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Exact Differentiation of Signals With
Unbounded Higher Derivatives

Arie Levant, Member, IEEE, and Miki Livne

Abstract—Arbitrary-order homogeneous differentiators based on high-
order sliding modes are generalized to ensure exact robust kth-order dif-
ferentiation of signals with a given functional bound of the � � ��th
derivative. The asymptotic accuracies in the presence of noises and dis-
crete sampling are estimated. The results are applicable for the global ob-
servation of system states with unbounded dynamics. Computer simulation
demonstrates the applicability of the modified differentiators.

Index Terms—High-order sliding mode, homogeneity, nonlinear ob-
servers, robustness.

I. INTRODUCTION

Signal differentiation is a well-known problem mostly related to var-
ious observation problems. The main differentiation difficulty is its sen-
sitivity to small high-frequency input noises. Since one cannot reliably
distinguish between the noise and the basic signal, practical differen-
tiation is a trade-off between exact differentiation and robustness with
respect to noises.

The usual assumption is that the noise corresponds to the high-
frequency signal component to be filtered out (e.g., [8], [9]). Re-
spectively, the traditional sliding-mode (SM) differentiators [5], [14],
[15], as well as high-gain differentiators [1], do not provide for exact
differentiation due to filtration involved. The differentiator from [2]
is based on a second-order SM (2-SM) controller using the derivative
sign, whose evaluation requires the possibly-lacking knowledge of the
noise magnitude.

Exact derivatives of arbitrary �th order can be obtained by the ro-
bust exact finite-time-convergent differentiator [10], provided the ���
��th-order derivative is bounded by a known constant. The differen-
tiator is based on 2-SMs, and features the best possible asymptotics
in the presence of infinitesimal Lebesgue-measurable sampling noises.
It has already found numerous practical and theoretical applications
(e.g., [3], [4], [7], [12], [13]). While it solves main differentiation prob-
lems of local output-feedback implementation, its global implemen-
tation requires the global boundedness of the �� � ��th-order output
derivative, which is quite restrictive. Though a global constant bound
could be always chosen for the whole practical operation region, the
constant would be excessively large and would increase differentiator
errors. Thus, the satisfactory performance of the differentiator at the
operation region boundary inevitably causes performance degradation
somewhere inside the region.

On the other hand, main system features are often determined by a
few variables available or observable in real time. In that case upper
bounds of the highest output derivatives and sampling noises can also
be often estimated as functions of these variables. For example, aero-
dynamic features of an aircraft are mostly determined by the dynamic
pressure and the Mach number.

It is assumed in this note that the �����th-order derivative has a vari-
able upper bound available in real time. It is proved that the �th-order
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differentiator [10] using this variable bound still features robustness,
exactness and finite-time convergence. When used in a feedback, it is
capable to provide for high performance even over unbounded opera-
tion regions.

II. PRELIMINARIES: THE DIFFERENTIATOR STRUCTURE

A. Standard Robust Exact Differentiator [10]

Let the input signal ���� be a function defined in �����, and con-
sisting of a bounded Lebesgue-measurable noise with unknown fea-
tures and an unknown basic signal �����, whose �th derivative has a
known Lipschitz constant � � �. The problem of finding real-time ro-
bust estimations of � ���� ���, � � �� � � � � �, being exact in the absence of
measurement noises, is known to be solved by the differentiator [10]

��� � 	��

	� � �
��
�������� � ����������	
����� � �����  ���

��� � 	��

	� � �
���� ��� � 	����
���������

� 	
����� � 	����  �����

��� � � �
��	
����� � 	�����

� ��� � � � � � � �� (1)

Here and further differential equations are understood in the Fil-
ippov sense [6]. Provided �
� � �, and the sequence �
� � � is
properly recursively chosen [10], [11], differentiator (1) converges for
any �, and the equalities �� � �

���
� ���, � � �� � � � � � are established

in finite time in the absence of input noises. In particular, the choice
��
��

�

��� � ���� ���� �� �� �� �� � � � is valid for � � �, another sequence
is ���� ���� �� �� �� ��� � � � [10].

Recursively substituting expressions for 	� in (1), obtain the non-
recursive form

��� � � 
����
�������������� � ����������������

� 	
����� � �����  �����

��� � � 
��	
����� � ����� (2)

where � � �� � � � � � � �, and new coefficients 
�� 
�� � � � � 
� � � are
calculated from (1). Note that 
� � �
� and 
� � �
� .

Being applied in a feedback, differentiator (1) trivially provides for
the separation principle [1]. The requirement of � to be a constant is a
serious restriction to be removed in this technical note.

B. Homogeneity of the Differentiator

Let noise be absent, i.e., ���� � �����. Divide both sides of (2)
by � and denote �� � ��� � �

���
� �����, � � �� �� � � � � �. Sub-

tracting �
�����
� ���� from both sides of the equation for ���, and using

�
�����
� ���� � ���� ��, obtain
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�  ��� �� � ��
(3)

Inclusion (3) is a Filippov inclusion, which means that its right hand-
side is convex, non-empty, compact and upper semicontinuous [6],
[11]. Note that the development of (3) is only valid with constant �.
The parameters 
� are chosen so that the finite-time stability of (3) is
ensured [10].

Differential inclusion (3) is homogeneous with the homogeneity de-
gree �� and the weights �  �� �� � � � � � of ��� ��� � � � � �� respec-
tively [11]. In other words, the inclusion is invariant with respect to
the linear time-coordinate transformation � 
� ��, �� 
� ��������,
� � �� �� � � � � �, where � is any positive number. As follows from
[12] the finite-time stability is preserved for the disturbed homogeneous
inclusion
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�����������
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��
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�  ��� �� � ��

� ��� �� � � � � � � � (4)

if � � � is sufficiently small. In particular, simulation shows that � �
��� can be taken with � � �, �
� � ���, �
� � ���. Inclusion (4) is
repeatedly used in the sequel.

III. PRELIMINARIES: THE DIFFERENTIATOR STRUCTURE

Let ���� � ���������, where ���� is a Lebesgue-measurable noise.
The �th derivative �

���
� ��� of the unknown basic input signal ����� is

assumed absolutely continuous. Whenever � ������ ��� exists, it satisfies
��

�����
� ���� � ����, where ���� � � is a function available in real

time. It is also supposed that ������ � �����, where the parameter
� � � is unknown, i.e., the larger � the larger noise is allowed.

Consider differentiator (1) (or (2)) with a time variable function
� � ����. Note that with any 
� � � equalities �� � �

���
� ���,

� � �� � � � � �, define a formal Filippov solution of (2). This solution
is further proved to be finite-time stable under mild conditions on
����, and the differentiator is proved to provide for real-time robust
estimations of ������� ������� � � � � �

���
� ���, being exact with � � �.

Theorem 1: Let ���� � � be any continuous function, � � ��� ���,
�� can be infinite, � � �. Then there exist such functions
� ��� � �, ���� � � that, provided the initial conditions satisfy
�������� �

���
� ����� � �����, � � �� � � � � �, �� � ��� �� �, differentiator

(2) yields exact derivatives �� � �
���
� ���, � � �� � � � � �, for any

� � ��  � ����.
As follows from the proof below, it may happen that ������ � with

�� �� , in which case even small noises and discretization effects may
cause differentiator instability in practice.

Proof: Consider differentiator (2). Denoting �� � �� � �
���
� ���

and using that � ������ ��� � ������ almost everywhere, get that for
any solution of (2)
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�������
���������������

�����������	
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� ��� �� � � � � � � �� (5)

Consider an arbitrary time moment �� � �. For each �� choose� ����
so that ���� does not leave the segment ������� � �� �  �� during
the time interval ���� ��  � �����. Denoting �� � �������, obtain
from (5) that differential inclusion (4) holds during that time interval.
Since the maximal possible convergence time of (4) is a continuous
function of the initial conditions [11], there exists � � ����� such that
all trajectories of (4) starting within the set ���� � �����, � � �� � � � � �,
stabilize at zero during the time � ����.

It is needed to perform a similar coordinate transformation at each
time instant ���� � ��  � ����, � � �� �� � � �, resulting in a system
identical to (4). Each time new and old coordinates, ��� and ��, satisfy
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��� � ���������� � �������������� ����� � ����� � ����� �� �
�����. Hence, the zero solution is preserved.

Coordinates �� � ������� are further called normalized. It is shown
in the above proof that the original system is reduced to some hybrid
system, described by the finite-time stable differential inclusion (4),
combined with trajectory bouncing at time instants ���� � �� �� ����,
	 � 	� �� 
 
 
, governed by the coordinate recalculation formula ��� �
���������� � ������������ � � �����.

Theorem 2: Assume that ���� is absolutely continuous, �� � �,
and the logarithmical derivative ���� is bounded, � ����� � 
 . Let the
noise once more be absent, � � 	. Then there exist such constants ��,
��  	 that ���� can be chosen in the form ���� � ������, and the
corresponding convergence time function � ��� can be taken equal to
the constant ��. The constants ��, �� depend only on 
 .

Note that with 
 � 	 (i.e., with � � ����) the global finite-time
convergence is ensured [10].

Proof: Let � be chosen as in the proof of Theorem 1 and apply the
same coordinate transformation as in the proof. Suppose that � ����� �

 , then � ���� � �� � ��������
 . Now �� is chosen as the radius of
a disk, such that all trajectories of (4) starting within that disk stabilize
at zero during the time ��.

Corollary 1: Under the conditions of Theorem 2 let �� and �� be
defined as in Theorem 2. Consider another function ����� � �����,
�  	. Then the corresponding function ����� can be chosen in the
form ����� � ������� � �������, and the convergence-time upper
bound �� is preserved.

Corollary 1 easily follows from the identity ������ � ����. Hence,
choosing ���� sufficiently large, the differentiator convergence region
and the convergence rate can be deliberately enlarged and accelerated.

Theorem 3: Under the conditions of Theorem 2 let ���� be
sampled with the sampling interval not exceeding �  	, and let
the measurement noise be any Lebesgue-measurable function with
the magnitude not exceeding ���������, �  	. Let also �  	

be sufficiently small and the initial values of the differentiator sat-
isfy the conditions ������� � �

���
� ����� � �������, � � �� 
 
 
 � �,

where �� is defined in Theorem 2. Then inequalities of the form
��������

���
� ���� � ���

��������� are established and kept afterwards,
with ��  	 being only determined by the differentiator parameters
�� and �.

Note that if � is not bounded, then also the considered noises are
not assumed bounded. Another important remark is that the link be-
tween the noise and the sampling intervals is only virtual. Indeed, the
noise and the sampling intervals can be decreased preserving � ; con-
crete noises and sampling periods allow multiple choices of � and � .
In particular, in the limit case of continuous noisy measurements get
������ � �

���
� ��������� � �����������������, if the noise magnitude

does not exceed �����); and in the case of exact discrete measurements
obtain ������� �

���
� ��������� � ���������.

Note that Theorem 3 also remains correct, if a noise ����� �

�������� ����� is added to the parameter ���� itself, provided � is
small enough. Indeed, the finite-time stability of (4) is robust with
respect to small � perturbations [11], and neither the following proof
nor the resulting asymptotics are affected.

Proof: Due to the lack of space only the main points of the
proof are presented. Similarly to the proof of Theorems 1, 2 divide
the time axis into intervals of the length ��. Change the interval ends
to sampling instants closest from the left. Interval lengths change by
not more than �� , thus with sufficiently small � the corresponding
differential inclusion (4) will still be finite-time stable with somewhat
increased �, and all solutions converge to zero in the time �� � �� ,
provided at the initial moment ���� � �� with some reduced ��. The
less � the less is the change of � and ��. For simplicity preserve the
notation � and ��.

Thus, solutions of the closed system (2) satisfy the hybrid system (4)
over the time intervals �	 � ��� � �����, ������� � ������� ����� �,
with the coordinates ���� , � � 	� �� 
 
 
 � �. At each interval the system
is corrupted by the discrete sampling of ���� with the sampling interval
not exceeding � and a sampling noise of the magnitude ����

� �� � ��.
Following [11] its solutions satisfy a Filippov inclusion ��� � �� ����,
whose solutions approximate solutions of (4). Also with any �  	 the
transformation ��

�� � ��� �� ��� �� ���� ��� ������

�� � ���� ��� 
 
 
 � ��� �� �������� ����� 
 
 
 � ���� (6)

establishes a one-to-one correspondence between solutions of ��� �

�� ���� and solutions of ��� � ��� ����. At the end of each time seg-
ment �� the coordinate transformation is applied, which is defined by
the formulas

������ �����
�����

�������
�

�����

�������
� ��� � ����� ��� ������

� �	� �� 
 
 
 � � (7)

Choose some sufficiently small ��. Let ����� � � �� at � � �� .
As follows from [11] before reaching the end of the time segment ��
the trajectories enter an invariant set ��� satisfying the inequalities
����� � � ���

�����
� � �, where � is a small positive number. Assume

that �������� � �� holds. Take the points of all possible trajectories
of the system ��� � �� ���� with initial conditions ����� � � ��� �����

over the time interval �	� ����, and obtain its invariant set in the ex-
tended space ���� ��. Now by a simple time shift start the set at the mo-
ment ��, at which the segment �� starts. Cutting it at the end �� of ��
and restarting it at the beginning of �� etc., obtain an infinite-in-time
invariant set of the hybrid system. Obviously it also attracts trajectories
in finite time. Using the homogeneity transformation (6) with arbitrary
� , � � ����, obtain the needed asymptotics.

IV. EXAMPLE: DIFFERENTIATION OF EXPLODING SIGNALS

Demonstrate differentiation of signals with exponentially growing
highest derivative. Consider a differential equation !����

���
! ��!� �! �

��� 	 ���	 � ��� ��	 ���
���
! �� �!�!� with initial values !�	� � ��,

�!�	� � ��		, �!�	� � ���,
���
!�	� � �			.

The differentiator (1) with � � �, ��� � � �, ��� � � �, ��� � �,
�� � �, ���� � !��� and ���� � ��!� � �!� � �!� �

����
! ���������

is taken, with !��� being the sampled output. The initial values of the
differentiator are ���	� � �	, ���	� � ���	� � ���	� � 	.

The graphs of !, �!, �!,
���
! are shown in Fig. 1(a) for � � �	� �	�. The

functions rapidly tend to infinity. In particular, they are “measured”
in millions, and !�	� is about � � � �	
 at � � �	. The accuracies
��� � !� � � 	 � �	��, ��� � �!� � � � � �	�	, ��� � �!� � 	 ��,
��� �

���
! � � � � � �	� are obtained with � � �	�	. In the graph

scale of Fig. 1(a) the estimations ��, ��, ��, �� cannot be distinguished
respectively from !, �!, �!,

���
! . Convergence of the differentiator outputs

during the first 2 time units is demonstrated in Fig. 1(b).
The convergence of the normalized errors ����� � ������ �

!���������, ����� � ������ � �!���������, ����� � ������ �
�!���������, ����� � ������ �

���
!��������� to zero during the first 2

time units is shown in Fig. 1(c). The accuracies ���� � � � � �	��
,
���� � � � � �	���, ���� � � 	 � �	��, ���� � � � � �	�	 were
obtained with � � �	�	. With � � �	�� the accuracies change
to ���� � � 	 � �	���, ���� � � 	 � �	��, ���� � � � � �	�
,
���� � � � � �	�� which corresponds to Theorem 3.

The accuracies change to ���� � � � � �	�
, ���� � � 	 � �	�	,
���� � � � � �	��, ���� � 	 	��, when a measurement noise of the
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Fig. 1. Differentiator performance (a) Signal and its derivatives (b) Differentiator convergence (c) Normalized coordinates.

normalized magnitude � � ���� is introduced. Note that ����� �
���� � ��	, and respectively the real noise magnitude is ���� � ��� at
� � ��. Taking � � ���� obtain ���� � 
�
 � ����, ���� � ��� � ����,
���� � ��������, ���� � �����with the real noise magnitude ��������

at � � ��. It also corresponds to Theorem 3.

V. FEEDBACK APPLICATION EXAMPLE

Dynamics of an aircraft are mostly determined by its velocity (the
Mach number) and the altitude (calculated via the dynamic pressure),
and are studied experimentally in wind tunnel. Since these two vari-
ables are usually measured in real time, one can roughly estimate the
highest output derivatives and apply the differentiator in the feedback.
The non-linear system [12] is described by 5-dimensional numeric lin-
earizations describing the vertical-plane motions and calculated at 42
equilibrium points within the “altitude—Mach number” flight enve-
lope. One of these systems is chosen here as an academic example of
linear aircraft pitch-control loop

�

��
��� 	� 
�� � ���� 	� 
�� �� (8)

describing the motion in the vertical plane. Here � � ��, ��, �� are
the velocity components, and �� is the altitude. The pitch 	 � � and

 � 	 are the observed outputs, �, � are 5� 5 and 5� 1 matrices
taken from [12]

��

������� ���
�� ������� �������� �
�����

������� ������� ����� ������� ������

����� ������� � ������� �

� � � � �

����	� ������� � �������� ���
�	

�

��

����	�

�	�����

�

�

�����


�

Given an input signal 	�, the task is to make 	 track 	� by means of
continuous control. The relative degree of (8) is 2. Following [12], a
sliding-mode controller is chosen, though the aim can be achieved by
linear control as well. Introduce a new output � � ��	 � 	�� � � 	 �
	��, � � �, of the relative degree 2 with respect to . An appropriate
2-sliding controller making � vanish is

 �
��  � ��

������ � � �������������  � ��

The data available in real time are 	���, 	���, 	����, the Mach number
� � ���� � ����

��� and the altitude ��. Apply differentiator (1) to
the measured tracking error ���� � 	��� � 	���� with � � �, ��� �
���, ��� � ��
, ��� � �, and some appropriate ���� � �

���

	��� �
���

	 �����. Choose the function ����. As follows from (8),
���

	 � �
 �
����� 	� 
�� � ��� � , where � is the fifth row of � and � is the

Fig. 2. Convergence of the differentiator and performance of the pitch control.

fifth entry of � . Let the upper bound �� � � of �
���

	 ����� be known a
priori, and �� � ���� � � � � ���. Then get

�
���

	 ����
���

	 ����� � � ��� � ���
���

� � ����� � ��	

���
�� ������ ��� ���� (9)

where � � � is a design parameter. Define ���� as the right-hand side
of inequality (9) with � � �.

The command signal 	���� � ��� � is chosen for simulation. The
initial tracking errors are 	���� 	���� � � ����� and 
���� 	���� �
� �����, �� � �, � � �, 2, 3 at � � �. The initial values of the dif-
ferentiator are ����� � �, � � �,2,3. The Mach number � , altitude
��, 	��� and 
 � 	��� are sampled with the noise magnitudes 0.05
[m/sec], 5 [m], 0.02 [rad] and 0.01 [rad/s] respectively. The perfor-
mance of the whole system is demonstrated in Fig. 2. The accuracies
�	����	����� � � ����� ����� and � 	���� 	���� � � ����� ���������
are obtained with � � ����.

VI. CONCLUSION

Performance of the �th-order differentiator [10] based on high-order
sliding modes is studied when the available bound ���� of the �� �
��th-order derivative is a continuous function of time. The differen-
tiator is proved to preserve exactness and local convergence. It is also
robust, if the logarithmic derivative ��� is bounded. In that case the
convergence is semi-global in some specific sense.

Once the differentiator outputs converge to the corresponding input
derivatives, they remain equal to the derivatives also in the future, if
���� is continuous. That feature is violated in the presence of various
noises and discretization inaccuracies, but is robust if the logarithmic
derivative of ���� is uniformly bounded. In order to assure the initial
differentiator convergence, one can take a voluntarily large constant
parameter �� and switch it to the given variable value ���� after the
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convergence. Another option is to choose a rough initial approximation
of the derivatives calculated by means of finite differences as the initial
conditions of the differentiator.

The differentiator can be used for global feedback control, since the
separation principle [1] is trivially fulfilled. In order to provide for
stable performance in the presence of noises and discrete sampling,
the system output is to feature not more than exponential growth.
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Corrections to “Switching Rule Design for Switched
Dynamic Systems With Affine Vector Fields”

Alexandre Trofino, César Cataldo Scharlau, and Daniel F. Coutinho

Abstract—In this note, we present corrections to our previous paper
“Switching rule design for switched dynamic systems with affine vector
fields” [1], [2]. The correction is necessary to guarantee the stability of
the system under sliding motion, which is not ensured from [1], [2] due to
an error in the expressions (11) of the original paper [1]. To correct the
results it is necessary to add a new condition to the results of [1], [2]. If
there is no sliding motion or if the sliding motion dynamics, in the sense of
Filippov, satisfies a quadratic stability condition, the additional condition
is not necessary. The corrections in this note are restricted to the case of
two operation modes.

I. CORRECTIONS

Consider the error system defined from the expression (4) in the orig-
inal paper [1]. Suppose the system has two operation modes (i.e.,� �
��� ��), and assume there exists a sliding motion on the switching sur-
face associated with these two modes. According to Filippov’s results,
the system dynamics can be modeled as follows:

�������� ������ ������� ������

������� ���� � �	� �


���������� �����������������

���������� �����������������

� ���������� ��������� �������

� �����������������������������	��	���	 
 (1)

As the desired switched equilibrium is the origin, observe from
(1) that at the equilibrium we must have ����� ���� � 	,
����� ���� � �� with ������ � 	. See also [3] for more details on
this point. Observe �� can be determined from the expression

������ � ���� � ��� ����� � 	
 (2)

For a given scalar �� � �	� �
 let us assume the following constraints
on the matrices ��� 	�, � � ��� ��

���� � ��� ����� � 	 (3)
��	� � ��� ���	� �	
 (4)

The constant �� is a given design parameter and the choice �� � �� is
always possible except in the cases where �� is uncertain. For systems
with two operation modes the Lyapunov function considered in [1] cor-
responds to the choice �� � 	
�.
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