficients.

High-order SMs (HOSMs) have overcome the relative
degree restriction [2,3,8,17,27,31]. Introducing integra-
tors, one also effectively attenuates the chattering.

The auxiliary dynamics of sliding variables is naturally
described by differential inclusions (DIs). Finite-time
(FT) stabilization of such DIs becomes the main SMC
task. A control feedback yielding a FT stable (FTS) ho-
mogeneous DI solves the problem [1,7,5,18,19,26,29]. Re-
spectively HOSM controllers impose homogeneous dy-
namics on the sliding variables. The lacking derivatives
of σ are robustly estimated in FT by means of exact ho-
mogeneous differentiators [18]. The error dynamics of a
continuous-time system closed by discrete-time dynam-
ics of an output-feedback controller can be considered as
a special homogeneous hybrid dynamic system [15,14].
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Hence, the homogeneity theory has become the main
tool of SMC design, whereas the relative degree turns
to be its main parameter. In particular, the theory pro-
vides estimations of the transient times and accuracies
in the presence of disturbances [7,5,15], and the asymp-
totic system accuracies in the presence of noises and time
delays [19].

Small dynamic uncertainties can lower the relative de-
gree and destroy the above control design. Thus, the re-
sults [19] are to be extended to such disturbed cases. It
was proved in [4,5,15,21] that in the presence of bounded
disturbances homogeneous FTS DIs feature bounded FT
attractors. Unfortunately these results do not consider
time delays and sampling noises, and do not provide
for the corresponding asymptotic accuracy estimations.
This paper extends the results [19] to disturbed FTS DIs
and fills that gap.

The present paper studies some general features of FTS
homogeneous DIs. In particular it corrects a few inaccu-
racies which appear in [19] with respect to the continuity
features of the settling-time functions, and extends and
generalizes the accuracy estimations from [19,24]. The
asymptotics of the transient time and the accuracy of
FTS homogeneous DIs in the presence of dynamic dis-
turbances, sampling noises and time delays is calculated.

The results are applied to the analysis of disturbed
multi-input multi-output (MIMO) systems under ho-
mogeneous output-feedback SMC. A case study consid-
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ers the bifurcation of the kinematic-car-model relative
degree. The asymptotic accuracies are calculated theo-
retically and confirmed by simulation.

Some notation and definitions

Let s ∈ Rm, $ ≥ 1. Denote ‖s‖$ = (|s1|$ + . . .+

|sm|$)
1/$

, ‖s‖∞ = max{|s1|, ..., |sm|}, ‖s‖ = ‖s‖2.

Any binary operation � of two sets is defined as A �B =
{a � b| a ∈ A, b ∈ B}. A vector (point) is considered
as a one-element set in that context. Let s ∈ Rm, A ⊂
Rm. Then the distance is defined, dist(s,A) = inf{|s −
a| | a ∈ A}. A set-valued function F (s) is called upper-
semicontinuous if lim

s→s̃
[sup{dist(z, F (s̃))|z ∈ F (s)}] = 0.

Denote Aε = {s ∈ Rm | dist(s,A) ≤ ε}. For any func-
tion F and set M denote F (M) =

⋃
s∈M

F (s).

A scalar function f : D → R, D ⊂ Rm, is called upper
semicontinuous (respectively, lower semicontinuous) at
a point s0 ∈ D, if for any ε > 0 there exists δ > 0 such
that f(s) ≤ f(s0) + ε (respectively, f(s) ≥ f(s0) − ε)
for all s ∈ D ∩ {s0}δ.

2 Coordinate homogeneity and settling func-
tions

Consider a Filippov DI

ṡ ∈ F (s), s ∈ Rm. (1)

It means that F (s) ⊂ Rm is an upper-semicontinuous
non-empty compact convex set-valued function [12].

Such DIs feature the existence and extendability of lo-
cal solutions, and their continuous dependence on initial
conditions and the graph of the right-hand side [12]. So-
lutions of DI (1) are defined as locally absolutely contin-
uous functions satisfying (1) for almost any t.

Let DI (1) be also homogeneous of the degree q. The
latter means that F (s) = κ−q d−1

κ F (dκs) for any κ > 0
with the homogeneity dilation

dκ : (s1, ..., sm) 7→ (κw1s1, ..., κ
wmsm),

w1, w2, ..., wm > 0.
(2)

Here wi > 0 are called the weights (homogeneity de-
grees) of si, deg si = wi. Denote p = −q. The homogene-
ity of DI (1) is equivalent to the invariance of (1) with
respect to the time-coordinate transformation

Gκ : (t, s) 7→ (κpt, dκs). (3)

One can formally define deg t = p.

Recall that a function φ(s) is called homogeneous with
the homogeneity degree q, deg φ = q, if the identity
φ(s) = κ−qφ(dκs) holds for all s and κ > 0. The stan-
dard definition [1] of the homogeneity of the differential
equation ṡ = f(s) = (f1(s), ..., fm(s))T is that deg ṡi =
deg si− deg t = deg fi. Definitions coincide, if the equa-
tion ṡ = f(s) is considered as the DI ṡ ∈ {f(s)}.

A homogeneous norm ‖s‖h is any positive-definite con-
tinuous function of s of the weight 1. It is never smooth

at 0, but ‖s‖h =
(
|s1|$/w1 + ...+ |sm|$/wm

)1/$
, $ ≥

maxi wi, is 1-smooth at s 6= 0.

Note that all homogeneity degrees are simultaneously
multiplied by λw > 0 as the result of the substitution
κ = κ̃λw . In particular, a non-zero homogeneity degree
q = −p can always be scaled to ±1.

Proposition 1 Let (1) be a Filippov homogeneous DI
with the dilation (2) and the homogeneity transformation
(3). Then for any i = 1, . . . ,m either wi ≥ p, or the
ith vector component of the inclusion is identical zero
everywhere except the origin.

PROOF. Indeed, let F (s) contain a vector v =
(v1, ..., vm) with vi 6= 0. Thus F (dκs) = κ−pdκF (s) con-
tains the vector κ−pdκv with its ith component equal
to κwi−pvi. In the case wi < p this component tends to
infinity for κ → 0, and, respectively, due to the upper
semicontinuity of F the set F (0) is not bounded. Hence
(1) is not a Filippov DI. 2

Obviously, no vector component of an asymptotically
stable DI is identical zero. Thus for such DIs wi ≥ p for
i = 1, . . . ,m.

DI (1) is called finite-time stable (FTS), if the origin 0 is
a Lyapunov-stable constant solution, and each solution
of the DI stabilizes at 0 in FT.

Proposition 2 Let (1)-(3) define a FTS Filippov homo-
geneous DI. Then p > 0, and wi ≥ p for i = 1, . . . ,m.

PROOF. Obviously ∀i wi ≥ p. Prove that p > 0.

Choose the sphere S1 = {‖s‖ = 1} and any κ0 ∈ (0, 1).
Obviously, dκ0S1 lies inside the sphere S1. Due to its
upper-semicontinuity the set function F is bounded on
each compact, in particular between S1 and dκ0

S1. Thus
there exists a number Tm > 0, such that no trajectory
starting on S1 hits dκ0

S1 in time less than Tm. Applying
the transformation (3) with the parameter κk0 to such
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trajectories obtain that for any integer k no trajectory

starting on dkκ0
S1 hits dk+1

κ0
S1 in time less than κkp0 Tm.

Any stabilizing trajectory starting on S1 hits the man-
ifolds dκ0

S1, d2
κ0
S1, ... on its way to 0. Assuming

p ≤ 0, get that the stabilization time is not less than

Tm
∑
k κ

kp
0 =∞. 2

It is known that the asymptotic stability of homogeneous
DIs with negative homogeneity degree, i.e. with p > 0,
is equivalent to their FT stability ([7,19,26].

Let Φ(s), s ∈ Rm, be the set of all solutions of (1) defined
for t ≥ 0, with the initial value s at the time t = 0.

For any ξ ∈ Φ(s), the functional T0(ξ) = inf{τ ≥
0 | ∀t ≥ τ, ξ(t) = 0} is called the settling-time of ξ(t).
If the set {τ ≥ 0 | ∀t ≥ τ, ξ(t) = 0} is empty then
the value T0(ξ) = ∞ is assigned. Note that due to the
FT stability of (1), T0(ξ) is finite, and ξ(t) = 0 for all
t ≥ T0(ξ).

Introduce the upper settling-time function T ∗(s) =
sup{T0(ξ) | ξ ∈ Φ(s)}, and the lower settling-time func-
tion T∗(s) = inf{T0(ξ) | ξ ∈ Φ(s)}. Obviously, the func-
tions T ∗(s) and T∗(s) are homogeneous of the weight p.
Indeed, due to the invariance of (1) with respect to the

transformation (3) get T ∗(dκs) = supξ̂∈Φ(dκs)
T0(ξ̂) =

supξ∈Φ(s) κ
p T0(ξ) = κp T ∗(s). The homogeneity of T∗

is similarly proved.

It was erroneously stated [19] that the maximal conver-
gence time of a FTS homogeneous DI is a continuous
function of initial conditions. The following proposition
corrects the statement.

Proposition 3 Let (1) be homogeneous FTS Filippov
DI with the homogeneity dilation (2) and transformation
(3). Then the following statements are true.
1. The set {T0(ξ) | ξ ∈ Φ(s)} is compact for any s ∈ Rm.
In particular, T ∗(s) = max{T0(ξ) | ξ ∈ Φ(s)}, T∗(s) =
min{T0(ξ) | ξ ∈ Φ(s)}, i.e., both functions are realized
on some solutions of (1).
2. The upper settling-time function T ∗(s) is an upper
semicontinuous function, whereas the lower settling-time
function T∗(s) is a lower semicontinuous function.
3. The functions T ∗ and T∗ satisfy the inequalities

c∗‖s‖ph ≤ T∗(s) ≤ T
∗(s) ≤ c∗‖s‖ph, (4)

for any s ∈ Rm and some constants c∗, c∗, 0 < c∗ < c∗,
dependent on DI (1) and the choice of the norm ‖s‖h.
4. Let 1 ≤ $ ≤ ∞, w = mini{wi} and W = maxi{wi},
i = 1, 2, ...m. Then, wi ≥ p > 0, and for each $ ≥ 1,
γ > 0 and any s ∈ Rm

a. ‖s‖$ ≥ γ implies that

µ$γ∗‖s‖p/W$ ≤ T∗(s) ≤ T ∗(s) ≤ µ∗$γ‖s‖p/w$ , (5)

b. ‖s‖$ ≤ γ implies that

ν$γ∗‖s‖p/w$ ≤ T∗(s) ≤ T ∗(s) ≤ ν∗$γ‖s‖p/W$ , (6)

where µ∗$γ , µ$γ∗, ν
∗
$γ , ν$γ∗ are some positive constants

independent of s.

PROOF. The global finite-time stability of (1) obvi-
ously implies its global asymptotic stability and there-
fore [9], its strong asymptotic stability. The latter also
implies that (1) is contractive [19] and, therefore, glob-
ally uniformly finite-time stable.

Consider the homogeneous ball and sphere Bh =
{‖x‖h ≤ 1}, Sh = {‖x‖h = 1}. The global uniform FT
stability of (1) implies that T ∗ is bounded on Bh, and
the boundedness of F on Bh [12] implies that T∗ on Sh is
separated from zero. Thus, (4) holds for ‖s‖h = 1, i.e. on
Sh. The homogeneity of T ∗ and T∗ implies (4) for any s.

Obviously, 0 < ĉ∗ ≤ ‖ŝ‖$ ≤ ĉ∗ for some constants ĉ∗,
ĉ∗ and any ŝ ∈ Sh. Thus, 0 < ĉ∗κ

w ≤ ‖s‖$ ≤ ĉ∗κW ,
where s = dκŝ, κ = ‖s‖h ≥ 1. Now inequality (5) follows
from inequality (4) after some adjustment of constants.
Similarly (6) is proved.

Choose δ0 > 0, such that supT ∗({s}δ0) ≤ c∗‖s‖ph + 1.
Let ΦI(s) be the set of all solutions from Φ(s) restricted
to I = [0, c∗‖s‖ph+1]. Then T0 is a continuous functional

on ΦI({s}δ0). Indeed, let ξn → ξ uniformly over I. Then
T0(ξn) ≤ T0(ξ) + T0(ξn(T0(ξ))) and T0(ξ) ≤ T0(ξn) +
T0(ξ(T0(ξn))). On the other hand T0(ξn(T0(ξ))) → 0,
T0(ξ(T0(ξn)))→ 0 due to (4). Thus T0(ξn)→ T0(ξ).

Prove that T0(Φ(s)) is a compact set inR for any s ∈ Rm.
Note that ΦI(s) is a compact set in the C metric [12].
Let T0,I |ΦI(s) = T0|Φ(s) over {s}δ0 . Let {T0,I(ξn)}, ξn ∈
ΦI(s), be any sequence. Then there is a subsequence

{ξnk} of {ξn} uniformly converging to a limit ξ̂ ∈ ΦI(s).

Hence, the subsequence {T0,I(ξnk)} converges to T0,I(ξ̂),
and T0(Φ(s)) is compact. Now the realization of T ∗ and
T∗ on some solutions from Φ(s) is immediately obtained.

Prove that T ∗ (respectively T∗) is upper (lower) semi-
continuous function. Fix any point ŝ ∈ Rm. Let ξsn
be solutions starting at sn, sn → ŝ. Suppose that the
sequence T0(ξsn) converges. It contains a subsequence

ξsnk → ξ̂ ∈ Φ(ŝ) [12]. Now the continuity of T0 implies

limT0(ξsnk ) = T0(ξ̂) ∈ [T∗(ŝ), T
∗(ŝ)]. 2
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3 Accuracy of disturbed homogeneous inclu-
sions

One of the main applications of the homogeneity features
is the calculation of the system accuracy in the presence
of various dynamic disturbances, noises and delays. Fol-
lowing is the main idea of this calculation.

Consider a retarded DI ṡ(t) ∈ F (s(t − ρ[0, 1]), ρ), s ∈
Rm, ρ ≥ 0. The parameter ρ has the sense of the dis-
turbance intensity. Suppose that its solutions are bijec-
tionally transferred by the transformation (t, s, ρ) 7→
(κpt, dκs, κ

pρ), (2) onto solutions of the same system
with the different parameter κpρ. Also suppose that for
some ρ0 all solutions in finite time concentrate in some
vicinity |si| ≤ ai, i = 1, ...,m, of 0. Then applying the

above transformation with the parameter κ = ( ρρ0 )
1
p ob-

tain that for any ρ ≥ 0 in some time all solutions satisfy

|si| ≤ νiρ
wi
p , where νi = aiρ0

−wip .

Solutions of disturbed FTS homogeneous DIs indeed
gather in bounded regions [19,21,6,5]. In the following we
generalize the system accuracy asymptotics [18,19,24,25]
to much more general case.

3.1 Accuracy of generally disturbed homogeneous dif-
ferential inclusions

The disturbed-system model is constructed in a few
steps. First consider the disturbed DI

ṡ ∈ F (s, γ), s ∈ Rm, γ ∈ Rµ,
γ = (γ1, ..., γη), γj ∈ Rµj , µ = µ1 + ...+ µη,

(7)

where γ is the vector disturbance parameter to be vari-
able in the sequel. Impose the following assumptions.

A1 The set field F (s, γ) ⊂ Rm is a non-empty compact
convex set-valued function, upper-semicontinuous at
all points (s, 0), s ∈ Rm, 0 ∈ Rµ.

A2 The undisturbed inclusion ṡ ∈ F (s, 0) is FTS and
homogeneous of the degree −p, p > 0. The corre-
sponding homogeneity dilation dκ : (s1, ..., sm) 7→
(κw1s1, ..., κ

wmsm) defines the weightsw1, ..., wm > 0.
Recall that wi ≥ p (Proposition 2).

A3 Inclusion (7) is also homogeneous in the dis-
turbance variable. The corresponding dilation
∆κ : γ 7→ (∆1κγ1, ...,∆ηκγη), ∆jκ : (γj1, ..., γjµj ) 7→
(κω1jγj1, ..., κ

ωjµj γjµj ), defines the positive weights
deg γji = ωji > 0. It is assumed that the time-
coordinate-parameter transformation

(t, s, γ) 7→ (κpt, dκs,∆κγ) (8)

establishes a one-to-one correspondence between the
solutions of the inclusions (7) with different parame-
ters γ. In other words, F (s, γ) = κp d−1

κ F (dκs,∆κγ).

In many practical cases the disturbance is only known
to belong to some variable bounded set depending on
the state s and some intensity parameters. In order to
apply the further results, all possible disturbances γ
are considered as particular elements (“realizations”) of
a larger set-valued homogeneous disturbance function
Γ(ρ, s) = (Γ1(ρ, s), ...,Γη(ρ, s)) with a properly defined
magnitude parameter ρ. The corresponding set-valued
disturbance Γj(ρ, s) ⊂ Rµj is to satisfy the following
conditions for j = 1, ..., η.

D1 Γj(ρ, s) ⊂ Rµj is a set-valued function with non-
empty compact values, s ∈ Rm, ρ ≥ 0.

D2 The disturbance satisfies the homogeneity condition
∀κ, ρ ≥ 0,∀s ∈ Rm : Γj(κ

wρρ, dκs) = ∆κ Γj(ρ, s),
wρ > 0; Γj(0, s) ≡ {0} ⊂ Rµj .

D3 Γj monotonously increases with respect to the pa-
rameter ρ in the sense that for any s the inequality
0 ≤ ρ ≤ ρ̂ implies Γj(ρ, s) ⊂ Γj(ρ̂, s).

D4 Γj(ρ, s) is Hausdorff-continuous in ρ, s at the points
with ρ = 0.

It is easy to see that the time-coordinate-parameter
transformation

G̃κ : (t, ρ, s) 7→ (κpt, κwρρ, dκs) (9)

establishes a one-to-one correspondence between the so-
lutions of ṡ ∈ F (s,Γ(ρ, s)) with different values of ρ.

Obviously (Γ1(ρ1, s), ...,Γη(ρη, s)) ⊂ Γ(ρ, s) for ρ ≥
max ρj . Also, due to the homogeneity of Γ and the com-
pactness of the disk ||s|| ≤ R for any R > 0 and any
ε > 0, there exists ρ > 0 such that ||s|| ≤ R implies that
∀z ∈ Γ(ρ, s): ‖z‖ < ε. In addition with any fixed ρ ≥ 0
the function Γ maps bounded sets to bounded sets.

Our final model is the general retarded DI

ṡ(t) ∈ F (s(t− τ [0, 1]),Γ(ρ, s(t− τ [0, 1]))),

Γ(ρ, s(t− τ [0, 1])) =

(Γ1(ρ, s(t− τ [0, 1])), ...,Γη(ρ, s(t− τ [0, 1]))),

(10)

where τ ≥ 0 is the maximal possible time delay, and
ρ ≥ 0 is the maximal intensity of the disturbances Γj .

Each component si, i = 1, ...,m, of s appears η + 1
times in (10) (in function F itself and in Γj). In order to
increase the model applicability it is assumed here that
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each argument si at each of its η+1 appearances in (10)
has its own independent delay belonging to τ [0, 1].

The presence of the delays in (10) requires some initial
conditions

s(t) = ξ(t), t ∈ [−τ, 0], ξ ∈ Ξ(τ, ρ, s0). (11)

In order to get meaningful results, the initial conditions
should satisfy some natural homogeneity properties cor-
responding to the above conditions D1 - D4.

I1 Ξ(τ, ρ, s), s ∈ Rm, τ, ρ ≥ 0, is a set of bounded
Lebesgue-measurable functions of time, ξ(t) ∈ Rm,
t ∈ [−τ, 0], ξ(0) = s.

I2 Initial-condition sets satisfy the homogeneity con-
dition in the sense that transformation (9) estab-
lishes the one-to-one correspondence ξ(t) 7→ dκξ(κ

pt)
between the functions of the sets Ξ(τ, ρ, s) and
Ξ(κpτ, κwρρ, dκs).

I3 Initial-condition sets monotonously increase with
respect to the parameters τ, ρ in the sense that for
any s the inequalities 0 ≤ τ ≤ τ̂ , 0 ≤ ρ ≤ ρ̂ imply
that the functions from Ξ(τ̂ , ρ̂, s) restricted to the
time interval [τ, 0] include all functions of Ξ(τ, ρ, s).

I4 Initial-conditions are uniformly continuous in τ, ρ at
τ = ρ = 0 in the sense that for some R > 0 and any
ε > 0 there exist τ, ρ > 0, such that ||s|| ≤ R implies
that ∀ξ ∈ Ξ(τ, ρ, s) ∀t ∈ [−τ, 0] : ‖ξ(t)‖ < ε.

The sets of initial conditions are to be sufficiently large
to include initial conditions corresponding to concrete
practical problems. It is easy to prove that under as-
sumptions A1-A3, D1-D4 there exists such $ > 0 that
for any s ∈ Rm ρ ≥ 0

F (s,Γ(ρ, s)) ⊂ $(||s||h + ρ1/wρ)
−p
d(||s||h+ρ1/wρ )Q,

where Q = {s ∈ Rm; |si| ≤ 1, i = 1, ...,m}. This justi-
fies the following construction of a reasonably large fam-
ily Ξ$(τ, ρ, s), $ > 0, of initial-condition sets, which
satisfies the above conditions I1-I4 and is sufficient in
most cases, provided $ is chosen large enough.

Define Ξ$(τ, ρ, s) as the solutions of the simple Filippov
differential inclusion

ξ̇i ∈ $
(
‖ξ‖h + ρ1/wρ

)wi−p
[−1, 1], i = 1, ...,m,

ξ(0) = s, −τ ≤ t ≤ 0.
(12)

Recall that wi ≥ p due to the finite-time stability of the
undisturbed inclusion with ρ = 0. It is also formally as-
sumed here that ∀c ≥ 0 : c0 ≡ 1. Inclusion (12) is homo-

geneous (i.e. invariant) with respect to the transforma-
tion (t, τ, ρ, ξ, s) 7→ (κpt, κpτ, κwρρ, dκξ, dκs).

Obviously regular solutions of ṡ ∈ F (s, 0) always sat-
isfy (10), i.e. solutions of (10) always exist. Also a par-
ticular kind of solutions with “discrete measurements”
always exist and are extendable till t = ∞. They cor-
respond to the solutions with the right-hand side of
the inclusion frozen between the “sampling instants”,
ṡ(t) = ṡ(tk) ∈ F (s(tk),Γ(ρ, s(tk))), t ∈ [tk, tk+1], with
the time periods tk+1 − tk ≤ τ . Both types of solutions
are trivially compatible with the above construction (12)
of initial conditions.

Theorem 1 There are such constants νi > 0 that after
a FT transient all indefinitely extendable solutions of
the disturbed DI (10) enter the region |si(t)| ≤ νiδ

wi ,
δ = max{ρ1/wρ , τ1/p}, to stay there forever.

An equivalent formulation is that from some moment
|si(t)| ≤ νi‖ρ, τ‖wih holds for any homogeneous norm
with deg ρ = wρ, deg t = p and appropriate νi.

The proof of the Theorem is based on the following
Lemma, which describes the particular case of Theorem
1. Let the weights of the time t and the disturbance in-
tensity ρ be the same, p = wρ = 1. Also assume that
ρ = τ . Thus, (10) is reduced to the simpler inclusion

ṡ(t) ∈ F (s(t− ρ[0, 1]),Γ(ρ, s(t− ρ[0, 1]))). (13)

Lemma 1 Let p = wρ = 1, then all solutions of the
disturbed differential inclusion (13) after a finite-time
transient concentrate in the region |si(t)| ≤ νiρwi to stay
there forever. The constants νi > 0 do not depend on
ρ ≥ 0.

PROOF of the theorem. Any solution of (10) satisfies
the disturbed differential inclusion

ṡ ∈ F (s(t− ρ̃[0, 1]), Γ̃(ρ̃, s(t− ρ̃[0, 1])))

with ρ̃ = δp, Γ̃(ρ̃, s) = Γ(ρ̃wρ/p, s) and the initial con-
ditions s(t) = ξ(t), t ∈ [−ρ̃, 0], ξ(0) = s0. Now Lemma
1 is applied. 2

PROOF of the Lemma. Due to the strong finite-time
stability of the differential inclusion ṡ ∈ F (s, 0) [9] with
ρ = 0 all solutions of (13), (11) that start at the time
t = 0 in a closed ball B0, centered at the origin, con-
verge to the origin in some time T . The points of the
corresponding trajectories over the time interval [0, T ]
constitute a compact set [12]. Let this set be contained
within the interior of a larger closed ball B1, B0 ⊂ B1.

Due to the conditions A1-A3, D1-D4 and I1-I4, for
any small δ > 0 with sufficiently small ρ > 0 solu-
tions of (13), (11) passing through the ball B1 satisfy

5



ṡ ∈ Fδ = {convex.closureF ({(s, 0)}δ)}δ. Therefore [12],
with small enough ρ all solutions of (13), (11), allocated
in B0 at any time t0 ≥ 0, converge to some small com-
pact vicinity W0 ⊂ B0 of the origin at the time t0 + T .
Similarly, with small enough ρ any solution of (13), (11)
allocated in W0 at any time t0 ≥ 0 does not leave some
larger neighborhood of the origin that is still contained
in the interior of B0 during the time interval [t0, t0 +T ].

Fix a corresponding value ρ0 of ρ, which satisfies all
the above requirements, and let W be a compact set
comprising all trajectory segments of ṡ ∈ Fδ allocated in
W0 at some time t0 ≥ 0 over the time interval [t0, t0+T ].
Obviously, W0 ⊂ W ⊂ B0, W is an invariant attractor
of (13), (11) and lies in the interior of B0.

There exists κ, 0 < κ < 1, such that W ⊂ dκB0 ⊂ B0.
Therefore, any solution of (13), (11) localized in B0 at
any time t0 ≥ 0 is localized in dκB0 at the time t0 + T
(the contractivity feature [19]). Due to the homogeneity
property of the disturbances and of the initial conditions
with respect to the transformation (9) obtain that the
contractivity property is preserved under the transfor-
mation Ĝκ−1 with the disturbance parameter ρ0 being
enlarged to κ−1ρ0. Thus all solutions with ρ = κ−1ρ0

pass from dκ−1B0 to B0 in the time κ−1T . Due to the
monotonicity features, obtain that this property is also
preserved for any ρ, ρ ≤ ρ0 ≤ κ−1ρ0.

Successively applying the transformation Ĝκ−1 get that
for ρ ≤ ρ0 solutions of (13), (11) pass from dκ−(j+1)B0

to dκ−lB0 in the time κ−(j+1)T , j = 0, 1, .... Therefore,
any solution of (13), (11) with ρ ≤ ρ0 converges to the
global attractor W in finite time.

Finally, let W satisfy |si| ≤ ai for some chosen ρ = ρ0.

Now applying the transformation Ĝκ with κ = ρ/ρ0 and
taking νi = ai/ρ

wi
0 achieve the needed asymptotics. 2

4 Accuracy of Disturbed Homogeneous SMs

4.1 Preliminaries

Consider a dynamic system of the form

ẋ = a(t, x) + b(t, x)u, σ = σ(t, x), (14)

where x ∈ Rnx , u ∈ Rn is the control, σ : Rnx+1 → Rn
and a, b are unknown smooth functions. The dimension
nx is nowhere used in the sequel. Here and further dif-
ferential equations are understood in the Filippov sense
[12]. Solutions of (14) are assumed infinitely extendible
in time for any Lebesgue-measurable bounded control
u(t, x). The informal control task is to keep the real-time
measured output σ as small as possible.

The a-priori numeric information on the system is pre-
sented by the integer vector r and positive numbers

Km,KM , p0, C. Also some quadratic matrix G(t, x) is
available in real time.

The vector relative degree r = (r1, ..., rn) of system (14)
is assumed to be constant and known. It means [16] that
for the first time the controls explicitly appear in the
rith total time derivative of σi, and

σ(r) = h(t, x) + g(t, x)u, (15)

where σ(r) = (σ
(r1)
1 , ..., σ

(rn)
n )T , g and h are some un-

known smooth functions, det g 6= 0.

The uncertain matrix g is described by the nominal di-
rectional matrix G, uncertain directional deviation ∆g,
and an uncertain size factor K, where

g(t, x) = K(t, x) (G(t, x) + ∆g(t, x)) ,∥∥∆g(t, x)G−1(t, x)
∥∥

1
≤ p0 < 1;

(16)

Here the norm ‖·‖1 of any matrix A = (aij) is defined as
‖A‖1 = max

i

∑
j

|aij |. The nominal value G(t, x(t)) can,

for example, be a table function of the measured outputs.
Similar assumptions are also adopted in [10].

FunctionsG, ∆g,K are Lebesgue-measurable. The func-
tion h and the factor K are assumed to be bounded

‖h(t, x)‖ ≤ C, 0 < Km ≤ K(t, x) ≤ KM . (17)

Note that all results can be in a natural way reformulated
for the case, when conditions (16), (17) hold locally [18].

The control transformation v = Gu yields σ(r) = h +
K(I + ∆gG−1)v.

Denote ~σi = (σi, . . . , σ
(ri−1)
i ), ~σ = (~σ1, . . . , ~σn). Let all

components of v have the same magnitude α, |vi| ≤ α,
i = 1, ..., n. Thus the resulting control is

u = G−1(t, x(t))v, vi = αϕi(~σ), |ϕi(~σ)| ≤ 1. (18)

Now (15), (16), (17) imply the differential inclusion

σ
(ri)
i ∈ [−C,C] + α[Km,KM ]([−p0, p0] + ϕi(~σ)). (19)

Here and further the resulting closed-loop autonomous
differential inclusions are understood as the minimal Fil-
ippov inclusions which contain them.

Thus, the problem is reduced to the stabilization of
(19), and is solved in a standard way [22]. First a
bounded virtual feedback control v is constructed, en-
suring the finite-time convergence of solutions of (19),
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(18) to the origin ~σ = 0 of the space ~σ. Next the lack-
ing derivatives of σ are real-time evaluated, producing
an output-feedback controller. Functions ϕi are to be
Borel-measurable. Thus, substituting any Lebesgue-
measurable noisy estimations of ~σ obtain Lebesgue-
measurable controls vi.

It is easy to see that the vector function ϕ is to be dis-
continuous at the r-sliding set ~σ = 0 [19,20]. Some other
properties of the controller (18) are described below.

The motion of system (14) on the set ~σ = 0 is called rth-
order SM or r-SM (see the general definition in [17,18]),
and (18) is called rth-order SM controller.

4.2 Homogeneous HOSM controllers

Suppose that feedback (18) imparts homogeneity prop-
erties to the closed-loop inclusion (19). Due to the term
[−C,C], the right-hand side of (19) can only have the

homogeneity degree 0 with C 6= 0. Thus, deg σ
(r)
i =

deg σ
(ri−1)
i −deg t = degϕi = 0, and deg σ

(ri−1)
i = deg t.

Similarly, deg σ
(ri−2)
i = 2 deg t, etc.

Scaling the system homogeneity degree to -1, deg t =
1, achieve that the homogeneity weights of σi , σ̇i, ...,

σ
(ri−1)
i are ri, ri−1, ..., 1 respectively. This homogeneity

is called the r-sliding homogeneity [19].

DI (19) is called r-sliding homogeneous if for any κ > 0
the combined time-coordinate transformation

(t, ~σ) 7→ (κt, d1,κ~σ1, ..., dn,κ~σn),

di,κ : ~σi 7→ (κriσi, κ
ri−1σ̇i, ..., κσ

(ri−1)
i )

(20)

preserves the closed-loop DI (19). Hence, the r-sliding
homogeneity condition is degϕ = 0 or, in other words,

ϕ(dκ~σ) ≡ ϕ(~σ). (21)

The virtual control v(~σ) from (18) is called r-sliding
homogeneous if the identity v(dκ~σ) ≡ v(~σ) holds for
any positive κ and any ~σ. Also the corresponding r-SM
σ ≡ 0 is called homogeneous in that case. It is further
assumed that the virtual control v is r-sliding homoge-
neous. Since it is locally bounded, due to (21) it is also
globally bounded, |vi| ≤ α.

In the single-input single-output (SISO) case n = 1, the
matrix G is just a number, and usually G = 1, v = u
are taken [18,19]. In particular, for r = 1 the control
u = −α signσ is 1-sliding homogeneous.

A number of such SISO homogeneous r-SM controllers
u = αΨr(~σ) is known for any r = 1, 2, ... (for example

see [18,20,28]). It is enough to adjust only the param-
eter α in order to control any system (14), (17) of the
corresponding scalar relative degree.

In particular, the nested ri-SM controllers [18] satisfy
the condition Ψri(~σi) = ±1. In that case, taking vi =
ϕi(~σ) = αΨri(~σi), one completely decouples DI (19),
(18). Respectively, for sufficiently large α it becomes
FTS. One can show that also other known homogeneous
ri-SM controllers can be successfully applied [22]. Gen-
eral construction of homogeneous HOSM controllers and
the choice of parameters are considered in [23,28].

4.3 Output-feedback control

Any r-sliding homogeneous controller (18) can be com-
plemented by n differentiators [18] of appropriate orders
producing an output feedback homogeneous controller.
The robust differentiation is here possible due to the

boundedness of σ
(ri)
i in its turn provided by the bound-

edness of the feedback function ϕi in (18) and (19).

Let a scalar function φ(t) satisfy |φ(kd+1)(t)| ≤ L. De-

note bAeB = |A|B signA, bAe0 = signA. Then the kdth-
order differentiator [18]

ζ̇0 = −λkdL
1

kd+1 bζ0 − φ(t)e
kd
kd+1 + ζ1,

ζ̇1 = −λkd−1L
1
kd

⌊
ζ1 − ζ̇0

⌉ kd−1

kd + ζ2,

...

ζ̇kd−1 = −λ1L
1
2

⌊
ζkd−1 − ζ̇kd−2

⌉ 1
2

+ ζkd ,

ζ̇kd = −λ0L sign(ζkd − ζ̇kd−1).

(22)

provides for the finite-time-exact estimations ζj of the

derivatives φ
(j)
0 , j = 0, . . . , kd. An infinite sequence of

parameters λi can be built, valid for any kd [18]. In par-
ticular, one can choose λ0 = 1.1, λ1 = 1.5, λ2 = 2,
λ3 = 3, λ4 = 5, λ5 = 8 [20], which is enough for kd ≤ 5.

Equations (22) can be rewritten in the standard (non-
recursive) dynamic-system form. Assuming that the se-
quence λj , j = 0, 1, ..., is the same over the whole paper,

denote (22) by the equality ζ̇ = Dkd(ζ, φ, L), ζ ∈ Rkd+1.

Incorporating the (ri− 1)th order differentiators obtain

u = αG−1(t, x)v, vi = αϕi(z), i = 1, 2, ..., n, (23)

żi = Dri−1(zi, σi, L), L ≥ C + αKM (1 + p0), (24)

σ
(ri)
i ∈ [−C,C] + α[Km,KM ]([−p0, p0] + ϕi(z)). (25)

Here z = (z1, ..., zn). Inclusion (24), (25) is homogeneous

with deg zij = deg σ
(j)
i = ri − j, deg t = 1. Respectively

the output-feedback controller (23), (24) provides for the
FT establishment of the r-SM ~σ = 0 [19,22].
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4.4 HOSM Accuracy under Relative Degree Fluctua-
tions

Assume that under conditions from Section 4.1 the out-
put feedback (23), (24) provides for the FT stability of
the system (14). Consider a perturbation of (14)

ẋ = a(t, x) + b(t, x)u+ ξ(t, x, u), σ = σ(t, x). (26)

The disturbance ξ is assumed to be a locally bounded
Lebesgue-measurable function. Solutions of (26) are as-
sumed infinitely extendible in time. Note that the rel-
ative degree of the perturbed system cannot be deter-
mined and possibly does not exist.

Assume that the output σi is measured with an error
not exceeding εσi ≥ 0 in its absolute value, and a time
delay not exceeding τi ≥ 0, i.e. the last sampled value
σ̂i at each time t satisfies the inclusion

σ̂i(t) ∈ σi(t+ [−τi, 0]) + εσi[−1, 1], i = 1, ..., n. (27)

Introduce â(t, x) = (1, a(t, x))T and the smooth func-
tions σij , calculated by means of Lie derivatives,

σi0 = σi, σi1 = Lâσi, ..., σi,ri−1 = Lri−1
â σi. (28)

Note that the gradients ∇σij are linearly independent,
the functions σij can be complemented up to local co-

ordinates, and σij ≡ σ
(j)
i for ξ ≡ 0 [16]. Assume also

that |∇x σi,j · ξ| ≤ ωij globally hold for some ωij ≥ 0,
i = 0, 1, ..., n, j = 0, 1, ..., ri − 1.

In the local problem formulation the initial conditions
of (26) belong to some compact region in a vicinity of
the r-sliding manifold ~σ = 0 in the space t, x, and the
trajectories are considered over a compact time interval.
The above boundedness assumptions are not restrictive
in that case. The following theorem is true in the both
global and local cases.

Theorem 2 There are constants ω̂i > 0 , γij > 0, such
that, provided ∀i ωi,ri−1 ≤ ω̂i, after FT transient solu-
tions of the closed-loop system (26), (23), (24) with sam-
pling (27) satisfy |σij | ≤ γij ρ

ri−j, where ρ = maxiδi,

and δi = max[maxj<ri−1{ω1/(ri−j)
ij , ωij}, ε1/ri

σi , τi] for

ri > 1, δi = max{εσi, τi} for ri = 1.

Remarks. 1. The stated asymptotics are independent
of the values ωi,ri−1, provided ωi,ri−1 ≤ ω̂i are kept,
and ωi,j are not necessarily small for j < ri − 1. 2.
In the widespread case when ∇xσi,j and ξ are uni-
formly bounded, |∇xσi,j | ≤ ωi,j , one can take δi =

max[maxj<ri−1{(ωij ||ξ||)1/(ri−j), ωij ||ξ||}, ε
1/ri
σi , τi] for

ri > 1. 3. Theorems 1, 2 generalize the results of [21] to
the global MIMO case.

PROOF. Differentiating σi,j obtain

σ̇i,0 = σi,1 +∇x σi,0 · ξ,
σ̇i,1 = σi,2 +∇x σi,1 · ξ,

...

σ̇i,r−1 = hi(t, x) +
∑n
k=1 gikuk +∇x σi,r−1 · ξ,

żi = Dri−1(zi, σ̂i, L), i = 1, ..., n;

u = αG−1(t, x)ϕ(z).

(29)

where z = (z1, ..., zn), zi = (zi,0, zi,1, ..., zi,ri−1). Obvi-
ously, any solution of (29), (27) satisfies

σ̇i,0(t) ∈ σi,1 + [−1, 1]ωi,0,

σ̇i,1(t) ∈ σi,2 + [−1, 1]ωi,1,

...

σ̇i,r−1(t) ∈ [−C,C] + α[Km,KM ]

·([−p0, p0] + ϕi(z(t))) + [−1, 1]ωi,ri−1,

żi(t) ∈ Dri−1(zi(t),

σi,0(t+ [−τi, 0]) + [−εσi, εσi], L),

(30)

and

σ̇0 ∈ σ1(t) + [−1, 1]ρr−1,

σ̇1 ∈ σ2(t) + [−1, 1]ρr−2,

...

σ̇i,r−1(t) ∈ [−C,C] + α[Km,KM ]

·([−p0, p0] + ϕi(z(t))) + [−1, 1]ω̂i,

żi(t) ∈ Dri−1(zi(t),

σi,0(t+ [−ρ, 0]) + [−1, 1]ρri , L).

The latter DI becomes a FTS homogeneous DI of the
degree -1, deg σi,j = deg z,j = ri − j, for sufficiently
small ω̂i and ρ = 0 [19]. Let deg ρ = 1. Now the Theorem
directly follows from Theorem 1. 2

5 Case study: relative degree bifurcation of
kinematic car model

Consider the kinematic model of vehicle motion [30]

ẋ = V cos(ψ + β), ẏ = V sin(ψ + β)

ψ̇ = V
l cosβ tan δf , β = arctan

(
lr
l tan δf

)
,

δ̇f = u,

(31)

where x and y are the Cartesian coordinates of a point on
the car axis (Fig. 1a). The point is distanced by lr from
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the rear-axle middle point, and by lf from the frontal-
axle middle point, lf + lr = l, where l is the distance be-
tween the two axles. Further, ψ is the orientation angle,
V is the constant longitudinal velocity, δf is the frontal
steering angle (i.e. the actual input), and u is the con-
trol input. Note that in practice the steering angle δf is
bounded by some δf0, |δf | ≤ δf0 <

π
2 , i.e. the last equa-

tion of (31) should involve some saturation.

The goal is to track some smooth trajectory y = g(x),
where g(x(t)), y(t) are available in real time. That is, the
task is to make σ(x, y) = y − g(x) as small as possible.

The standard model considered in papers on SMC corre-
sponds to lr = 0. Obviously, the system relative degree
is 3 for lr = 0 and 2 if lr > 0. Thus, provided lr = 0,
the equality y = g(x) is established in finite time by a
proper 3-SM controller (18) with G = 1 [18,20].

System (31) can be rewritten as

ẋ = V cosψ + ξ0(ψ, β)

ẏ = V sinψ + ξ1(ψ, β)

ψ̇ = V
l tan δf + ξ2(δf , β)

δ̇f = u.

(32)

Here [ξ0, ξ1]T = V A[cosβ − 1, sinβ]T , where A is the

rotation matrix of the angle ψ, A =

[
cosψ − sinψ

sinψ cosψ

]
,

and ξ2 = V
l (cosβ−1) tan δf . Note that ξi, i = 0, 1, 2, are

bounded globally Lipschitz functions, provided |δf | ≤
δf0 <

π
2 holds. Denote ξ = [ξ0, ξ1, ξ2, 0]T .

Obviously, β = O(lr), ξ0, ξ1 = O(lr), ξ2 = O(l2r) as lr →
0. Let σ be sampled with the time step τ and accuracy
εσ. Then, according to Theorem 2, obtain σ = O(ρ3)

where ρ = max{l
1
2
r , εσ

1
3 , τ}. Moreover, σi = O(ρ3−i),

i = 0, 1, 2, where σ0 = σ, and the additional auxiliary
coordinates σ1 and σ2 are calculated as in (28),

σ0 = y − g(x), σ1 = V
(

sinψ − ∂g
∂x cosψ

)
,

σ2 = V 2
(
− ∂g2

∂x2 cos2 ψ +
(
∂g
∂x sinψ + cosψ

)
tan δf
l

)
.

Any homogeneous output-feedback 3-SM controller
(23), (24), in particular, the quasi-continuous controller
[20] of a properly chosen magnitude α can be applied,

u = −αz2 + 2(|z1|+ |z0|
2
3 )−

1
2 (z1 + z

2
3
0 sign z0)

|z2|+ 2(|z1|+ |z0|
2
3 )

1
2

. (33)

Its inputs zi are the outputs of the differentiator ż =

D2(z, σ, L) rewritten in its non-recursive form

ż0 = −2L1/3|z0 − σ|2/3 sign(z0 − σ) + z1,

ż1 = −2.12L2/3|z0 − σ|1/3 sign(z0 − σ) + z2,

ż2 = −1.1L sign(z0 − σ).

(34)

5.1 Simulation Results

Fig. 1. Performance of the output-feedback quasi-continuous
3-SM car control of the car model with relative degree 2 for
lr = 5 and noise dispersion 0.05m.

Choose the trajectory y = g(x), g(x) = 10 sin(0.05x)+5.
The local conditions of Theorem 2 are trivially true. To
check the global conditions of Theorem 2 we only need
∇σ0,∇σ1 to be bounded and∇σ2·ξ to be small enough.
It is easily verified that ||∇σ0|| ≤ 1.5, ||∇σ1|| ≤ 1.53V ,
∇σ2 · ξ = O(lr) for the chosen trajectory, which ensures
the global Theorem conditions.

Apply the controller (33) with α = 2 and the differentia-
tor (34) with L = 160. The integration is performed by
the Euler method with the integration step τ = 10−4.
The initial values and parameters x(0) = y(0) = ψ(0) =
δf (0) = z0(0) = z1(0) = z2(0) = 0, V = 10, l = 5 are
taken. The values of σ0 are sampled at each integration
step, i.e. in “continuous time”.

Performance of the controller with lr = 0 in the absence
of noises is demonstrated in [20] producing the accuracy
|σ| ≤ 5 · 10−7, compared to |σ| ≤ 6 · 10−5 obtained by
simulation for lr = 0.1.

As follows from Theorem 2, Remark 1, the controller is
effective also for larger lr. Take lr = 5 that corresponds
to the middle point of the frontal axle. Let σ = σ0 be
sampled with random Gaussian errors of the zero mean
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and the standard deviation 0.05, practically correspond-
ing to the noise magnitude εσ ≈ 0.1m (Figs. 1b,c,d,
2a,b,c). The accuracies |σ0| ≤ 0.2m, |σ1| ≤ 2, |σ2| ≤ 5
are obtained.

The resulting steering-angle performance (Fig. 2c) is
quite feasible. Indeed, the oscillations of δf have the mag-
nitude of about 8 degrees and the period of about one
second.

Note that σ(x(t), y(t)) has discontinuous second deriva-
tive. Thus, the outputs z1, z2 of the 2nd-order differen-
tiator (34) do not approximate σ̇, σ̈ or virtual coordi-
nates σ1 and σ2.

Fig. 2. a, b, c : Graphs of the “differentiator” outputs and the
virtual coordinates σ0, σ1, σ2 for lr = 5 and noise dispersion
0.05m; d: logarithmic plots of the accuracies vs. lr.

In order to reveal the accuracy asymptotics, the sim-
ulation has been carried out for the disturbance pa-
rameter lr ∈ {0.01, 0.02, ..., 0.08} with exact measure-
ments, εσ = 0. The logarithmic plots of the accura-
cies sup[15,20] ln |σi|, i = 0, 1, 2, vs. ln lr, together with
their best-fitting lines 1.5 ln lr − 9.9, 1.0 ln lr − 1.4,
0.48 ln lr − 1.5 are shown in Fig. 2d. According to these
asymptotics the accuracy |σ| ≤ 0.1 is expected for
lr = 5, which is reasonably close to the accuracy ob-
tained above in the presence of noises. Following Theo-
rem 2 and the above theoretical analysis, the worst-case

accuracy asymptotics are σ0 = O(l
3
2
r ), σ1 = O(lr) and

σ2 = O(l
1
2
r ), which perfectly fits the observed slopes.

6 Conclusions

General features of finite-time stable homogeneous dif-
ferential inclusions (FTSHDIs) have been studied. Ho-

mogeneity degree of finite-time stable differential inclu-
sions is proved to be negative. Maximal and minimal
settling-time functions have been shown to be respec-
tively upper and lower semicontinuous functions of ini-
tial conditions. Asymptotic estimation of these functions
is provided. These results correct an inaccuracy which
has appeared in [19].

The asymptotic accuracy orders of FTSHDIs are calcu-
lated in the presence of dynamic disturbances, delays
and sampling noises. The delays can be variable, more-
over, the same variable can have different delays
in different parts of system (10), provided the homo-
geneity structure (10) is preserved.

Homogeneous output-feedback MIMO SMC systems
have been shown robust with respect to general dynamic
disturbances possibly changing the system relative de-
gree. The corresponding asymptotic accuracy orders
are calculated in the presence of disturbances, sampling
noises and delays.

A case study deals with the bifurcation of the kinematic-
car-model relative degree, which changes from 3 to 2,
when the point, whose coordinates are considered as the
car coordinates, is shifted from the middle of the rear
axle. The well-known 3rd-order SM control is shown to
still remain effective in that case. The corresponding
asymptotic accuracy orders are theoretically calculated
and confirmed by simulation.

In the future the authors intend to extend these results
to arbitrary system homogeneity degrees.
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