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Abstract

High-order sliding mode (HOSM) control is known to provide for finite-time-exact output regulation of uncertain systems with known
relative degrees. Yet the corresponding universal HOSM controllers are typically constructed by special recursive procedures and have
complicated form. We propose two new families of homogeneous HOSM controllers of a very simple form. Lyapunov functions are
provided for a significant part of the first-family controllers. The second family consists of quasi-continuous controllers, which can be done
arbitrarily smooth everywhere outside of the HOSM manifold. A regularization procedure ensures high-accuracy output regulation by means
of control with required smoothness level. Output-feedback controllers are constructed. Controllers of the orders 3-5 are demonstrated.
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1 Introduction
Control of uncertain nonlinear systems is a hot topic of

the modern control theory, and sliding mode (SM) control
(SMC) remains one of the most effective tools to handle
such uncertain systems [13,39,41].

The SMC idea is to keep properly chosen functions (so-
called sliding variables) at zero, effectively reducing the sys-
tem uncertainty. The control is chosen discontinuous in or-
der to dominate the uncertainties. The corresponding mo-
tion is said to be in SM and features a high, theoretically
infinite control switching frequency. Unfortunately, the re-
sulting system vibration can be destructive (the chattering
effect [17,39,41]). Another restriction is that the control
usually needs to appear explicitly already in the first total
time derivative of sliding variables [13,41]. High-order SMs
(HOSMs) have been introduced to cope with these obstacles.

Let a dynamic system be understood in the Filippov sense
[16] and s1, . . . ,sm be its scalar outputs. Suppose that the
system is closed by some possibly-dynamical discontinuous
feedback, so that the successive total time derivatives si,
ṡi, ..., s(ni−1)

i , i = 1, . . . ,m, are continuous functions of the
closed-system state-space variables; and the n-sliding set
si = ... = s(ni−1)

i = 0, i = 1, . . . ,m, is a non-empty integral
set, n = (n1, . . . ,nm). Then the motion on the set is said to
be in the n-sliding (nth-order sliding) mode (n-SM). The
vector n = (n1, . . . ,nm) is called the sliding order [22,23].
The standard sliding modes [13,41] are of the first order (si
are continuous, and ṡi are discontinuous, n = (1, . . . ,1)).

The relative degree of the sliding variable (i.e. the minimal
order of its total derivative explicitly containing control [21])
has become the main parameter of the HOSM application.
HOSMs [4,22–24,26,33,40] are applicable for any relative

? This work was supported by Natural Science Foundation of
China (61573170,61473080,61203014), the Postdoctoral Science
Foundation of China (2015M571687) and the Priority Academic
Program Development of Jiangsu Higher Education Institutions.
??Corresponding author: Shihua Li. Email: lsh@seu.edu.cn.

degrees. They hide the switching in the higher derivatives of
the sliding variables, while preserving the finite-time tran-
sient to the SM and improving the SM accuracy in the pres-
ence of switching imperfections, noises and disturbances.

Introducing integrators in the control channel, one ar-
tificially increases the relative degree, produces arbitrarily
smooth control and simultaneously removes the dangerous
high-energy chattering [3,4,26]. Such controllers directly
solve the control problem, if the sliding variable is a track-
ing error. Another important application of SMs is robust
finite-time-exact differentiation and observation [5,6,23,40–
42]. These differentiators are to provide the necessary in-
formation for the output-feedback application of the HOSM
controllers. HOSM control (HOSMC) has been successfully
applied to numerous real control systems, such as wheel slip
control [1], mobile robot [15], aircraft control [40], etc.

Most of the aforementioned high-order SMC controllers
are usually obtained by the homogeneity analysis and design
[7,24,30]. The controllers are mostly provided by long com-
plicated recursive formulas [19,23,25]. A 5-SM controller
formula at least takes a few lines. This is also often true in
the particular case of the finite-time integrator-chain stabi-
lization [20]. For example, a 3-SM controller in [19] is based
on [20] and takes 3 lines. A simple homogeneous HOSM
controller family still lacks.

Being constructive, the HOSM convergence proofs in-
volve the recursive choice of sufficiently-large control pa-
rameters [23–25]. The Lyapunov analysis of HOSMs has
been recently performed in [10,19,31,32,35–37]. The Lya-
punov method provides for explicit relations between the
design parameters and allows the direct evaluation of the
SM accuracy in the presence of various perturbations. Un-
fortunately, such estimations are mostly very conservative,
and direct simulation often provides for much better results.

Two new HOSM controller families for uncertain systems
of arbitrary relative degrees are developed in this paper. The
main advantage of the new HOSM controllers is their ulti-
mate simplicity. One does not need anymore to use compli-
cated recursive procedures in order to develop the controller
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form for arbitrarily-high relative degrees.
The first-family controllers can be considered a gener-

alization of terminal SM controllers [14,29] to high rela-
tive degrees, or generalization of continuous controllers [9].
We call them relay polynomial HOSM controllers. The de-
rived controllers feature large freedom of fractional powers’
choice. The proof is based on homogeneity, but also Lya-
punov functions are presented in many cases.

The quasi-continuous versions of these controllers, con-
tinuous outside of the HOSM manifold, constitute the sec-
ond family, called quasi-continuous polynomial HOSM con-
trollers. They feature significantly reduced chattering. For
the first time quasi-continuous controllers can be made arbi-
trarily smooth outside of the HOSM manifold. A regulariza-
tion procedure is proposed to maintain approximate HOSMs
by means of control with a prescribed smoothness level. The
proofs are based on the homogeneity of controllers.

2 The problem statement and some new controllers
Consider a single-input single-output system of the form

ẋ = A(t,x)+B(t,x)u, s = s(t,x), (1)

where x ∈ IRnx , u∈ IR is the control, s : IRnx+1→ IR and A, B
are unknown smooth functions. The dimension value nx is
not used in the sequel. All differential equations are under-
stood in the Filippov sense [16] in order to allow discontin-
uous controls. The control task is to make s vanish in finite
time and to keep it at zero afterwards.

The relative degree n of system (1) is assumed to be con-
stant and known. It means [21] that for the first time the
control explicitly appears in the nth total time derivative of
s, i.e.

s(n) = h(t,x)+g(t,x)u, (2)
where h(t,x), g(t,x) are some unknown smooth functions,
g 6= 0. Note that no continuous feedback solves the problem
because of the uncertainty of h,g, also such classic methods
as back-stepping are not applicable.

According to the standard HOSM control approach [23],
let

0 < Km ≤ g(t,x)≤ KM, |h(t,x)| ≤C, (3)
for some Km, KM , C > 0. Also assume that solutions of (2) are
infinitely extendible in time for any Lebesgue-measurable
bounded control u(t).

In practice the operational region of any plant is always
bounded. In that case conditions (3) hold locally, and the
results can be respectively reformulated [23].

Introduce the notation: ∀x 6= 0bxeγ = |x|γ signx; ∀γ >

0b0eγ = 0; bxe0 = signx.
The controls proposed in this paper have a very simple

form. Choose any a > 0 and introduce the relay polynomial
n-SM controller

u =−α sign(
⌊

s(n−1)
⌉ a

1
+ β̃n−2

⌊
s(n−2)

⌉ a
2
+ · · ·+ β̃0bse

a
n ),

(4)
and the quasi-continuous polynomial n-SM controller

u =−α

⌊
s(n−1)

⌉ a
1
+ β̃n−2

⌊
s(n−2)

⌉ a
2
+ · · ·+ β̃0bse

a
n

|s(n−1)| a1 + β̃n−2|s(n−2)| a2 + · · ·+ β̃0|s|
a
n

. (5)

Denote ~s j = (s, ṡ, ...,s( j)) for any natural j. Note that the
absolute value of the nominator of (5) does not exceed the
denominator. Thus, the right-hand side of (5) is formally

not defined at the n-sliding set ~sn−1 = 0. Since ~sn−1 = 0 is
a set of the measure 0, the values of u on it do not affect
the system behavior [16], and in implementation some value
from the range [−α,α] is prescribed to u.

Provided the coefficients β̃ j > 0 are properly chosen, both
controllers solve the stated problem with sufficiently large
α . If n = 2 controller (4) becomes the terminal SMC [22,29]
for a = 1, and the nonsingular terminal SMC [14] for a = 2.

While the first controller is a “usual” discontinuous SM
controller, the second one is quasi-continuous [25], i.e. the
control is only discontinuous, if the system is in the n-SM
~sn−1 = 0. While in the SM the control reveals the typical
SMC chattering. Nevertheless, while not in the n-SM, it be-
comes locally Lipschitz for a≥ n, and even k times contin-
uously differentiable if a > kn, k = 1,2, ... .

Quasi-continuous controllers feature much less chatter-
ing, since in practice the above n-SM equalities ~sn−1 = 0
are never observed due to various switching imperfections,
noises and disturbances. Thus the control remains continu-
ous all the time. Note that the denominator of (5) actually
measures the n-SM accuracy. The worse the SM accuracy the
further the denominator from zero, which results in slower
control changing (also see Sections 4.1, 5).

In the sequel we prove the above statements and pro-
pose additional controllers, construct a Lyapunov function
for controller (4) with a ≥ n, provide numeric and analytic
methods for coefficient adjustment, and propose a regular-
ization procedure to solve the stated problem approximately
by control featuring any needed smoothness level.

3 Homogeneity and sliding mode control
Obviously, (2) and (3) imply the differential inclusion

s(n) ∈ [−C,C]+ [Km,KM]u, (6)

and the problem is reduced to the stabilization of (6). Here
and further a binary operation of two sets produces the set
of all possible binary operations of their elements, a number
(vector) is treated in that context as a one-element set.

Hence a feedback control

u =Un(s, ṡ, ...,s(n−1)), (7)

is to be constructed, such that all solutions of (6), (7) con-
verge in finite time to the origin~sn−1 = 0. Recall that a solu-
tion is any absolutely continuous function of time that almost
everywhere satisfies the inclusion. The function Un is to be
a locally-bounded Borel-measurable function. Thus, substi-
tuting any Lebesgue-measurable estimations of ~sn−1 obtain
a Lebesgue measurable control. Note that, provided control
(7) is bounded, n−1 derivatives of s can be real-time eval-
uated, producing an output-feedback controller [23], [24].

Here and further the right-hand side of any closed-loop
differential inclusion is minimally enlarged providing for its
compactness, convexity and upper-semicontinuity [24].

Recall that the function Un(~sn−1) is inevitably discontin-
uous at the n-sliding set~sn−1 = 0 [24,25]. The homogeneity
properties of the controller (7) are described below.

A function f : IRk → IR (respectively a vector-set field
F(y) ⊂ IRk, y ∈ IRk, or a vector field f : IRk → IRk) is
called homogeneous of the degree qy ∈ IR with the di-
lation [2] dκ : (y1,y2, ...,yk) 7→ (κm1y1,κ

m2y2, ...,κ
mk yk),

and the weights m1, ..., mk > 0, if for any κ > 0
the identity f (y) = κ−qy f (dκ y) holds (respectively,
F(y) = κ−qyd−1

κ F(dκ y), or f (y) = κ−qyd−1
κ f (dκ y)). The
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non-zero homogeneity degree qy of a vector (vector-set)
field can always be scaled to ±1 by an appropriate propor-
tional change of the weights m1, ..., mk.

Note that the homogeneity of a vector field f (y) (a vector-
set field F(y)) can equivalently be defined as the invari-
ance of the differential equation ẏ = f (y) (differential inclu-
sion ẏ∈ F(y)) with respect to the combined time-coordinate
transformation (t,y) 7→ (κ−qyt,dκ y), where −qy might nat-
urally be considered as the weight of t. Indeed, the homo-
geneity condition can be rewritten as ẏ ∈ F(y)⇔ d(dκ y)

d(κ−qy t)
∈

F(dκ y).
Suppose that feedback (7) imparts homogeneity properties

to the closed-loop inclusion (6), (7). Due to the term [−C,C]
the right-hand side of (7) can only have the homogeneity
degree 0 if C 6= 0. Scaling the system homogeneity degree to
-1, achieve that the homogeneity weights of t, s , ṡ, ..., s(n−1)

are 1, n, n−1, ..., 1 respectively. This homogeneity is called
the standard n-sliding homogeneity [24]. Respectively the
inclusion (6), (7) is called n-sliding homogeneous if for any
κ > 0 the combined time-coordinate transformation

(t,~sn−1) 7→ (κt,dκ~sn−1), dκ~sn−1 = (κns,κn−1ṡ, ...,κs(n−1))
(8)

preserves the closed-loop inclusion (6), (7).
Transformation (8) transfers (6), (7) into

dn(κns)
d(κt)n = dns

dtn ∈ [−C,C]+[Km,KM]Un(dκ~sn−1).

Thus, the n-sliding homogeneity condition is

Un(κ
ns,κn−1ṡ, . . . ,κs(n−1))≡Un(s, ṡ, . . . ,s(n−1)). (9)

Respectively, controller (7) is called n-sliding homogeneous,
if the identity (9) holds for any positive κ and any arguments.
Also the corresponding n-SM s≡ 0 is called homogeneous
SM (HSM) in that case.

In particular, the relay controller u=−α signs is 1-sliding
homogeneous, as well as the corresponding SM. Since the
control is to be locally bounded to satisfy the Filippov con-
ditions on the right-hand side [16], due to (9) it is also glob-
ally bounded. Obviously, (4) and (5) are n-HSM controllers.

4 Main results
A number of new controllers are proposed here. Their

adjustment and accuracy are considered.
4.1 Proposed controllers

Consider the Brunowsky integrator-chain system

s( j) = u, s,u ∈ IR, j≤ n. (10)

Choose some positive weight degs = r0. Let τ be the minus
system homogeneity degree chosen in advance, 0 < τ ≤
r0/n. Let degs(i) = ri, degs(n) = rn ≥ 0,

degs(i) = ri = r0− iτ = rn +(n− i)τ, i = 0, ...,n. (11)

By definition a homogeneous norm is any positive-definite
continuous function of the weight 1. Fix some p > r0 and
introduce continuously differentiable homogeneous norms
in the spaces ~s j,

||~s j||h=
(
|s|

p
r0 + · · ·+ |s( j)|

p
r j

) 1
p

, p > r0, j = 0,1, ...,n−1.

(12)

Surely the triangle inequality does not hold here.
Obviously, in order to produce a homogeneous system,

the control in (10) is to be of the weight r j = r0− jτ ≥ 0.
The n-sliding homogeneity corresponds to τ = r0/n, rn = 0,
whereas the standard n-sliding homogeneity corresponds to
τ = 1, r0 = n, r1 = n−1, ..., rn = 0.
Theorem 4.1 Fix any a > 0, and let βi > 0, i = 0, ...,n−1,
be chosen sufficiently large in the index order. Then the
differential equation⌊

s( j)
⌉ a

r j +β j−1(
⌊

s( j−1)
⌉ a

r j−1 + · · ·+β2(bs̈e
a
r2

+β1(bṡe
a
r1 +β0bse

a
r0 )) · · ·) = 0,

(13)

is finite-time stable for each j = 1, ...,n− 1, and j = n if
rn > 0.

Here and further all proofs are in Appendices. Define

ϕn−1 =
⌊

s(n−1)
⌉ a

rn−1 + β̃n−2

⌊
s(n−2)

⌉ a
rn−2

+...+ β̃1bṡe
a
r1 + β̃0bse

a
r0 ,

Ψn−1 =
bs(n−1)e

a
rn−1 +β̃n−2bs(n−2)e

a
rn−2 +···+β̃0bse

a
r0

|s(n−1)|
a

rn−1 +β̃n−2|s(n−2)|
a

rn−2 +···+β̃0|s|
a
r0

.

(14)

Thus for j = n−1 equation (13) can be rewritten in the form
ϕn−1(~sn−1) = 0. Introduce the polynomial HSM controllers

u =−α signϕn−1(s, ṡ, . . . ,s(n−1)), (15)

u =−αΨn−1(s, ṡ, . . . ,s(n−1)). (16)

Theorem 4.1 yields a method of choosing βi as coeffi-
cients of finite-time stabilizing controllers for (10) for j =
1,2, ...,n: any β0 > 0 is taken, then for each j one parameter
β j−1 is added by simulation of (13). An analytical choice of
the coefficients is further established by Theorem 4.4. Ob-
viously, β̃i = βiβi+1 · · ·βn−2, i = 0, . . . ,n−2.

Controller (15) is called relay polynomial, whereas (16)
is quasi-continuous polynomial SM controller. While not in
the n-SM (i.e. for~sn−1 6= 0), control (16) is locally Lipschitz
for a= r0, and k times continuously differentiable, if a> kr0,
k = 1,2, ... . At the same time degΨ̇n−1 = 0− τ < 0, which
means that |Ψ̇n−1| →∞ as the system enters n-SM~sn−1 = 0,
and |Ψ̇n−1| → 0 as ||~sn−1||h→ ∞.

Note that in the case of n-sliding homogeneity, r0 = nτ ,
controller (15) can be always rewritten in the form (4), cor-
responding to r0 = n, τ = r0/n = 1. Controller (16) in that
case can be rewritten as (5).
Theorem 4.2 Let a > 0, and coefficients β0, . . ., βn−2 > 0
be chosen sufficiently large in the index order, as in Theorem
4.1. Let the uncertainties of system (1) satisfy the restric-
tions (2), (3). Then in the case of the n-sliding homogeneity,
r0 = nτ , for sufficiently large α > 0 both controllers (15),
(16) provide for the finite-time establishment of the n-sliding
mode s ≡ 0 in the closed-loop system (1), (15) or (1), (16)
Controllers (15), (16) provide only for the local finite-time
stability of the n-SM in the case r0 > nτ .

Let the output derivatives s( j) be sampled continuously
or at discrete time moments with sampling noises being
bounded Lebesgue-measurable functions of time.
Theorem 4.3 Under the conditions of Theorem 4.2 let
s, ṡ, · · · ,s(n−1) be sampled with noises respectively not ex-
ceeding δ0,δ1, · · · ,δn−1 in absolute value, and the sampling
intervals not exceeding δt . Then controllers (15), (16) ( in
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particular, (4), (5)) in finite time provide for the accura-
cies of the form |s( j)| ≤ µ j[max(maxi=1,...,n−1 δ

1/ri
i ,δ

1/τ)
t ]r j ,

where the constants µ j > 0 depend only on the parameters
of the stated problem and of the controller.

Note that Theorems 4.2, 4.3 remain true for any positive-
definite function of the weight a taken as the denominator
of the function Ψn−1 in (14).
Theorem 4.4 Let β0 = 1 and a ≥ r0. Then the coefficients
β1, . . . ,βn−1 of Theorems 4.1 and 4.2 can be chosen accord-
ing to the relation

β

ri
a

i−1 ≥
ri−1

2
ri−1

a ρ

(
2i−

ri−1
a (2ρ−ri−1)

ρ

) 2ρ−ri−1
ri−1

+ γ̂i +
1

2i−1 ,

where γ̂i = Γ̄i1 + · · ·+ Γ̄i,i−1 +
1

2i+1 , i = 2, · · · ,n, and

Γ̄i1 =

3
2ρ

(
1
r0

21− ri−1
a (2ρ− ri−1 + τ)

) 2ρ

2ρ+τ−a
(βi−2 · · ·β1)

2ρ

2ρ+τ−a

×(2ρ + τ−a)
(

1
ρ

2i+1(a− τ)
) a−τ

2ρ+τ−a
,

Γ̄ik =
3
ρ

(
1

rk−1
21− ri−1

a (2ρ− ri−1 + τ)

×βi−2...βkβ
1+ rk

a
k−1 β

1− rk−1
a

k−2

) 2ρ

2ρ+τ−a

×(2ρ + τ−a)
(

1
ρ

2i+1(a− τ)
) a−τ

2ρ+τ−a
, k = 2, · · · , i−1.

The above coefficients correspond to the Lyapunov function
for system (13) and controller (15)

Vj(~s j−1) =
j

∑
i=1

∫ s(i−1)

ω∗i

⌊
bλe

a
ri−1 −bω∗i e

a
ri−1

⌉ 2ρ−ri−1+τ

a
dλ ,

where ρ ≥ a, ω∗1 = 0, ω∗i = −β
ri−1/a
i−2 bξi−1eri−1/a, ξi =⌊

s(i−1)
⌉a/ri−1

−bω∗i e
a/ri−1 .

Naturally, the above choice of parameters is far from being
optimal. As usual, the parameters are better determined by
simulation. Once proper parameters are found, one can easily
adjust them, providing for any needed convergence rate.
Proposition 4.1 Let sets of parameters βk, k = 0, . . . ,n−1
and β̃i, i = 0, . . . ,n− 2, be properly chosen as in Theo-
rems 4.1, 4.2, and let λ > 0. Then also the new coeffi-
cients β ′k = λ

a
rk
− a

rk+1 βk provide for the finite-time stability
of equations (13) with j = 1, . . . ,n. Taking rn = 0 obtain that

β̃ ′i = λ
ia
ri
− (n−1)a

rn−1 β̃i are new valid coefficients for controllers
(15) and (16). In particular, with r0 = n,τ = 1 obtain that
the set of coefficients β̃ ′i = λ

a i
n−i−a(n−1)

β̃i is valid for con-
trollers (4), (5). The convergence is faster with 0 < λ < 1
and slower with λ > 1, the less λ the faster the convergence.

The proposition is proved by the substitution t 7→ t/λ ,
i.e. s(k) 7→ λ ks(k), in (13)-(16). Let now the uncertainties sat-
isfy the assumption that there is a positive-definite function
h̄(t,x(t))≥ h > 0 available in real time, and a constant g > 0
such that

|h(t,x)| ≤ h̄(t,x), g(t,x)≥ g. (17)

Theorem 4.5 Let a > 0 and the sets of parameters βk, k =
0, . . . ,n−1 and β̃i, i = 0, . . . ,n−2, be properly chosen as in
Theorems 4.1, 4.2 under the condition r0 ≥ nτ (i.e. rn ≥ 0),

and let the uncertainties of system (1), (2) satisfy (17). Then
for a≥ r0 and sufficiently large α the controller

u =−αbϕn−1(~sn−1)e
rn
a − h̄(t,x)

g signϕn−1(~sn−1), (18)

provides for the finite-time establishment of the n-SM s = 0
in the system. Under the n-sliding homogeneity condition
r0 = nτ , for any positive a and sufficiently large α anyone
of controls

u =−α
h̄(t,x)

g signϕn−1(s, ṡ, . . . ,s(n−1)),

u =−α
h̄(t,x)

g Ψn−1(s, ṡ, . . . ,s(n−1))
(19)

provides for the finite-time establishment of the n-SM s = 0.
Controller (18) has the minimal possible discontinuous-

component magnitude under conditions (17) for rn > 0. The
Lyapunov function from Theorem 4.4 fits it.
4.2 Regularization of homogeneous SMs

Control (16) is only continuous outside of the n-SM s= 0.
Though one cannot maintain s≡ 0 by continuous feedback,
one still can keep n-SM approximately. The corresponding
procedures are called regularization in SMC.
Proposition 4.2 Let (7) be any homogeneous n-SM con-
trol for the system (6) (degs( j) = n− j, j = 0, ...,n− 1),
and ζ (~sn−1) be any bounded Lebesgue-measurable function
such that ζ ≡ 1 for all ~sn−1 satisfying ||~sn−1||h ≥ εζ . Then
there exist such γ0, ...,γn−1 that the control

u = ζ (~sn−1)Un(~sn−1) (20)

yields the establishment of inequalities |s( j)| ≤ γ jε
n− j
ζ

, j =
0, ..,n−1, in finite time.

As a consequence get a regularization procedure for ho-
mogeneous quasi-continuous controls.
Theorem 4.6 Under the conditions of Proposition 4.2 let
(7) be quasi-continuous and kζ -times differentiable every-
where except the point ~sn−1 = 0. Let also the function ζ

be kζ -times differentiable and equal zero in some vicinity
of ~sn−1 = 0. Then the same accuracies are established by
means of kζ -times differentiable control (20).
4.3 Output-feedback application

All the above controllers can be equipped with a differ-
entiator [23] yielding output-feedback control. Describe it.

Let the input signal φ(t) be a function consisting of a
bounded Lebesgue-measurable noise with unknown fea-
tures, and of an unknown base signal φ0(t), whose kd th
derivative has a known Lipschitz constant L > 0. The fol-
lowing differentiator [23] is presented in a recursive form
and provides for the estimations z j of the derivatives φ

( j)
0 ,

j = 0, . . . ,kd :

ż0 =−λkd L
1

kd+1 bz0−φ(t)e
kd

kd+1 + z1,

ż1 =−λkd−1L
1

kd bz1− ż0e
kd−1

kd + z2,

...

żkd−1 =−λ1L
1
2
⌊
zkd−1− żkd−2

⌉ 1
2 + zkd ,

żkd =−λ0L sign(zkd − żkd−1).

(21)

An infinite sequence of parameters λ j can be built, valid for
all natural kd [23]. In particular, one can choose λ0 = 1.1,
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λ1 = 1.5, λ2 = 3, λ3 = 5, λ4 = 8, λ5 = 12 [25], which is
enough for kd ≤ 5.

In the absence of noises the differentiator in finite time
provides for the exact estimations, and its error dynamics
is homogeneous of the system degree −1 with deg(z j −
φ ( j))= kd +1− j [23]. Respectively, the accuracy z j−φ

( j)
0 =

O(δ kd+1− j), δ = max(δt ,δ
1/(kd+1)
0 ), is provided for sam-

pling time periods not exceeding δt > 0 and the maximal
possible sampling error δ0 ≥ 0. This accuracy is asymptoti-
cally optimal in the presence of noises [23].

Assuming that the sequence λ j is everywhere the same,
denote (21) by the equality ż = Dkd (z,φ ,L). Thus controller
(7) turns into its output-feedback version

u =Un(z), ż = Dn−1(z,s,L). (22)

Theorems 4.2, 4.6 remain true also for the output-
feedback controllers for any L ≥ C+KMα . In the case of
Theorem 4.5 one should apply differentiator (21) with vari-
able L [28] and possibly consider the modified differentiator
[27] featuring faster global finite-time convergence.

Under the conditions of Theorem 4.3 let s be sampled
with the accuracy δ0. Then in the particular case of the n-
sliding homogeneity, r0 = n, rn = 0, the output-feedback
controllers (22) provide for the standard asymptotic accuracy

of homogeneous n-SM [24]: |s( j)| ≤ µ j[max(δ
1
n

0 ,δt)]
n− j.

5 Application and simulation
While any value a > 0 can be chosen, higher values of a

correspond to smoother quasi-continuous control during the
convergence to the n-SM~sn−1 = 0. Note that the parameters
depend on a. The case n = 1 is trivial, and there are no
restrictions on β̃0 for n = 2. The experimentally-found valid
sets of β̃0, . . . , β̃n−2 for n = 3,4,5 and a = r0 = n, τ = 1 are
as follows: 3. {1,1}; 4. {1,2,2}; 5. {1,3,5,6}.

Thus the following are relay polynomial SM controllers
(4) for n = 1, . . . ,5:

1. u =−α signs,

2. u =−α sign(bṡe2 + s),

3. u =−α sign(s̈3 + bṡe
3
2 + s),

4. u =−α sign(b...s e4 +2bs̈e2 +2bṡe
4
3 + s),

5. u =−α sign(
⌊

s(4)
⌉5

+6b...s e
5
2 +5bs̈e

5
3 +3bṡe

5
4 + s).

It is used here that bsek = sk for odd integer k. Similarly,
get the quasi-continuous polynomial SM controllers (5). In
particular, the quasi-continuous polynomial 5-SM controller
takes the form

u =−α

⌊
s(4)
⌉5

+6b...s e
5
2 +5bs̈e

5
3 +3bṡe

5
4 + s

|s(4)|5 +6|...s | 52 +5|s̈| 53 +3|ṡ| 54 + |s|
. (23)

Note that these seem to be the first published 5-SM and
quasi-continuous 4-SM controllers explicitly presented by
one formula.
Example. Consider a disturbed integrator chain

ẋ1 = x2, ..., ẋn−1 = xn, ẋn = hx(t,x)+gx(t,x)u, (24)

where hx,gx are bounded uncertainties, gx ≥ const > 0. The
task is to make the output y = x1 track an uncertain signal
yc(t) available in real time. y(n)c is assumed bounded.

The uncertainty does not allow any standard continuous
feedback approach. Taking s = y−yc reduce the problem to
one stated in Section 2. In the following simulation we take
C = 2, Km = 1, KM = 3, n= 3,4,5. The “uncertain” functions
hx = cos(t +x1x3 +x2), gx = 2+ sin t, yc = cos t are chosen.

Initial values are taken with respect to the value of n from
x1(0) =−1, x2(0) = 1, x3(0) =−1, x4(0) = 1, x5(0) =−1.
The control magnitude α is found by simulation. All con-
trollers are equipped with differentiators as in (22) and use
only sampled values of s. Parameters of the differentiators
are listed in Section 4.3, L = 100. The Euler integration
method has been applied with the integration step δt equal
to the sampling step.

Fig. 1. Comparison of the quasi-continuous 3-SM controllers with
a = 1 (row a), a = 3 (row b), and a = 7 (row c).

Fig. 2. Comparison of the 3-SM quasi-continuous controller with
a = 3 (a, c, e) and its regularization (b, d, f).

Let n = 3, α = 10. The performance of the quasi-
continuous controllers (5) with (β̃0, β̃1) = (1,1) and
a = 1,3,7 is demonstrated in Fig. 1. The control is applied
starting from t = 2, providing some time for the differentia-
tor convergence. The homogeneous norm in the graphs is

5



Fig. 3. Performance of the output-feedback 3-SM quasi-continuous
controller with a = 3 in the presence of the Gaussian sampling
noise with the dispersion 0.005.

Fig. 4. Performance of the 4-SM controller of the form (15) with
a = 7 and of the 5-SM quasi-continuous controllers (16) for a = 1
and a = 5 (the last one has formula (23)).

calculated according to (12) with p = n! (i.e. p = 6). Two
time units of the entrance into 3-SM are shown for each a.
The control remains continuous till the very entrance into
the SM. One can see that during the transient u(t) is not
lipschitzian for a = 1.

The following 3-sliding accuracies are obtained for a = 1
and described by component-wise inequalities:
(|s|, |ṡ|, |s̈|)≤ (4.7 ·10−5,1.8 ·10−3,0.17), for δt = 0.001;
(|s|, |ṡ|, |s̈|)≤ (4.5 ·10−8,1.8 ·10−5,0.017), for δt = 0.0001.
Similar accuracies are obtained for a = 3 and a = 7. It com-
plies with the theoretical accuracy calculated in Section 4.

Apply the regularization (20) from Section 4.2 with
ζ (~s2) = min(1,max(0,3(||~s2||h − 0.02))). The resulting
output-feedback is u = ζ (z)U3(z), ż = D2(z,s,100). The
performance comparison of the controller with a = 3 and its
regularization is presented in Fig. 2. The regulization pro-
duces the 3-SM accuracy (|s|, |ṡ|, |s̈|)≤ (0.001,0.007,0.08)
for δt = 0.0001. Thus, a good tracking performance is
obtained by Lipschitzian control.

Performance of the same controller (5) (i.e. (β̃0, β̃1) =
(1,1), a = 3) in the presence of Gaussian sampling noise
with the dispersion 0.005 is presented in Fig. 3. It roughly
corresponds to the noise magnitude 0.01. The accuracy
(|s|, |ṡ|, |s̈|)≤ (0.04,0.2,3.5) is obtained for δt = 0.001 and
remains the same for any smaller δt .

Performance of the relay polynomial 4-SM controller (4)

with n= 4, a= 7, (β̃0, β̃1, β̃2)= (1,2,2) and α = 30 is shown
in Fig. 4a,b,c. Once more the control is applied starting from
t = 2. In spite of the small time scale one can observe that the
1-SM on the manifold ϕ3(s, ṡ, s̈,

...
s ) = 0 is periodically lost

during the transient to the 4-SM s≡ 0 (Fig. 4b). The accuracy
(|s|, |ṡ|, |s̈|, |...s |)≤ (1.6 ·10−8,1.2 ·10−6,1.1 ·10−4,0.048) is
obtained for δt = 0.0001.

Performance of the quasi-continuous 5-SM controllers (5)
with n = 5, (β̃0, β̃1, β̃2, β̃3) = (1,3,5,6), α = 30 for a = 1
and a = 5 (the latter has formula (23)) is shown in Fig. 4d,
and Fig. 4e,f respectively. This time the control is applied
from the start at t = 0. Please pay attention that the conver-
gence time is 23 for a = 5 and 105 for a = 1. In fact, conver-
gence with one value of a does not guaranty convergence for
significantly different values of a. Both controllers provide
for about the same accuracy (|s|, |ṡ|, |s̈|, |...s |, |s(4)|) ≤ (6.7 ·
10−7,8.0 ·10−6,1.3 ·10−4,0.0024,0.23) for δt = 0.0001.

6 Conclusions
Two families of ”polynomial” HSM controllers are pro-

posed for general-case uncertain systems of known rela-
tive degrees. The controllers feature especially simple form
known in advance for any relative degree.

The relay polynomial controllers (14), (15) make the tra-
jectories converge to the n-SM s ≡ 0 along the manifold
ϕn−1 = 0 (see (14)) of the phase space by discontinuous con-
trol input. Some segments of the transient trajectory prob-
ably feature 1-SM on ϕn−1 = 0. Such SM is not possible
during the whole transient if a < r0, since there are subman-
ifolds of ϕn−1 = 0 with infinite curvatures. Lyapunov func-
tions are constructed for such controllers provided a≥ r0.

The quasi-continuous polynomial HSM controllers (14),
(16) produce control, which becomes k-smooth outside of
the n-SM, s = ṡ = ...= s(n−1) = 0, for a > kr0, k = 1,2, ... .
For a = r0 it is only locally Lipschitz, and for 0 < a < r0
it is only continuous outside of the n-SM. It is the first
time that the smoothness of a quasi-continuous controller is
adjustable.

One can easily tune the parameters of the controllers in
order to provide for the needed convergence rate.

Controllers with variable gains solve the stated problem
if the uncertain terms h and g in (2) respectively posses
available variable upper and lower bounds.

Controllers can be equipped with finite-time convergent
exact robust differentiators [23,27] producing output feed-
backs. The asymptotic accuracy of homogeneous controllers
is estimated in the presence of noises and discrete sampling.

A regularization procedure is proposed for keeping ap-
proximate SM by means of control having a prescribed
smoothness level.

7 Appendix: Homogeneity analysis
Here we prove Theorems 4.1, 4.2, 4.3, 4.6, Proposition 4.2

and the second part of Theorem 4.5. The following technical
lemma plays important role in the sequel.
Lemma 7.1 Let B ≥ 0, |θ | ≤ 1, 0 ≤ ξ < 1. Then the in-
equality |A+Bθ |

|A|+B ≤ ξ implies that |A+Bθ | ≤ 2ξ

1−ξ
B.

Proof. Obviously, the inequality implies that B > 0. Divide
the denominator and the nominator by B. Let Ã = |A|/B,
θ̃ = θ signA. It is now enough to prove that

|Ã+ θ̃ |/(Ã+1)≤ ξ (25)

implies that |Ã+ θ̃ | ≤ 2ξ

1−ξ
.
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Indeed, if Ã ≤ 1+ξ

1−ξ
then (25) implies |Ã + θ | ≤(

1+ξ

1−ξ
+1
)

ξ = 2ξ

1−ξ
.

Now suppose that Ã > 1+ξ

1−ξ
. Then |Ã+θ̃ |

Ã+1 = |Ã+1+θ̃−1|
Ã+1 ≥

1− 2
Ã+1 > 1− 2

1+ξ

1−ξ
+1

= ξ , and we come to contradiction. �

Let the homogeneity degrees be defined as in Section 3.
Proof of Theorem 4.1. The homogeneity dilation corre-
sponding to the weights (11) is defined by the formula

d j,κ~s j = (κr0s,κr1 ṡ, . . . ,κr j s( j)) (26)

for any κ > 0. The theorem proof is by induction.
First step: j=1. The equation bṡe

a
r1 +β0bse

a
r0 = 0 is equiva-

lent to ṡ=−β

r1
a

0 bse
r1
r0 , which is obviously always finite-time

stable, since r1 < r0.
Induction step. Let β0, . . . ,β j−2 be chosen so that all equa-
tions (13) of the orders 1, . . . , j−1 be finite-time stable.

Introduce the functions

ϕ j(~s j) =
⌊

s( j)
⌉ a

r j +β j−1(
⌊

s( j−1)
⌉ a

r j−1 + · · ·

+β1(bṡe
a
r1 +β0bse

a
r0 )...),

N j(~s j) = |s( j)|
a
r j +β j−1(|s( j−1)|

a
r j−1 + · · ·

+β1(|ṡ|
a
r1 +β0|s|

a
r0 )...),

Ψ j(~s j) = ϕ j(~s j)/N j(~s j).

(27)

Then (13) is rewritten as

ϕ j(~s j) = 0,

ϕ j(~s j) =
⌊

s( j)
⌉ a

r j +β j−1N j−1(~s j−1)Ψ j−1(~s j−1),

N j(~s j) = |s( j)|
a
r j +β j−1N j−1(~s j−1).

(28)

Obviously |Ψ j−1(~s j−1)| ≤ 1, degΨ j−1 = 0. Moreover, ac-
cording to the induction assumption, Ψ j−1(~s j−1)= 0 implies
the finite-time stable differential equation ϕ j−1(~s j−1) = 0.
With any ε , 0≤ ε < 1, according to Lemma 7.1, |Ψ(~s j−1)| ≤
ε implies∣∣∣∣⌊s( j−1)

⌉ a
r j−1 +β j−2N j−2(~s j−2)Ψ j−2(~s j−2)

∣∣∣∣
≤ 3ε

1−2ε
β j−2N j−2(~s j−2),

(the region is deliberately enlarged) or, equivalently,

⌊
−β j−2N j−2Ψ j−2− 3ε

1−2ε
β j−2N j−2

⌉ r j−1
a ≤ s( j−1)

≤
⌊
−β j−2N j−2Ψ j−2 +

3ε

1−2ε
β j−2N j−2

⌉ r j−1
a . (29)

Since ϕ j−1(~s j−1) = 0 is a finite-time stable homogeneous
differential equation, for sufficiently small ε homogeneous
inclusion (29) is also finite-time stable [24]. Fix such ε .
Prove that for any ε > 0 with sufficiently large β j−1 any
trajectory of (28) in finite time enters the set (29) to stay
there forever.

Rewrite (29) in the form ϕ−(~s j−2) ≤ s( j−1) ≤ ϕ+(~s j−2),
where ϕ− and ϕ+ are continuous homogeneous functions of
the weight r j−1 = degs( j−1).

Any continuous function on the homogeneous sphere
S1 = {~s j−2 ∈ R j−2| ||~s j−2||h = 1} can be approximated
by a smooth function. Thus, define a subset of (29)
by the inequality Φ̃−(ω) ≤ s( j−1) ≤ Φ̃+(ω) on S1,
where ω is a coordinate on the sphere, and Φ̃+,Φ̃−
are smooth functions. It is assumed that ϕ− ≤ Φ̃− ≤
−
⌊
β j−2ϕ j−2

⌉ r j−1
a ≤ Φ̃+ ≤ ϕ+ holds on S1. Moreover, ac-

cording to Lemma 7.1 one can choose Φ̃+,Φ̃− so that also
the set |Ψ(~s j−1)| ≤ ε be inside it on the sphere. Respec-
tively, define Φ−(~s j−2) = ||~s j−2||

r j−1
h Φ̃−(d j−2,||~s j−2||−1

h
~s j−2),

Φ+(~s j−2) = ||~s j−2||
r j−1
h Φ̃+(d j−2,||~s j−2||−1

h
~s j−2), which

are functions smooth everywhere except the origin,
degΦ+ = degΦ− = r j−1.

Thus, ϕ− ≤ Φ− ≤ −
⌊
β j−2ϕ j−2

⌉ r j−1
a ≤ Φ+ ≤ ϕ+ holds

everywhere. Obviously the region

Φ− ≤ s( j−1) ≤Φ+ (30)

of the space ~s j−1 contains the set |Ψ(~s j−1)| ≤ ε , and the
corresponding differential inclusion in the space~s j−2 is also
finite-time stable.

It is enough now to prove that with sufficiently large β j−1
the inequalities (30) are established in finite time and kept
forever to finish the theorem proof. Note that degΦ̇+ =
degΦ+−τ = r j. Since N j−1 is positive definite in the space
~s j−1, and degN j−1 = a, there is such kN > 0 that |Φ̇+| ≤

kNN
r j
a

j−1. For example, take the “upper” bound π+ = 0 of the
region (30), where π+ = s( j−1)−Φ+(~s j−2). Suppose that
π+ > 0, which means that the point is outside of the region
(29) and Ψ(~s j−1)≥ ε . Differentiating and using (28) obtain

π̇+ =−β

r j
a

j−1

⌊
N j−1Ψ j−1

⌉ r j
a − Φ̇+

≤−((εβ j−1)
r j
a − kN)N

r j
a

j−1.
(31)

On the other hand, degπ+ = r j−1, π+ = π+(~s j−1)) im-

plies that ∃kπ : |π+| ≤ kπ N
r j−1

a
j−1 . Hence, (31) implies

π̇+ ≤ −((εβ j−1)
r j
a − kN)(k−1

π π+)
r j

r j−1 , which means that
with β j−1 large enough π+ vanishes in finite time, and,
according to (31), changes its sign. Similarly, considering
the case π− = s j−1−Φ− < 0 obtain that the set (30) is an
invariant finite-time attractor for the differential equation
(28). �
Proof of Theorem 4.2. The following proof shows that with
sufficiently large α > 0 controllers (15) or (16) provide for
the finite time establishment of the n-sliding mode s≡ 0 in
the closed-loop systems (1), (15) or (1), (16).

First consider the case τ = r0/n. Rewrite (15) and (16) in
the form

u =−α sign(ϕn−1(~sn−1)), (32)

u =−αΨn−1(~sn−1), Ψn−1 =
ϕn−1(~sn−1)
Nn−1(~sn−1)

, (33)

where ϕn−1,Nn−1 are defined in (27). Recall that βi > 0,
i= 0, ...,n−2, are chosen with respect to Theorem 4.1 so that
the differential equation ϕn−1 = 0 defined in the phase space
~sn−2 is finite-time stable. Thus also the differential inclusion
ϕn−1 ≤ 2 ε

1−ε
Nn−2 is finite-time stable for sufficiently small

ε > 0.
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One now only needs to prove that for sufficiently small
ε > 0 the region ϕn−1 ≤ 3ε

1−2ε
Nn−2 in the space~sn−1 is itself

a finite-time invariant attractor, and also contains the set
|Ψn−1(~sn−1))| ≤ ε .

The proof is practically the same as the induction step
of Theorem 4.1. Indeed, similarly defining π+ and π− and
using (6), one obtains instead of (31)

π̇+ = s(n)− Φ̇+ ≤ h+gu− kNN
rn
a

n−1 = h+gu− kN , (34)

since rn = 0. Thus, from (3) and |Ψn−1| ≥ ε , for control (32)
one gets π̇+ ≤ −(Kmα −C)− kN , and for control (33) one
gets π̇+ ≤−(Kmαε−C)− kN .

Now consider the case τ < r0/n. Then rn > 0 and for

Kmα > C the inequality π̇+ ≤ −(Kmu−C)− kNN
rn
a

n−1 ≤ 0
does only locally hold for sufficiently small Nn−1(~sn−1). �
Proof of Theorem 4.3. Theorem 4.3 is a standard result of
the homogeneity theory [24]. �
Proof of Theorem 4.5. Only controllers (19) are considered
here. Controller (18) is considered by Lyapunov analysis in
Section 8. The proof is very similar to the proof of Theorem
4.2 and immediately follows from the inequality (34) and a
similar inequality for π−. �
Proof of Proposition 4.2. Take εζ 0 = 1, and let T be the
maximal time of the convergence from the homogeneous
ball ||~sn−1||h ≤ 1 to 0. Consider the set Ω of the points of
all solutions of (6), (7) starting in ||~sn−1||h ≤ 1 and defined
over the segment [0,T ]. Obviously, Ω is an invariant set, and
it is compact [16]. Since outside of the ball ||~sn−1||h ≤ 1
solutions of (6), (7) and (6), (20) coincide, Ω is a finite-time
invariant attractor for the regularized system. Applying the
homogeneity dilation dεζ

from (8), obtain the attractor dεζ
Ω

for the arbitrary value of εζ . �

8 Appendix: Lyapunov analysis for the case a≥ r0

Here we consider the case a ≥ r0 of Theorems 4.1, 4.2,
4.4 and prove the first part of Theorem 4.5. The following
lemmas are frequently used in the proof.
Lemma 8.1 [11] Let p1 > 0 and 0 < p2 ≤ 1, then for any
x,y ∈ IR, |bxep1 p2 −byep1 p2 | ≤ 21−p2 |bxep1 −byep1 |p2 .
Lemma 8.2 [38] Let c and d be positive constants. Given
any positive number γ > 0, the following inequality holds
for any x,y ∈ IR: |x|c|y|d ≤ c

c+d γ|x|c+d + d
c+d γ−c/d |y|c+d .

Lemma 8.3 [18] Let xi ∈ R, i = 1, · · · ,n, and 0 < p ≤ 1,
then the following inequality holds: (|x1|+ · · ·+ |xn|)p ≤
|x1|p + · · ·+ |xn|p.
Proof of Theorem 4.1. Let ω1 = s,ω2 = ṡ, . . . ,ωn = s(n−1).
Denote ~ωi = (ω1, · · · ,ωi), i = 1, . . . ,n.

We need to prove that the system

ω̇1 = ω2, ω̇2 = ω3, . . . , ω̇ j = u j (35)

with the control

u j =−β
r j/a
j−1

⌊⌊
ω j
⌉ a

r j−1 + · · ·

+β2(bω3e
a
r2 +β1(bω2e

a
r1 +β0bω1e

a
r0 )) · · ·

⌉r j/a
.

(36)

is globally finite-time stable for j = 1, . . . ,n.
Choose some constant ρ ≥ a. The following proof utilizes

the modified method of adding a power integrator [12,34,38],
and is based on induction.

Step 1. We choose the C1 Lyapunov function V1(ω1) =
ω1∫

ω∗1

⌊
bλea/r0 −bω∗1e

a/r0
⌉ 2ρ−r0+τ

a
dλ , ω∗1 = 0. Differentiating

V1(ω1) along the vector field (35) obtain

d
dt V1(ω1) = bω1e

2ρ−r0+τ

r0 (ω2−ω∗2 )+ bω1e
2ρ−r0+τ

r0 ω∗2 ,

(37)
where ω∗2 is a virtual control law. Define ω∗2 =−β

r1/a
0 bξ1er1/a

with β0 > 0,ξ1 = bω1ea/r0 . It follows from (37) that

d
dt V1(ω1)≤−β

r1/a
0 ξ

2ρ

a
1 + bξ1e

2ρ−r0+τ

a (ω2−ω
∗
2 ). (38)

Induction step. Suppose that at step i − 1 there exist
constants βi−2 > · · · > β0, and a C1 Lyapunov function
Vi−1(~ωi−1) such that

d
dt Vi−1(~ωi−1)≤−

β
r1/a
0

2i−2 ξ
2ρ/a
1 − ...− β

r1/a
0

2i−2 ξ
2ρ/a
i−1

+ bξi−1e
2ρ−ri−2+τ

a (ωi−ω
∗
i ), (39)

where

ω∗1 = 0, ω∗k =−β
rk−1/a
k−2 bξk−1erk−1/a,k = 2, · · · , i

ξk = bωkea/rk−1 −
⌊
ω∗k
⌉a/rk−1 ,k = 1, · · · , i−1.

(40)

Clearly (39) reduces to (38) for i = 2. We claim that (39)
will also hold at step i. To complete the induction argument
at the i−th step, we consider the following function

Vi(~ωi) =Vi−1(~ωi−1)+Wi(~ωi),

Wi(~ωi) =
∫ ωi

ω∗i

⌊
bλea/ri−1 −bω∗i e

a/ri−1
⌉ 2ρ−ri−1+τ

a
dλ .

(41)

According to Proposition B.1 and B.2 in [38], the function
Vi(~ωi) is a positive definite C1 function. Thus

d
dt Vi(~ωi)≤−

β

r1
a

0
2i−2 (ξ

2ρ

a
1 + · · ·+ξ

2ρ

a
i−1)

+ bξi−1e
2ρ−ri−2+τ

a (ωi−ω
∗
i )+

i−1

∑
k=1

∂Wi(~ωi)
∂ωk

ω̇k

+ bξie
2ρ−ri−1+τ

a ω
∗
i+1 + bξie

2ρ−ri−1+τ

a (ωi+1−ω
∗
i+1), (42)

where ξi = bωiea/ri−1−bω∗i e
a/ri−1 , and ω∗i+1 is a virtual con-

trol to be determined later. In the following we estimate each
term on the right-hand side of (42).

Note that 0 < ri−1/a < 1 and ri−1 = ri−2−τ . Lemma 8.1
and Lemma 8.2 imply that

bξi−1e
2ρ−ri−2+τ

a (ωi−ω
∗
i )≤ 21−ri−1/a|ξi−1|

2ρ−ri−2+τ

a |ξi|ri−1/a .

≤ β
r1/a
0
2i ξ

2ρ/a
i−1 + ĉiξ

2ρ/a
i , (43)

where ĉi =
ri−1

2ri−1/a
ρ

(
2i−ri−1/a(2ρ−ri−1)

ρβ
r1/a
0

) 2ρ−ri−1
ri−1

is a positive

constant.
The following proposition simplifies the proof.
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Proposition 8.1 There exists a positive gain γ̂i(β0, · · · ,βi−2)
depending on β0, · · · ,βi−2, such that

i−1
∑

k=1

∂Wi(~ωi)
∂ωk

ω̇k≤
β

r1
a

0
2i−1 ξ

2ρ

a
1 + · · ·+ β

r1
a

0
2i−1 ξ

2ρ

a
i−2 +

β

r1
a

0
2i ξ

2ρ

a
i−1 + γ̂iξ

2ρ

a
i .

Choosing β
ri/a
i−1 ≥ ĉi+ γ̂i+

β
r1/a
0

2i−1 and ω∗i+1 =−β
ri/a
i−1 bξieri/a,

using Proposition 8.1 and substituting (43) into (42) get

d
dt Vi(~ωi)≤−

β
r1/a
0

2i−1

(
ξ

2ρ/a
1 +ξ

2ρ/a
2 + · · ·+ξ

2ρ/a
i−1

)
+[ĉi + γ̂i(β0, · · · ,βi−2)]ξ

2ρ/a
i

+ bξie
2ρ−ri−1+τ

a ω
∗
i+1 + bξie

2ρ−ri−1+τ

a (ωi+1−ω
∗
i+1)

≤−β
r1/a
0

2i−1 (ξ
2ρ

a
1 + · · ·+ξ

2ρ

a
i )+bξie

2ρ−ri−1+τ

a (ωi+1−ω
∗
i+1).

This completes the induction.
From induction step j of the above proof one extracts the

constants β j−2 > · · ·> β1 > β0, such that the controller

u = ω
∗
j+1 =−β

r j/a
j−1

⌊
ξ j
⌉r j/a

, (44)

with ξ j =
⌊
ω j
⌉ a

r j−1 −
⌊

ω∗j

⌉ a
r j−1 and β

r j
a

j−1 ≥ ĉ j + γ̂ j +
β

r1
a

0
2 j−1 ,

yields d
dt Vj(~ω j)≤−

β
r1/a
0

2 j−1 (ξ
2ρ/a
1 + · · ·+ξ

2ρ/a
j ).

It is verified using
∫ ωk

ω∗k

⌊
bλe

a
rk−1 −

⌊
ω∗k
⌉ a

rk−1

⌉ 2ρ−rk−1+τ

a
dλ ≤

|ωk − ω∗k ||ξk|
2ρ−rk−1+τ

a ≤ 21−rk−1/a|ξk|
2ρ+τ

a that Vj(~ω j) ≤
2(|ξ1|

2ρ+τ

a + · · ·+ |ξ j|
2ρ+τ

a ).

Let c = β
r1/a
0

2
2ρ

2ρ+τ 2 j−1
. Then, due to Lemma 8.3,

d
dt

Vj(~ω j)+ cV
2ρ

2ρ+τ

j (~ω j)≤ 0. (45)

Note that 2ρ

2ρ+τ
∈ (0,1). It follows from the Lyapunov anal-

ysis of finite-time stability [8] that the closed loop system
(35),(44) is globally finite-time stable.

According to (40), ξ j =
⌊
ω j
⌉a/r j−1 +β j−2

(⌊
ω j−1

⌉a/r j−2

+...+β1

(
bω2ea/r1 +β0bω1ea/r0

)
...
)

, which implies that
controller (44) can be rewritten as (36). This completes the
proof. �
Proof of Proposition 8.1. First, it follows from Lemma 8.1
that for k = 1, . . . , i−1∣∣∣ ∂Wi(~ωi)

∂ωk
ω̇k

∣∣∣
≤ 2ρ−ri−1+τ

a |ωi−ω
∗
i ||ξi|

2ρ−ri−1+τ

a −1
∣∣∣∣ ∂bω∗i e

a/ri−1

∂ωk
ω̇k

∣∣∣∣
≤ 2ρ−ri−1+τ

a 21−ri−1/a|ξi|
2ρ+τ

a −1
∣∣∣∣ ∂bω∗i e

a/ri−1

∂ωk
ω̇k

∣∣∣∣ . (46)

Note that ω∗i = −β
ri−1/a
i−2 bξi−1eri−1/a. On this basis, the

following estimate holds for k = 1, · · · , i−1:∣∣∣∣ ∂ (bω∗i e
a/ri−1 )

∂ωk

∣∣∣∣= βi−2

∣∣∣ ∂ξi−1
∂ωk

∣∣∣= aβi−2···βk−1
rk−1

∣∣∣bωkea/rk−1−1
∣∣∣ .

This, together with (46) and (40), implies that there exist

gains Γi1(β0, · · · ,βi−2) =
21−

ri−1
a (2ρ−ri−1+τ)βi−2···β1β

1+
r1
a

0
r0

and

Γik(βk−2, · · · ,βi−2) =
21−

ri−1
a (2ρ−ri−1+τ)βi−2···βkβ

1+
rk
a

k−1 β
1−

rk−1
a

k−2
rk−1

,

k = 2, · · · , i−1, such that∣∣∣ ∂Wi(~ωi)
∂ωk

ω̇k

∣∣∣≤ Γik|ξi|
2ρ+τ

a −1
(
|ξk−1|1−rk−1/a + |ξk|1−rk−1/a

)
×
(
|ξk+1|rk/a + |ξk|rk/a

)
. (47)

where ξ0 = 0. The inequality here was obtained using
Lemma 8.3. Next, twice applying Lemma 8.2 to (47) yields
that for k = 1, · · · , i−1,

∣∣∣ ∂Wi
∂ωk

ω̇k

∣∣∣≤ β

r1
a

0
2i+1

(
ξ

2ρ

a
k−1 +ξ

2ρ

a
k +ξ

2ρ

a
k+1

)
+ Γ̄ikξ

2ρ

a
i . (48)

Here Γ̄i1(β0, · · · ,βi−2) =
3Γi1(2ρ+τ−a)

2ρ

(
2i+1Γi1(a−τ)

ρβ

r1
a

0

) a−τ
2ρ+τ−a

and Γ̄ik(β0, · · · ,βi−2) =
3Γik(2ρ+τ−a)

ρ

(
2i+1Γik(a−τ)

ρβ

r1
a

0

) a−τ
2ρ+τ−a

,

k = 2, · · · , i − 1. Let now γ̂i(β0, · · · ,βi−2) = Γ̄i1 + · · · +

Γ̄i,i−1 +
β

r1/a
0

2i+1 . Then

i−1
∑

k=1

∂Wi(~ωi)
∂ωk

ω̇k

≤ β

r1
a

0
2i+1

(
2ξ

2ρ/a
1 +3ξ

2ρ/a
2 + · · ·+3ξ

2ρ/a
i−2 +2ξ

2ρ/a
i−1 +ξ

2ρ/a
i

)
+(Γ̄i1 + · · ·+ Γ̄i,i−1)ξ

2ρ/a
i

≤ β
r1/a
0

2i−1

(
ξ

2ρ/a
1 + · · ·+ξ

2ρ/a
i−2

)
+

β
r1/a
0
2i ξ

2ρ/a
i−1

+γ̂i(β0, · · · ,βi−2)ξ
2ρ/a
i ,

which completes the proof of Proposition 8.1. �
Proof of Theorem 4.2. Only the case r0 = n,τ = 1 is con-
sidered here. In the case, the n-sliding homogeneous con-
troller (15) can always be rewritten in the form (4). We need
to prove that under controller (4) the system

ω̇1 = ω2, ω̇2 = ω3, · · · , ω̇n = h(t,x)+g(t,x)u. (49)

is globally finite-time stable.
Let

Vn(~ωn) =
n

∑
k=1

∫
ωk

ω∗k

⌊
bλea/rk−1 −bω∗k e

a/rk−1
⌉ 2ρ−rk−1+τ

a
dλ .

From induction step n of the proof of Theorem 4.1 we
can find constants βn−2 > · · ·> β1 > β0, such that, provided

α ≥
C+ĉn+γ̂n+

β

r1
a

0
2n−1

Km
, the controller

u =−α sign(ξn) (50)

yields V̇n ≤ −
β

r1
a

0
2n−1 (ξ

2ρ/a
1 + · · ·+ ξ

2ρ/a
n ). Similarly to the

proof of Theorem 4.1, using an equation analogous to (45),

9



one proves that the closed-loop system (49), (50) is glob-
ally finite-time stable. Noting that r0 = n,τ = 1 and tak-
ing β̃n−2 = βn−2, · · · , β̃0 = βn−2 · · ·β1β0, controller (50) is
rewritten as (4). This implies that the closed loop system
(49), (4) is globally finite-time stable.�
Proof of Theorem 4.4. Theorem 4.4 immediately follows
from the definitions of Γi1,Γik, Γ̄i1, and Γ̄ik in Proposition
8.1. �
Proof of Theorem 4.5. Only controller (18) is considered
here. The proof is almost the same as that of Theorem

4.2. One just needs to replace α ≥
C+ĉn+γ̂n+

β

r1
a

0
2n−1

Km
with α ≥

ĉn+γ̂n+
β

r1
a

0
2n−1

g . �
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