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Accuracy of Homogeneous Sliding Modes
in the Presence of Fast Actuators

Arie Levant, Member, IEEE, and Leonid M. Fridman, Member, IEEE

Abstract—It is shown that the higher the order » of the homogeneous
sliding mode is, the less sensitive it is to the presence of unaccounted-for fast
stable actuators. With p being an infinitesimal actuator time constant, the
sliding variable magnitude is proved to be proportional to 1.”. The system
chattering is shown to be not amplified in the presence of actuators.

Index Terms—Chattering, high-order sliding mode, singular perturba-
tion, sliding-mode control.

I. INTRODUCTION

Sliding mode control is accurate and insensitive to disturbances. Un-
fortunately standard sliding modes feature the so-called chattering ef-
fect due to high control switching frequency (e.g. [1], [5], [16]), and
require the relative degree 1 of the sliding variable (e.g. [15]).

High order sliding modes (HOSMs) (e.g. see [2], [7]) were created
to remove these restrictions by hiding the switching in higher deriva-
tives of the sliding variable. Their application needs the robustness to
possible small imperfections to be shown. Till now the robustness of
homogeneous sliding modes was proved with respect to switching im-
perfections, small delays and noises [8].

In reality control affects a plant by means of an actuator. A proper
mathematical model of the actuator is often uncertain, and, as a result,
it is not accounted for at the control-design stage. The purpose of the
actuator is to properly transmit the input, and it performs well, when
the input changes smoothly and slowly. For this end the actuator is to
be fast, exact and stable. Unfortunately, high-frequency discontinuous
inputs cause uncontrolled vibrations of the actuator and of the closed
HOSM system (see [3] and references therein).

Most of known HOSM controllers are homogeneous [8]-[10], [14].
The aim of this note is to show the robustness of homogeneous HOSMs
with respect to the presence of unaccounted-for fast stable actuators.
The corresponding asymptotic sliding accuracy is estimated with re-
spect to the small actuator time constant and is proved to depend on
the sliding-mode order only. It is shown that the higher the order is,
the less sensitive is the HOSM accuracy to the presence of fast stable
actuators. The system chattering is shown to be not intensified by such
actuators. Introduction of an integrator at the actuator output and the
corresponding increase of the order of the HOSM controller are proved
to remove dangerous high-energy chattering phenomena.

II. THE PROBLEM STATEMENT

Let a smooth dynamic system with a smooth output function
o be closed by some possibly-dynamical discontinuous feedback
and be understood in the Filippov sense [4]. Then, provided that
successive total time derivatives o, 4,...,0("™") are continuous
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functions of the closed-system state-space variables, and the set
. = o™ = ( is a non-empty integral set, the motion
on the set is called r-sliding (rth order sliding) mode [7], [8]. Sliding
modes used in the most variable structure systems are of the first order
(o is continuous, and ¢ is discontinuous; see [15], for example).

Let the dynamic system and the output (sliding variable) ¢ have the
form

oc=0¢=..

& =a(t,x)+b(t,x)v, o=o(t,x) 1)
where x € R",t € R, 0 € R and » — 1 its total time derivatives are
measured or estimated in real time, v € R is the input, n is uncertain.
Provided an r-sliding mode ¢ = 0 is established in (1), asymptotics
of ¢ is to be estimated in the presence of unaccounted-for fast stable
actuators. The local consideration is natural here, though also the global
problem statement [7], [13] is possible.

Assumption 1°: Smooth uncertain functions a, b and o are defined in
some open region 2 C R™*!. It is supposed that all solutions starting
from an open region €2, C R" att = t, can be extended in time
up tot = ¢, > t, without leaving the region €2, provided the input
v is a Lebesgue-measurable function of time, |v| < vm. The constant
vm > 0 is introduced in Assumption 4°.

Existence of such #; is trivial for any vp > 0 and bounded €2, [4]
(Ch. 2, Section 7).

Assumption 2°: The relative degree r of the system is assumed to be
constant and known. That means that for the first time the input variable
v explicitly appears in the rth total time derivative of ¢ [6]. It can be
checked [6] that

o = h(t,x) + g(t, x)v ()

where h(t,z) = 0(|—o, g(t,x) = (8/0v)o"") are some unknown

smooth functions. The set €2, is supposed to contain r-sliding points

at the time ¢ = ¢,, i.e. points satisfyinge = ¢ = ... = "™V = 0.
Assumption 3°: Tt is supposed that

- 5} r - r
0< K< 50" < K, ‘a( )
v

|<C 3)
v=0
hold in €2 for some K,,,, K, C' > 0. Conditions (3) are formulated in
terms of input-output relations.
The actuator model is described by the equations

pi=fzu), v=o(z) o)

where z € R™, v € R is the control and the input of the actuator,

output v(z) is continuous and f(z, w) is a locally bounded Borel-mea-

surable function, the time constant ;& > 0 is a small parameter. Recall

that all differential equations are understood in the Filippov sense [4].
The control v is determined by a feedback of the form

w="U (U,(r, . .,g(’“*“) )

where U is a function continuous almost everywhere, and bounded by
some constant ung, un > 0, in its absolute value.
Being applied directly to (1), i.e. with

v=u (6)

it is supposed to locally establish the r-sliding mode o = 0 (see also
Assumption 6° below). In order to apply (5) one needs to measure or
estimate » — 1 derivatives of o.

Assumption 4° : Initial values of actuator (4) belong to a compact re-
gion §2.¢. The actuator features Bounded-Input-Bounded-State (BIBS)
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property with some value of p. As |u| < wwm, this provides for infinite
extension in time of any solution of (4) and z belonging to another
compact region €2. independent of j. Indeed, ;¢ can be excluded by
the time transformation 7 = ¢/ . This assumption causes also the ac-
tuator output v to be bounded in its absolute value by some constant
oM, oM > um > 0.

Assumption 5°: The dynamic output-feedback (5) is supposed to be
r-sliding homogeneous [8], which means that the identity

is kept for any £ > 0. It is also assumed that the control function U
is locally Lipschitzian everywhere except a finite number of smooth
manifolds comprising closed set I in the space with coordinates ¥ =
(o,0,..., a("_l)). Note that due to the homogeneity property (7) set
I" contains the origin ¥ = 0, where the function U is inevitably dis-
continuous [8], [9].

Most of known HOSM controllers [2], [7]-[10], [13] satisfy As-
sumption 5°. As follows from (2), (3):

A= [-C, C| + [Km, Kum]v. (8)

This inclusion does not “remember” anything on system (1) except the
constants r, C', K, K.

Assumption 6°: It is assumed that with control (5) applied directly
to inclusion (8), a finite-time stable inclusion (5), (6), (8) is created.
This is the standard way to implement HOSM controllers [7], [8].

The differential inclusions are understood here in the Filippov sense.
That means [8] that the right-hand-side vector set of (5), (6), (8) is en-
larged at the discontinuity points of U in order to satisfy certain con-
vexity and semicontinuity conditions [4].

Assumption 7°: The actuator is assumed exact in the following
sense. With ;¢ = 1 and any constant value of u, |u| < uas, the output
v uniformly tends to w. In other words, for any 6 > 0 there exists
T > 0 such that with any «, u = counst, |u| < wu, 2(0) € ., the
inequality |v — u| < & is kept after the transient time 7. It is also
required that the function f(z,u) in (4) be uniformly continuous in w,
which means that || f(z,u) — f(z,u + Au)|| tends to 0 with Au — 0
uniformly in z € Q., |u] < uars.

While Assumptions 1°~7° can be considered natural, the next As-
sumption is to be separately checked for each controller (5).

Assumption 8°: It is supposed that the change of (5), (6) at the set
I'to

T¢rl

U},
€ { Ter @

[—var, vag),

does not destroy the finite-time convergence, i.e. (8), (9) is also finite-
time stable.

Remark 1: Any stable linear actuator with the transfer function
P(up)/Q(up) satisfies Assumptions 4°, 7°, if deg Q@ > deg P, Q is
a Hurwitz polynomial, P(0)/Q(0) = 1.

Remark 2: A slightly generalized Assumption 7° can be considered,
when the actuator instead of tracking the input v tracks ku, where k& >
0 is an uncertain constant. Most HOSM controllers easily compensate
for such actuator error, provided their magnitudes are sufficiently large.

Remark 3: Assumption 8 is significant, since solutions of differen-
tial inclusions in general depend on the right-hand-side values taken on
sets of zero measure. Solutions of (8), (9) contain all solutions of (5),
(6), (8), for vy > um.

III. MAIN RESULTS

The asymptotic sliding accuracy is calculated in the following main
Lemma.

Lemma 1: Under assumptions 1°—6° suppose that for some p = o
there exist a ball B centered at ¥ = () and a bounded invariant set ©,
which in finite time attracts all trajectories of the inclusion (4), (5), (8)
starting within B x €2.o. Then there exist a time moment¢; € (t.,t),
g, a1y...,ar—1 > 0, and a vicinity @ of the r-sliding set in 2, at
t = t,, such that with sufficiently small ;¢ > 0 the inequalities |o| <
aop”, |o| < ap” T |J(:"_l)| < ay—1p are kept with ¢ > ¢, for
any trajectory of (1), (4), (5) starting within () att = ¢,.

Additional assumptions 7°, 8° provide for the existence of the in-
variant set needed in Lemma 1. The proofs of Lemma 1 and the fol-
lowing Theorem are presented in the Appendix.

Theorem 1: Let assumptions 1°-8° hold. Then the conditions of
Lemma 1 hold and the corresponding asymptotic sliding accuracy is
obtained.

A global theorem can be formulated in the global case [13] with
t, = oo. Assumption 8° is to be checked for each controller. Fortu-
nately it holds for most known HOSM controllers. In particular, con-
sider homogeneous HOSM controllers [7]-[10], [14] of the form

,0'(7‘_1)) .

Note that enlarging « increases the class (3) of systems, to which the
controller is applicable, whereas the internal parameters of the func-
tion ¥, are tuned to provide for the needed convergence rate [14].
Controller (5) is called quasi-continuous [8], [9], [14], if it is contin-
uous everywhere except the r-sliding set ¥ = (. Since Assumption
8° is easily checked [12] for the nested controllers [7] and is trivial for
all quasi-continuous controllers [8]-[10], [13], the following Lemma
holds.

Lemma 2: Families of sliding-mode controllers defined in [7]-[9],
[14] satisfy Assumption 8°.

All 2-sliding controllers from [10], which do not require switching
on the axis & = 0, can also be shown to satisfy Assumption 8°. The
popular sub-optimal 2-sliding controller [2] does satisfy Assumption
8°, though it does not have the form (5), and Theorem 1 is true also
for it. The twisting controller [10] does not formally satisfy Assump-
tion 8°, but this can be corrected changing the switching logic, while
preserving the same trajectories.

As follows from Assumptions 1°, 2°, the rth derivative of the output
¢ is uniformly bounded by C'+ K a7vas. Thus, an (r — 1)th-order exact
robust homogeneous differentiator [7] with finite-time convergence can
be applied here, producing exact estimations of 7, . . . , "~V and pre-
serving the asymptotic accuracy of Lemma 1 and Theorem 1. It can be
shown that the resulting system is also robust with respect to small mea-
surement noises.

Chattering Estimation: Consider an absolutely continuous signal
E(t,2) € R,t € [0, T], = € R', where = measures some imperfections
and tends to zero. Define the nominal signal as the limit signal £(t) =
ané &(t,e), t € [0, T]. The (mathematical) chattering of the signal

£(t,2) on [0, T] is defined as chat(¢,£;0,T) = fOT |E(t, 2) — €(1)dt,
and can be understood as virtual “heat release” [11], [12]. The chat-
tering functional is not defined in the case when the limit absolutely
continuous signal £(t) does not exist. General definitions and details
can be found in [11], [12].

The chattering of the system is called infinitesimal if the chattering
of each its coordinate tends to zero with ¢ — 0; it is called bounded
if it is not infinitesimal, and chattering of all coordinates is bounded
when ¢ — 0; and it is called unbounded if it is neither infinitesimal
nor bounded [12] (respectively soft, hard and destructive chattering in
[11]). Control is not considered as a coordinate. This classification does
not depend on the choice of coordinates and the time scale. Infinites-
imal chattering is the least possible, bounded and unbounded chattering

v =—aW, (0'(7 (10)
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phenomena are potentially devastating. Sliding-mode control systems
generally feature bounded chattering, which leads to dangerous large
“heat release” on prolonged time intervals. Some subsystems can be
excluded from the chattering evaluation, if they correspond to mathe-
matical models of devices insensitive to chattering [12]. It is the case
of computer-based units and of some actuators and sensors.

According to [6], system (1) can be rewritten in some new local co-
ordinates ¢, ¥ as

o =h(t,0.5) + g(t,6,S)v, 6=0(0,%), 6eR"".
As follows from Theorem 1, 7.7, . .. ,0'(7‘72)., # feature infinitesimal
chattering, and only o™= can reveal bounded chattering due to the
boundedness of the actuator output v. Thus the actuator does not am-
plify the chattering and does not change the introduced chattering clas-
sification [12].

Suppose that (1) was obtained as a result of the standard chattering-
attenuation procedure [2], [7], [10], i.e. v = &, where x,, is the orig-
inal control, and r — 1 is the original relative degree. Respectively
Ti,...,Tn—1 are the coordinates of the original (n — 1)-dimensional
control system, which are to be checked for chattering. Therefore, the
following Theorem is obtained, which can be shown true also in the
presence of sampling noises and a differentiator [7] in the feedback.

Theorem 2: Let ¢ — 0 and the actuator variables =z be excluded
from the chattering analysis. Then the system features not more than
bounded chattering. If the chattering-attenuation procedure was ap-
plied, the original (n — 1)-dimensional system features only infinites-
imal chattering.

IV. SIMULATION

The already traditional example of the kinematic car model
2 =Vecosp, ¢y=Vsingp, :,b:‘%tanﬁ, f=uv €8))

is chosen. Here x and y are Cartesian coordinates of the rear-axle
middle point, ¢ is the orientation angle, v is the longitudinal velocity,
{ is the length between the two axles and ¢ is the steering angle (Fig.
1(a)), v is the actuator output. The task is to steer the car from a given
initial position to the trajectory y = g(x), while g(x) and y are as-
sumed to be measured in real time. Let V' = const = 10 m/s,
I =5m, g(x) = 10sin(0.052) + 5,2 =y = ¢ = 6 = 0 at
t = 0.

Define o = y — g(x). The relative degree of the system is 3, and the
less-popular quasi-continuous 3-sliding controller can be applied here,
which was suggested in [8]. The resulting output-feedback controller
is defined as

N3 = (|wo [ +|ws|* +|ws |6) e ,

sat(p,0.2) = min [1, max(—1,5p)],

u=—20.>
csat { [1w2+2 (jun [+ [l
Xsat ((wl +|wo |2/351gn0)/_7\"3, 0.2)]
/N5,0.2}

)1/6

where w; are the real-time estimations of the derivatives o'(‘i), 1 =0,
1, 2, obtained by the differentiator

o =Eos €0 = —9wo — o[ sign(wo — ) + wy,
in =6, & = —15un — &|'Psign(un — &) + wa,
we = — 110sign(ws — &1).
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Fig. 1. Car model (a), trajectory tracking (b) and differentiator convergence (c)
with ¢ = 0.08; comparison of 3-sliding deviations with © = 0.08, 0.04,
0.02 (d, e, ).

TABLE I
TRACKING ACCURACIES WITH DIFFERENT ACTUATOR TIME CONSTANTS

u Sup || Sup |G| Sup | G|
0.01 0.0000765 0.00294 0.189
0.02 0.000644 0.0102 0.374
0.04 0.00529 0.0408 0.746
0.08 0.0433 0.182 1.50

The initial conditions of the differentiator are wo(0) = o (0), w1(0) =
w2(0) = 0. The control is applied only starting from ¢ = 1 in order to
provide some time for the differentiator convergence.

The actuator with the transfer function (us + 1)/ (p*s® +2 u?s* +
2 ps 4 1) is realized in the form p2; = 2o, 2o = 23, 23 = —z1 —
2z9 — 2z3 + u, v = z1 + zo with zero initial conditions.

The integration was carried out according to the Euler method (the
only reliable integration method with discontinuous dynamics) with the
integration step 7 = 107, Tracking accuracies are listed in Table I.
It is seen that the accuracies of o, ¢, ¢ are proportional to ,u3, ;12, and
1 respectively (Fig. 1(d), (e), (f), Table I). Other linear and non-linear
actuators were also checked providing for similar simulation results.

System (11) can be considered as a system obtained from the “orig-
inal” system z, y, ¢ by means of the chattering attenuation procedure.
The relative degree of the system z, y, ¢ with respect to the “original
control” tan ¢ equals 2, and, therefore, its chattering is determined by
the chattering of o, ¢ (see Section III, [12]). The chattering functionals
of ¢ and ¢ are calculated as integrals of |¢| and |&| respectively, and
are infinitesimal in accordance with Theorem 2. The dangerous chat-
tering has been moved to 6.

It is seen from Fig. 1(c) that the differentiator convergence takes
about 0.9 s. The system performs remarkably well with a rather large
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Fig. 2. Comparison of the steering angle (a, c¢), the control w and the actuator
output v (b, d) corresponding to 4 = 0.04 andto & = 0.01.

actuator time constant ¢ = 0.08. Indeed, the tracking deviation is only
4 cm. (Fig. 1(b), Table I). The steering angles with ¢ = 0.01 and
= 0.04 are demonstrated in Fig. 2(a), (c). The corresponding ac-
tuator performance is shown in Fig. 2(b), (d).

In spite of the infinitesimal vibration magnitude of the steering angle
6 with ¢ — 0 its vibration energy remains significant, and it features
the potentially-dangerous bounded chattering [12]. One needs to addi-
tionally increase the relative degree [7] in order to get the infinitesimal
chattering of 6.

V. CONCLUSION

The main conclusion is that stable fast actuators do not really destroy
the performance of homogeneous high-order sliding-mode controllers.
The resulting asymptotic sliding accuracy does not depend on the rela-
tive degree of the actuator and is only determined by the sliding order.
The only exclusion is a rare case, when an asymptotically stable sliding
mode o = 0 arises with the sliding order being equal to the sum of the
system and actuator relative degrees. In such a case the residual chat-
tering gradually disappears, and the asymptotic-accuracy coefficients
of Lemma 1 can be taken arbitrarily small. Probably, it is only pos-
sible, when both relative degrees equal one.

The presence of unaccounted-for fast stable actuators does not am-
plify the chattering and does not influence the chattering classification
[11], [12].

One can consider application of a smoothing filter at the input of
an actuator device, which does not accept discontinuous inputs. If the
time constant of the additional artificial actuator is sufficiently small,
the asymptotic sliding accuracy of Theorem 1 is preserved, and the
resulting combined actuator will still provide for good performance due
to the high sliding order.

The most widely used application of high-order sliding modes is
based on the artificial increase of the relative degree, when the con-
trol derivative is treated as a new control. For this end an integrator
can be introduced at the output of the actuator in order to remove the
most-dangerous high-energy chattering of the controlled system (The-
orem 2). The HOSM controller is to be replaced according to the new
relative degree. In this case also the asymptotic accuracy is improved
due to the increased relative degree. Introduction of an integrator at the
actuator input is also possible and is considered in [12]. Robustness is
proved, but the asymptotic accuracy is not estimated in that case.
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APPENDIX
PROOFS OF LEMMA 1 AND THEOREM 1

Proof of Lemma 1: Due to the homogeneity property (7) with x > 0
the transformation

G (8,2, z,0) — (Kt,de S, 2, k00),
dy : (JJI, ey J('v_l)) — (FL'VO'./ Pl HJ(T_l)) (12)

transfers the trajectories of the inclusion (4), (5), (8) into the trajectories
of the same inclusion but with the actuator parameter changed from
i to kpe. Choose any t2, 0 < to < t, — t,.Let © C Ox X O,
where O C R", ©. C (2. are some bounded regions. With \ small
enough get that with y¢ = Ay the trajectories starting from dx B x €2
converge to the invariant set ©; C d\Ox. X ©. in the time ¢5.

Let the set dyOx x O, satisfy the inequalities |a(i)| < v,i =
0,...,7 — 1, and ||z]| < =, then for an arbitrary parameter 1 and
r = 11/ (Apo) obtain that (12) transfers ©; C dxOx X O. into O C
ds2© x O, being the invariant set of (4), (5), (8). The set dO satisfies
the inequalities |o| < aop”, || < arp”™™", ... |0V < ar—ip
with a; = 4(Apo)*~". The new convergence time does not exceed

pitz2/(Apo).
Define ) C §2, as the subset of points with ¥ belonging to d\ B at
t =t,,andlett; = t, + t2. |

Lemma 3: Under Assumptions 4°, 7° let the input w(¢) of the ac-
tuator (4) be a Lipschitzian function of time w(#) with some fixed Lip-
schitz constant. Then for any 6, = > 0 with sufficiently small p the
inequality |[v — u| < ¢ is established in the time § and is kept after-
wards.

Proof: Let the Lipschitz constant of «(¢) be L > 0. Consider the
time transformation ¢ = p7. Then (4) takes the form Z = f(z, u1 (7)),
v = v(z), u1(7) = u(pr). The function u; () is also Lipschitzian,
but with the Lipschitz constant L, i.e. is “almost” constant with p <
1. The further proof is based on the continuous dependence of the so-
lutions of (4) on the right-hand side and Assumption 7°. ]

Proof of Theorem 1: Define the homogeneous vicinity hs(I") of the
control singularity set I' as the set comprised of the orbits of the group
of dilations d,. passing through the -vicinity of the intersection of "
and the unit sphere. Let Hs(T') be the union of /15(I") and the §-vicinity
of the origin ¥ = 0. Outside of Hy - (I") the control U (X)) is a locally
Lipschitzian function (Assumption 5°). Moreover, due to the homo-
geneity (7) the Lipschitz constant uniformly tends to zero along any
orbit d,;¥, when s — oc. Thus, outside of Hs/o(I") the control is
globally Lipschitzian. According to Lemma 3, with small p, after an
arbitrarily-short transient, |u —v| < ~ is kept outside of Hs(T'),~ < 1.

Since |v| < wvaz, the trajectories of (4), (5), (8) satisfy (8) with
[+l Semn
[—’UM./'UM], Ye H&(F)

The rest of the proof is based now on the continuous dependence of
the solutions on the right-hand side with § — 0, Assumption 8° and
Lemma 1. .
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