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1. TYPE MISMATCH GRAMMARS AND THE PRINCIPLE BPR
1.1. Type mismatch grammars.
I will use d for the type of individuals, t for the type of truth valures, e for the type of events, w for the type of worlds.  I have no need to separate modality and time here, so w is the type of worlds or world-times, whenever appropriate.  The other types and their domains are introduced later.
I will assume a compositional semantics with type shifting, that is, a framework of semantic interpretation, where the semantic operations are very general and cannot generally resolve the meanings of the parts of an expression into a felicitous meaning of the whole, i.e. lead to semantic mismatches.  These mismatches lead to infelicity unless they are resolved with type shifting principles.
Thus, we have the following semantic operations: 

         [A B C ]



OP[ vBb, vCb ] τ(A)

B

  C

vBb τ(B)
      vCb τ(C


-Type assignment: the syntax-semantics interface constrains the types of 

interpretations of an expression and of the composing parts. That is, the grammar

 is not just looking for an operation that will combine the meanings of A and B, 

but for an  operation that will combine these into a meaning of type τ(A), 

specified by the grammar.

For example, a type specification of the syntactic category I as <<d,t>,<d,t>>will require the VP complement of I to get a predicative meaning of type <d,t>  (in an event theory, the specification would be <<d,<e,t>>,<d,<e,t>>);  a type specification of the syntactic category C as <<w,t>,<w,t>> would require its IP complement to be <w,t>.

This puts restrictions on the grammar.

For example, if the type of the VP is <d,<e,t>> and the type of IP is required to be <w,t>, you must have a sequence of operations and shifts that bring you there (see below).


-Functional application: APPLY[function,argument]

This is the main mode of combination of, for instance, the 

             meaning of a verbal phrase and its arguments.

APPLY[f,a] = -(f(a)) if the types match


                                    -(F(A)), the result of shifting f  to F and/or a to A and applying the 

results, if type shifting can resolve the mismatch.

-undefined otherwise


-Function composition: COMPOSE[function1,function2]

This is the main mode of combination, for instance, inside lexical categories. 
COMPOSE[f,g] = -f ( g if the types match,



        where f ( g = λxn…λx1.f(g(x1,…,xn)) 



       -F ( G if type shifting can resolve the mismatch



       -undefined otherwise.


-Functional abstraction: interpretation of gap constructions like relative clauses, 


wh-questions, CP-comparatives.


ABSTRACTn[α] = -λxn.α 
                                 This too may involve type shifting depending on the required type.

Type shifting principles are of the following kinds: 
Shift α of type a to SHIFT[α] of type b

1. Shift α to 'its natural algebraic correlate' at type b.
These are well known shifts like:


a
(
<<a,t>,t>


α
(
λP.P(α) 

From individual α to the set of α's properties.

a
(
<a,t>

α
(
λx.x=α

From individual α to the singleton set containing α

<a,<a,t>>
(
<<a,<a,t>>,<a,t>

α

(
λTλx.T(λy.α(x,y))

From relation between individuals α to the unique homomorphism extending 

relation {<x,λP.P(y)>: <x,y> ( α} between individuals and sets of properties.

     2. shift α between domains a and b with natural domain shifters ( and (.

Here we think of domains that are naturally linked by a pair of shifting operations, like the intension/extension operations ( and (;  the packaging and grinding operation connecting the mass and count domains;  Group formation ( and membership specification ( connecting domains of singular entities and plural entities; individual and stage; kind and instantiation, etc.  
e.g.
t
(
<w,t>


α
(
(α

<w,t>
(
t


α
(
(α

     3. shift α from a to b with grammatical relations.
Grammatical relations are operations that play, across languages, and across categories, a central grammatical role, operations that often are grammaticized in one language but can be argued to be active, even if null, in other languages, operations that often are grammaticized in some categories, but can be argued to be operative, even if null, in other categories.  They are the kind of principles that Dowty 1982 calls grammatical relations, and they are precisely the kind of principles that Partee 1987 proposes as natural candidates for type shifting principles.
Examples:

-Conjunction
As a type shifting operation, conjunction shifts predicates to intersective 

modifiers (e.g. intersective adjectives and adverbials).

<a,t>
(
<<a,t>,<a,t>>

α
(
λPλx.P(x) ( α(x)

Generalized for adverbials:
α
(
λRλxn…λx1λe.R(x1,…xn) ( α(e)
-Existential closure

The operation which closes the first argument in of a relation existentially.  

For example:

<a,<a,t>>
(
<a,t>

α

(
λx.(y[α(x,y))

<e,t>

(
t

α

(
(e[α(e)]
-Converse

The operation that makes the last argument in in a relation the first argument in 

(see Landman 2004). 


<a,<a,t>>
(
<a,<a,t>>


α

(
λxλy.(α(y))(x)

-Passive, Reflexive,…

<a,<a,t>>
(
<a,t>

α

(
λy.(x[α(x,y)]


Passive is the composition of existential closure and converse.

α

(
λx.α(x,x)


-Argument formation:

<a,t>

(
<<a,t>,t>


α

(
λP.(x ( (α(P)(x)  ( t(α ( P) ( (α ( P)


This forms a generalized quantifier meaning out of a predicate meaning (for discussion and details, see Landman 2004).

Example.
Suppose we choose the type assignments of an event theory:
V 
(
<d,<d,<e,t>>>


(transitive verb)

I
(
<<d,<e,t>>,<d,<e,t>>>
(extensional I)
C
(
<<w,t>,<w,t>>

(intensional C)
And we assume an X-bar theory of the nineteen eighties style, where V can take a DP complement to form a V', I must take a VP complement to form an I', and C must take an IP complement to form an C', and there can be specifiers, in particular:  I' can take a DP specifier inside IP.

We can now argue as follows:

Since I must take a VP complement of type <d,<e,t>>, and V is of type <d,<d,<e,t>>>, between V and VP argument reduction must take place.  In a language like English, this can be done either by realizing a complement DP and use application, of applying an argument reduction operation like passive or reflexive which are defined for category of transitive verbs and its type.  We will end up with a VP of type <d,<e,t>> as required, and this will give us an I' of type <d,<e,t>> as well.
Now C must take an IP complement of type <w,t> in this example.  We will assume that such a complement can only get there by type shifting with intensionalization from type t.

This means that we must derive the IP with a meaning of type t.  Again, we will assume that you can only get there by type shifting with event existential closure from type <e,t>.

This means that we must derive the IP with a meaning of type <e,t>.  And this means that between I' of type <d,<e,t>> and IP of type <e,t> another argument reduction must take place.  If we assume that argument reduction operations like passive and reflexive are not applicable in English beyond VP, then the only way argument reduction can be done may well be by realizing a subject.  
1.2. The methodological principle BPR.
In the early eighties, Emmon Bach formulated the following methodology about grammatical derivation:


Do everything as soon as you can, but not so soon that you will regret it later.
At the same time (and place), Barbara Partee and Mats Rooth formulated a methodology about interpretation at semantic types:


Interpret everything as low as you can.
Partee and Rooth's principle was interpreted as a default principle, and can be understood as a methodological guide along Bach's line; I call the principle BPR:


BPR:  Interpret everything as low as you can, but not so low that you will 

                        regret it later.

In the context of type mismatch grammars, BPR is a fundamentally important methodological guide for building grammars which have the right balance between linguistic generality and particularity.  That is, a fundamental aim of linguistic semantics is to find the type for our expressions that make the analysis maximally linguistically insightful.  In the context of a semantic theory as outlined here, the principle BPR becomes a principle for unpacking meanings in a general way.

As an example take the meaning of at least three.

In Barwise and Cooper 1980, the meaning of at least three is a determiner:


at least three ( λQλP.|λx.P(x) ( Q(x)|(3  

Later versions of Generalized Quantifier Theory, following the work of van Benthem and of Keenan, unpacked this as a combination of a general schema and a specific meaning:

λQλP.r(|P(Q|,|P¡Q|)


at least three ( r​at least three  =  λmλn.n(3
Here at least three has become a relation between numbers.  The vacuous argument of the relation is there really only because some other determiners (like most) are relations.  

BPR advises us against generalizing to the worst kind:  don't pack something in the meaning just because something else of the same category has that packed into its meaning, and hence, BPR tempts us to try to go for even lower types.

In what I have called in Landman 2003 the Adjectival Theory of numerical determiners, a different unpacking would take place.  We assume that the domain of type d is a complete atomic Boolean algebra of singular (atomic) individuals and their plural sums,  we assume a pluralization operation * which is closure under sum,  and interpret at least three as the plural predicate:

at least three 
(
λx.|x| ( 3
of type <d,t>



The set of all pluralities that are sums of at least three singular 

                                    individuals.
and boys as the plural predicate:


boys 

( 
*BOY

of type <d,t>



The set of all pluralities that are sums of singular boys.
The interpretation of at least three and boys combine with application.  For this, the interpretation of at least three shifts to a modifier meaning with conjunction, and we get:


at least three boys 
(
λx.*BOY(x) ( |x|(3
of type <d,t>




The set of all pluralities that are sums of boys, in particular 

sums of at least three boys.

This analysis involves an appeal to BPR: it reduces the basic derivation of at least three boys to a derivation of the predicative meaning, a meaning which is required anyway.

We can derive a generalized quantifier meaning from the predicate meaning by shifting with argument formation:

λP.(x[*BOY(x) ( |x|(3 ( P(x) ( 

              [λx.*BOY(x) ( |x|(3 ( P(x)] (t(λx.*BOY(x) ( |x|(3 ( P(x))) ]

which reduces to:

λP.(x[*BOY(x) ( |x|(3 ( P(x) ( P(t(λx.*BOY(x) ( |x|(3 ( P(x))) ]

which is the set of cumulative properties that some sum of at least three boys has.  This arguably gives the right meaning for at least three boys when combined as argument with distributive predicates.
The present work is not concerned with deriving the correct argument interpretations.  Rather, it looks inside the numerical phrase at least three.  

The point is this:  BPR tempts us into a further reduction.  Ideally, we would want to compositionally derive the meaning of λx.|x|(3 for at least three from more basic meanings and general principles, if we could. And in fact, why not from the most basic meanings: 

three

(
3

number


at least

(
(

relation between numbers




λmλn. n ( m


(and the latter will even be open to a further reduction, see below.)
With these, simplest meanings, the simplest meaning for at least three, following BPR, would be derived with application:


at least three
(
((3)

set of numbers





λn.n ( 3





The set of numbers bigger or equal to 3.
We still have a step to bridge:  from a set of numbers to a set of individuals.  
Here a theory of measures can be of help.

Plausibly, it is the meaning ((3) of at least three that enters into the meaning of at least three liters: 


at least three liters
(
λx.liter(x)(3
of type <d,t>

Taking for the moment the naïve view that measure function liter is a function from objects to numbers, the relevant parts of the meaning of at least three liters are the predicate of numbers λn.n(3 and the function from individuals to numbers liter.

But these two combine naturally by composition:


 λn.n(3 ( liter 

=
λx.[ λn.n(3](liter(x))





=
λx.liter(x)(3

This is an explicit composition, because the measure function is explicitly given.  But we can assume that in cases where a measure function is implicitly implicated, shifting can take place:


Compose with measure function M


α
(
α ( M

In the case of at least three boys, we need to derive interpretation λx,|x|(3 of type <d,t> for at least three.  There is no explicit measure function, but obviously, for count interpretation the count measure cardinality λz.|z| is always implicated:


Compose with the cardinality function


α
(
α ( λz.|z|

This derives:


at least three
(
     λn.n ( 3  (  λz.|z|





= λx. [λn.n ( 3]( [ λz.|z|](x) )





= λx. [λn.n ( 3](|x|)





= λx. |x| ( 3

We have come quite a way now from at least three as a primitive relation at the type of relations between sets of individuals to at least denoting relation ( between numbers and three denoting 3, and letting the rest follow from general principles.

This is the basis of the present work.  Its aim is to unpack the meanings of measure phrases, measuring adjectives and comparatives along the same lines.
2. THE NAÏVE THEORY OF MEASURES
What I call 'the naïve theory of measures' is what I'd like to think a linguistically naïve person – say, a physicist – might come up with, for the semantics of comparatives and adjectives, i.e. the semantics of (1a-2a):
(1) a.
John is taller than Mary.

(2) a. 
John is tall.

We ask our naïve person:  when is someone tall?  The answer is likely to be something like:  well, when he or she is taller than the average, taller than the average plus a bit, taller than the average worldwide (in a country where everybody is tall), taller than a contextually fixed value, etc.  

All these answers define the property tall in terms of the relation taller than. 
The naïve theory of measures defines tall in terms of taller than. 

We ask our naïve person:  when is someone taller than someone else?  And the answer is likely to be something like:  put them next to each other and look.  What are you looking for?  A difference in height, of course.  To each person we assign (in a world at a time) height.  For a to be taller than b there has to be a difference in height between a and b in a's favor.


The naïve theory of measures defines taller than in terms of a height measure,

 
like height in centimeters,  and order on its range (the real numbers).
We ask our naïve person:  how tall are you:  1 meter or 1 meter 52 cm.  Our naïve person says: neither, I am 1 meter 72 cm.  He or she does not say:  I am both, and also 1 meter 72 cm.


In the naïve theory of measures the height measure, like height in centimeters 

is a measure function, not a relation, it assigns to people (in a world at a time) 

one hight.
We ask our naïve person:  how is hight determined, how is the height function defined, how is the height unit defined?  The answer is:  ask physics.

The naïve theory of measures uses the theory of measures that science gives 

us.
With these assumptions we are given pretty much a semantic  analysis of sentences (1a-2a):
Physics defines the notion of height, H, and defines the units for measuring like centimeter.  Context k may well determine a default unit for measuring height, let's call that (H,k or ( for short.  This determines a measure function λwλd.H(,w(d), or in a world, 
λd.H(,w(d), the (partial) function that maps individuals onto their height in (s.
The semantic of (1a) is as follows:


be taller than
(
λyλx.H(,w(x) > H(,w(y)
of type <d,<d,t>>

With that, (1a) receives by twice application the interpretation:

(1) a.
John is taller than Mary.

      b.   H(,w(j) > H(,w(m)

Now look at sentence (3a):

(3) a. 
John is taller than 3 centimeters.

      b.   HCM(j) > 3

In order to derive this, we will need to assume something like the following meaning of be taller than:


be taller than
(
λδλx.Hδu,w(x) > δr


where δ is a variable over degrees, which, for the sake of this example, we identify with pairs of a number and a unit (the u and r stand for the relevant projections). 


three centimeters
(
<3,cm>


be taller than three centimeters
(
λx.Hcm,w(x) > 3

Thus, one of the meanings of be taller than is as a relation between individuals and degrees.  On the naïve theory, this meaning is used in the semantics of the adjective tall.

We assume that in the scale of degrees of height in unit ( there is a degree HIGHH,(,k set by context k.  We get the interpretation of tall by applying the above interpretation of be taller than to this degree:

tall
 (
     be taller than (HIGHH,(,k)




=  λδλx.Hδu,w(x) > δr (HIGHH,(,k)



=  λx.H(,w(x) > HIGHH,(,k
which gives:
(1) a.
John is tall.

      b.   H(,w(j) > HIGHH,(,k

Kamp 1975 attributes the naïve theory of measures to Bartsch and Vennemann 1972, and argues against it.  

We have seen that the naïve theory derives the meaning of the adjective tall with one pof the meanings of the comparative taller.  However, Kamp points out correctly, when we look cross-linguistically, we see that morphologically, comparatives are always the the  complex elements, while adjectives are simple (tall vs. tall-er).  But ceteris paribus you would expect the meaning of the complex form to be derived from the meaning of the simpler form: i.e. you would expect the meaning of taller to e derived from the meaning of tall and the meaning of the comparative morpheme  -er.  Thus the naïve theory, Kamp argues, has things exactly the wrong way round.

Kamp (and similar theories of McConnell-Ginet and of Klein, and others after them) sets out to develop a different theory of adjectives and comparatives.   In essence, Kamp's theory of adjective denotations is modal:  degree adjectives are inherently vague:  the denotation of an adjective like tall in a context k can be equated with the set of different precise extensions compatible with the bit of its extension that is determined in k.  The comparative is defined modally in terms of this:   based on the intuition that John is taller than Mary if on every way of making tall more precise, John will be made tall before Mary is, or on every way of making tall  less precise, Mary will become a borderline case of tall before John does.   In this way, Kamp defines the meaning of the comparative semantically in terms of the meaning of the adjective, by using the topology of ways of making adjectives more or less precise.    

I will discuss Kamp's approach and related theories later (and argue that ultimately the project is unsuccesful:  the Kamp approach, when scrutinized, cannot do without an underlying comparative order).   

However, this is the right place to point out that von Stechow 1982 criticizes both the 
theory that Kamp attacks and his own as too naïve.  Kamp's argument against the naïve theory and in favor of his own assumes that we have two options:  derive the (predicative) adjective meaning from the (relational) comparative meaning (the naïve theory) or derive the comparative meaning from the adjective meaning (Kamp's theory).  
Von Stechow points out that though it looks at first sight as if the comparative is morphologically derived from the adjective (taller from tall), from a linguistic point of view there is a rather plausible alternative, and that is to assume that neither of the adjective meaning and comparative meaning is derived from the other.  On that view there is an uninflected form tallu with meaning m(tallu),  a comparative item [comparative tallu –er] with meaning COMP[m(tallu)] and an adjective item, [adjective tallu –Ø] formed from tallu through zero-affixation with meaning COMP[m(tallu)].
The analysis that I will develop here is naïve, almost as naïve as the naïve theory.  But it doesn't derive the adjective meaning from the comparative meaning:  von Stechow's point is well taken.  In fact, the present analysis is not semantically naïve at all:  its aim is to exploit the full power of the principle BPR.  But beyond that it tries to be naïve:  it tries to use the naïve (scientific) notions of degrees, scales, measures, measure functions in the most straightforward semantic way compatible with BPR.  In particular, I will assume that scales are based on the continuum, the complete set of real numbers; I will not introduce positive tallness extents and negative shortness extents (as von Stechow proposed), or assume a measure relation rather than a measure function (as Heim proposes).   I am aiming here for scientific naivity (the view that the appropriate measure theory used in the semantic system should be just the one used in the sciences) plus semantic street-smartness.  I call the theory to be developed here the almost (but not quite) naïve theory of comparatives.
3. MEASURE ONTOLOGY
3.1. Numbers. 

r is the type of numbers. 

The domain of type r, Dr is the set of real numbers.

Dr = R

Expression of type number are the familiar numerals: one, two,(,…
3.2. Measures. 
m is the type of measures.  

The domain of type m is a set of measures.  They are here taken to be primitives, they have an interpretation in physical theory.

The domain of type m, Dm, contains: H (height),Wi (width), D (Depth), A(Age), P(Degree of pregnancy), T(Temperature),W(Weight),…

Expressions of type measure are those adjectival expressions that denote measures: tall, long, wide, deep, old, pregnant,…

Note that whether or not expressions are in this set is language dependent.

For instance, in English and Dutch tall/lang, wide/wijd, old/oud are expressions of this type, but short/kort, narrow/nauw young/jong are not.

In Dutch, zwaar(heavy) is an expression of this type but licht(light) is not.

In English neither heavy nor light is.

3.3. Units.

u is the type of units.  

The domain of type u is a set of measure units.  These again are taken to be primitives that have an interpretation in physical theory.

The domain of type u, Du, contains: m (meter), " (inch), s (second), m (month),kg (kilogram),((degree centigrade))… 
Expressions of type unit:  meters, inches, seconds,months  kilogram,…
3.4. Degrees.

δ is the type of degrees.

We will define the domain of degrees as follows.

First we will take for granted a set w(Du £Dm) ( Du £Dm, the set of well-formed unit-measure pairs.
The domain of degrees is:

Dδ ( R £ w(Du £Dm)
Thus a degree is a triple <r,u,m> consisting of a real number r, a unit u and a measure m such that <u,m> is a well-formed unit-measure pair.

I will use mnemonic names for projections:
We write for δ = <p,v,K>:   

δr = p



δu = v



δm = K
3.5. Measure functions.
The type of measure functions μ is a subtype of the type <w,<d,δ>> of all functions from worlds and individuals into degrees.  
The domain of measure functions, Dμ, is given by:
Dμ is a set of functions such that:  


1.  for each measure M and unit u there is at most one function Mu ( Dμ

2.  for each measure M and unit u, if  Mu exists, then: 

                 for every w, d: if Mu,w(d) is defined, then Mu,w(d)u = u and Mu,w(d)m = M
So, H" height in inches is a (partial) function which assigns to an index (world, time)  and an individual a triple <r,",H>, where r is a real number.

Measure functions, then, map individuals in worlds onto degrees, and degrees are a bit richer than numbers, they have, so to say, memory,  The measure function H" for instance maps f in w onto a triple <k,",H>, not simply number k, but a number that knows it is a degree of height in inches.  

(Grosu and Landman 1998 use measure functions with even more memory, their measure functions  keep track of the individual as well: H",w(f) = <k,f,",H>.  I will assume that when needed the present theory can be formulated with richer degrees.)
3.6. Scales.
s is the type of scales.
The domain of type s, Ds is the set of scales.
Given a measure M and unit u and a context k, a scale SM,u,k assigns a measure topology to the set of degrees {<r,u,M>: r ( R}, and specifies some values determined by the (discourse) context k.

We will assume that the domain of scales is the closure of a domain of basic scales under scale operations.  So first we specify basic scales.

Given measure M ( Dm, unit u ( DU, context k.

A basic scale SM,u,k is a tuple: 

SM,u,k  = <M, DM,u, >M, t>M, (>M, Mu, LOWM,u,k HIGHM,u,k> where:


1. M is the measure that SM,u,k is based on.


2. DM,u
= {<r,u,M>: r ( R}


3.  <n,u,M> >M <m,u,M> iff n >R m

>M is the relation between degrees which specifies the direction of the scale.


3. t>M(X) = < t>R(Xr),u,M>
With this, u>K is also defined.
An important caveat:  t>R = u<R
Supremum on the scale of height is lifted from infimum on the reals under their normal ordering <R.

This may be confusing at first, but there is nothing to be done about it (the alternatives are more confusing).
4.    <n,u,M> ¡>M <m,u,M> = <n​¡Rm,u,M>
With this, +>M is also defined.
5. Mu is the measure function (in domain Dμ), measure M in unit u.

It is the measure functions that will determine what values are assigned.  Thus, the scale uses for computational reasons degrees for the full set of real numbers, but the measure function may well only assign degrees with non-negative numbers, etc. 

6. LOWM,u,k and  HIGHM,u,k ( R £ {u} £ {M} and HIGHM,u,k >M LOWM,u,k

LOWM,u,k and HIGHM,u,k are two contextually given degrees which 

indicate what counts as low on the scale (low is lower than LOWM,u,k), and what 

counts as high on the scale (high is higher than HIGHM,u,k).

For clarity, we will name the projections of a scale mnemonically as follows:

Let SM,u,k = <M, DM,u,>M, t>M, (>M, Mu, LOWM,u,k HIGHM,u,k>

Then:   [SM,u,k]m = M

[SM,u,k]D =  DM,u


[SM,u,k]> = >M


[SM,u,k]t = t>M

[SM,u,k]¡ = (>M

[SM,u,k]μ = Mu

[SM,u,k]L = LOWM,u,k

[SM,u,k]H = HIGHM,u,k
For our semantic purposes the most important operation on scales is that of converse: 
Let SM,u,k = <M, DM,u, >M, t>M, (>M, Mu, LOWM,u,k HIGHM,u,k> be a scale.

The converse scale for SM,u,k, SM,u,kc is given by:

SM,u,kc = <M, DM,u, >Mc, t>Mc, (>Mc, Mu, LOWM,u,kc HIGHM,u,kc>


  where:  1.  <n,u,M> >Mc <m,u,M> iff <m,u,M> >M <n,u,M>



   2.  t>Mc = u>M


    3.  <n,u,M> ¡>Mc <m,uM> =  <m,uM> ¡>M <n,u,M>


   4.  LOWM,u,kc  = HIGHM,u,k

                5. HIGHM,u,kc = LOWM,u,k
The converse scale of SM,u,k, then, has the same measure, unit,  and measure function, but it inverts the order and everything that depends on it.

I will assume below that in a context k relative to height-unit u, the expression tall has an interpretation at the type of measures as measure H and at the type of scales as SH,u,k, the height-in-u scale.  In the same context, the expression short does not have an intepretation at the type of measures, but does have an interpretation at the type of scales as SH,u,kc, the converse scale of SH,u,k.  
On this view, there are two scales, a tallness scale and a shortness scale, but they only differ in their direction:  tall and short are concerned with the same degrees, degrees of height; there is only one measure function for tall and for short (on this interpretation):  Height-in-unit-u.  But the scale-order for tall is {<<n,u,H>,<m,u,H>>:  n >R m}
and for short it is: {<<n,u,H>,<m,u,H>>:  n <R m}.  And with that the notions of t, ¡, HIGH and LOW for tall and short are each others converses.

Other scale operations:

Take the scale for height in meters in context k:

SH,m,k = <H, DH,m, >H, u>H ¡>H, Hm, LOWH,m,k, HIGHH,m,k>

The function VERYk will map this scale onto a scale:

VERYk(SH,m,k) = <H, DH,m >H, u>H, ¡>H, Hm, VERYk(LOWH,m,k), VERYk(HIGHH,m,k)>
where VERYk(LOWH,m,k)    = LOWH,m,k  ¡>M vk 
and      VERYk(HIGHH,m,k)  = HIGHH,m,k  +>M  vk 
where vk is a triple <n,m,H>, where n is a real number determined by k.
(Alternatives that allow independent fixing of very-low and very-high are also possible).

With the domain of scales closed under these operatations, we will be able to get scalar interpretations for very tall, very very tall, very short, very very very very short,…

With this, we can, of course, also add operations for rather, and other scale modifiers.
3.7. Extensional measures and quantitative measures.
We have defined degrees as triples of a number, a unit and a measure, where the unit-measure pair is well-formed.  This, of course, means that we don't regard the pair <kilogram, Time> as a well-formed unit-measure pair.   Per measure M we can have more than one well-formed unit u1,…,un.    I will call a measure extensional if the following holds:

Measure M is extensional iff for all units u1…un such that <u1,M>,…,<un,M> are 

             well-formed, Mu1 … Mun exist, Mu1 … Mun are convertible, i.e. there is a fixed 
             algorithm for converting measure values for M in one unit into any of the others, 
             and all these algorithms preserve scalar structure.
In other words, M is extensional if, up to convertibility of units, there is, per measure, only one measure function.

Structure preserving means (among others) that if measure M is extensional and u1 and u2 are well-formed for M then if Mu1(Fred) >M Mu1(Susan),  then also Mu2(Fred) >M Mu2(Susan).  It also means that the arithmetic structure is preserved.
For instance, Height is a typical extensional measure:  add up Fred and Susan's height in inches; convert the result into meters, what you get is the same as first converting Fred's height and Susan's height into meters and then adding them up.
Many measures are not extensional.  Loveliness, for instance, is not.  In context, you and I each assume a scale of loveliness, and, of course, who comes out as more lovely than whom differs.  Now we start comparing and make our units of measuring loveliness more explicit.  It turns out that you measure loveliness like (the dutch essayist) Rudy Kousbroek does: in terms of huggability;  on my scale, loveliness values come in decibels (how hard they laugh about my jokes).  These scales are not convertible, because on my scale, your cat is less lovely than you, and certainly less than me, but on your scale, your cat wins paws down.

What this example shows is that measure units can be tongue-in-cheek; also they can be left quite implicit in context.  Obviously, comparative judgements with a non-extensional measure are open for challenge in a ways that such judgements in extensional measures are not.  That is, if I tell you that Fred is taller than Susan, you can try to challenge the statement by measuring them yourself, and you may find out that I have used a faulty measure tape, etc.  But it won't do to claim that this is because I have measured them in those nasty continental meters.  But for something like fatness one sensible measure is body weight, while another sensible measure is how much bulges out where, in comparison to a given three dimensional body form which is regarded as a standard for your body type, age, etc. (thus, you could be underweight with a beer belly and count as fat).   Fatness, then, unlike Height, is a non-extensional measure.  
Nevertheless, arguably Fatness is more like Height than like Loveliness.  Even if we agree that there may be different ways of measuring fatness, i.e. ways in which we measure different things, we could still argue that the class of appropriate units partitions into cells of mututally convertible units, i.e, fatness can be divided into different extensional senses of fatness.  

There is still something missing here, because, technically every class of units can be trivially partitioned in to classes of mutually convertible inits (partition into singletons).

What Fatness shares with Height, but not with Loveliness is quantitativity:

A measure M is quantitative if for every appropriate unit u and world w Mu,w is


gauged, where a measure function Mu,w is gauged if the actual numerical degrees

`
assigned to objects by Mu,w are assigned according to a gauge for Mu. 
A gauge for Mu is a method for calculating or determining specifically numerical 

values, a method which fixes the interpretation of the numbers.
The idea is:  if Mu,w is ungauged, the actual identity of the degrees assigned is not or not that important.  In this case, the topology and geometry of the scale is more important than the actual values:  thus, in your ungauged  measure for loveliness you may set Mary and Jane's loveliness as follows:



                                                 0                                            k                                          2k







         Mary                                   Jane

The actual values of k is not important, what is important, for you, is that both Mary and Jane have positive values, and that Jane is twice as lovely as Mary.

The system is ungauged, because you do not assign the actual numerical values according to a gauge, a procedure which interprets the numbers.

On the other hand, both measures of fatness,one in terms of weight, the other in terms of surplus volume, are (or can be) formulated in terms of gauged measure functions. 
I will actually assume that the gauge is associated with the unit:

Unit u is quantitative iff for every measure M such that u is appropriate for M 

and world w, Mu,w is gauged. 
Now we come to some linguistic assumptions.  First:

Quantitativity:


Unit expressions denote quantitative units.

I will assume that this includes the null unit expression, which denotes CARD, the cardinality unit of the measure COUNT, with measure function COUNTCARD = λx.|x|.

[unit Ø ]    (  CARD
That is, the count unit is a quantitative unit.  
The count unit is a (null) classifier, and I make the same assumption for classifiers in general, they denote quantitative units.   But, of course, so do measure units like meter, kilo. 
Secondly, we assume:


Numbers and units:

In natural language, number phrases (in the relevant categories) are realized 
as part of unit phrases.

This means that in natural languages, you only find number phrases  that have units realized.  This means that if you want to combine three with a noun like boys or  water, you must realize a unit, like three Ø boys or three groups of boys or three liters of water
 (and this means, lexically realized, as in meter, or cardinality null-realized).  
I say, in the relevant categories, because I am concerned with measure phrases.  So, for instance,  uses of numbers as noun phrases (as in two plus two make four) are not included here.
Let us look at some examples.
-The quantitative unit meter is wellformed for the measure Height.  

The unit expression meter denotes the unit meter.

The measure expression tall denotes the measure Height.

 Expression short does not denote the measure Height (except when forced to, in    

 humerous contexts).
At least three is a number expression.  This can only be part of measure expressions through a unit expression, like meter:
(1a)
At least three meter.

This can be used in complex expressions:

(1b)
At least three meters taller than


At least three meters shorter than


At least three meters tall

At least three meters Ø

At least three Ø boys 
What you cannot have is:
(1c)
#At least three meters short  (short does not denote the measure)

#At least three taller than     (unit phrases are required)

#At least three tall
Height, on this definition, is an extensional quantitative measure, denoted in English by measure phrase tall, with many quantitative units realized in the language.
-The unit kilo is wellformed for the measure Weight.  

The unit expression kilo denotes the unit kilo.

In Dutch, the measure expression zwaar denotes the measure Weight, but licht does not.

In English, neither heavy nor light denote the measure Weight.
At least three is a number expression.  This can only be part of measure expressions through a unit expression, like kilo:

(2a)
At least three kilos./ minstens drie kilo
This can be used in complex expressions:

(2b)
Minstens drie kilo zwaarder dan


Minstens drie kilo lichter dan


Minstens drie kilo zwaar


Minstens drie kilo Ø 

At least three kilos heavier than


At least three kilos lighter than


At least three kilos Ø
What you cannot have is:

(2c)
#Minstens drie kilo licht


#Minstens drie zwaarder dan

#Minstens drie zwaar


#At least three kilos heavy


#At least three kilos light


#At least three heavier than

Weight, on this definition, is also a quantitative measure, in English and in Dutch.  The difference between English and Dutch is immaterial to that.
For some scales unit-expressions are not necessarily available out of the blue, but can be provided naturally on second thought.
An example is flat and sharp for musical keys.  Once you've been taught about the quint circle,  you only need a useful unit expression like notches to make the measure quantiative and say things like:

(3)
a. e minor is three notches flatter than than E major (# versus ####)

            
b. e major ist three notches sharper than e minor
Loveliness is a non-quantitative measure.  This means that not every appropriate unit is quantitative.  This means too that there isn't a lexical unit expressions appropriate for Loveliness.  This means that, out of the blue, (4) is nonsense:  
(4)
#Albertine is thirty points more lovely than Gilberte.


#Albertine is thirty degrees more lovely than Gilberte.

Equally nonsensical is: 
(5)
Jane is ten points more intelligent than Jake.
In specific contexts, we can focus on a specific sense of Loveliness, Intelligence (or on what we claim to be Loveliness/ Intelligence), and invent a gauge of that sense.  In such a context, we can then also invent a unit expression, which will then be a quantitative unit expressions to go with that.  Thus, in the context of an advertisement folder for my crackpot cosmetic surgery company, I can have a man dressed up as a confidence inspiring doctor and say:

(6)
"When we did the measurements, Mrs. X was 37 lipels fatter than was 
             healthy and esthetic for her age and body frame.  After our treatment all 

             37 lipels were gone" 

Similar tricks are, of course, done routinely for intelligence. 

Thus, the linguistic fact is:  (apart from cardinality in some languages) access to numbers goes through units.   The fact that we don't assign numbers to fatness or loveliness is due to the fact that we don't have natural lexical unit expressions for fatness or loveliness.  

In the case of fatness, this may be just a linguistic coincindence, in the case of loveliness it isn't since loveliness is likely to stay a non-quantitative measure for a while still.

When a measure function Mu is gauged, and u is realized in the language, we have the full arithmetics of the scale available in the language:


(7)
a. John is 1.3 meters tall  
                        b. Bill is 2.6 meters tall



c. Hagrid is 3,9 meters tall


d. Hagrid is as tall as John and Bill together.



e. Hagrid is three times as tallas John.

For scales that are not quantitative, we cannot (without invention and context) use number phrases:


(8)
#Mary is fifty notches more lovely than Albertine.

Even though, we cannot quantify loveliness (by lack of quantitative units), we can still say the things in (7):

(9) a.  Mary is more lovely than Albertine and Elisabeth Bennett taken together.

                  b.  Mary has more love in her little pinkie than Jake in his whole body.


      c.  Mary is ten times more lovely than Albertine.

In fact, what we find (cross-linguistically), is that we can use round numbers like:  twice as lovely as, ten times as lovely as, a hundred times more lovely than,… 

While these may be tongue-in-cheek, we don't need to think of them metaphorically.  As long as we realize that the actual numbers assigned are arbitrary,  ten times as lovely as indicates a comparative loveliness in the contextually chosen measure unit tongue-in-cheek:
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                                                            Ltongue-in-cheek(a)                       Ltongue-in-cheek(m)

What is tongue-in-cheek about these examples is indeed the assumption that you could assign objective numerical values to loveliness, or to amounts of loveliness heaped up in different body parts.    Nevertheless these notions are not meaningless statements about the structure of the scale.

For instance, if I tell you (10a) and (10b):

(10) a.  Mary is more lovely than Albertine and Elisabeth Bennett taken together.

        b. Sarah is just a bit more lovely than Albertine, and a bit more lovely than 

            
Elisabeth Bennett.

Then (if you accept my statements) you are likely to conclude (10c):

       c. Mary is quite a bit more lovely than Sarah.

Similarly, if I tell you (11a) and (11b):


(11) a. Mary is twice as lovely as Albertine.


       b. Sarah is a hundred times more lovely than Mary.
You are likely lo conclude:


       c. Sarah is a lot more lovely than Albertine.

You are not as likely to express this as (12):


(12) Sarah is two hundred times as lovely as Albertine.

simply because by saying that you may be by implicature assigning more reality to the arithmetic structure than is warrented (i.e. a gauge). 
4. THE ALMOST (BUT NOT QUITE) NAÏVE THEORY

4.1.  Number phrases.

I start out the composition process with two numerical predicates and two two-place numerical operations on R:

exc 
=   λr.r > 0



(R+)
inc 
=   λr.r ( 0



(R+ ( {0}}
more 
= ¡R  
=
λmλn.n ¡ m

(minus)

less   
= ¡Rc 
=
λmλn.m ¡ n

(minusc)
These one-place predicates and operations form two-place relations through composition:


predicate
(
operation 
(
relation

<a,t>


<a,<a,a>>

<a,<a,t>>


   P


       f


λyλx.P(f(x,y))

We will specify vαbk,w the interpretation of α relative to context k and world w.

Here are the interpretations of some familiar numerical relational expressions:

vmore(than) <r,<r,t>>bk,w =  exc ( more

=   >R
vless (than)<r,<r,t>>bk,w 
=  exc ( less

=  <R
vat least<r,<r,t>>bk,w
=  inc ( more

=  (R
vat most<r,<r,t>>bk,w
=  inc ( less

=  (R
vexactly<r,<r,t>>bk,w 
  


=  =R
i.e.:  
exc ( more
=
λr.r > 0  (   λmλn.n ¡ m

=
λmλn.(n¡m)>0

=
λmλm.n>m

=
>

exc ( less
=
λr.r > 0  (   λmλn.m ¡ n

=
λmλn.(m¡n)>0

=
λmλm.m>n

=
<

I assume that than is semantically uninterpreted.  

We can assume a grammar in which we have a null predicate [numpred Ø ] interpreted as exc, interpret more as more and less as less, and generate [[ Ø ] [more]] with interpretation exc ( more.  We would still  need to assume that inc is part of the lexical meaning of at least. 

I could have decided not to bother to compose these relations from parts, but there is an important point:  as we will see, the same predicate plus operation composition takes place  at other levels of derivation, and we will be able to relate the operational meaning of more  assumed here directly to the operational meaning of more there.

As I said in the informal discussion above:  if you want to see what is more: a or b, you got to look at the difference. I am taking that literally here:  more is the difference function.
Note that, while I am trying to give a coherent semantics for more in some different uses, I am not trying to link this to the etymology of the expressions involved.  Look at the following expressions in English and  Dutch:
more than¡meer dan
>
at least¡minstens (

minus¡min ¡
less than¡minder dan
<
at most¡hoogstens  (

plus¡plus +
If you had to classify these expressions in English and Dutch, not knowing what the expressions mean, you would be likely to build the following natural classes:

more than
¡at most    
¡plus
meer dan 
¡hoogstens
¡plus (vermeerderd met)
less than     
¡at least  
¡minus (lessened by)
minder dan 
¡minstens
¡min
These connections are interesting, but cannot be a guideline for the semantics, because more than is semantically on a par with at least and not with at most:  more than and at least are sources of upward entailing expressions,  while less than and at most are sources of downward entailing expressions, and that is, semantically, the fundamental classification. 
With all this we have derived (as relations on R): 

vmore(than) <r,<r,t>>bk,w =  >

vless (than)<r,<r,t>>bk,w 
=  <
vat least<r,<r,t>>bk,w
=  (
vat most<r,<r,t>>bk,w
=  (
vexactly<r,<r,t>>bk,w 
=  =
I assume the obvious semantics for three::

vthreerbk,w = 3

these expressions form numerical predicates through application, syntactically, number phrases:
v [NumP more than three<r,t>] bk,w 
=  >(3)

λn.n > 3
v [NumP less than three<r,t>] bk,w   
=  <(3)

λn.n < 3
v [NumP at least three<r,t>] bk,w
  
=  ((3)

λn.n ( 3
v [NumP at most three<r,t>] bk,w
   
=  ((3)

λn.n ( 3
v [NumP exactly three<r,t>] bk,w
   
=  =(3)

λn.n = 3
4.2. unit phrases
We have interpretations for more than/less than/at least/at most/exactly three.
We assume that inches has an interpretation as a unit:  
vinchesubk,w = "

We now want to combine these to form numerical unit phrases:

more than/less than/at least/at most/exactly three inches.
Our  numerical predicates are predicates of numbers, of type <n.,t>, while the unit expression is of type u of units.  What we want to end up with is with a predicate of degrees.  We do that by shifting both our predicate of numbers and our unit to a predicate of degrees, shifting one of them with conjunction to a modifier intepretation and using application.


Shift a numerical predicate to a degree predicate:

<d,t>

(
<δ,t>

  
   α

(
λδ.α(δr)

Example:  λn.n > 3
(   λδ.[ λn.n > 3](δr)
  =  λδ.δr  > 3

So we shift our numerical predicates from type <r,t> to type <δ,t>:

v more than three<δ,t> bk,w 
= λδ.δr  > 3  
v less than three<δ,t> bk,w   
=  λδ.δr < 3
v at least three<δ,t> bk,w

=  λδ.δr  ( 3
v at most three<δ,t> bk,w

=  λδ.δr  ( 3
v exactly three<δ,t> bk,w

=  λδ.δr  = 3
Shift a number, unit, or measure to a degree predicate:
Let β  ( {r, u,m}:


β

( 
<δ,t>


α

(
λδ.δβ = α
With this ", the interpretation of inches shifts to:  λδ.δu="

The set of degrees whose unit is inch.
vinches<δ,t>bk,w = λδ.δu  = "

Note that I am disregarded the plurality on inches, and I am not trying to interpret that as semantic plurality.  While in English plural morphology is required on unit expressions (if the number is more than one), in Dutch this morphology is optional, and often the form which is not inflected for number is preferred (cf. Doetjes 1997):

(1)
a. Three centimeters of water


b. Drie centimeter water

 
    Drie centimeters water 

Next, the numerical degree predicate shifts with conjunction and the result applies to the unit predicate, leading to conjunctive degree predicates, syntactically these are unit phrases:
v [uP more than three inches<δ,t>] bk,w 
=  λδ.δr  > 3 ( δu = "
v [uP less than three inches <δ,t>] bk,w   
=  λδ.δr < 3 ( δu = "
v [uP at least three inches <δ,t>] bk,w
=  λδ.δr  ( 3 ( δu = "
v [uP at most three inches <δ,t>] bk,w
=  λδ.δr  ( 3 ( δu = "
v [uP exactly three inches <δ,t>] bk,w
=  λδ.δr  = 3 ( δu = "

I assume one more degree predicate, the empty degree predicate Ø.   
I assumed above that the empty numerical predicate Ø is interpreted as exc.

I assume here that the empty degree predicate Ø is interpreted as a set of degrees δ, 
Ø is interpreted as the set of degrees δ, whose numerical values δr are bigger than 0 (i.e. the r-projection of the degree predicate is exc) and whose unit is a default unit for measure M assigned by k: ((M,k). 
v [uP Ø<δ,t>]  bk,w 

=   λδ.δr  > 0 ( δu= ((M,k)
The context, thus, fixes the unit as a particular default for a particular measure.  Of course, the context will need to make sure that the measure picked is the right one.
Again, at this point, we do not need to assume in the derivation that we have a null predicate, we can assume here too that we have lexical items with the meanings of 

Ø-more and Ø-less.  The choice is immaterial for my purposes here. 
4.3. Measure phrases.
We now formalize what we said informally about the type of measures.

Some expressions like tall, deep, wide, pregnant, flat, sharp (of keys) have interpretations at type r:

For instance: 

vtallmbk,w = H

But vshortmbk,w is not defined.

Just as a number phrase and a unit combine into a unit phrase (a degree predicate with number and unit specified), a unit phrase and a measure combine into a measure phrase, a degree predicate with measure specified as well.  The semantics is exactly analogous to what we did in the previous section.

Thus, we have unit phrases:

vmore than three inches<δ,t>bk,w =  λδ.δr  > 3 ( δu = "
vless than three inches <δ,t>bk,w   =  λδ.δr < 3 ( δu = "
vat least three inches <δ,t>bk,w
  =  λδ.δr  ( 3 ( δu = "
vat most three inches <δ,t>bk,w
   =  λδ.δr  ( 3 ( δu = "
vexactly three inches <δ,t>bk,w
   =  λδ.δr  = 3 ( δu = "

The measure shifts to a degree predicate with the same shifting operation:

vtallmbk,w = H shifts to vtall<δ,t>bk,w = λδ.δm = H
The unit phrase shifts to a modifier with conjunction and the two combine with application, syntactically, measure phrases:
v [mP more than three inches tall<δ,t>] bk,w 
=  λδ.δr  > 3 ( δu = "  ( δm = H
v [mP less than three inches tall<δ,t>] bk,w   
=  λδ.δr < 3 ( δu = "  ( δm = H
v [mP at least three inches tall <δ,t>] bk,w
=  λδ.δr  ( 3 ( δu = "  ( δm = H
v [mP at most three inches tall<δ,t>] bk,w

=  λδ.δr  ( 3 ( δu = "  ( δm = H
v [mP exactly three inches  tall<δ,t>] bk,w
=  λδ.δr  = 3 ( δu = "  ( δm = H

These predicates are all sets of triples <r,",H>, with a real number.  Thus, we have derived at this point sets that are homogeneous, i.e. that contain just degrees of height in inches.  This means that when we next want to shift our predicate from type <δ,t> of sets of degrees, to type <d,t> of sets of individuals, with the earlier shifting operation of composing with the measure, it is determined which measure function will yield a well defined output:

Compose with the measure function:

Let α be a set of degrees of heigt in inches.


α
(
α ( H",w
vmore than three inches tall<d,t>bk,w 


=  λδ.δr  > 3 ( δu = "  ( δm = H   (  H",w
            =  λx.[ λδ.δr  > 3 ( δu = "  ( δm = H](H",w(x))


=  λx. H",w(x)r > 3 ( H",w(x)u = "  ( H",w(x)m = H


=  λx. H",w(x)r > 3

So we derive:

vmore than three inches tall<d,t>bk,w 
=  λx. H",w(x)r > 3

vless than three inches tall<d,t>bk,w   
=  λx. H",w(x)r <3

vat least three inches tall <d,t>bk,w
=  λx. H",w(x)r ( 3
vat most three inches tall<d,t>bk,w
=  λx. H",w(x)r ( 3
vexactly three inches  tall<d,t>bk,w
 = λx. H",w(x)r = 3

These are predicates of individuals, appropriate complements for the copula be (interpreted, as usual, as identity):
vbe more than three inches tall<d,t>bk,w =  λx. H",w(x)r > 3

vbe less than three inches tall<d,t>bk,w  =  λx. H",w(x)r <3

vbe at least three inches tall <d,t>bk,w
=  λx. H",w(x)r ( 3
vbe at most three inches tall<d,t>bk,w
=  λx. H",w(x)r ( 3
vbe exactly three inches  tall<d,t>bk,w
 = λx. H",w(x)r = 3

So we derive, for instance,

(1)
a. Wiplala is more than three inches tall.


b. H",w(WIPLALA)r>3

We can, of course, write this equivalently as: 

H",w(WIPLALA)   >H   <3,",H>

We do not derive an intepretation for more than three inches short or similar predicates.  The reason is that the derivation sketched started with the interpretation of tallm at the type of measures, and we do not have such an interpretation for short.  That is, tall and short belong to the same measure domains, and only one of them expresses the measure in question, Height.

(2)
#Wiplala is more than three inches short.

I will postpone more discussion of the issues of measure interpretations to later in this work.
Note that the scales can be much less standard than you may think at first sight.  We can measure anything!  That's why pregnant was given as an example of an expression with an interpretation in the domain of measures, we can form:

vfive months pregnant <d,t>bk,w =  λx. Pmonth,w(x)r = 5   




            =  λx. Pmonth,w(x) = <5,month,P>   

The set of individuals whose term of pregnancy is 5 months.

4.4. Degree adjectives.
We have seen that tall has an interpretation at the type of measures, an interpretation that short lacks.  We now come to the minimal type where both tall and short have an interpretation, namely, the type of scales, or more precisely, since the scales in question are dependent on the unit chosen, we assume that the interpretations in question are in the domain <u,s>, functions from unit to scales. 

We interpret tall as the (partial) function that maps in context k units u onto the height-in-u scale (relative to k):


vtall<u,s>bk,w    = λu.SH,u,k

Short is interpreted as the function that maps in that same context k those same units u onto the converse of the height in u scale (relative to k):

vshort<u,s>bk,w = λu.SH,u,kc

The scalar interpretations of tall and short at type <u,s> form the input of the  interpretations of these expressions  in both adjectives and comparatives.

We are in this section interested in deriving the adjectival meanings for tall and short.  We assume for adjectival interpretations, as before, that the context k specifies for each measure one of the appropriate units as the default unit, which we will write as ((M,k).  
In the present case, this means that we can apply relative to context k the above interpretations to default unit ((H,k), and derive interpretations at the type of scales:

vtallsbk,w 
= SH, ((H,k),k

vshortsbk,w
= SH, ((H,k),kc
For readability we will suppress M and k in ((M,k) and just write (.  The proper parameters are thereby to be understood:
vtallsbk,w 
= SH,(,k

the scale height-in-( (rel. k)
vshortsbk,w
= SH,(,kc
the converse of the scale height-in-( (rel k)
At this point we incorporate the naïve theory for adjectives.  We assume that:

Adjectival interpretations are degree predicates derived from scalar 
interpretation.

Note that by this not any degree predicate qualifies as an adjectival predicate (in particular the interpretation of tall as λδ.δm=H, derived above, does not. 
The adjectival principle can be regarded as a shifting principle:


Adjective formation:


Let α be an expression of type <u,s>, u an expression of type u, let αu  be α(u)

s

( 

<δ,t>

αu

( 

λδ.[αu]>( δ, [αu]HIGH )

With this principle, we shift:

tall(

( 
      λδ. [tall(]>( δ, [tall(]HIGH )




=    λδ. [SH, (, k]> ( δ, [SH, (, k]HIGH)




=    λδ. δ >H HIGHH, (, k
                                                =    λδ. δr > HIGHH, (, kr 

So:  

v [ADJ tall<δ,t>] b k,w 
=
λδ. δr > HIGHH, (, kr
short(

( 
      λδ. [short(]>( δ, [short(]HIGH )





=    λδ[SH, (, kc]> ( δ, [SH, (, kc]HIGH)





=    λδ. δ >Hc  HIGHH, (, kc




=    λδ. δ <H  LOWH, (, k




=    λδ. δr <  LOWH, (, kr
So:  

v [ADJ short<δ,t>] b k,w 
=
λδ. δr <  LOWH, (, kr
From these interpretations we derive (for world w) adjectival interpretations at type <d,t> by composition with the measure function H(,w:

v [ADJ tall<d,t>] b k,w 
=
λδ. δr > HIGHH, (, kr  (  H(



        =  λx.H((x)r  > HIGHH, (, kr
The set of individuals whose height in ( is bigger than the contextual high-height –value in w.

v [ADJ short<δ,t>] b k,w 
=
λδ. δr <  LOWH, (, kr (  H(



        =  λx.H((x)r <  LOWH, (, kr
The set of individuals whose height in ( is smaller than the contextual low-height –value in w.

These adjectival interpretations can  be used predicatively or attributively, so, for example:

v [I' be tall<d,t>] b k,w 
=
λx.H((x)r  > HIGHH, (, kr
v [I' be short<δ,t>] b k,w 
=
λx.H((x)r <  LOWH, (, kr
Thus we get:
(1)
 vBorremans is tallbk,w = 1 iff  H((BORREMANS)r  > HIGHH, (, kr
Borremans is tall iff  his height in ( exceeds the contextual height value, which is likely (dependent on k, of course), since Borremans is a giant.

(2)
 vWiplala is shortbk,w = 1 iff  H((WIPLALA)r  < LOWH, (, kr
Wiplala is short iff  his height in ( is below the contextual height value, which is likely (dependent on k), since Wiplala is a wiplala, and wiplala's fit amply in your coat pocket.

4.5. Adjectival modifiers.
We will directly add interpretations for very tall and very short.  This is a point where the principle BPR is applied usefully.  Very is standardly assumed to be an adjectival modifier.  The principle BPR tells us that we need to think about the right level for very to combine with tall and short.  Arguably, the right level is at type s, i.e. very is a modifier of type <s,s>.  

The argument is as follows.  As we will seem the interpretations of tall and short at type <u,s> form input for comparatives, and we don't want very in comparatives.  That is, we do want the adjective very tall, we want comparative construction very much taller (which we will not analyze here), but we don't want expressions like  more than two inches very taller than).  So, we assume that very is not a modifier of type <<u,s>,<u,s>>.     
Derivationally, the next avalailable type is type s, and we can assume that very  is a modifier of type <s,s>.  This is the right type of interpretation for two reasons:
If we wait with interpreting very too long, we get into problems:  

-If we wanted to wait till the end and assume that very is an adjectival  modifier of type <<d,t>,<d,t>> we are in trouble.  There is no guarantee that in a context k and world w, you can derive the set of very tall people from the set of tall people (because in context k and world w everybody who is tall may be very very very tall).

-This means that you would need to assume that very is an intensional operation of type <<s,<d,t>>,<s,<d,t>> and make special assumptions about the set of worlds involved:  this cannot be a contextually selected set of worlds, but must satisfy an abundance principle:  it needs to be guaranteed that there are always enough individuals across worlds to construct the scale of degrees you need to define very (this applies in particular to theories like Klein 1980 who construct degrees through equivalence classes of individuals).   But, as McConnel-Ginet 1982 points out (in a related discussion of Thomason and Stalnaker's theory of adverbs): apparent lack of intersectivy is not necessarily an indication of intensionality, modality.  Thus, the fact that the tall people happen to be the clever people does not entail the very tall peope happen to be the very clever people does not necessarily mean that very is a modal operator.  And, of course, very is in most ways very much unlike modal operators (i.e the fact that John is very tall entails that John is tall;  the fact that John is very tall if true here and now has the same existential entailments as John is tall, if true here and now.)  
I think, with McConnell-Ginet 1982, that if we try to fit the lack of intersectivity at hand into the corselet of intensionality, we force upon ourselves a highly complex analysis, with restrictions on the set of worlds, which force it to be much bigger than we may want it to be in context, and we get an analysis that in the end misses the point.  

So, no, <<d,t>,<d,t>> is not a possible type, and <<s,<d,t>>,<s,<d,t>> is not an advisable type for the interpretation of very.  

We could actually give an analysis at the type <<δ,t>,<δ,t>>, at least for deriving very tall and very short.  But we would have to introduce quite some complexity to do so.  We would need to look at the input set of degrees to see whether its first projection is bounded in R to the left (tall) or to the right (short), then take the infimum or supremum, (which are HIGH and LOW respectively), do the VERYk operation on them, and form the corresponding adjectival meanings using the right relation, depending on whether you took infimum or supremum.   
As opposed to this, an analysis at type <s,s> is completely straightforward and makes all the right predictions without further ado.
Tall denotes in k the scale height-in-(:

vtallsbk,w 
= SH, (, k

Very denotes in k the operation VERYk:

v very<s,s>bk,w 
= VERYk
Application gives:
vvery tallsbk,w = VERYk(SH, (, k)

This scalar expressions we can shift to an adjectival degree phrases:

v [ADJ very tall<δ,t>] bk,w = λδ. δ >H VERYk(HIGHH, (, k) 

Now:  

    VERYk([SH, (,k]HIGH) 
=  VERYk(HIGHH, (,k)  

=  HIGHH, (,k +>H vk, 

So:  
v [ADJ very tall<δ,t>] bk,w =  λδ. δ >H HIGHH, (,k +>H vk, 




 =  λδ. δr > (HIGHH, (, kr + vkr)
and
v [ADJ very tall<dt>] bk,w = λx H(,w(x)r >H HIGHH, (, kr + vkr
The set of individuals whose height is above HIGHH, (, kr + vkr.
Similarly, 
vvery shortsbk,w = VERYk(SH, (, kc)

   VERYk([SH, (, kc]HIGH) 
=  VERYk(LOWH, (, k)  

=  LOWH, (, k ¡>H vk.
we derive:
v [ADJ very tall<δ,t>] bk,w  = λδ.δr <LOWH, (, r ¡ vkr
and

v [ADJ very tall<dt>] bk,w = λd. H(,w(d)r <  LOWH, (, kr ¡ vkr
The set of individuals whose height is below LOWH, (, kr ¡ vkr.
The derivation of very very tall is analogous:  we derive a scalar expression very very tall, and turn that into an adjective.  Thus, very is not strictly speaking an adjectival modifier on this account, but a scale modifier, though tall and very tall are adjectival expressions.  That is what following the logic of BPR gives us. 

4.6. Comparative phrases.
We go back to the unit phrases we have derived above, with their interpretations as degree predicates:
v [uP more than three inches<δ,t>] bk,w 
=  λδ.δr  > 3 ( δu = "
v [uP less than three inches <δ,t>] bk,w   
=  λδ.δr < 3 ( δu = "
v [uP at least three inches <δ,t>] bk,w
=  λδ.δr  ( 3 ( δu = "
v [uP at most three inches <δ,t>] bk,w
=  λδ.δr  ( 3 ( δu = "
v [uP exactly three inches <δ,t>] bk,w
=  λδ.δr  = 3 ( δu = "

v [uP Ø<δ,t>]  bk,w 

=   λδ.δr  > 0 ( δu= ((Mk,k)




     where M​k is the measure k chooses as the relevant one.

​
In the derivation of comparatives, these predicates combine with more or –er and with less.  The idea now is that more and less have in essense here the same meaning as before:


more and less denote the functions of subtraction and its converse.

But, in this case, the exact nature of the meaning is scale dependent.  I will hence assume that more and less are of type: <s,<δ,<δ,δ>>>: functions from scales into two place operations on degrees.  In particular:

vmore<s,<δ,<δ,δ>>>bk,w 
=  λs.[s]¡

The function that maps every scale onto its subtraction operation.

vless<s,<δ,<δ,δ>>> bk,w
=  λs.[sc]¡

The function that maps every scale onto the subtraction operation of its converse 

scale.
As before, we compose a predicate and a function into a relation.  This time the function has one more argument, the scale argument, so we compose relative to that argument as well:


predicate
(
parametric operation 
(
parametric relation

<a,t>


<s,<a,<a,a>>>



<s,<a,<a,t>>>


   P


λsf[s]




λsλyλx.P(f[s](x,y))

vmore than three inches morebk,w  
=  λδ.δr  > 3 ( δu="  ( λs.s¡
vless than three inches morebk,w 
=  λδ.δr  < 3 ( δu="  ( λs.s¡
vat least three inches morebk,w

=  λδ.δr  ( 3 ( δu="  ( λs.s¡
vat most three inches morebk,w

=  λδ.δr  ( 3 ( δu="  ( λs.s¡
vexactly three inches morebk,w
 
=  λδ.δr  = 3 ( δu="  ( λs.s¡
vØ more bk,w



= λδ.δr  > 0 ( δu=((Mk,k)  ( λs.s¡
vmore than three inches lessbk,w 
=  λδ.δr  > 3 ( δu="  ( λs.(s¡)c
vless than three inches lessbk,w                  =  λδ.δr  < 3 ( δu="  ( λs.(s¡)c
vat least three inches lessbk,w

=  λδ.δr  ( 3 ( δu="  ( λs.(s¡)c
vat most three inches lessbk,w

=  λδ.δr  ( 3 ( δu="  ( λs.(s¡)c
vexactly three inches lessbk,w
 
=  λδ.δr  = 3 ( δu="  ( λs.(s¡)c
vØ lessbk,w
 


= λδ.δr  > 0 ( δu=((Mk,k)  ( λs.(s¡)c
We show the first computation:
vmore than three inches morebk,w  
=  λδ.δr  > 3 ( δu="  ( λs.s¡
λδ.δr  > 3 ( δu="  ( λs.s¡


=  

λs.[ λδ.δr  > 3 ( δu="  ( s¡] 


=  

λs.[ λδ.δr  > 3 ( δu="  ( λδ2λδ1.s¡(δ1,δ2)] 
=  

λs.[ λδ2λδ1.s¡(δ1,δ2)r > 3 ( s¡(δ1,δ2)u="]
=  (since s¡(δ1,δ2)u = su) 

λs.[ λδ2λδ1.s¡(δ1,δ2)r > 3 ( su="]

= 

Syntactically, we can call the expressions derived comparative phrases, they are expressions of type <s,<δ,<δ,t>>>:
v [comP more than three inches more] bk,w  
=  λs.[ λδ2λδ1.s¡(δ1,δ2)r > 3 ( su="]
v [comP less than three inches more] bk,w 
=  λs.[ λδ2λδ1.s¡(δ1,δ2)r < 3 ( su="]
v [comP at least three inches more] bk,w

=  λs.[ λδ2λδ1.s¡(δ1,δ2)r ( 3 ( su="]
v [comP at most three inches more] bk,w

=  λs.[ λδ2λδ1.s¡(δ1,δ2)r ( 3 ( su="]
v [comP exactly three inches more] bk,w
 
=  λs.[ λδ2λδ1.s¡(δ1,δ2)r = 3 ( su="]
v [comP Ø more] bk,w



= λs.[ λδ2λδ1.s¡(δ1,δ2)r > 0( su= ((Mk,k)]
v [comP more than three inches less] bk,w 
=  λs.[ λδ2λδ1.(s¡)c(δ1,δ2)r > 3 ( su="]
v [comP less than three inches less] bk,w            =  λs.[ λδ2λδ1.(s¡)c(δ1,δ2)r < 3 ( su="]

v [comP at least three inches less] bk,w

=  λs.[ λδ2λδ1.(s¡)c(δ1,δ2)r ( 3 ( su="]
v [comP at most three inches less] bk,w

=  λs.[ λδ2λδ1.(s¡)c(δ1,δ2)r ( 3 ( su="]
v [comP exactly three inches less] bk,w
 
=  λs.[ λδ2λδ1.(s¡)c(δ1,δ2)r = 3 ( su="]
v [comP Ø less] bk,w
 


=  λs.[ λδ2λδ1.(s¡)c(δ1,δ2)r > 0 ( su=((Mk,k)]
Note that I cpuld have brought out the fact that it is the same operations that apply at different stages of the derivation, by unifying the  analysis of more1 and more2 in  more1 than three inches more2 tall than even more than I did, by defining <R,>R> and <R,<R> as as basic scale and converse scale themselves.   

4.7. Transitive measure phrases.
We have derived comparative phrases of type <s,<δ,<δ,t>>>.

Let us ignore the ones based on Ø for the moment and consider the other ones first.  

For those phrases, the unit from which they are built is still semantically accessible.  The reason is that:


Given context k.


Let α be any of the interpretations derived so far, except the ones based on Ø then:

For any scale S  such that Su ( ":  α(S) = Ø

For any scale S such that  Su = ":  α(S) ( Ø  

Let α be any of the interpretations derived based on Ø then:

For any scale S  such that Su ( ((Mk,k):  α(S) = Ø

For any scale S such that  Su = ((Mk,k):  α(S) ( Ø  

There are, of course, other expressions for which the relation doesn't hold, e.g. 

less than three and more than five inches more.  I am going to ignore the latter kind of contradictory expressions, and assume that generally at this point the unit is still derivable.  Alternatively, if the unit is not derivable from the meaning itself, I assume, we stored it grammatically and derive it here.

Thus we have for the expressions so far, and assume in general:


Let α be the interpretation of a comparative phrase of type <s,<δ,<δ,t>>>.  


αu, the unit of α,  is the unique unit semanticially derivable from α relative to 
      which α is non-trivial (and if there is no such unit, it is 
      grammatically assigned to α by storage). 

The comparative phrases derived here combine with the scalar function interpretations of tall  and short, the interpretations at type <u,s>:
vtallbk,w 

= λu.SH,u,k

vshortbk,w
 
= λu.SH,u,kc
The combination of comparative relation α and unit to measure function β applies β to αu, the unit of α, and applies α to the result, giving a relation between degrees:

<s,<δ,<δ,t>>>

+
<u,m>

(
<δ,<δ,t>>



        α



    β

              (α(β(αu)))
Before we start, we introduce a:

Notation convention:

λδ2λδ1( A: ( 

is short for 

λδ2λδ1. δ1( A ( δ2( A ( ( 


Sample derivation: more than three inches more tall/taller
v more than three inches more tall bk,w  
= 

α

=
 λs.[ λδ2λδ1.s¡(δ1,δ2)r > 3 ( su="]
αu 

=
λs.[ λδ2λδ1.s¡(δ1,δ2)r > 3 ( su="]u 

= 
"
β

=
λu.SH,u,k

β(αu)

=
λu.SH,u,k(") 

= 
SH,",k

α(β(αu))
=
λs.[ λδ2λδ1.s¡(δ1,δ2)r > 3 ( su="]( SH,",k)



=
λδ2λδ1. SH,",k¡(δ1,δ2)r > 3 ( su="



=
λδ2λδ1. SH,",k¡(δ1,δ2)r > 3



=
λδ2λδ1. δ1 ( SH,",kD ( δ2 ( SH,",kD ( SH,",k¡ (δ1,δ2)r > 3    
= (by the notation convention)




λδ2λδ1( SH,",kD. (δ1 ¡H δ2)r > 3 

=
λδ2λδ1( DH,": (δ1 ¡H δ2)r > 3 

=
λδ2λδ1( DH,": δ1r ¡ δ2r > 3 


=
λδ2λδ1( DH,": δ1r > δ2r  + 3 


We will assume that than an uninterpreted marker which indicates that the expression takes a complement, so far a DP complement.  With that we can assume that the expression derived is a transitive measure phrase:

v [tmP more than three inches more tall than<δ,<δ,t>>] bk,w
=  λδ2λδ1( DH,": δ1r > δ2r  + 3 


The relation that holds between two degrees of hight in inches if the first is more than the-second-plus-three-inches.

With this we get, so far,  the following expressions:

v [tmP more than three inches more tall than<δ,<δ,t>>] bk,w
=  λδ2λδ1( DH,": δ1r > δ2r  + 3 
v [tmP less than three inches more tall than <δ,<δ,t>>] bk,w
=  λδ2λδ1( DH,": δ1r < δ2r  + 3 
v [tmP at least three inches more tall than <δ,<δ,t>>] bk,w

=  λδ2λδ1( DH,": δ1r ( δ2r  + 3 
v [tmP at most three inches more tall than <δ,<δ,t>>] bk,w

=  λδ2λδ1( DH,": δ1r ( δ2r  + 3 
v [tmP exactly three inches more tall than <δ,<δ,t>>] bk,w

=  λδ2λδ1( DH,": δ1r = δ2r  + 3 
v [tmP Ø more tall than <δ,<δ,t>>] bk,w



=  λδ2λδ1( DH,((H,k): δ1r > δ2r  

Sample derivation: more than three inches less tall/taller
v more than three inches less tall bk,w  
= 

α

=
 λs.[ λδ2λδ1.(s¡)c(δ1,δ2)r > 3 ( su="]
αu 

=
λs.[ λδ2λδ1.(s¡)c(δ1,δ2)r > 3 ( su="]u 

= 
"
β

=
λu.SH,u,k

β(αu)

=
λu.SH,u,k(") 

= 
SH,",k

α(β(αu))
=
λs.[ λδ2λδ1. (s¡)c (δ1,δ2)r > 3 ( su="]( SH,",k)



=
λδ2λδ1. (SH,",k¡)c(δ1,δ2)r > 3 ( su="



=
λδ2λδ1. (SH,",k¡)c (δ1,δ2)r > 3



=
λδ2λδ1. δ1 ( ((SH,",k)c) D ( δ2 ( ((SH,",k)c) D ( (SH,",k¡)c (δ1,δ2)r > 3    

= (by the notation convention)




λδ2λδ1( (SH,",k)c)D. (δ2 ¡H δ1)r > 3 


=
λδ2λδ1( DH,": (δ2 ¡H δ1)r > 3 


=
λδ2λδ1( DH,": δ2r ¡ δ1r > 3 



=
λδ2λδ1( DH,": δ1r < δ2r  ¡ 3 


v [tmP more than three inches less tall than<δ,<δ,t>>] bk,w
=  λδ2λδ1( DH,": δ1r < δ2r  ¡ 3



The relation that holds between two degrees of hight in inches if the first is less than the- second-minus-three-inches.

With this we get the following expressions:

v [tmP more than three inches less tall than <δ,<δ,t>>] bk,w
=  λδ2λδ1( DH,": δ1r < δ2r  ¡ 3

v [tmP less than three inches less tall than <δ,<δ,t>>] bk,w

=  λδ2λδ1( DH,": δ1r > δ2r  ¡ 3
v [tmP at least three inches less tall than <δ,<δ,t>>] bk,w

=  λδ2λδ1( DH,": δ1r ( δ2r  ¡ 3

v [tmP at most three inches less tall than <δ,<δ,t>>] bk,w

=  λδ2λδ1( DH,": δ1r ( δ2r  ¡ 3

v [tmP exactly three inches less tall than<δ,<δ,t>>] bk,w

=  λδ2λδ1( DH,": δ1r = δ2r  ¡ 3

v [tmP Ø less tall than <δ,<δ,t>>] bk,w


            =  λδ2λδ1( DH,((H,k): δ1r < δ2r
taller and less short, shorter and less tall:
Since SM,u,kcc = SM,u,k, we get the following equivalences:
more than three inches less tall than
=
more than three inches shorter than

less than three inches less tall than
=
less than three inches shorter than

at least three inches less tall than
=
at least three inches shorter than

at most three inches less tall than
=
at most three inches shorter than

exactly three less tall than

=
exactly three inches shorter than

Ø less tall than


=
shorter than


more than three inches less short than=
more than three inches taller than

less than three inches less short than
=
less than three inches taller than

at least three inches less short than
=
at least three inches taller than


at most three inches less short than
=
at most three inches taller than

exactly three less short than

=
exactly three inches taller than

Ø less short than


=
taller than


Transitive measure phrases as relations between individuals
We have a transitive measure phrase with interpretation a relation between degrees:

v [tmP more than three inches taller than<δ,<δ,t>>] bk,w
=  λδ2λδ1( DH,": δ1r > δ2r  + 3 
We shift the first argument in to an individual argument by composition with the measure function: H",w:


    λδ2λδ1( DH,": δ1r > δ2r  + 3   (   H",w 

=  λyλδ1 ( DH,": δ1r > H",w(y)r  + 3
With this we can form an intransitive measure phrase:

v [mP more than three inches taller than Mary] bk,w = λδ1 ( DH,": δ1r > H",w(MARY)r   + 3

This can be a predicate:

vbe more than three inches taller than Mary bk,w = λδ1 ( DH,": δ1r > H",w(MARY)r   + 3

And this we can shift, as before, to a predicate of individuals with composition with the measure function H",w:  


λδ1 ( DH,": δ1r > H",w(MARY)r   + 3  (  H",w

λx.H",w(x) > H",w(MARY)r   + 3

And with this we derive:

 (1)
a. John is more than three inches taller than Mary.

b. H",w(JOHN) > H",w(MARY)r   + 3

As in the case of adjectives, the interpretation of the comparative is derived from the scalar interpretation tall<u,m>.  Semantically, the degree predicate more than three inches composes with the interpretation of –er as the functon that maps each scale onto its minus operation.  The result is a function from scales to degree relations.  This combines with the interpretation of tall as a function from units into scales.  On thing that takes place in the combination process is semantic unification:  we had before a set of degrees with the unit filled in but the measure still unspecified, and a set of measures with the unit still unspecified.  We unify the two and end up with a set of degrees with unit and measure specified.  But the more striking thing that is determined in this composition (by the meaning of the scalar expression) is the orientation of the interpretation of –er​,more/less.  We know already that they are the minus/converse of minus operation.  But the scalar expression tall or short determines on which scale they are the minus/converse of minus operation.
4.9. Alle beetjes helpen.
We introduced an empty numerical predicate:

v Ø<n,t> bk,w =  λn. n > 0 
which is used in the interpretation of:

(1)
a. John is Ø shorter than Mary


b.      H((JOHN)r ¡c H((MARY)r > 0

                =   H((MARY)r ¡ H((JOHN)r > 0
                =   H((MARY)r  > H((JOHN)r

This empty numerical predicate is the empty case of a class of numerical predicates, like a little, much….

Let us use εk for a contextually given small number.  Then, a little as a numerical predicate is:

v a little<n,t> bk,w =  λn. 0 < n < εk
With this we derive for (2):
(2)
a. John is a little shorter than Mary


b. 0 < H((MARY)r ¡ H((JOHN)r < εk
Obviously, we can make εk more directly dependent on various features of the scale in question.  In that case we may start a little out as a predicate of degrees <δ,t> and use aspects of the scale directly  (i.e. make it λδ.0 < δr < <εk,δu,δm>r  where εk is small on the scale for measure δm relative to unit δu and k. 
We can also  make the account a bit more quantificational, 

v a little<n,t> bk,w =  λn. (ε 0 < n < ε ( LITTLEk(ε)
5.  DP-COMPARATIVES AND THEIR OBJECTS. 
The almost (but not quite) naïve theory of comparatives can be regarded as a generalization of the analysis of NP-comparatives of Hoeksema 1982.  Hoeksema argues that the comparatives in (1a,b) are independent constructions: (Hoeksema calls these NP-comparatives and DP-comparatives, I have replaced the labels by DP and CP.)  

(1)
a. John is taller than [DP Mary].


b. John is taller than [CP Mary is ¡].
That is, Hoeksema argues against an analysis of (1a) as a reduced form of (1b) with the same semantics as (1b).    Disregarding aspects of Hoeksema's analysis which relate to the fact that Hoeksema did not yet incorporate a type shifting approach to transitive verbs (or relations), Hoeksema's account of (1a) is very simple:  be taller than is a relation between individuals (of type <d,<d,t>>), in fact, not surprisingly, exactly the relation:


λyλx.H((x)r > H((y)r
What I have done so far is generalize Hoeksema's analysis of DP-comparatives to a compositional derivation of a larger set of DP comparative constructions, all with an interpretation as a relation between degrees, shiftable to a relation between individuals.

As far as the generalization of Hoeksema's theory is concerned, we have already seen some good predictions of the analysis above: (2a-c) are equivalent:

(2)
a. John is three inches taller than Mary.


b. John is three inches less short than Mary.


c. Mary is three inches less tall than John.


d. Mary is three inches shorter than John.

The analysis of DP-comparatives as simple relations means that the the almost (but not quite) naïve theory will inherit the most salient aspects of Hoeksema's theory of DP-comparatives.  In this section we are concerned with the scope of the DP complement; in the next section, we look at polarity items in the DP complement.

Let α be our comparative relation and DP the complement noun phrase.  We are looking at:  

John is α than DP

where α = taller than/less tall than/ al least three inches taller than/ at most four inches 

                  less tall than….
and DP = Mary/ Mary and Sue/ Mary or Sue/ every girl/ some girl/ no girl/ at least three girls/ exactly three girls/ at most three girls….
Let us also use α and DP for the interpretations at the types of relations <d,<d,t>> and generalized quantifiers <<d,t>,t>.  
Hoeksema's prediction about the semantics of the complement of the DP-comparative, is that it follows Montague's semantics of transparant, non-collective transitive verbs:  semantically, the DP interpretation takes scope over the comparative relation, just as on Montague's analysis semantically the transitive verb takes scope over the transitive verb relation. I.e. using the type shifting principle of object lift:


Object lift:


<d,<d,t>>
(
<<<d,t>,t>,<d,t>>

     α

(
λTλx.T(λy.α(x,y))
The interpretation schema is:


be α than DP



λx.DP(λy.α(Hβ(x),Hβ(y)))

I am assuming here, for ease of discussion and comparison, that we take the generalized quantifier interpretation of all DP complements, and that α is a height-in-β measure where what β is depends on α and on context k.   Also, I will here take, for simplicity,  the standard generalized quantifier interpretations for the DP complements (and not the ones that are derived from <d,t> predicates with argument shift).

In the pictures below, I indicate in boldface the points or intervals were John's height can be if the sentence in question is true.

CASES I. John is Ø taller than DP.

    

       DP( λy.H( (JOHN)r > H((y)r)

I. a.      John is Ø taller than Mary.

(λP.P(MARY) ( λy. H((JOHN)r > H( (y)r)) =

H((JOHN)r > H( (MARY)r 
                                    O




o

  

         H((MARY)r
Nobody will object to this, I assume.  
I. b.
John is Ø taller than Mary and Jane.

(λP.P(MARY) ( P(JANE) ( λy. H((JOHN)r > H( (y)r)) =
 =

H((JOHN)r > H( (MARY)r ( H((JOHN)r > H( (JANE)r 
                                    O



o
o

         H((JANE)r          H((MARY)r
(Ib) expresses that John is taller than whichever of Mary and Jane is the tallest.  
This reading does not presuppose that Mary and Jane have the same height, although the reading is, of course compatible with that situation.  

I. c.
John is Ø taller than every girl.

(λP.(y[GIRL(y) ! P(y)] ( λy. H((JOHN)r > H( (y)r) =

(y[GIRL(y) ! H((JOHN)r > H( (y)r]


                                    

O



o


o

  
          H((g1)r  ……………….H((gn)r
This reading generalized the one in (Ib).  (Ic) is true iff John is taller than the tallest girl.  Again, this does not presuppose that the girls have the same height.

I. d.
John is Ø taller than some girl.

(λP.(y[GIRL(y) ( P(y)] ( λy. H((JOHN)r > H( (y)r) =

(y[GIRL(y) ( H((JOHN)r > H( (y)r]


                        O



o


o

  
          H((g1)r   ………………H((gn)r
(Id) is true iff John is taller than the shortest girl.

I. e.
John is Ø taller than at least three girls.

(λP.(GIRL ( P(≥3 ( λy. H((JOHN)r > H( (y)r) =

(GIRL ( λy. H((JOHN)r > H( (y)r(≥3

                                                O



o
o 
o


o

  
          H((g1)r   H((g2)r   H((g3)r………………H((gn)r
(Ie) says that there are at least three girls and John is taller than the shortest three girls.

I. f.
John is Ø taller than exactly three girls.

(λP.(GIRL ( P(=3 ( λy. H((JOHN)r > H( (y)r) =

(GIRL (  λy. H((JOHN)r > H( (y)r (=3

                                                O



o
o 
o
o

o

  
          H((g1)r   H((g2)r H((g3)r H((g4)r…….. H((gn)r
(If) says that there are at least three girls, and John is taller than the shortest three girls, but not taller than any other girls.  This seems the right reading, which is good, because, as Schwarzschild and Wilkinson 2002 argue, this reading is particularly difficult to derive for many theories of comparison.

I. g.
John is Ø taller than no girl.

(λP.((y[GIRL(y) ( P(y)] ( λy. H((JOHN)r > H( (y)r) =

((y[GIRL(y) ( H((JOHN)r > H( (y)r]


                                                



o

       o

  
           H((g1)r ………….H((gn)r
This may sound a little stilted in English, due to the fact that English prefers auxiliary negation in these cases.   But it's not infelicitous:  stilted language is acceptable in proverb-like speech, and (3) below is fine:

(3)
If you're stronger than nobody, you must use cleverness to get your way. 

The reading derived for (1g) is that John's height is at most that of the shortest girl.  Similarly, the antecedent in (3) expresses that John isn't stronger than anybody, and, once again, that seems correct.
I h. 
John is Ø taller than at most three girls.  

(λP.(GIRL ( P((3 ( λy. H((JOHN)r > H( (y)r) =

(GIRL (  λy. H((JOHN)r > H( (y)r ((3

                                                



o
o 
o
o

o

  
           H((g1)r  H((g2)r H((g3)r H((g4)r ……H((gn)r
(Ih) expresses that John's height is at most that of the fourth shortest girl.  Note that the semantics derived for (Ih) is compatible with John being in fact shorter than all girls.

Of course, if you know that John is shorter than all girls, you wouldn't usually use (Ih),  but if you don't know this, you might well, as in the (metric!) example below: 
(4)
[In the ballet school, selecting partners for a  pas de deux of the Princess and the 


Dwarf-king]
A.  John might do, he's not very tall, is he?  The problem is, these girls aren't very 

tall either.  What do you say?

B. It says on his chart that he is 1.64.  Now, I don't know the height of Anna, 

Bella and Clarissa,  but the other girls are for sure taller than that. 

A.  Okay, as long as he's taller than at most three girls, we can find him a partner 

by reassigning some of the parts. 

CASES II:  John is at least two inches taller than DP.

                    DP( λy.H"(JOHN)r ≥  H"(y)r + 2)
II. a.
John is at least two inches taller than Mary.


H"(JOHN)r ≥  H"(MARY)r + 2

                                    



                            o    o

 
                      H"(MARY)r    +2

II. b.
John is at least two inches taller than Mary and Jane.


H"(JOHN)r ≥  H"(MARY)r + 2 ( H"(JOHN)r ≥  H"(JANE)r + 2

                                    


       o
o                         o   o

    H'(JANE)r    +2      H"(MARY)r  +2

This means that John's height is at least the height of the tallest of the two plus two inches.  Again, this doesn't require the girls to have the same height.

II. c.
John is at least two inches taller than every girl.

(y[GIRL(y) ! H"(JOHN)r ≥  H"(y)r + 2]


                                    





o       o


o        o

  
        H"(g1)r  +2 …………H"(gn)r   +2

This means that John's height is at least the height of the tallest girl plus two inches.

The girls need not have the same height. 

II. d.
John is at least two inches taller than some girl.


(y[GIRL(y) ( H"(JOHN)r ≥  H"(y)r + 2]


                        



o    o


o    o

  
     H"(g1)r  +2  ………....H"(gn)r   +2

 This means that John's height is at least the height of the shortest girl plus two inches.

II. e.
John is at least two inches taller than at least three girls.

(GIRL (  λy. H"(JOHN)r ≥  H"(y)r + 2 (≥3

                                                



o
o 
o   o


o

  
    H"(g1)r  H"(g2)r H"(g3)r +2 …………….. H"(gn)r
John's height is at least the height of the third shortest girl plus two inches.   

II. f.
John is at least two inches taller than exactly three girls.


(GIRL ( λy. H"(JOHN)r ≥  H"(y)r + 2 (=3

                                                   

         O



o
o 
     o   o
    o    o
                     o

  
      H"(g1)r   H"(g2)r   H"(g3)r+2        H"(g4)r +2 ………….         H"(gn)r
This too says that John's height is at least the height of the third shortest girl plus two inches, but it adds that his hight is below the height of the fourth shortest girl plus two inches.

II. g.
John is at least two inches taller than no girl.


((y[GIRL(y) ( H"(JOHN)r ≥  H"(y)r + 2]


                              O                  



o    o




o

                H"(g1)r  +2   ……………………….      H"(gn)r
Again, the reading derived is expressed more naturally in English as:

(5)
John isn't at least two inches taller than any girl.

Take the height of the shortest girl plus two inches.  John's height is below that.

II. h. 
John is at least two inches taller than at most three girls.  


(GIRL ( λy. H"(JOHN)r ≥  H"(y)r + 2((3

                                                
      O



o
o 
o
o    o

o

                H"(g1)r  H"(g2)r H"(g3)r H"(g4)r  +2 ……..H"(gn)r
Take the height of the fourth shortest girl plus two inches, John's height is below that.

CASES III.  John is exactly two inches taller than DP.

                      DP( λy. H"(JOHN)r = H"(y)r + 2)
III. a.
John is exactly two inches taller than Mary.


H"(JOHN)r = H"(MARY)r + 2

                                    



       o
o

 
    H"(MARY)r +2

III. b.
John is exactly two inches taller than Mary and Jane.


H"(JOHN)r = H"(MARY)r + 2 ( H"(JOHN)r = H"(JANE)r + 2

                                    


       
           o   o

  
       H"(MARY)r  +2


       H"(JANE)r 


In this case, the semantics of exactly forces Mary and Jane to be of the same height.  That is,  the sentence cannot be true if the girls are of different height.
III. c.
John is exactly two inches taller than every girl.

(y[GIRL(y) ! H"(JOHN)r = H"(y)r + 2]


                                   


       
           o   o

  
                 H"(g1)r+2



       …



     H"(gn)r 


In this case too, the sentence can only be true if all the girls are of the same height.

That is, the sentence expresses that exactly two inches below John's height you find the height that all the girls share.

III. d.
John is exactly two inches taller than some girl.


(y[GIRL(y) ( H"(JOHN)r = H"(y)r + 2]


                                    


    o    o
   o    o

o     o

        H"(g1)r   +2     H"(gk)r   +2…H"(gn)r  +2

To make this true, any point two inches above the height of any one of the girls will do for John's height (i.e. two inches below John's height you should find the height of some girl).
III. e.
John is exactly two inches taller than at least three girls.

(GIRL (  λy. H"(JOHN)r = H"(y)r + 2(≥3

                                    


    o   
           o   o

o      o

o

           H"(g1)r    H"(gk1)r  +2
   H"(gm1)r    +2        H"(g1)r


  H"(gk2)r
   H"(gm2)r


  H"(gk3)r
   H"(gk2)r

                 …

         …

This is true if two inches below John's height you find a height that at least three girls share.

III. f.
John is exactly two inches taller than exactly three girls.


(GIRL (  λy. H"(JOHN)r = H"(y)r + 2(=3

                                    


    o   
           o   o

o      o

o

  
H"(g1)r     H"(gk1)r+2
       H"(gm1)r+2          H"(g1)r


    H"(gk2)r
       H"(gm2)r


    H"(gk3)r
       H"(gk3)r
And this is true if two inches below John's height you find a height that exactly three girls share.

III. g.
John is exactly two inches taller than no girl.


((y[GIRL(y) ( H"(JOHN)r = H"(y)r + 2]



          O
         O

       O                                   


    o    o
   o    o

o     o

         H"(g1)r  +2        H"(gk)r+2     H"(gn)r +2

Again, this can be paraphrases as:

(6)
John isn't exactly two inches taller than any girl.
And it is true if John's height is anywhere, except exactly two inches above that of any girl.  In other words, two inches below John's height, you shouldn't find the height of a girl. 

III. h. 
John is exactly two inches taller than at most three girls.  


(GIRL ( λy. H"(JOHN)r = H"(y)r + 2((3


          

         O

                                          


    o    o
   o    o

o     o

o      o

          H"(g1)r +2      H"(gk1)r+2    H"(gm1)r +2….. H"(gn)r   +2

  

        H"(gk2)r
     H"(gm2)r


        H"(gk3)r
     H"(gk3)r


        H"(gk4)r
This, finally is true if two inches below John's height you find a height that not more than  three girls share.

CASES IV: John is at most two inches taller than DP.

 
         DP( λy.H"(JOHN)r (  H"(y)r + 2)
IV. a.
John is at most two inches taller than Mary.


H"(JOHN)r (  H"(MARY)r + 2
                                    



       o
o


   H"(MARY)r +2

This says that John's height is at most Mary's height plus two inches.

Notice that the reading derived is compatible with John being shorter than Mary.  Again, if you know that he is shorter, you would be unlikely to say (IVa), but if you don't know that, (IVa) does not exclude the possibility that he is shorter.  Look at (7) (again metric):
(7)
A.  Is John taller than Mary?

            B.  I don't know.  But I do know that he is at most two centimeters taller than
      Mary.  You see, Mary is 1.63.  And I happen to know that John was rejected 
      by the police because of his height, and they only accept people taller than 
      1.65.   

This discourse is perfectly felicitous and perfectly compatible with John's height actually being below Mary's height, supporting the interpretation.

(IVa) might have another interpretation, where at most two inches is interpreted appositively, as in (8a):

(8)
a. John is taller than Mary, by at most two inches.


b. John is Ø and at most two inches taller than Mary.
For those who get this reading, we can formulate an analysis along the lines of (8b).

IV. b.
John is at most two inches taller than Mary and Jane.


H"(JOHN)r (  H"(MARY)r + 2 ( H"(JOHN)r (  H"(JANE)r + 2


                                    


       o
o                     o   o

    H"(JANE)r  +2   H"(MARY)r +2

This case is an instance of the more general case in (IVc), so I will turn to that directly:

IV. c.
John is at most two inches taller than every girl.

(y[GIRL(y) ! H"(JOHN)r (  H"(y)r + 2]


                                    





o       o


o        o

  
    H"(g1)r     +2…………H"(gn)r       +2

Interestingly enough, the reading we derive does not say that John is at most the height of the  tallest girl plus two inches, but that John is at most the height of the shortest girl plus two inches.  A moment's reflection should convince you that this is plausible.  If the requirement were that his height is at most that of the tallest girl plus two inches, he could actually be at least three inches taller than all the other girls (if the tallest girl is considerably taller than the other girls).  But (IVc) wouldn't be true in that case.  Note too that there is no presupposition that the girls are of the same height.  The comments on the interpretation in (IVa) form our guideline to the interpretation that we get for (IVc).  For each girl, John's height should be at most that girl's height plus two inches.  This means, by instantiation, that John's height should be at most two inches above the height of the shortest girl.  If his height is in that range, it will follow that his height is less or equal to the height of any other girl plus two inches, since the latter heights are going to be at least as big as the height of the shortest girl plus two inches.

Thus, if the shortest girl is considerably shorter than the other girls, and John is say an inch taller than her, but shorter than all then others (IVc) is going to be true.

Thus, what I am assuming here is that on the reading intended here, the following is a valid inference, where (9c) has the reading discussed under (IVa):

(9)
a. John is at most two inches taller than every girl.

b. Mary is a girl
c. Hence, John is at most two inches taller than Mary.

Again, (IVc) may have another reading where at most two inches is analyzed appositively as in:

(10) 
John is taller than every girl, by at most two inches.

That reading will make John taller than every girl, and it will force the girls to vary only minimally in height.  Since John's height must be in the interval that ranges from the height of the shortest girl (non-inclusive) to two inches above that, and since John must be taller than the tallest girl as well, on this reading, the height of  the tallest girl can at the highest be just under two inches above that of the shortest girl. 

IV. d.
John is at most two inches taller than some girl.


(y[GIRL(y) ( H"(JOHN)r (  H"(y)r + 2]


                        



o    o


o    o

  
   H"(g1)r    +2………….H"(gn)r    +2

By the logic of the system, the reading that we just claimed (IVc) does not have, is exactly the reading that we derive for (IVd).  (IVd) expresses that John's height is at most two inches above the height of the tallest girl.  And that makes sense:  we're not talking about a specific reading here, and (IVd) expresses something rather weak:  clearly, if John is more than two inches taller than any of the girls, (IVd) is false.  As soon as John's height drops below the two inches above the tallest girl, that girl will do to make (IVd) true, and it will stay true if you drop him even more so that other girls will do as well.
IV. e.
John is at most two inches taller than at least three girls.

(GIRL ( λy. H"(JOHN)r (  H"(y)r + 2(≥3

                                                



o   o 


             o    o
          o     o          o     o

  
    H"(g1)r  +2 …………………H"(gn¡2)r   +2 H"(gn¡1)r  +2  H"(gn)r   +2

This says that John's height is at most the height of the third tallest girl plus two inches.

This can be seen as follows.  Clearly, if John's height is more than two inches above the tallest girl, (IVe) is not true.  Suppose he is two inches taller than the tallest girl, and all the other girls are shorter than her.  Is (IVe) true?  No, because for any of the other girls he is more than two inches taller than that girl, so the set 
GIRL ( λy. H"(JOHN)r (  H"(y)r + 2  contains only one element: the tallest girl.  Obviously, as soon as John's height drops to two inches above the height of the third tallest girl, this set contains three elements, and (IVe) becomes true.  As before, dropping John's height even further will only include more girls in the set (if there are any).

IV. f.
John is at most two inches taller than exactly three girls.


(GIRL ( λy. H"(JOHN)r (  H"(y)r + 2(=3

                                                       O



o   o 

o     o
                        o    o
      o       o        o     o

  
   H"(g1)r   +2…. H"(gn¡3)r  +2                H"(gn¡2)r +2 H"(gn¡1)r +2  H"(gn)r +2

This also says that John's height is at most the height of the third tallest girl plus two inches.  But it adds to that the requirement that his height is above that of the fourth tallest girl plus two inches, because if his height were as low as two inches above the height of the fourth tallest girl, there would be four girls that he is at most two inches taller than.  

IV. g.
John is at most two inches taller than no girl.


((y[GIRL(y) ( H"(JOHN)r (  H"(y)r + 2]


                              




        O                  



o    o




o      o

                 H"(g1)r  +2 ……………………………H"(gn)r  +2

This again is more naturally expressed as:

(11)
John isn't at most two inches taller than any girl.

This is a roundabout way of expressing that John's height is more than two inches above that of any girl.

IV. h. 
John is at most two inches taller than at most three girls.  


(GIRL ( λy. H"(JOHN)r (  H"(y)r + 2((3

                                                       O

o   o 

o     o
                        o    o
      o       o        o     o

  
   H"(g1)r  +2         H"(gn¡3)r+2                H"(gn¡2)r+2  H"(gn¡1)r +2  H"(gn)r+2

Given what we said under (IVf), it should be clear that this expresses that John's height is bigger than two inches above the fourth tallest girl.

This completes the survey of the readings that the almost (but not quite) naïve theory gives us for DP-comparatives.  It seems to me that the theory makes the correct predictions and in that way sets a standard for other theories:  when restricted to DP-comparatives, theories of comparatives ought to get at least these readings.  As Schwarzschild and Wilkinson 2002 argue,  theories of comparison commonly fail this standard.

6. DP-COMPARATIVES AND POLARITY

We see that if the DP-complement of the comparative is a quantificational noun phrase, it takes scope over the comparative relation as if the latter is a normal transparant relation of type <d,<d,t>> (like an extensional, non-collective transitive verb).

As said, this is what Hoeksema 1982 proposes and Hoeksema uses this aspect of the analysis to argue that the comparison relations in DP-comparatives do not license polarity items in their DP-complement.  While Hoeksema gives an elaborate argument for this, the point is really very simple.  Semantically, the interpretation of the DP-complement of the comparative relation is not in the scope of the comparative relation (the semantic scope of the comparative relation being its two arguments of type d). 

Since polarity items are only licensed in the context of an operator/relation that they are in the semantic scope of, Montague’s analysis of transitive verbs, and the present extension to comparative relations predicts that transparant non-collective transitive verbs DP-comparatives do not licence polarity items in their DP-complement.

Of course, it is well known that polarity items are allowed inside the CP-complements of CP-comparatives:

(1)
Mary is more famous than John ever was.

So Hoeksema's claim is that this is not true for DP-comparatives.  And this means that we have to say something about the evidence to the contrary:

(2)
a. Mary is more famous than anyone.


b. Mary is more famous than ever.


c. (1) Mary is more famous than John or Bill.


    (2) Hence, Mary is more famous than John.

The comparatives in (2) contain DP-comparatives.  In (2a) the DP-complement is anyone, in (2b) it is ever, and both are usually taken to be polarity items.  In (2c) we see an argument (mentioned by von Stechow 1982) which purports to show that the DP_-comparative is a downward entailing context:  (2c1) has a reading on which it entails (2c2), and that it a downward entailing reading.

Thus, the evidence in (2c) is meant to show that DP-comparatives ought to license polarity items in their complement, and the evidence in (2a-b) is meant to show that they do.
We will first do away with (2b).  Maybe (2b) would be a problem for Hoeksema’s claim, if ever were a noun phrase.  But it isn't, it is an adverbial phrase.  Hoeksema and the almost (but not quite) naive theory actually make no claim about comparatives with an adverbial complement, they deserve separate study, and will be ignored here.

(2a) is, of course, fine, but Hoeksema points out the obvious fact, that ​anyone in (2a) may well be free choice any and not polarity sensitive any, since it is undeniable that free choice any does occur as the DP complement of DP-comparatives.
As Horn 1972 argues, almost modiefies free choice any but not polarity sensitive any.  This means that anyone in (3) is free choice any:

(3)
Mary is more famous than almost anyone.

Thus, (2a) doesn't show that polarity items are allowed. 
What about the inference in (2c)?

As Hoeksema 1982 suggests in a footnote and as Schwarzschild and Wilkinson 2002 argue in more detail, it is very suspicious that it is always the disjunction argument that is given as an argument for the putative downward entailingness of the DP-comparatives.  
(3) Tells us that we can have free choice any in the complement of the DP-comparative.  As is well known, in all contexts where free choice any can occur, free choice disjunction can occur, and the free choice interpretation of disjunction precisely licenses the npattern in (2c).  
The inference in (2a) is the one that is licensed by a free-choice disjunction interpretation, and since we know that free choice any occurs in this position, we expect free-choice disjunction to be possible as well.  Hence, the inference in (2c) doesn't say anything about the actual entailment properties of DP-comparatives, other than that free choice interpretations are licensed.  

As Schwarzschild and Wilkinson argue, when you compare the DP-comparative with bona fide downward entailing constructions, the DP-comparative just doesn't come out as downward entailing.  (I discuss the same argument in the context of CP- comparatives later).

(4)
a. (1) Every boy who teased Mary was sent to the headmaster.


    (2) Mary is a girl.


    (3) Hence, every boy who teased every girl was sent to the headmaster.


b. (1) John is more famous than Mary.


    (2) Mary is a girl.


    (3) Hence, John is more famous than every girl.

(4a) is an example of a  bona fide downward entailing environment.  Premises (1) and (2) entail (3).  We assume that (1) and (2) are true.  If you are a boy and you teased every girl, then, by (2), you teased Mary, and hence, by (1), you were sent to the headmaster.   
Of course, there are often subtle contextual effects which may obscure the downward entailing nature of an environment, but a minimal requirement for an environment to be bona fide downward entailing is that it should be clear from the data why you would entertain a downward entailing analysis in the first place.  The argument just given does that for (4a).

The contrast with the inference in (4b) couldn't be bigger.  Again we accept premises (1) and (2).  Does this make (3) plausible?  Of course not!  If anything, it is the other way round: (2) and (3) entail (1), making the environment is upward entailing.
What the contrast shows is that there is no initial plausibility to the claim that the complement of DP-comparatives is a downward entailing environment, which means that if your analysis makes it downward entailing after all, you need to seriously wiggle your way around the inference facts.  This means that the initial plausibility is on Hoeksema's side:  until strong arguments to the contrary are given, we should assume that DP-comparatives are not downward entailing.  

Now, independent of one’s analysis of the licensing of polarity items, downward entailingness as a pretty good (if rough) diagnostics for envirtonments where polarity sensitive items are licensed.  By applying this diagnostics, the complements of DP-compariatives is not where you would expect them.

As Hoeksema argues, it is hard to come up in English with data that shows beyond doubt whether or not polarity items are licensed in DP-comparatives.   This is because there are in English few suitable polarity sensitive DPs (ignoring the ones with any that allow for a free choice interpretation as well), and if you stick a polarity item, say, inside a relative clause, there are usually too many other interfering factors to control for (like the possibility of genericity of the whole DP, which may licence the item already inside the DP).

Hoeksema argues that the situation is clearer in Dutch, because Dutch has items which are much like polarity sensitive any in English, but do not have the free choice interpretations.  Hoeksema's own example is the item ook maar.  I will use here the noun phrase ook maar iemand which is a polarity sensitive expression which contrasts with free choice expression wie dan ook.   

(5)
a.  #Ook maar iemand   heeft  het raadsel gisteren   opgelost.


       ook-maar-someone has    the riddle   yesterday solved        


     #Anyone(PS) solved the riddle yesterday.
b.  #Wie dan ook  heeft het raadsel gisteren    opgelost


       who-dan ook has    the riddle   yesterday solved


     #Anyone(FC) solved the riddle yesterday.

(5) shows that in a episodic upward entailing context, where in English neither polarity sensitive any, nor free choice any is allowed, both the items ook maar iemand and wie dan ook are disallowed.

(6) 
a.  #Dat kan je aan ook maar iemand  vragen.


       That can you to ook-maar-someone ask


     #That, you can ask anyone (PS).

b.     Dat kan je aan wie dan ook vragen.

        That can you to who-dan ook ask

        That, you can ask anyone (FC).

(6) shows that in a context with an existential modal, where in English free choice any but not polarity sensitive any is allowed, ook maar iemand is not allowed, but wie dan ook is.

(7)
a.     Ik leen geen boeken uit   aan ook maar iemand.

        I   lend no    books    out to    ook-maar-someone

        I don't lend books to anyone (PS).

b.    Ik leen geen boeken uit aan wie dan ook.

        I   lend no    books   out to   who-dan ook
        I don't lend books to anyone (FC).

(7) shows that in a bona fide downward entailing context, where in English both polarity sensitive any and free choice any are allowed, both ook maar iemand and wie dan ook are allowed.  (5-7) support Hoeksema's claim that ook maar iemand is a polarity item, while wie dan ook is a free choice item.  Hoeksema's contrast is the contrast between (8) and (9).

(8)
a.     Marie is beroemder     dan  ook maar iemand    ooit  geweest is.

        Marie is more famous than ook-maar-someone ever been      is

        Marie is more famous than anyone (PS) has ever been.

b.     Marie is beroemder     dan wie dan ook   ooit  geweest is.

        Marie is more famous than who-dan ook ever been      is

        Marie is more famous than anyone (FC) has ever been.
(8) shows that in the CP-comparitive, where in English both polarity any and free choice any are allowed, both ook maar iemand and wie dan ook  are allowed.

(9)
a.   #Marie is beroemder     dan  ook maar iemand.

        Marie is more famous than ook-maar-someone

      #Marie is more famous than anyone (PS)

b.     Marie is beroemder dan wie dan ook.

        Marie is more famous than who-dan ook
        Marie is more famous than anyone (FC)

(9), finally, shows that in the DP-comparative wie dan ook is allowed, like in English free choice any, but, crucially ook maar iemand is not allowed.

Hoeksema's claim can be strengthened by looking at enige.  As a plural, not-necessarily stressed item enige means  a few, and is not at all a polarity item:

(10)  Ik heb   hem enige boeken uitgeleend.

         I   have him a few  boeks   lent

         I lent him a few books.

But as a singular, stressed element, enige is a polarity item, and it means any, polarity sensitive any.  And we find the following facts:
(11)
a.  #Enige filosoof    heeft  het raadsel gisteren   opgelost.


       any philosopher has    the riddle   yesterday solved        


     #Any philosopher(PS) solved the riddle yesterday.
b.  #Dat  kan je    aan enige filosoof       vragen.


       That can you to   any   philosopher ask


     #That, you can ask any philosopher (PS).


c.     Ik leen geen boeken uit   aan enige filosoof.

        I   lend no    books    out to    any philosopher

        I don't lend books to any philosopher (PS).

enige filosoof is a polarity sensitivity item (11a,c), but not a free choice item (11b).

(13)
a.     Marie is beroemder     dan  enige filosoof       ooit  geweest is.

        Marie is more famous than any    philosopher ever been      is

        Marie is more famous than an philosopher (PS) has ever been.

b.   #Marie is beroemder     dan  enige filosoof .

        Marie is more famous than any    philosopher

      #Marie is more famous than any philosopher (PS)

Again, enige filosoof  here constrasts with the free choice item welke filosoof dan ook (which-philosopher dan ook), which patterns just like wie dan ook.  The judgements reported here for enige are just as what Hoeksema found for ook maar, hence this case strengthens Hoeksema’s case.
A comment on the judgements.  The polarity items in question in (9a) and (13b) become more felicitous, or even fine, if we tag on them a free choice appositive phrase: 

 (14)
a.  Marie is beroemder dan ook maar iemand, wie dan ook.

            b.  Marie is beroemder dan enige filosoof,  welke  je ook maar kiest.






         which you ook maar choose 







         whichever one you choose.


Thus,  ook maar iemand and enige filosoof do not by themselves have a free choice interpretation.  With the appositive, you allow a free choice interpretation for these items, and the examples become felicitous.  This supports Hoeksema’s and Schwarzschild and Wilkinson’s diagnostic about DP-comparatives:  what looks like a felicitous polarity items in the complement of DP-comparatives is better interpreted as a free choice item. 

It seems to me that disagreement about the judgements in (9a) and (13b) (coming from speakers that find (9a) and (13b) more felicitous than I do) should be resolved in this direction:  the felicity of these examples will vary depending on how easy it is for speakers to assign a free choice item to indefinites. 
That this is the right way to look at the issue can be shown with expressions that aren’t polarity items on anybody’s theory.  For instance, on the first page of Hans van Pinxteren's (prize winning) translation of Flaubert's Madame Bovary we find:
(15)
…een boerenjongen van een jaar of vijftien, een stuk   groter dan één van ons.

            …a     farmersboy    of    a     year or fifteen, a    piece  taller than one of us.

            …a farmersboy of about fifteen, a lot taller than (any) one of us.
It is clear that van Pinxteren can get a free choice reading for één van ons/one of us ( i.e. with the meaning of the English any one of  us) with only the stress on één to trigger the free choice effect.  .  For me, this is impossible, and the sentence is as infelicitous (on the intended interpretation) as the English paraphrase without any: (#a lot taller than one of us, on the free choice reading).   What is very clear here, though, is that what is (or isn't) available is a free choice reading, not a polarity sensitive reading (één van ons/one of us is not a polarity item).
The point about DP-comparatives is not that they are contexts in which polarity items are allowed, but that they are contexts in which indefinites easily get free choice readings (which is interesting in its own right, but not the topic studied here).  
And that means that the data support Hoeksema’s analysis of DP-comparatives, and with that, the almost (but not quite) naïve theory of NP-comparatives, because it predicts the right polarity facts for NP-comparatives without any effort.

There is an almost (but not quite) naïve conclusion to be drawn from this.  Any theory of comparatives that gives an explanation for the occurrence of polarity items in CP-comparatives (for instance by defining a sense in which CP-comparatives are downward entailing) is in trouble if that explanation applies equally well to DP-comparatives, polarity items are not licensed in DP-comparatives.  By this argument, quite a lot of the theories of comparatives on the market are in fact in trouble.      

7.  CP-COMPARATIVES
7.1. The basis of the semantics of CP-comparatives.

I will start out with some terminology.  I will call the DP-comparative in (1a) and the CP-comparative in (1b) each other’s comparative correlate.    

(1)
a. John is taller than DP

b. John is taller [CP than DP is ¡ ]
This terminology is for comparison purposes only, and has no theoretical status, since, following Hoeksema, I am going to analyze DP-comparatives and CP-comparatives as basically independent constructions.  
In providing a semantics of CP-comparatives we start out with the classical facts concerning their syntax.   The complement of the CP-comparative is a clausal construction which contains a gap, and the gap behaves syntactically like other gap-constructions, e.g.  wh-questions and  relative clauses:
(2)
a.   John is taller than Mary believes that Bill is (.

            b. #John is taller than Mary believes the rumour that Bill is (.
(2a) shows that the gap can be embedded;  (2b) shows that the gap is sensitive to familiar island constraints.  This means that syntactically we have what is called an operator-gap construction.  I will make a few assumptions here that are not explicitly defended in the literature, but that seem nevertheless te be accepted by everybody:

1. The operator-gap construction is semantically interpreted. 

This means that the interpretation of the gap contains a variable which is bound at the level of the interpretation of the CP.    This means that comparatives are taken to be similar to wh-questions and relative clauses.  (I am not assuming here anything about the exact nature of the semantics of variable binding here:  what I am assuming so far is compatible with a free variable analysis of the gap and abstraction by the operator, but also with Jacobson’s analysis of gaps as functions and the operator-gapconstruction triggering function composition.)

2. The gap is a predicate gap.
The phrase Bill is ( in (1a) needs a predicate to form a complete sentence.  I assume that this means that locally the interpretation of the gap must be of type <d,t> (or <w,<d,t>>, but we will ignore intensionality till later).   

3. The abstraction is over a degree variable of type δ.
You might think that since the gap is a predicate gap, the abstraction ought to be over a predicate variable.  This is not what I will assume, and it is not what the literature assumes.  Rather, the literature assumes, as stated here, that the abstraction is over a degree variable.   
I am not going to justify this assumption here, except to point out that exactly the same assumption is pretty much standardly made for certain kinds of relative clauses (sometimes called degree relatives), e.g.:

(3)
a. The three books that there were ( on the table got wet.  

b. John isn’t half the doctor that his father was (.

(3b) is instructive here.  The gap in the relative clause is obviously a predicate gap, but in this construction, the DP the doctor that his father was has received a gradable interpretation, much, indeed, like a gradable adjective.   And indeed, Carlson 1977, Heim 1987 and Grosu and Landman 1998 assume analyses of these relative clause constructions involving abstraction over a degree variable.  


We will make that assumption here for comparatives, and it means that there is a type mismatch between the type of the gap (<d,t>) and the type of the variable abstracted over (δ).  

All this means that we assume the following basic interpretation schema for CP-comparatives:

We look at comparatives of the form:

John is taller [CP than DP is ¡ ]
We us DP also for the intepretation and assume be is the identity function.  Then the grammar will assign an interpretation along the following lines:


Basic interpretation schema for CP-complements in CP-comparatives: 

(first version)
 [CP than DP is ¡ ]

λδn.(DP(λx.φ(δn,x))

of type <δ,t>
where φ is a relation of type <d,<δ,t>> to be determined 

and λx.φ(δn,x) is of type <d,t>.

In this schema, δn is the degree variable realized at the gap level, and abstracted over by the operator-gap construction.  
With BPR we can go one step further, and assume that λx.φ(δn,x) derives really from a relation R between degrees (of type <δ,<δ,t>>), and that the predicate of type <d,t> is formed by composition with the measure function.  (This does require the relevant measure function  to be retrievable, which we will assume.  It is at this stage not that important to determine how this is done, e.g. through context, or by using variable δn, …) 

Basic interpretation schema for CP-complements in CP-comparatives: 

(second version)

We start with a predicate gap of type <δ,t>: 
v[PRED (<δ,t> ]bk,w
=
λδ.R(δn,δ)
of type <δ,t>

- R is a relation between degrees (type <δ,<δ,t>>)

- variable δn is understood to be bound by the operator-gap mechanism.
Which we shift to a predicate gap of type <d,t>:
v[PRED (<d,t> ]bk,w
=
λδ.R(δn,δ) ( Mu
of type <d,t>

                                    =
λx.R(δn,Mu(x))


- Mu is the relevant measure function retrievable in context k.
From which we build up the IP-interpretation:

v [IP DP is ¡ ] bk,w  =
 (DP(λx. R(δn, Mu(x)) ))
of type t.

And the CP-interpretation by abstraction over δn:

v [CP than DP is ¡ ] bk,w  =
λδn.(DP(λx. R(δn, Mu(x)) ))







of type <δ,t>.

As far as the analysis of CP-comparatives is concerned, I will assume that theories are generally in agreement about this much of the analysis.  The disagreement between theories lies in the following questions:

1. What is relation R, and how is it derived.


2. What is the relation between the interpretation of  [CP than DP is ¡ ] and that of

    [mP α [CP than DP is ¡ ] ].
(as in taller than DP is()
The two extreme answers to this question are:

I:  Minimize the meaning of R and maximalize the semantic derivation between CP and the comparative predicate.  

II: Maximize the meaning of R and minimize the semantic derivation between CP and the comparative predicate.  

Both strategies are followed in the literature, the first by von Stechow and almost (but not quite) by Heim, the second by Schwarzschild and Wilkinson.  I will turn to these now.

7.2.   The Standard Theory, the Almost (but not quite) Standard Theory, combined 

          with the Supremum theory.
What I call here the Standard theory is the assumption about relation R that, I think, can be assumed to underly every theory of comparatives which uses measure functions (rather than measure relations) before Schwarzschild and Wilkinson 2006.  It is the following theory:

I.
The Standard Theory of Comparative CPs:

R is identity, =.
[CP than DP is ¡ ]

λδn.(DP(λx. δn = Mu(x))

Let us see what the standard theory gives us for the DPs Mary, every girl, some girl:

vthan Mary is – bk,w

=
λδ.δ=HΔ(MARY)

                                                =
{HΔ(MARY)}

The set containing the degree to which Mary is tall.

vthan some girl is (bk,w
=
λδ.(x[GIRL(x) ( δ=HΔ(x)]

The set of degrees δ for which there is a girl that is δ-tall.


vthan every girl is(bk,w
=
λδ.(x[GIRL(x) ( δ= HΔ(x)]


The set of degrees δ such that every girl is δ-tall.
The intuition behind the Standard Theory is that in John is taller than Mary is (-
the interpretation of the degree complement than Mary is –  should be a set of Mary-degrees:  the set of degrees such that Mary is tall to that degree.  On the standard theory there is one such degree.  

Similarly the interpretation of the complement than some girl is – should be a set of girl-degrees, in fact the set of all degrees δ for which there is a girl that is δ-tall.

The interpretation of the than every girls is ( is the set of degrees such that every girl is δ-tall.  This is the empty set, if not every girls has the same hight, and the set containing the height of all the girls, if they do have the same height.

The intuition underlying all these interpretations is that in John is taller than DET girls are (, the complement denotes so to say a set of ‘girl degrees’.  Theories based on this intuition I call standard.  
At this point, those that are familiar with the literature are likely to ask:  but what if we assume Irene Heim’s theory of comparatives, on which we assume a measure relation rather than a measuere function?  I will discuss that theory in detail later, but for our purposes here it can be reconstructed as, what we could call, the Almost (but not quite) Standard Theory:

IHEIM.
The almost (but not quite) Standard Theory of Comparative CPs:


R is λδ2λδ1. 0 < δ1r ≤ δ2r
[CP than DP is ¡ ]

λδn.(DP(λx. 0 < δnr ( Mu(x)r)

The almost (but not quite) standard theory gives us for the DPs Mary, every girl, some girl:

vthan Mary is – bk,w

=
λδ. 0 < δr ≤ HΔ(MARY)r
                                                =
(<0,Δ,H>,…,HΔ(MARY)]

The interval of degrees from 0 up to the height of Mary.
vthan some girl is (bk,w
=
λδ. (x[GIRL(x) ( 0 < δr ≤ HΔ(x)r]






(<0,Δ,H>,…,HΔ(TG)]






where TG is the tallest girl


The interval of degrees from 0 up to the height of the tallest girl


vthan every girl is(bk,w
=
λδ. (x[GIRL(x) ( 0 < δr ≤ HΔ(x)r]







(<0,Δ,H>,…,HΔ(SG)]







where SG is the shortest girl


The interval of degrees from 0 up to the height of the shortest girl.

The almost (but not quite) standard theory differs from the standard theory in that tall to degree δ is, in essence, interpreted as tall at least to degree δ.  On this interpretation I am tall to degree 1 meter 76, and every positive degree below that:  I am a meter tall if we take I am a meter tall to mean I am at least a meter tall.  
This is, of course, in some ways quite different from the standard theory, but also similar, in that the complements do once again denote sets of ‘girl degrees’:  it’s just that ‘girl degrees’ has a slightly wider interpretation:  a set of degrees of height that girls have, closed downward to zero.  In this sense, Heim’s theory is standard.

Now, whether we take the standard theory of R or our reconstruction of Heim’s theory, the CP-interpretation needs to combine with the interpretation of the comparison relation, which we can (for the present purposes) take to be just the relation that the almost (but not quite) naïve theory of comparison gives us.


α than DP is (

α
+
  λδn.(DP(λx. δn = HΔ(x))




   λδn.(DP(λx. 0 < δnr ≤ HΔ(x)r)


      <δ,<δ,t>>

  <δ,t>

There are various plausible ways in which these could be combined.  Since it is not my task to invent proposals here, I will take the most popular proposal from the literature, that of von Stechow 1984 and discuss it.    The main idea of von Stechow’s proposal is
easy to state:  

1. The CP-predicate is brought down from type <δ,t> to type δ, and then α
     combines with it through application in the normal way.

 
2. The operation bringing the predicate down to type δ is a maximalization 


     operation.
What the maximalization operation is is easier to state in individual cases than in the general case.  We assume that we can extract from relation α the scale that is relevant for α, let me call it Sα.  The idea is that for, say, α = exactly 2 inches taller than we extract 
Sα = SH,”,k and for α = exactly 2 inches shorter than we extract Sα = SH,”,kc. The relevant operation is:

3. The operation that brings the CP-predicate down to type δ, relative to α is 

     Sαu.

α than DP is (:
I.  
λδ.α(δ, Sαu(λδn.(DP(λx. δn = HΔ(x)))





IHEIM.  
λδ.α(δ, Sαu(λδn.(DP(λx. 0 < δnr ≤ HΔ(x)r))

Thus, for taller, the relevant scale Staller = SH,Δ,k and Stalleru = u≥H,Δ = t≤H,Δ.

This means that we get:


(taller) than DP is (: 
I.  
λδ. δ >H,Δ  t≤H,Δ(λδn.(DP(λx. δn = HΔ(x)))





IHEIM.  
λδ.δ >H,Δ t≤H,Δ(λδn.(DP(λx. 0 < δnr ≤ HΔ(x)r)))

Thus we get on the Standard Theory:
v than Mary is –δbk,w

=
t≤H,Δ(λδ.δ=HΔ(MARY))

v than some girl is (δbk,w
=
t≤H,Δ(λδ.(x[GIRL(x) ( δ=HΔ(x)])

v than every girl is(δbk,w
=
t≤H,Δ(λδ.(x[GIRL(x) ( δ= HΔ(x)])

  And:
v taller than Mary is –δbk,w

=   λδ.δ >H,Δ t≤H,Δ(λδ.δ=HΔ(MARY))





            =   λδ.δ >H,Δ HΔ(MARY)

The set of degrees bigger than Mary's height.
v taller than some girl is (δbk,w
=   λδ.δ >H,Δ t≤H,Δ(λδ.(x[GIRL(x) ( δ=HΔ(x)])






=    λδ.δ >H,Δ t≤H,Δ({HΔ(x): x ( GIRL})
The set of degrees bigger than the height of the tallest girl.
v taller than every girl is(δbk,w

=   λδ.δ >H,Δ t≤H,Δ(λδ.(x[GIRL(x) ( δ= HΔ(x)])
   




=   λδ.δ >H,Δ t≤H,Δ({HΔ(x): x ( GIRL}) 

                                                                  if every girl is equally tall.
The set of degrees bigger than the shared height of the girls.
On Heim’s theory, we get:

v than Mary is –δbk,w

=
HΔ(MARY)
v than some girl is (δbk,w
=
HΔ(TG), where TG is the tallest girl.

v than every girl is(δbk,w
=
HΔ(SG), where SG is the shortest girl.

  And:

v taller than Mary is –δbk,w

=   λδ.δ >H,Δ HΔ(MARY)

The set of degrees bigger than Mary's height.

v taller than some girl is (δbk,w
=   λδ.δ >H,Δ HΔ(TG)

The set of degrees bigger than the height of the tallest girl.
v taller than every girl is(δbk,w

=   λδ.δ >H,Δ HΔ(SG)   





The set of degrees bigger than the height of the shortest girl.

If we compare these results with the corresponding results for the correlates, we see the following:
-
John is taller than Mary is (
The supremum version of the Standard Theory and of Heim’s theory give the same analysis as the almost (but not quite) naïve analysis gives to the correlates.

-
John is taller than some girl is (
The standard theory and Heim’s theory give the same reading, but not the reading assigned to the correlate, in fact, they assign the reading that the almost (but not quite) naïve analysis gives to John is taller than every girl.

-
John is taller than every girl is ( 

The stanard theory and Heim’s theory diverge here:  

On the reading assigned by the Standard Theory, the sentence presupposes that all girls have the same height, and then asserts the reading of the correlate.

Heim’s theory assigns the reading that the almost (but not quite) naïve analysis gives to John is taller than some girl.

We see, then, that both the Standard Theory and the Almost (but not quite) Standard Theory, in combination with the Supremum Theory, assign to several CP-comparatives that have correlates readings that differ from the readings that we assigned to the correlates.   
As discussed in Schwarzschild and Wilkonson, a major problem for these theories is that, whatever the merits of the readings that they predict, the CP-comparatives in question do prominently have the same readings as the correlates (when felicitous).  
For example, look at (4):

(4)
a. John is taller than every girl.

b. (x[GIRL(x) ( HΔ(JOHN)r > HΔ(x)r
(5)
a. John is taller than every girl is (.


b. John is taller than the tallest girl.


c. All girls have the same height and John is taller than all of them.


d. John is taller than the shortest girl.

It is not clear at all that (5d) is adequate at all as a reading for (4) (but see the discussion of modals later).  The difference between (5b) and (5c) is the same-height-requirement:  Schwarzschild and Wilkinson argue convincingly that this requirement is not necessary  reading (5b) (which is (4b)).

Now, in fact, von Stechow 1984 accepts this. 

There is a simple way of producing these readings:  

Assume that the scope mechanism applies to the noun phrase in subject 
position inside the comparative.

α than DPwide is (:
     λδ.DP(λx.α(δ, Sαu(λδn.δn = HΔ(x))) 

                                                =   λδ.DP(λx.α(δ, HΔ(x))

This is based on what we observed for the complement taller than Mary is ¡.  We observed that in that case von Stechow's supremum analysis makes the CP-comparative equivalent to that of the correlate.   The same is true if the subject interpretation is an individual variable (which it is in the case of a wide scope interpretation).

But there is an obvious problem with this strategy.  As is well known, CP operator-gap constructions do not (easily) license wide scope interpretations of expressions in their scope.  That is, scoping of quantificational noun phrases out of relative clauses is basically impossible, and scoping of quantificational noun phrases out of the complements of propositional attitude verbs is possible, though restricted  (meaning that wide scope readings for quantificational noun phrases in propositional attitude contexts are possible, when the context is set up very carefully, but they are not very common out of the blue, since we have explicit mechanisms to express de re readings unambiguiously  (instead of saying  believe that every girl in Dafna’s class is nice we can say believe of every girl in Dafna’s class that she is nice.)).   
If we follow, with Schwarzschild and Wilkinson, various cases through, we see that the in situ readings that von Stechow predicts are systematically not the natural readings, while the readings that would be produced with the scope mechanism are.  That means that the mechanism that is not available in other operator-gap constructions (or only very limited under pressure) would be required here as the mechanism to get the basic, promenent readings.  It is, of course, a mystery how that could be.  
Von Stechow accepts this and does not propose to use the standard scope mechanism

to get the right readings.  Instead he proposes a special mechanism of a mechanism of IP-scope:  the IP part of the comparative CP complement is given wide scope.  
This proposal of von Stechow has not been followed in the literature, and it is hard to see its attraction (e.g. why isn't it available for relative clauses?).  We do not need to go into the details of the mechanism here because Schwarzschild and Wilkinson questions for any account of these readings that relies on a scope mechanism of any kind.  I will turn their questions into a full blown problem here.

Schwarzschild and Wilkinson's questions concerning de dicto readings.      

Look at sentence (6):

(6)
a. John is taller than Bill believes that every girl in Dafna's class is ¡.

We are concerned with the natural de dicto reading for (6):  take the girls that Bill  believes to be in Dafna's class, and take the heights that Bill believes each of them has.  This is a set of degrees.  Take the maximal one, call it k.  On the natural de dicto reading (6) is true iff John's height is bigger than k.    
This reading can be expressed as (6b):
(6)
b. λδ. BELIEVE(BILL, ((x[GIRL-IN-DC(x) ( δr > H((x)r)])  (H((JOHN))

The degree δ which is John's actual height has the property that Bill believes of it 

            that it is bigger than the height of what he thinks is the tallest girl in Dafna's class.

There are three salient features of this reading:

1.  What is expressed is a de re property of John's height.  What goes into the comparison is John's actual height, not his height according to Bill:  λ-conversion of H((JOHN) is not allowed in (6b), since John's height varies across worlds.    
2. What is expressed is de dicto with respect to the girls:  what enters into the reading is the height, according to Bill, of what are, according to Bill, the girls in Dafna's class.  
3. But – and this is the point of Schwarzschild and Wilkinson –  on the natural reading, there is no requirement that what Bill thinks are the girls in Dafna's class have the same height according to Bill.

Let's put the reading's next to each other:
(7)
a. John is taller than every girl is ¡.

b. John is taller than Bill believes every girl is ¡.
c. λδ.                               (x[GIRL(x) ( δr > HΔ(x)r]     (H( (JOHN))


d. λδ. BELIEVE(BILL, ((x[GIRL(x) ( δr > H((x)r)])  (H((JOHN))
What we see is that in both cases, the comparative relation is interpreted in the scope of the interpretation of the DP every girl.  But on the relevant reading, the DP every girl stays in the scope of the believe-complement.  This means, as Schwarzschild and Wilkinson point out, that, in essence, the whole content on the CP-complement must take higher scope.  And this must be done by a mechanism that gives Bill believes that every girl is ¡  distributive scope.  This must be the whole point of the mechanism:  distributivity gets rid of the the assumption that the girls have the same height.   

Now it is not clear that such a mechanism can easily be formulated, let alone easily be justified.  I want to strengthen the point, though, and argue that such a mechanism is actually wrong.   The argument concerns polarity items. 
We have seen that, unlike DP-comparatives, CP-comparatives allow polarity items inside the CP-complement, like the polarity item ever in (8):
(8)
a. Mary is more famous than any philosopher ever was.


b. Marie is beroemder dan enige filosoof ooit was.

Now look at (9): 
 (9)
a. Marie is beroemder     dan Ludwig en     Sigmund ooit geweest zijn.

                Marie is more famous than Ludwig and  Sigmund ever been      are

                Marie is more famous than Ludwig and  Sigmund ever were.

b.  Marie is beroemder     dan  enige filosoof        en  enige psycholoog  ooit geweest zijn.

     Marie is more famous than any    philosopher and any   psychologist ever been     are 

     Marie is more famous than any philosopher and any psychologist have ever been.

(9a) is similar to (4): it has a conjunctive noun phrase inside the CP and on its natural interpretation doesn't require the degree of fame of Ludwig and of Sigmund to be the same.  Von Stechow's in situ interpretation does require these to be the same, hence a distribution mechanism must apply to get the correct reading, say, von Stechow's IP-scope mechanism.  (Note that plural form of the auxiliary (are in stead of is) makes an alternative analysis through syntactic conjunction reduction implausible).  

Now the central example is (9b).  (9b) is just like (9a) except that the conjoined noun phrases are themselves polarity expressions.  The crucial observation concerning (9b) is that the sentence is perfectly felicitous, and – and this is the point – does not require the same degree of fame for the philosophers and the psychologists.  That is, (9b) is fine even if no philosopher has ever had exactly the same degree of fame as any psychologist.

This means, on von Stechow's analysis, that, in order to get this reading, the conjunctive noun phrase must be given distributive wide scope by some mechanism.  And the  problem with that is that in that case the polarity items take wide scope, and are not semantically inside the CP-complement at all.     Regardless of the actual mechanism of distributive scope, giving the conjunction distributive scope over the comparison relation, gives by necessity the conjuncts, that is, the polarity items, scope over the comparison relation, and hence gives gthem scope outside the comparative CP-complement.  This means that de facto in (9b) they take their scope at the main clause level.  

But whatever account we give of the licensing of polarity items in comparative CP-complements, that account will obviously not license polarity items that are not semantically in the comparative CP-complement.  And polarity items are not licensed at the main clause level in the sentence in (9b).  Thus the mechanism that gets rid of the same degree interpretation, on the supremum account, predicts incorrectly that (7b) is infelicitous on the reading indicated.     

I think that this shows shows very clearly that the idea that the in situ analysis should generate only a 'same degree' interpretation is just not right:  (9b) requires the possibility of different degrees in situ.  This strengthens Schwarzschild and Wilkinson's point: the combination of the Standard Theory and the Supremum Theory is untenable.

7.3.  The Naïve (but clever) Theory.
Schwarzschild and Wilkinson's analysis is (as I will show later) a version of what can be called: 
II.
The Naïve (But Clever) Theory of Comparative CPs:


R is α.
[mP α [CP than DP is ¡ ]]

λδn.(DP(λx. α(δn, HΔ(x))

On the naïve (but clever) theory of comparative CPs and CP-comparatives, the comparative relation α, which can be the relation derived by the almost (but not quite) naïve theory of DP-comparatives, is not interpreted in the position where it is syntactically realized but inside the comparative CP, in particular, inside the gap.
The clever bit is really due to Schwarzschild and Wilkinson.  They observed that instead of interpreting the CP in taller than DP is (  as the set of degrees such that DP is/are tall to that degree, it is fruitful to interpret the CP as the set of degrees δ such that for DP’s degree of height, δ is bigger than that.   This means that whereas everybody else though that the CP in John is taller than Mary/ every girl is should denote a set of degrees which correspond Mary’s height/every girl’s height, Schwarzschild and Wilkinson gave an analysis in which the CP denotes the set of degrees bigger than Mary’s height/every girl’s height:  thus, the CP already denotes the space of degrees where the subject John’s height is located.  This is the clever bit.
The predictions of the Naïve (but clever) theory are quite impressive.  

1.  For CP-comparatives that have correlates, the naïve (but clever) theory predicts that the CP-comparative has exactly the same interpretation as its DP-comparative correlate.  
You see this by just inspecting the interpretation schema given above.

What is more, these interpretations are derived without involving a scope mechanism at all.  Thus, none of the problems of von Stechow's theory arize here:

2.   Readings with quantificational subjects or conjunctions inside the CP distributing (i.e. readings without a same-degree requirement) are in situ readings.

3. Polarity items in conjunctive subjects inside the CP (with a distributive interpretation) are subject to whatever licensing mechanism allows polarity items in CP-comparatives.
4. De dicto distributive readings are the readings predicted.

Look again at (6):

(6)
a. John is taller than Bill believes that every girl in Dafna's class is ¡.

The naïve (but clever) theory gives us the folllowing interpretation schema for the CP:

λδn. BELIEVE(BILL, ((x[GIRL-IN-DC(x) ( α(δn, H((x))]) 

α  is the interpretation of taller, which is >H,(.  So we get:

     λδn. BELIEVE(BILL, ((x[GIRL-IN-DC(x) ( δn >H,( H((x)]) 

=  λδ. BELIEVE(BILL, ((x[GIRL-IN-DC(x) ( δnr > H((x)r]) 

And hence we get indeed, without any sweat:

(6)
b. λδ. BELIEVE(BILL, ((x[GIRL(x) ( δr > H((x)r)])  (H((JOHN))

The only thing that happens, then, on the Naïve (but clever) theory is that taller is interpreted at the position of the gap
As I will show below, the success of Schwarzschild and Wilkinson's theory in in predicting the readings that they argue for, lies in what I have extracted here and called the Naïve ( but clever) Theory, and not in their interval semantics of degrees.  It is a major contribution of their work, though, so it is appropriate, I think, to identify the naïve (but clever) theory with their work.

We see that the naïve (but clever) theory has major advantages. It has some drawbacks too, though.  
7.4. The infelicity of downward entailing DPs in CP-comparatives. 

We now come to a difference between DP-comparatives and CP-comparatives that is mentioned in Hoeksema, and was discussed extensively in Rullmann 1995.  We start out with the contrasts in (10-11):

(10) 
a.    Mary is more famous than John is (.

      
b.  #Mary is more famous than John isn't (.

(11) 
a.    Mary is more famous than John will ever be (.

      
b.  #Mary is more famous than John will never be (.

What (10) and (11) show is that negation doesn't feel very happy inside CP-comparatives, the b-cases are infelicitous, in fact,  baffling.

When we look at DP-comparatives and their CP-correlates, we get a similar contrast:

(12)
a.    Mary is taller than nobody.

      
b.  #Mary is taller than nobody is (.

      
c.   #Mary is taller than nobody ever was (.

As we have seen, the DP-comparative in (12a) is felicitous, if stilted, and nobody has a wide scope reading:  it means:  nobody is such that Mary is taller than them.

But (12b) and (12c) are baffling.  You say Mary is taller than nobody ever was?  What do you mean?  Are you trying to say that nobody ever was as tall as Mary is?  Mary's height has boldly gone where nobody's height has ever gone before?  But that is what (13) means: 

(13)  Nobody was ever taller than Mary is.

A semantic derivation of (13) will relate nobody semantically to a degree predicate 

λδ. δ >H HΔ(m), with HΔ(m) filling the second position of the comparison relation (expressing that nobody’s degree has this property).

On the other hand, the semantic derivation of (3) will relate nobody semantically to a degree predicate λδ. HΔ(m) >H δ.  

It seems clear that if you want this to express somehow or other that Mary is the tallest, you must get rid of the negation, and interpret nobody as anybody.

My own impression, in thinking about these cases, is that my brain is trying to do several interpretation strategies simultaneously and gets hopelessly muddled.   But it seems very clear that there is one thing that (12b) and (12c) don't mean, and that is that Mary is the smallest, which is what (12a) means.  In other words, as much as I get an interpretation at all, it isn’t (12a).
With Rullmann 1995, I think that the same facts hold in (14):

(14) 
a.    Bill is taller than at most three girls.

      
b.  #Bill is taller than at most three girls are (.

      
c.  #Bill is taller than at most three girls ever were (.

(14b) and (14c) have the same interpretation problems as the cases in (12).  You say Bill is taller than at most three girls ever were.  It's as if you want to say: take the maximal height of the girls.  Call it m.  Bill is taller than m, and at most three girls ever reached that high.  Ok, I understand that that is what you wanted to say.  But then I ask myself again, does (14c) mean that?  And I am just as baffled as I was before.
Again, it seems quite clear that what (14b) and (14c) don't mean is what (14a) means:

Bill's height is at most that of the fourth shortest girl.

And it seems that the interpretation problems are not dependent on the nature of the differential phrase in the comparative, all of the following cases are baffling:

(15)
a. #Bill is at least two inches taller than nobody every was.

                #Bill is at least two inches taller than at most three girls every were.


b. #Bill is at most two inches taller than nobody every was.

                #Bill is at most two inches taller than at most three girls every were.

 
c. #Bill is exactly two inches taller than nobody every was.

                #Bill is exactly two inches taller than at most three girls every were.

We see that downward entailing noun phrases are felicitous as the complement of the DP-comparative, but infelicitous in the complement of the CP-comparative.  
Interestingly enough, when we compare von Stechow’s theory with the naïve (but clever) theory, it looks as if the favours go in the opposite directions.  

It is not so clear at all that the naïve (but clever) theory has anything to say about why CP-comparatives with downward entailing subjects should be infelicitous and why they should not be equivalent to their DP-comparative correlates, when they have correlates.  In fact, the naïve (but clever) theory seems to predict straightforwardly that such CP-comparatives are equivalent to their DP-comparative correlates.  So this is a problem.

Von Stechow’s approach involves (for comparative relation taller) a stage of the derivation in which the CP denotes the supremum of a set of degrees.  This stage can be used to create a difference between the CP-comparative and the DP-comparative.  Let us just calculate what we get for (12b):


HΔ(m) >H tH(λδ.((x[PERSON({m}(x)  ( HΔ(x)=δ]) 
Let us indicate in a picture the range: λδ.((x[PERSON({m}(x)  ( HΔ(x)=δ]:
                              O                                        O
                              p1 ………………………………………pn
Not indicated in the picture are the continuously many degrees between HΔ(p1) and HΔ(pn) that no person has.

But what is the supremum of this set?   Well, clearly it is either undefined, if we mean the sumpremun inside R, or it is +∞ if we allow the latter.  In the first case, the sentence (12b) comes out as infelicitous, in the latter case it comes out as a contradiction.  Either is good enough for our purposes, though the first option seems to reflect the intuitive judgement better.  This means, then, that von Stechow’s supremum analysis has an  advantage over the naïve (but clever) in that it predicts the infelicity. 
 Given the success of the naïve (but clever) theory over von Stechow’s theory with respect to predicting the correct readings this result is rather baffling.  The situation becomes even more complex when we look at the next issue:  polarity in CP-comparatives.

7.5. Polarity items in CP-comparatives.

Now is the time to raise the issue of licensing of polarity items in CP-comparatives as a problem (following Schwarzschild and Wilkinson).
Hoeksema 1982 accounts for the licensing of polarity items by giving an account of CP-comparatives on which they are downward entailing.  Hoeksema's analysis of 

Hoeksema – and many others – explain this by assuming that the complement of the S-comparative is actually a downward entailing context, hence licensing polarity items.  

For instance, Hoeksema's analysis of (16a) is along the lines of (16b):

(16)
a. John is taller DP is ¡


b. λδn. (δ[ DP(λx. δ = H((x)) ( δnr > δr] (H((JOHN))
This analysis is very close to von Stechow's (or the other way round), but it shows the entailment status more clearly:  The DP subject of the CP-complement is in the restriction of a universal quantifier over degrees, which is, of course, a downward entailing context.   

For polarity cases we get:

(17) 
a. Mary is more famous than any philosopher.

b. (δ[ (x[PHILOSOPHER(x) ( F((x)=δ] ( F((MARY)r > δr ]

             For every degree of fame δ such that some philosopher is famous to degree δ, 


 Mary's degree of fame is bigger than δ.

The problem with this analysis, as Schwarzschild and Wilkinson discuss, is that the facts about the downward entailing patterns that we discussed above for DP-comparatives, are exactly the same for CP-comparatives:

(18)
a. Every boy who teased Mary was sent to the headmaster.


b. Mary is a girl.


c. Hence, Every boy who teased every girl was sent to the headmaster.

(19)
a. John is more famous than Mary is ¡.


b. Mary is a girl.


c.  Hence, John is more famous than every girl is.

Unlike the pattern in (18), the pattern in (18) seems patently invalid.  And this is painful on Hoeksema's analysis, because on his analysis, the argument in (19) has exactly the same logical structure as the argument in (18).  

So we have a problem: we explain the licensing of the polarity items, but at the cost of making the argument in (19) valid.

Von Stechow's analysis of comparatives is quite similar to Hoeksema's:

(17) 
a. Mary is more famous than any philosopher.

c. F((MARY)r > t(F( λδ. (x[PHILOSOPHER(x) ( F((x)=δ])r
          Mary's degree of fame is bigger than the maximal degree of fame in the set of 

          degrees of fame δ such that some philosopher is famous to degree δ.

The supremum operation is, of course, defined with help of a universal quantifier over degrees just like Hoeksema's and we can assume that the polarity items are licensed by this part of the definition of the supremum operation.  This means that von Stechow's analysis makes (roughly) the same predications about polarity items as Hoeksema's.  

Now, von Stechow provides an original way out of the downward entailingness problem in (19) discussed above.   
Look at (19c), the conclusion of the argument:
(19)
c.  John is more famous than every girl is ​¡.

Now, on von Stechow's analysis, either we read this with an in situ reading or with a distributive scope reading for every girl.
If we read it with an in situ reading, on von Stechow's analysis, (19c) requires all the girls to have the same degree of fame, and the argument in (19) is in fact valid.

If we read it with a distributive scope reading for every girl, the argument is, of course, not valid, but ¡ on von Stechow's approach ¡ nothing in the analysis predicts it to be valid, since the material inside the CP-complement actually takes higher semantic scope.

This argument is ingenious, but depends on the viablility of the scopal analysis.  And the polarity data discussed above is quite fatal to that analysis.  I repeat the point:

(20) Marie is beroemder     dan  enige filosoof      en  enige psycholoog  ooit geweest zijn.

     Marie is more famous than any    philosopher and any   psychologist ever been     are 

     Marie is more famous than any philosopher and any psychologist have ever been.

The polarity items in (20) are licensed, without presupposing  that any philosopher and any psychologist have ever had the same degree of fame, i.e. on what would be a distributive reading for von Stechow.  Since the licensing depends on the polarity items being semantically in the scope of the supremum operator, the distribution cannot be accounted for by a scope mechanism that gives them scope over that operator.  

This means too that von Stechow's argument for why the pattern in (19) is invalid collapses:  there is no evidence that there is a mechanism that gives every girl in (19c) wide scope out of the supremum operator, and hence it is not clear that von Stechow can avoid the conclusion that the inference in (19) is valid on his theory.
One would think that the naïve (but clever) theory does better here.  It has no problem explaining why CP-comparatives which have correlates are not downward entailing: their correlate DP-comparatives are not downward entailing, and since they have the same semantics as their correlates, neither are the CP-comparatives downward entailing.  
But, of course, this raises a different problem for the naïve (but clever) theory:  if CP-comparatives that have correlates have the same semantics as their correlates by the internal interpretation of the comparative relation, then why are polarity items allowed in the CP-comparatives, while we have shown them not to be allowed in the correlate DP-comparatives.  
On both these two accounts we see that the theory that we have shown to be wrong, the supremum theory, has nevertheless better prospects for accounting for the phenomena we find in CP-comparatives (infelicity of downwards entailing expressions and polarity items) than the theory we have shows to be superior.

8.  POINTS AND INTERVALS:  THE INTERVAL THEORY OF 
     SCHWARZSCHILD AND WILKINSON
So far, a degree has been a triple consisting of a real number, a unit and a measure.  Such degrees I will call point degrees here.  Schwarzschild and Wilkinson 2006 develop a semantic theory of CP-comparatives which is based on interval degrees rather than degree-points.   I will make two assumptions here that will help keep the discussion simple, without losing any real generality:
-1.  I will lift without further comment Schwarzschild and Wilkinson's theory of scales of points and intervals to scales of point degrees and interval degrees in my sense.  Thus an interval degree is a triple consisting of an interval, a unit and a measure. 

-2. I will use set-theoretic point and interval structures. Thus in interval degree <i,(,H>, i is a set of real numbers.   Also the relations between intervals are the standard set theoretic relations in point-based interval semantics.  

One deviation from standard terminology must be noted, since the deviations is their's, not mine:  in Schwarzschild and Wilkinson's analysis, intervals are not required to be convex.  This means that, in a model where intervals are sets of points, for variables i over interval degrees, ir does not range only over uninterrupted sets of points, but over sets of points in general. This point will come up later.

Changing from point degrees to interval degrees can be useful for various reasons.  One obvious reason may be vagueness.  I am 1 meter 76.  That is, I am 1 meter 76, up to a certain standard of precision.  If we want to deal with vagueness, maybe we want the measure function assign to me an interval containing the point 1.76 and the points the points that are indiscernable from the point 1.76 by the standard of precision.  

In principle this is a very reasonable proposal, but I am going to ignore vagueness here:  I will  assume (contextually) precise measure functions here assinging points.  This is unproblematic in the present context, because Schwarzschild and Wilkinson are not concerned with vagueness either, but with quantificational noun phrases inside CP-comparatives.

Schwarzschild and Wilkinson claim that the problems of getting the right analysis of quantificational noun phrases inside CP-comparatives requires adopting an interval-degree semantics rather than a point-degree semantics.  I will argue that this claim is false.  And I will do that by reducing their analysis to a point-based analysis.  In the process, I will have to correct one aspect of their analysis, because it makes incorrect predictions.  The corrected theory I will call SW.  I will also have to make an assumption about grammatical analysis, which I will call 'the Obvious Analysis', and the resulting theory I will call SWO.  I will claim:
Proposition:  

SWO is equivalent to the naïve (but clever) analysis of CP-comparatives.
In presenting Schwarzschild and Wilkinson's analysis,  I will work my way backwards.  I will start with their representation of the meaning of the relevant CP-comparative schema.  What truth conditions this representation stands for will at first be intractable for anybody who hasn't studied Schwarzschild and Wilkinson's paper intensively, since the formulas rely on very complex technical definitions.  What I will be doing, though, is massaging these formulas step by step into formulas that are more managable.  Thus, as so often, understanding lies at the end.

Schwarzschild and Wilkinson are interested in a semantics for the following schema:

(1) 
DP1 is β-taller than DP2 is –. 



where β is a numerical predicate of the form: 
at least two inches,

at most two inches,

exactly two inches,

Ø…..
Schwarzschild and Wilkinson's semantics for (1) is given as (2) (this is based on their example (82), the notation is mine):


DP1 is β-taller than DP2 is –. 

(2)     
(j[ DPi is j-tall ( DP2 is max(λi. β(j¡i))-tall ]

Here i and j here are variables over interval degrees,

 j¡i, the difference of j and i, is an interval degree, 
and β is a predicate of interval degrees. 
Thus, λi. β(j¡i) is also a predicate of interval degrees, and max(λi. β(j¡i)) is again an interval degree.

Thus, John is at least two inches taller than Mary is true if for some interval degrees j and k, John is j-tall and Mary is k-tall, and k is the interval degree: 

max(λi. at least two inches(j¡i)), whatever that is. 

The first thing I will do is change the representation (2) a bit.  With Schwarzschild and Wilkinson, we are concerned with quantificational DPs inside CP-comparatives, and not with the external subject.  This means that the issue of whether interval degree quantifier (j should, as the representation  has it, take scope over the subject DP or under it, is not an issue that plays a role in any of the examples in Schwarzschild and Wilkinson's paper.

Since, with them, I am interested here in the semantics of the CP-comparative, I am going to ignore the question of the relation with the external subject, and assume that the interval degree quantifier takes scope under the external subject, if that is quantificational.  This means that we can rewrite the representation in (2) as (3): 


DP1 is β-taller than DP2 is ¡. 

(3)
DP1(λx.(j[ x is j-tall ( DP2 is max(λi. β(j¡i))-tall ])

Now, we look at the expression x is j-tall.  I will write j-tall(x).  In this, tall is a relation between individuals and interval degrees; thus, for degree j,  j-tall is a predicate of individuals, and –tall(x) a predicate of degrees.  Schwarzschild and Wilkinson constrain these relations along their degree parameter.


Set of interval degrees I is a proper filter iff  

1. if i ( I and i ( j then j ( I

2. if i ( I and j ( I then i ( j ( I

3. Ø ( I


Constraint:  for every individual x:  -tall(x) is a proper filter.
The first constraint, called persistence, allows us to introduce a notion of height-'ballpark'.  Suppose the heights of the girls vary from 1 meter 55 to 1 meter 72.  Then the smallest girl is [1.55, 1.55]-tall and the tallest girls is [1.72, 1.72]-tall.   
([δ1,δ2] is, as usual, the closed interval with bounds δ1 and δ2;  [δ1,δ1] is a point interval.)
With persistence, each of the girls is [1.55, 1.72]-tall. Thus the interval [1.55, 1.72] is the semantic ballpark within which we find the height of all the girls.  Schwarzschild and Wilkinson's point is that if we want to compare John's height with that of the girls, we can do that by comparing it with the ballpark interval.  

The second and third constraints (overlap and properness) express degree-consistency.  

For instance, by these constraints you cannot be both [1.72,1.72]-tall and [1.74,174]-tall, since then, by overlap, you should be [1.72,1.72] ( [1.74,174]-tall, which is Ø-tall, and the latter is ruled out by properness.
We can simplify this discussion, because we ignore vagueness and assume measure functions H( that maps each individual onto its point height, and because we use set theoretic models.  For individual x, we can just define  λi. i-tall(x) as the proper-filter generated by H((x):

Ultrafilter:  For every individual x:



         λi. i-tall(x) = {i: H((x) ( i}

This gives us:


DP1 is β-taller than DP2 is ¡. 

(4)
DP1(λx.(j[ H((x) ( j  ( DP2 is max(λi. β(j¡i))-tall ])

I will now argue that this account needs a correction, which is easily made.  The resulting analysis I call SW.  To see that (4) is problematic incorrect, let us instantiate (1) as the example (5):

(5)
John is exactly two cm taller than Mary is ¡. 

(6)
(j[ H((JOHN) ( j  (  Mary is max(λi. |j¡i|=<2,cm,H>)-tall ]
I still won't explain the exact meaning of the second conjunct, except to give away that it associates with Mary a height-interval max(λi. |j¡i|=<2,cm,H>, which is exactly two cm below interval j and has H((MARY) as upper bound (maximum).  
Let us set up the problem.  

Assume that H((JOHN)  = 1.78.  This means that [1.78, 1.78]-tall(JOHN).

Take the interval [1.74, 178].  By persistence, [1.74, 1.78]-tall(JOHN).

Given what I said about the meaning of max(λi. |j¡i|=<2,cm,H>)-tall, it follow that:
H((JOHN) ( [1.74, 178]  (  Mary is max(λi. |[1.74, 178]¡i|=<2,cm,H>)-tall ]
Hence (6) is true: 

(6)
(j[ H((JOHN) ( j  (  Mary is max(λi. |j¡i|=<2,cm,H>)-tall ]
And so (5) is predicted to be true.  
This is, of course, no good.  (5) is false.

Clearly, what is missing, is a statement that John's height should be the lower bound of interval j;  Only then do we have a chance that the interval max(λi. |j¡i|=<2,cm,H>) is going to be exactly 2 cm below John's height. 
But, in fact, since we are only concerned with proper names in the external subject position, we can ignore anything that is above John's height.  Thus, as a first step, if we let the measure function H( assign to John an interval that can count as his height, we correct the analysis by adding as a restriction on the existential quantifier (j that j is (rather than just contains) the degree value of H((JOHN):

This is what I call analysis SW:

Analysis SW:


DP1 is β-taller than DP2 is ¡. 

(7)
DP1(λx.(j[ [H((x)] = j  ( DP2 is max(λi. β(j¡i))-tall ])

Note that the predicate λj. H((x)] = j is not a persistent predicate (and that is what we need!):  If H((JOHN) = 1.78  and 1.78 is an interval degree, it must be a small interval, containing, as I indicated, 1.78 and the degrees that the standard of comparison cannot distinguish from 1.78, and it will be an interval that, when we measure in centimeters,  does not overlap the interval 1.77.  

Since we are not concerned with vagueness here, we can simplify the analysis and let the measure function assign points degrees:


Analysis SW (points):


DP1 is β-taller than DP2 is ¡. 

(8)
DP1(λx.(δ[ H((x) = δ  ( DP2 is max(λi. β([δ,δ]¡i))-tall ])

This can be rewritten as:

 
DP1 is β-taller than DP2 is ¡. 

(9)
DP1(λx.   [λδ. DP2 is max(λi. β([δ,δ]¡i))-tall] (H((x))
Now with the principle BPR, we can derive the following analysis for the comparative:


Analysis SW (comparative): 

β-taller than DP is ¡. 

(10)
λδ. DP is max(λi. β([δ,δ]¡i))-tall
We come to the statement 'DP is max(λi. β([δ,δ]¡i))-tall' .  
As I indicated already, the intuition of Schwarzschild and Wilkinson, in the case of quantificational DPs, is that the interval max(λi. β([δ,δ]¡i)) defines the ballpark within which the degrees to which the individuals that fall under the quantification are tall are located.  
Schwarzschild and Wilkinson discuss this idea but do not actually work out a grammar that implements the idea.  This means that at this point our 'proof' is stuck, because we do not know what implementation they have in mind, so we do not exactly know what their theory (when worked out) predicts.   However, we can say a bit more.  

Suppose we take at this point the Obvious Analysis:  

The Obvious Analysis:

DP is max(λi. β([δ,δ]¡i))-tall



means
DP(λy. max(λi. β([δ,δ]¡i))-tall(y))
The Obvious Analysis is not necessarily what they have in mind, but if it does what they want their analysis to do, special pleading will be needed to deviate from it.  And, it does what they want their theory to do.  Thus, here we adopt it:

Analysis SWO 

β-taller than DP is ¡. 

(11)
λδ. DP(λy. max(λi. β([δ,δ]¡i))-tall(y))
With the ultrafilter analysis of the degree predicates we have:


max(λi. β([δ,δ]¡i))-tall(y)



iff


H((y) ( max(λi. β([δ,δ]¡i))
Hence, (11) is equivalent to (12):


β-taller than DP is ¡. 

(12)
λδ. DP(λy. H((y) ( max(λi. β([δ,δ]¡i)))

This we can bring directly into the form of a CP-comparative interpretation schema:

(13)
The theory SW0 of CP-comparatives:

[mP β-taller [CP than DP is ¡ ]]

λδn.(DP(λx. R(δn, HΔ(x))


where R = λδ2λδ1.δ2( max(λi. β([δ1, δ1]¡i)) 
Next then, what is max(λi. β([δ1,δ1]¡i)))?

β, as said, is an interval degree-predicate, like be at most three inches, be at least three inches, defined for intervals etc., and ¡ is a subtraction function defined for intervals.  

I will look at the semantics of the differential predicates later, but I need to give the subtraction function here.  Set theoretically, Schwarzschild and Wilkinson's subtraction operation is as folllows:  




(j ( i)cc ¡ (j ( i) 
if i < j

j¡i 
=




Ø 


otherewise

where Xcc is the convex closure of X.

The intuition is simple:  if j > i, j ¡ i is the interval between the lower bound of j and the upper bound of i.

max(λi. β(j¡i))) is defined as follows:

max(λi. β(j¡i))) is the unique interval k such that:


1. for every non-zero m µ k: β(j¡m)  

2. for every m à k: there is a p µ m: (β(j¡p)

This is the central technical notion of the paper, and I will not try to explain it, but rather use the conditions as they are by proving a useful fact: 

Lemma:  δ2 ( max(λi.β([δ1,δ1]¡i)) iff  β([δ1,δ1]¡ [δ2,δ2])
Proof:
1. If δ2 ( max(λi.β([δ1,δ1]¡i)) then  β([δ1,δ1]¡ [δ2,δ2]).
Assume  δ2 ( max(λi.β([δ1,δ1]¡i)).

Then [δ2,δ2] (  max(λi.β([δ1,δ1]¡i)).

The first clause of the definition of max(λi.β([δ1,δ1]¡ i) says that for all (non-empty) subintervals m of max(λi.β([δ1,δ1]¡ i):    β([δ1,δ1]¡ m) holds. 
By the assumption, one of these is [δ2,δ2], hence indeed:

β([δ1,δ1]¡ [δ2,δ2]).

2. If β([δ1,δ1]¡ [δ2,δ2]) then δ2 ( max(λi.β([δ1,δ1]¡i)).
Assume β([δ1,δ1]¡ [δ2,δ2]), and assume δ2 ( max(λi.β([δ1,δ1]¡i)).

Look at max(λi. β([δ1,δ1]¡ i)) ( [δ2,δ2]. 
max(λi. β([δ1,δ1]¡ i)) ( [δ2,δ2] à max(λi.β([δ1,δ1]¡i)).

(Note that at this point we use the fact that intervals are not necessarily convex, because this set counts as an interval, but is not necessarily convex.) 

Let m ( Ø and m ( max(λi.β([δ1,δ1]¡i)) ( [δ2,δ2].
-Either m (  max(λi.β([δ1,δ1]¡i)), and then β([δ1,δ1]¡m),  by the first condition of the definition of max.
-Or m = [δ2,δ2] and,  by the assumption,  β([δ1,δ1]¡m).
-Or,  for some non-empty k ( max(λi.β([δ1,δ1]¡i)): m = k ( [δ2,δ2].

In this case, we know that both β([δ1,δ1] ¡ k) and β([δ1,δ1] ¡ [δ2,δ2]).  

Now we look at k ( [δ2,δ2].  The upperbound of this set is either the same as the upperbound of k or it is δ2.  This means that:

[δ1,δ1] ¡ (k ( [δ2,δ2])  =  [δ1,δ1] ¡ k
or

[δ1,δ1] ¡ (k ( [δ2,δ2]) = [δ1,δ1] ¡ [δ2,δ2]

In either case it follows that β([δ1,δ1] ¡ (k ( [δ2,δ2])), hence also in this case that  β([δ1,δ1]¡m).

We see then that max(λi.β([δ1,δ1]¡i)) ( [δ2,δ2] à max(λi.β([δ1,δ1]¡i)), but max(λi.β([δ1,δ1]¡i)) ( [δ2,δ2] only has non-empty subintervals m where β([δ1]¡m) holds.  That contradicts the second clause of the definition of  max(λi.β([δ1,δ1]¡i)).

We have derived a contradiction, hence assumption δ2 ( max(λi.β([δ1,δ1]¡i)) is false.
Hence  δ2 2 max(λi.β([δ1,δ1]¡i)).

This proves the lemma.

With the lemma, we can simplify the theory of interpretation of comparative CPs:
(14) 
The theory SW0 of CP-comparatives:

 [mP β-taller [CP than DP is ¡ ]]

λδn.(DP(λx. R(δn, HΔ(x))


where R = λδ2λδ1. β([δ1,δ1]¡ [δ2,δ2]) 

We come to the differential predicates β and the subtraction operation.
The semantics of the predicates β can be given as follows:


Ø(i) is true 


iff the size of i is bigger than 0


at least two inches(i) is true 
iff the size of i is at least 2 inches.


at most two inches(i) is true  iff the size of i is at most 2 inches.


exactly two inches(i) is true   iff the size of i is exactly 2 inches.
(This follows the discussion of the differentials in their paper.)  Now, the notion of 'the size of an interval' is a primitive notion.   But obviously, whatever specification of the size function given, there is an adequacy constraint on their notion, and that is that, for point intervals, their notion (βsw) should be equivalent to the corresponding almost (but not quite) naïve notion (βan):  


Adequacy constraint:  βsw([δ1,δ1] ¡ [δ2,δ2])) iff  βan(δ1 ¡H δ2)
This tells us that for point degrees, δ1 and δ2, the meta-language expression the size of [δ1,δ1] ¡ [δ2,δ2] is at least 2 inches should hold iff δ1 ¡H δ2 ≥H  <2,",H>.

We will assume the adequacy constraint.

As it turns out, for the cases discussed here (of the form β-taller), it is not a problem that Schwarzschild and Wilkinson's notion of subtraction (for point intervals) differs from the almost (but not quite) naïve notion.   

However, if their theory were to be extended to other comparatives, like β less tall than, their difference notion (which doesn't use negative numbers) would  be problematic.  
The almost (but not quite) naïve theory elegantly assumes that less denotes just the converse operation (¡H)c.  Schwarzschild and Wilkinson cannot similarly assume that less denotes the converse relation (¡)c, because that would give the wrong results.  For that reason, when generalized, their interval subtraction function should allow for negative sizes, just like the almost (but not quite) naïve theory.  In that way, it will be straightforward to preserve the adequacy constraint for those cases as well.

With the adequacy constraint, we get the following:

λδ2λδ1. βsw([δ1,δ1]¡ [δ2,δ2])


=

λδ2λδ1. βna(δ1¡H δ2)



(I will drop the index on β, since by the adequacy constraint, there is no longer the possibility of  confusion), and we get a further reduction of the theory:

(15)
The theory SW0 of CP-comparatives:

[mP β-taller [CP than DP is ¡ ]]

λδn.(DP(λx. R(δn, HΔ(x))


where R = λδ2λδ1. β(δ1¡H δ2) 

One more obvious fact:


β(δ1¡H δ2) iff  β ( ¡H (δ1,δ2)
This gives:
(16)
The theory SW0 of CP-comparatives:

[mP β-taller [CP than DP is ¡ ]]

λδn.(DP(λx. R(δn, HΔ(x))


where R = β ( ¡H 

But, of course, β-taller is α, and β ( ¡H is just the interpretation α that the almost (but not quite) naïve theory derives for α.

So we get:

(17)
The Naïve (but Clever) Theory of CP comparatives.
[mP α [CP than DP is ¡ ]]

λδn.(DP(λx. α(δn, HΔ(x))

We have proved then, that if we take (the corrected version of) Schwarzschild and Wilkinson's interval semantics, assume a measure function which assigns point degrees to individuals, and adopt the Obvious Analysis of their ballpark-notion, we just get the naïve (but clever) theory of CP-comparatives. 
Of course, the result depends on the adoption of the Obvious Analysis, and alternatives for the obvious analysis are, of course, possible.  And, in fact, there are puzzles that the naïve (but clever) theory has no Obvious Answer to (why are polarity items allowed in CP-comparatives; why are downward entailing DPs infelicitous in P-comparatives).  It is quite well possible that a Less Obvious Analysis could preserve the semantic insights and answer those questions as well.  However, such an analysis does not, at present, exist, so I cannot discuss its merits.  For all examples that are actually discussed by Schwarzschild and Wilkinson, the naïve (but clever) theory makes the predictions they want.    
With this, the result we have proved here is important, because it shows that the crux of their analysis, the reason why it works, is not the interval semantics, but the CP-internal interpretation of the comparison relation.  

9. DIMENSIONAL SUPREMUMS

The almost (but not quite) naïve theory of DP-comparatives derives the interpretations in the table below.  In boldface are indicated the building blocks that are sensitive to scale conversion (i.e whether the notion comes from SH or SH).    Elements whose interpretation refers to the scale SH are unmarked;  elements whose interpretation refers to SHc are marked with ¡.   I will call the latter converse elements.
The element exactly, which could be understood as belonging to both scales, is marked with (.   The interpretations given are all built from a basic comparison relation on R 

(>, (, <, (, =) and a differential (+n, ¡n).
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We will think of the comparison relations > and ( on R themselves as relations belonging to scale SH and the relations < and ( as belonging to the converse scale SHc.  
Let us briefly ignore the cases with ( and =.

What we observe then is that there is a correlation between the nature of the basic comparison relation expressed in the composed meaning (i.e. the basic relation, ignoring the differential) and the number of converse elements used in the semantic composition:  


The basic comparison relation expressed belongs to SH (SHc) if the number of
converse elements used in the semantic composition is even (odd).

We will say:

Interpretation α belongs to SH (SHc) if its basic comparison relation belongs
to SH (SHc) 

With this, we define:


For α and scale SH:


The dimensional supremum relative to α tα is given by:




tH 
if α belongs to SH

tα 
=




tHc 
if α belongs to SHc
Now, the fact that we express relation α, say with > and a differential, as in 

λδ2λδ1( DH,": δ1r > δ2r  + 3 is in a way our choice of finding a compact representation.  

Given the observation about the correlation with converse bulding blocks, the definition does not depend on the representation of α, but on the semantic derivation of α. 

What about the cases that involve ( and =?  We can regard = as belonging to SH and also to SHc.  For the use that we make of tα it will turn out not to matter, what we choose, so we can fix tα arbitrarily, or allow both. 

In the table I have indicated, not tα but which operation on numbers tα corresponds to.

Thus, for example, we take:

α = more than three inches taller than

α = λδ2λδ1( DH,": δ1r > δ2r  + 3

The  basic comparison relation is >, hence the dimensional supremum tα = tH.  

tH is the supremum operation with respect to the relation >H, hence the infimun operation with respect to <H; hence the corresponding operation on real numbers is u.
10. THE DIMENSIONAL SUPREMUM THEORY OF CP-COMPARATIVES 

Let us, for clarity, assume a syntactic tree that corresponds to the semantics of comparatives I have been assuming so far:
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In this, the tree with topnode RELdim is what the almost (but not quite) naïve theory of DP comparatives gives us, hence the interpretation of this tree is α.

The naïve but clever theory, hence is the following interpretation for this tree:
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The dimensional supremum theory that I am proposing here is very close to this:
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On the naïve (but clever) theory, the dimensional relation α is interpreted internal to the comparative CP.

On the dimensional supremum theory, dimensional relation α has a double effect:  it is also interpreted internal to the comparative CP, exactly in the same way as in the naïve (but clever) theory, but it also determines the interpretation of the head Mdim of the comparative as operation tαp to be specidied shortly.
The question then is:  what is the semantic role of the interpretation of the element Mdim?
Now note that semantically, the input of the interpretation of the element Mdim (the interpretation of its CP-complement) is a degree predicate, a set of degrees.  

Also, I haven't made any changes at the top of the tree:  the output of the interpretation of the element Mdim, the interpretation of the whole tree PREDdim is a degree predicate, a set of degrees.   Thus, imput and output of operation tαp is a set of degrees.

What I assume is that tαp is a presuppositional check operation:  



β
if tα(β) ( ( 

tαp(β) 

=




(
otherwise

We assume here that  t and u are operations on  the set of real numbers, and since 1 and ¡1 are  not real numbers, tX and uX are undefined when infinite.  

tαp is the identity function on degree predicates whose dimensional supremum relative to α is not undefined; it is itself undefined otherwise.  

What this means is that the predicate  tαp(β) has the same interpretation as β, but presupposes that tαp(β) is not undefined.
tαp is much like a definiteness operation, except that it doesn't involve the type change (from a predicate to an object) that standard definiteness operations involve. Nevertheless, it presupposes the unique object tα(β) to exist, even if it doesn't denote it. 
The analysis comes about as follows:  

-We have DP-comparatives,  and the almost (but not quite) naïve analysis for them, where the complement of the dimensional relation denotes a degree.  

-We have the naïve (but clever) analysis for the CP in the CP-comparatives, where the complement of the dimensional relation denotes so far a set of degrees.  

-The natural thing would be for an implicit definiteness operation to apply to turn a set of degrees into a degree, and the natural operation at this point would be tα (this was, in an earlier stage of this paper indeed my proposal).

However, that proposal inherits too many of the problems of von Stechow's maximalization approach.  

-The present approach is almost the same, but it avoids in the semantic derivation the stage tα(β), and with that, it avoids the problems of the maximalization approach.

-I argue in other work that similar presuppositional identity operations are active in constructions that are similar in important ways, in particular, in various kinds of relative clause constructions (see Grosu and Landman 2009 for discussion of Japanese internally headed relative clauses, Landman, in progress, for discussion of Krifka and Grosu relatives and of functional relative clauses).

The analysis has one obvious consequence:

To all CP comparatives that are defined, the dimensional supremum theory assigns exactly the same interpretation as the naïve (but clever) theory. 
Hence, to all CP comparatives that are defined and have a comparative correlate, the dimensional supremum theory assigns exactly the same interpretation as the almost (but not quite) naïve theory assigns to the correlate. 
In particular (1a) and (1b) are predicted to be equivalent, whenever (1b) is defined.
(1)
a. John is taller than DP


b. John is taller [CP than DP is ¡ ]
There are two differences with the naïve (but clever) theory:

1.  The level tα(CP), while not a stage of the derivation proper, can be used by the semantic theory (and we will use it for polarity items).

2.  Some CP-comparatives that are defined in the naïve (but clever) theory are not defined in the dimensional supremum theory. (and we will use this for comparative complements with downward entailing expressions).

11.  DOWNWARD ENTAILING EXPRESSIONS INSIDE CP-COMPARATIVES

Let us start with the infelicitous case in (1):

(1) 
#John is taller than no girl is –

The naïve (but clever) analysis of the CP complement gives us:

(2)
[CP than no girl is ¡ (taller)]

λδ.((y[GIRL(y) ( δr > H((y)r]
We have seen in the discussion of the almost (but not quite) naïve theory that this is the interpretation the predicate taller than no girl: 

taller than no girl
λδ.((y[GIRL(y) ( δr > H((y)r]
                                                



o

       o

  
           H((g1)r ………….H((gn)r
We are now concerned with the semantics that the dimensional supremun theory predicts for the MP complement.  The dimensional relation α built up is >H , and consequently, the dimensional supremum tα = tH. 

Thus, the MP complement denotes:

(3)
[MP than no girl is ¡ (taller)]








 λδ.((y[GIRL(y) ( δr > H((y)r]
if tH(λδ.((y[GIRL(y) ( δr > H((y)r]) ( (

 (




otherwise

tH is the supremum under the relation >H, which is lifted from the supremum under the relation >R, which is the infimum operation u on the reals under the standard relation <R.

The latter relation is the one that is indicated in the picture above. 

Thus, the set of numbers corresponding to the degrees in the denotation of 
λδ.((y[GIRL(y) ( δr > H((y)r] is indicated by the black interval.  The infimum of this interval is ¡1, hence undefined.  Consequently, 

 tH(λδ.((y[GIRL(y) ( δr > H((y)r]) is undefined, and hence the interpretation of 

[MP than no girl is ¡ (taller)] is undefined.  Hence, (1) comes out as undefined,as it should:

(1) 
#John is taller than no girl is –

Now let us look at (4):

(4)
#John is less tall than no girl is –

The naïve (but clever) analysis of the CP complement gives us:

(5)
[CP than no girl is ¡ (less tall)]

λδ.((y[GIRL(y) ( δr < H((y)r]
The denotation of the predicate is specified by the almost (but not quite) naïve theory as:

less tall than no girl
λδ.((y[GIRL(y) ( δr < H((y)r]
                                                 



o

       o

  
           H((g1)r ………….H((gn)r
The dimensional relation α built up is <H and consequently, the dimensional supremum tα = tHc, which is uH. 

Thus, the MP complement denotes:

(6)
[MP than no girl is ¡ (less tall)]








 λδ.((y[GIRL(y) ( δr < H((y)r]
if uH(λδ.((y[GIRL(y) ( δr < H((y)r]) ( (

 (




otherwise

For the same reason as above, uH corresponds to t on the reals relative to <R, hence also in this case, uH(λδ.((y[GIRL(y) ( δr < H((y)r]) is undefined, and with that (4) is undefined, as it should:

(4)
#John is less tall than no girl is –

Below is a list of the predicates of the most relevant DP-comparative correlates taken from section 5 and an indication of the corresponding dimensional supremum (or rather its effect on sets of numbers, and a specification of whether this does or doesn't lead to infelicity of the corresponding CP comparative:

I. a.      John is Ø taller than Mary.


u

Felicitous

                                    O




o

  

         H((MARY)r
I. b.
John is Ø taller than Mary and Jane.
u

Felicitous
                                    O



o
o

         H((JANE)r          H((MARY)r
I. c.
John is Ø taller than every girl.

u

Felicitous
                                    

O



o


o

  
          H((g1)r  ……………….H((gn)r

I. d.
John is Ø taller than some girl.

u

Felicitous
                        O



o


o

  
          H((g1)r   ………………H((gn)r

I. e.
John is Ø taller than at least three girls.
u

Felicitous
                                                O



o
o 
o


o

  
          H((g1)r   H((g2)r   H((g3)r………………H((gn)r
I. f.
John is Ø taller than exactly three girls.
u

Felicitous
                                                O



o
o 
o
o

o

  
          H((g1)r   H((g2)r H((g3)r H((g4)r…….. H((gn)r
I. g.
John is Ø taller than no girl.

u

INFELICITOUS

                                                



o

       o

  
           H((g1)r ………….H((gn)r

I h. 
John is Ø taller than at most three girls.  
u

INFELICITOUS

                                                



o
o 
o
o

o

  
           H((g1)r  H((g2)r H((g3)r H((g4)r ……H((gn)r

The cases with at least three inches taller than DP follow this pattern exactly, the cases with exactly three inches taller are mostly felicitous regardless of the supremum operation since they involve bounded intervals, except for the following, which are infelicitous regardless of the supremum operation: 
III. g.
John is exactly two inches taller than no girl.
t, u
INFELICITOUS


         O
                     O

       O                                   


    o    o
   o    o

o     o

         H"(g1)r  +2        H"(gk)r+2     H"(gn)r +2

III.h.John is exactly two inches taller than at most three girls. t,u INFELICITOUS



          
         O

                                          


    o    o
   o    o

o     o

o      o

          H"(g1)r +2      H"(gk1)r+2    H"(gm1)r +2….. H"(gn)r   +2

  

        H"(gk2)r
     H"(gm2)r


        H"(gk3)r
     H"(gk3)r


        H"(gk4)r
Most interesting are, of course, the cases with at most two inches.  In these cases the dimensional supremum operation corresponds to t.  This means that we get felicity in the following cases: 

IV. a.
John is at most two inches taller than Mary.

t
Felicitous

                                    



       o
o


   H"(MARY)r +2

IV. b.
John is at most two inches taller than Mary and Jane.
t
Felicitous

                                    


       o
o                     o   o

    H"(JANE)r  +2   H"(MARY)r +2

IV. c.
John is at most two inches taller than every girl.

t
Felicitous
                                    





o       o


o        o

  
    H"(g1)r     +2…………H"(gn)r       +2

IV. d.
John is at most two inches taller than some girl.

t
Felicitous
                        



o    o


o    o

  
   H"(g1)r    +2………….H"(gn)r    +2

IV. e.
John is at most two inches taller than at least three girls.
t
Felicitous
                                                



o   o 


             o    o
          o     o          o     o

  
    H"(g1)r  +2 …………………H"(gn¡2)r   +2 H"(gn¡1)r  +2  H"(gn)r   +2

IV. f.
John is at most two inches taller than exactly three girls.
t
Felicitous
                                                       O



o   o 

o     o
                        o    o
      o       o        o     o

  
   H"(g1)r   +2…. H"(gn¡3)r  +2                H"(gn¡2)r +2 H"(gn¡1)r +2  H"(gn)r +2

But, once again, infelicity in the cases with a downward entailing noun phrase in the complement:

IV. g.
John is at most two inches taller than no girl.
t INFELICITOUS
 
                              




        O                  



o    o




o      o

                 H"(g1)r  +2 ……………………………H"(gn)r  +2

IV.h.John is at most two inches taller than at most three girls.  t INFELICITOUS

                                                       O

o   o 

o     o
                        o    o
      o       o        o     o

  
   H"(g1)r  +2         H"(gn¡3)r+2                H"(gn¡2)r+2  H"(gn¡1)r +2  H"(gn)r+2

Of course, given the equivalences, the cases with smaller than can be fitted into the table at the right places, and they will show the same pattern:  

Downward entailing noun phrases in the CP complements are predicted to 
be infelicitous.

12. POLARITY ITEMS IN THE DIMENSIONAL SUPREMUM THEORY.
There are two issues involved in the analysis of polarity items in comparatives:

First: how do polarity items in comparatives get to mean what they mean?

Second: how are polarity items in comparatives licensed?  I will deal with these issues in order.

We will be interested in example (1):

(1)
Mary is more famous than John ever was.

Let us assume a temporally dependent measure function F( which maps individuals and moments of time onto degrees of fame (measured in units of ().  At the level of the IP oinside the CP-complement, we have a statement with free degree variable δ: 
 (2)
John ever was ¡famous
(t[δ >F F((JOHN,t)]


There is a time t such that δ is bigger on the scale of fame than John's degree of 

fame at t.


As wel have seen,  this is not a level at which the complement is downward entailing.  Still we provide an account of the effect of the polarity item, i.e what the polarity item does, at this level (though not of its licensing).

In the approach of Kadmon and Landman 1993, the semantic effect of ever is widening.  Thus, you may have said (3A), and I reply (3B):

(3) 
A.  Mary is more famous than John is now.

      
B.  Mary is more famous than John ever was.

The widening is temporal, and involves a wide and a narrow statement:

(4)
a. (t[t 2 WIDE SET         ( δ >F F((JOHN,t)]

b. (t[t 2 NARROW SET ( δ >F F((JOHN,t)]

The fact that we do not have a situation of downward entailment means that (4a) does not, in general, entail (4b): 

the fact that there is a time t in the wide set such that δ >F F((JOHN,t) 

does not entail that there is a time t' in the narrow set such that δ >F F((JOHN,t').

However, we are in a comparative construction, which involves a scale, and, as Kadmon and Landman (and others) have argued, in such cases widening is not unconstrained, but is typically along the scale.    In particular, let us introduce the following relevant moment of time:  maxt,JOHN,F:

maxt,JOHN,F is the moment of time where John's fame is maximal 

(and for simplicity we assukme that there is one such time).    

We assume that widening with ever is along the scale which compares John's fame along moments of time.   We also assume that, pragmatically, there must be a point to widening.  This naturally brings in the implicature in (5a):  if the point of time at which John's fame is maximal is already in the narrow set, there is no point of widening the narrow set: 

(5)
a. (t[t 2 WIDE SET         ( δ >F F((JOHN,t)]

b. (t[t 2 NARROW SET ( δ >F F((JOHN,t)]


c. Implicature 1: maxt,JOHN,F ( NARROW SET 

With this, we can assume that the widening done by ever is actually very small:  ever just adds  maxt,JOHN,F to the narrow set:

(6)
a. (t[t 2 WIDE SET         ( δ >F F((JOHN,t)]

b. (t[t 2 NARROW SET ( d >F F((JOHN,t)]


c. Implicature 1: 
maxt,JOHN,F ( NARROW SET 


d. Widening:

WIDE SET = NARROW SET ( { maxt,JOHN,F}

Now, we need only one more pragmatic assumption, and that is that the times in the narrow set are not good enough for the statement made.  That is. the wide statement does not simply say that there is something in WIDE SET,  but in fact that there is even something in WIDE SET ¡ NARROW SET:

(7)
a. (t[t 2 WIDE SET        ( δ >F F((JOHN,t)]

b. (t[t 2 NARROW SET ( d >F F((JOHN,t)]


c. Implicature 1: 
maxt,JOHN,F ( NARROW SET 


d. Widening:

WIDE SET = NARROW SET ( { maxt,JOHN,F}


e.  Implicature 2:  the times in NARROW SET are not good enoung.

With this (7a) becomes (7a*)

(7)
a*. (t[t 2 WIDE SET¡NARROW SET ( δ >F F((JOHN,t)]

Since WIDE SET has only one element, maxt,JOHN,F, (7a*) the wide statement, on these assumptions, becomes (7a**):

(7)
a**. δ >F F((j,maxt,JOHN,F)

And this is exactly the effect that we want:  the statement expresses that δ is bigger than the degree of fame that John has at the time when his fame was maximal. With that, ((1) expresses that Mary's fame now is bigger than John''s fame at the time when it was maximal. 

The account here of how the comparatives with polarity items mean what they mean is in essence a pragmatic story, since it relies on implicatures 1 and 2 (plus, the more semantic effect that widening along the scale brings in just maxt,JOHN,F).  I think that something along the lines of this story is correct (though, of course, it can be implemented in many ways).

We now come to the licensing of the polarity item.  At this point my account will diverge from the letter (and maybe even the spirit) of Kadmon and Landman's account.  

I could at this point continue the story by using the pragmatic analysis to argue that, due to the pragmatic setting, widening actually leads to strengthening.  This is, because, the pragmatically strengthened statement (7a**) entails the narrow statement (7b) (making the plausible assumption that the narrow set is not empty).   Thus, pragmatically, widening leads to strengthening, and we can assume that this is enough to license the polarity item.  

While I do accept that pragmatically widening leads to strengthening here, I do not assume that this is enough to license the polarity item.  And there is an obvious reason for this:  there is nothing in this pragmatic story that is specific to the CP-comparatives.  And that means that we can make exactly the same pragmatic story for DP-comparatives, and, there too, widining would pragmatically lead to strenghtening, so the polarity items should be fine in DP-comparatives as well.  And they are not.  In other words, this pragmatic account of licensing story works too well!

So what goes wrong?

In Kadmon and Landman's theory, widening and strengthening are checked at the level of what they call the local statement that the polarity item is in, which they take to be the level of the first scopal operator that the polarity item is in the scope of.  I took this level, without discussion, to be the IP-level, hence the wide and narrow statements in (4a,b).   

This follows the practice in Kadmon and Landman 1993.

It is exactly this assumption that I am challenging here.  I will assume that in CP-comparatives, widening and strengthening of polarity items are checked not for expressions of type t (the IP level), nor for expressions of type <δ,t> (the CP level), but for expressions of type δ, i.e. directly at the level of the scale.
Now, there is no grammatical level, no stage of the derivation, where we find an expression of type δ, but there is a presuppositional level in CP-comparatives, the presuppositional check operation presupposes the existence of tα(CP).  And this is where I propose that widening and strengthening are checked.
Given the pragmatic story above, the statement that widening should lead to strengthening is the statement that (8a) should entail (8b):

(8) 
a. t>F(λδ.δ >F F((j,maxt,JOHN,F))

      
b. t>F(λδ.(t[t 2 NARROW SET ( d >F F((JOHN,t)])

Or, to fit with of the natural notion of supremum/infimum on the reals: (8a) should entail (8b):

(8) 
a. u<F(λδ.δ >F F((j,maxt,JOHN,F))

      
b. u<F(λδ.(t[t 2 NARROW SET ( d >F F((JOHN,t)])

But (8a) and (8b) are degrees, not propositions.  We need a notion of entailment for degrees.  I do not think that we have pre-theoretical intuitions about what the proper notion of entailment for degrees should be, so we can just as well let the theory decide this choice for us:

(10)
For SM: 
d1 ​entails d2 iff d1 ≥M d2

For SMc:
d1 entails d2 iff d1 (M d2
In our example we are in SF, and hence tα = u<F. and we have SF entailment. 
Our pragmatic assumption was that:

(T ( NARROW SET: F((JOHN,t) <F F((JOHN,maxt,JOHN,F).  

Let minnarrow,JOHN,F be the time in NARROW where John's fame is minimal in comparison to the other times in the narrow set.  Obviously, the infimum of the set of degrees of John's fame for the moments of time in the narrow set is minnarrow,JOHN,F:  

u<F(λδ.(t[t 2 NARROW SET ( δ >F F((JOHN,t)]) = F((j,minnarrow,JOHN,F)

Since John's fame is by assumption only maximal at one time, the infimum of the set of degrees bigger than the degree of John's fame at the time where it is maximal is just 

F((j,maxt,JOHN,F):

u<F(λδ.δ >F F((j,maxt,JOHN,F)) = F((j,maxt,JOHN,F) 

Thus, we have the following comparison:

(11)
a. Wide degree:
F((j,maxt,JOHN,F)

b. Narrow degree:
F((j,minnarrow,JOHN,F)

Now, clearly, F((j,maxt,JOHN,F) ≥F F((j,minnarrow,JOHN,F), 

hence by definition of entailment on SF: (11a) entails (11b).

In the actual context we set up, we can assume that NARROW SET = {now}, and hence, (11b) would be:

      u<F(λδ. δ >F F((JOHN,now)]) = F((JOHN,now)

Thus, the entailment holds in this case, because:

F((JOHN,maxt,j,F) ≥FF((JOHN,now)

This means that, on this account, widening leads to strengthening, given the definition of strengthening as degree-entailment, and the polarity item ever in (1) is licenced, on this revised Kadmon and Landman theory.
(1)
Mary is more famous than John ever was.

Let us look at example (12)

(12)
Mary is less famous than John ever was.

In this case, arguably, the widening involves mint,JOHN,F, the time where John's fame was minimal (within a reasonable contextual domain, of course).  And the pragmatic assumption is that John's fame at mint,JOHN,F is smaller than at the times in the narrow set. 

The supremums we get here are as in (13):

(13)
 a. t<F(λδ.δ <F F((JOHN,mint,JOHN,F))  = mint,JOHN,F
      
 b. t<F(λδ.(t[t 2 NARROW SET ( δ <F F((JOHN,t)]) = maxnarrow,JOHN,F
Again, in context, the narrow set may be just {now}, and then (13b) would be (13b*):

(13) 
b*. t<F(λδ. δ <F F((JOHN,now)) = F((JOHN,now)

The relevant dimension is the converse dimension, i.,e, we are in SFc, so we use SFc-entailment as defined above, and we see that indeed:

 
mint,JOHN,F (F maxnarrow,JOHN,F


mint,JOHN,F (F F((JOHN,now)
So, again, the polarity item is licensed in (12).

The interpretation tα(CP) is not the interpretation at any stage of the derivation, but is brought by the presuppositional check operation in CP comparatives.  The claim, then is, that this presuppositional level on which a notion of degree entailment is defined can be used in the licensing of polarity items.  There is no such stage in DP comparatives where a degree formed with a dimensional supremum operation is introduced and presupposed to exist.  This then is why CP-comparatives, but not DP-comparatives license polarity items.

13. MEASURES INSIDE CP COMPARATIVES
13.1 INTERNAL MEASURES

We now turn to cases like (1):

(1) a. The tower is taller than it is ¡ wide.

                  b. Cayuga lake is much longer than the Bodensee is ¡ wide.

In these cases we have inside the complement of the CP-compararive a measure phrase, usually (but not always) a different measure from the one that the external compaqrative phrase is based on.   I will make what I will call the naïve assumption about wide in (1):


The naïve assumption for CP comparatives with internal measures:


wide inside the complement of the CP comparative is [measure wide] 

with interpretation measure W of type m 

Even before specifying the semantics, the naïve assumption makesw predictions about felicity measure phrases inside comparatives:


Prediction:  We find for measure phrases inside the complement of CP 



         comparatives the same contrast as we found for five feet tall/#short.

Expressions like tall and wide have interpretations as measures (H and W, respectively), and interpretations as basic scales; on the other hand,  short and narrow do not have interpretations as measures, but only as converse scales.  We expect to find tall and wide as measures inside CP comparatives, but not short and narrow:

(2)
a.   The gate is higher      than it is wide


b. #The gate is higher      than it is narrow



c.    The gate is lower       than it is wide.



d.  #The gate is lower       than it is narrow.



e.    The gate is wider       than it is high.



b.  #The gate is wider       than it is low.


            c.    The gate is narrower than it is high.


            d.  #The gate is narrower than it is low.


 
(3) 
a.   John is taller    than Bill is tall
      

b.   John is shorter than Bill is tall
      

c. #John is taller    than Bill is short
      

d. #John is shorter than Bill is short
A comment on (3a) and (3b).

Normally, the internal measure expression carries contrastive stress, and conmtrasts with the measure of the external comparative phrase.  (3a) and (3b) sound peculiar if you stress the internal measure.  This is obvious in (3a), because the normal stress suggests a contrast that isn't there.  That (3b) is peculiar as well, when stressed, supports ,my analysis in which tall and short relate to the same measure, because that assumption predicts that also when stressed the case is peculiar, because it suggests a contrast that isn't there.   

Kennedy 1997 marks (3b) as infelicitous.  I think that Kennedy's judgement is based on giving the internal measure stress;  according to my informants, if you don't stress tall in (3a), (3b), the sentences are felicitous (and the facts are the same for similar examples in Dutch).    Another way to show this is by adding stressed material that takes away the stress from the internal measure, as in (4) below, which is fine:

 (4)
John is TWO inches shorter than BILL is tall 

The facts found here contrast with what we find in equatives:

(5) a. John is as tall as  Bill is tall.

      b. John is as short as Bill is tall.

      c. John is as tall as Bill is short.

      d. John is as short as Bill is short. 


Both tall and short are fine inside equative clauses.  This shows, interestingly, that the semantics of comparatives should not be taken as a direct basis for the semantics of equatives.

I will specify the semantics for CP comparatives with internal measures by specifying the semantics of the CP-complement, assuming the rest to be the same as for CP complements without internal measures.


We assume internal measure:

[measure  wide] 
(  W( 

We assume that external comparative α makes measure function Mα available 

(similar to cases without internal measure) 

The CP interpretation with internal measures:


be α than DP is ¡ [measure wide]  

λδ. DP(λx. α(δ,  [W( ( Mα](x) )
The only difference between this interpretation and the interpretation of CP comparatives without internal measures is measure function [W​( ( Mα].  
In our case, where we are concerned with β taller than and β shorter than, we are concerned with measure: [W​( ( H(]. 

Its intuitive interpretation is obvious:


[W​( ( H(] is the result of converting the measure function W​(, which maps 

            individuals onto their width, to a measure function that maps individuals onto 


heights.
In the case of width and height, the conversion is trivial:

[W​( ( H(] = λx. W((x) [H/W]
You take W(, which maps each individual x onto a triple <r,(,W>.

You take the function that differs only from W( in that at each third element in the triple it has H instead of W, this is: [W​( ( H(] .  

[W​( ( H(] is, hence, a height measure function, like H(.  

With this semantics we get, after all reductions:

(6) a. The tower is taller than it is ¡ wide 

      
      b. H((Tower) >H  [W​( ( H(](Tower)
If the tower is 20 meters tall and 4 meters wide, then Hm(Tower) = <20,m,H> and 

Wm(Tower) = <4,m,W>, hence  [Wm ( Hm](Tower) = <4,m,H>, and of course, 

<20,m,H> >H <4,m,H>.

We have already seen that expressions like short that do not have an interpretation as a measure are infelicitous inside the complements of CP comparatives.  For expressions that do have interpretations as measures, how easy it is to get a felicitous interpretation depends on  how easy it is to convert that measure into the measure determined by the external comparative α.

Such conversion is easy for measures like Height, Width, Depth,… since these all measure the length of a line segment in space, and differ only in the spacial direction of the line segment calculated.  

[It's a bit more abstract than that:  Height measures objects along a vertical direction, but vertical only when the object is put in in a canonical position first.  

Thus if you want to measure me and I am lying down, you will measure me in a horizontal direction, even though Height is a vertical measure, since 1.76 refers to my height in canonical position, which is vertical  (as my mother never failed to point out to me).]

For other measures, there is no canonical simple conversion method, and we rely on contextual strategies.  Some examples.   

METAPHORICAL COMPARISON
There is no canonical way of comparing the above spatial measures with Duration, the length of a line segment in time.  This means that, out of the blue, the truth conditions of sentence (7) are not as easy to determine as those of cases like (6):

(7)  Tristan und Isolde is longer than the Eiffel Tower is ¡ tall
This doesn't mean that such examples are infelicitous in all contexts.  Conversion requires the measures to be comparable.  Measures can be made comparable in more than one way.  One such way is through metaphorical comparison: characterizing individuals belonging to one sort as if they are individuals belonging to another sort, describing the objects character or nature while using properties of the second sort, hoping to sheds some unexpected light on the objects character or nature.

Children are good at that:  if Mary Poppins were a flower, what kind of flower would she be? (asked by my daughter).  So are mathematicians.  

With this strategy we interpret Duration in (7) as if it were Height, and use it as an ironic comment on the length of Wagner's opera.

SUPERSCALES
A second way of making scales compatible is by forming contextual superscales.  

Consider example (8): 


(8) The notary is more efficient than the painter is creative.

Out of the blue, this may well be a very difficult comparison.  But in context, a quite complex conversion may be made rather plausible.  

Our company has the need for hiring a notary and a painter.  We are trying to see 

which would be the better hire.  For that, we translate the relatively objective 

efficiency scale for notaries and the relatively objective creativity scale for 

painters both into a third scale, a usefulness scale for us. 

We identify, following the stereotype, chaos for notaries and dullness for painters

 with minimal usefulness and dullness for notaries and chaos for painters with 

maximal usefulness, and we estimate where on the scale our notary and our 

painter are.   

We do that, for instance, by letting the notary paint a picture and letting the

 painter make up a will.  

It turns out that the notary's picture is completely boring, and so is the painter's 

will.

We hire the notary, because clearly, he is more efficient than the painter is 

creative.

13.2. INVERSE MEASURES
We have so far focussed on converse antonym pairs like tall/short where one member of the pair denotes the basic scale of a measure and the other the converse scale of a measure.   We will now look briefly at inverse antonym pairs.  
Inverse antonym pairs are pairs like fat-thin, concave-convex, flat-sharp (for musical keys).  

I will use flat-sharp here, since we find that we can use a convenient unit expression notches here.  
We first extablish that inverse antonyms are different from converse antonyms in that, unlike converse antonyms, in inverse antonyms both elements of the pair have an interpretation as a measure:


[measure flat] 
(  F

[measure sharp]
(  S


Both (9a) and (9b) are felicitous:

(8)  a. A major is three notches sharp.

                   b. F minor is four notches flat.

Both sharp and flat can occur inside the complement of CP comparatives, as in (10):

(10) a. F minor is flatter than A major is sharp 

                    b. C-sharp minor is sharper than E-flat major is flat 

By this evidence, flatness and sharpness are both measure, each coming with their own basic scale, and hence there are degrees of sharpness  and degrees of flatness.  

But these measures stand in a natural relation to each other: they are inverse measures. 


INVERSE MEASURES

Measures A and B are inverse measures iff


For every unit u appropriate for A and B,  for every x, w:



Au(x,w) = ¡Bu(x,w)

Inverse measures A and B, thus, are linked as inverse through their measure functions
Au and Bu.  The connection means that flatness can be reinterpreted as negative sharpness, and sharpness as negative flatness.  

Thus, F minor and A major are objects that are assigned a value both on the basic sharpness scale SS,n,k and a value on the basic flatness scale SF,n,k.  And these values are related by the inverse connection:


(x:  Fn(x) = ¡Sn(x)

Thus, Fn(F minor) = <4,n,F>, and hence Sn(F minor) = <¡4,n,S>  
This means, of course, that we can piece the two together into one superscale of sharpness-flatness, and this is intuitively precisly the way we think about them.  

It is not clear, though, that this superscale and its measure SF is used semantically.  

That is, for all our purposes here it suffices to have two measures F and S, with the inverse connection as specified above, and the obvious scale conversion to go with it.
With this connection, we can truthfully say (11):

(11) a.
F-minor is seven notches flatter than A-major is 

.      
        b. A-major is seven notches sharper than F-minor is 

(11a) is true because, Fn(F-minor) = <4,n,F> and Sn(A-major) = <3,n,S>. 

 By the above connection, this means that Fn(A-major) = <¡3,n,F> and hence:


 Fn(F-minor) ¡F Fn(A-major) = <4,n,F> ¡F <¡3,n,F> =  <7,n,F>

Similarly, 


 Sn(A-major) ¡S Fn(F-minor)= <3,n,S> ¡S <¡4,n,S> =  <7,n,S>

In the case of internal measure we get measure conversion, which is the same trivial substitution operation as we used for converting Width into Height:


[Sn ( Fn]   = λx.(Sn(x)  [F/S])


[Fn ( Sn]   = λx.(Fn(x)  [S/F])

 (12a) is interpreted as (12b):

(12) a. F minor is flatter than A major is sharp –

                    b. Fn(F minor) >F [Sn ( Fn](A major)
Sn(A-major) = <3,n,S>

Hence

[Sn ( Fn](A major) = <3,n,F>

Since Fn(F-minor) = <4,n,F>, (12a) is comes out true.

This is evidence that the comparison does not take place on a superscale but is a 

comparison between scales.

The same inverse image relations obviously hold for convex and concave, and, arguably, also for fat and thin.  

How do we measure fat and thin?
Well, for instance as follows:  

We postulate for a three dimensional object a three-dimensional form that we regard to be 0-fat.  The fatness scale fits the object in the form and counts  bits that bulge out as contributing to the degree of fatness.  Similarly, the form can count as 0-thin, and bits where the form is not exactly filled up contribute to the degree of thinness.  

[In practice, of course, it will matter where the bulging out or bulging in will take place, and the actual measure values are in ordinary life situations tongue-in-cheek  

(but not if you're running a trans-atlantic moving company).]  

We do not have natural unit expressions to go with these scales.

[Whether such expressions exist is open to quite a bit of language variation.  For instance, pound in English is not an appriate unit expression for the measure heavy, but its cognate in Dutch is appropriate:


(13)  a. #Sixty   pounds heavy

                     b.   Zestig pond     zwaar]

Such units can be invented though.  A clever slimming company may invent an impressive scale of lipels and in their advertisement folder you are likely to discover yourself to be:


180 lipels fat, which is 50 lipels too fat

With respect to the internal measures, we find that fat/thin and concave/convex pattern with flat/sharp, and the semantics works the same: 

(14) a. Oliver Hardy is fatter than Stan Laurel is thin 

                    b. Lowly is thinner than Huckle is fat 

(15) a. Mirror A is more concave than mirror B is convex 

                    b. Mirror C is more convex than mirror A is concave 

14. VON STECHOW'S MEASURE SCALES
Von Stechow gives a ontology of degrees and measure functions which differs considerably from the one I have given here.  In the almost (but not quite) naïve  ontology, the basic scale of height and its converse are defined on the same domain of degrees:  they only differ in direction.   Von Stechow introduces scales of height and schales of shortness, and indeed the scale of shortness is a converse of the scale of heigh, but they are not only not defined on the same domain, but on domains of ontologically different objects, extents, versus anti-extents.  

As we will see, this is radically different from what I am doing.  

It may not look so.  I too have different scales for tall and short. 

Yes, but they do not do more than define different directions on one and the same set of degrees.

Still, it may not look so.  I too have different measures for flat and sharp.  

Yes, but they only differ in the measure name, F versus S, when the chips are down, they are just numbers with a bit of sortal memory.
Von Stechow, on the other hand, models degrees of tallness and degrees of shortness as different objects: extents and anti-extents:
An extent         is an interval [0,r], or [0,r) with r ( R.

An anti-extent is an interval (r,(),  or [r,() with r ( R, r ( 0.

<T, ¶>, the scale of tallness,   is the set of all extents ordered by ¶ 

(taller than)
<S ¶>, the scale of shortness, is the set of all  anti-extents ordered by ¶ 

          (shorter than)
In a picture:
t​1 is taller than t2



   s1 is shorter than s2



t1 ¶ t2





     s1 ¶ s2


taller                         e1 

                 e2




             a2







   a1
                                                                   shorter







The height-function TALL is a function from D (£ W) into T.

The shortness-function SHORT is a function from D (£ W) into S.

Measure values:


Let i be an interval: 


The measure value of i is tR(i)
With this we can, if we want, introduce measure functions as:


Measure functions:


TALL      = λx. t (TALL(x)


SHORT  =  λx. t(SHORT(x))

This definition makes TALL a perfectly ordinary measure function,.  But SHORT is funny, because it will either be undefined for every individual, or map every individual onto infinity.  This is, because the supremum of extent-complements is undefined or infinity.

Of course, one's first reaction to this is that von Stechow obviously choses the wrong definition for scales of anti-extents.  Given the sense in which anti-extents are converses of extents, the obvious 'measure value' notion in the domain of anti-extents is the converse notion that is appropriate for anti-extents:  


In T, the domain of extents, the measure value of t is tR(t)

In S, the domain of anti-extents, the measure value of s is uR(s)
But that is exactly what von Stechow doesn't want.   And this is because he uses these definitions to account for the following contrast in felicity: 

 (1)
   John is five foot tall.


   t(TALL(John)) = 5 

 (2)       #John is five foot short.


   t(SHORT(John)) = 5
  

The statement (2) comes out as a contradiction (false for every w).

In short, von Stechow suggests that (1) is felicitous, while (2) is infelicitous, because in both cases we check for the numerical value at the arrow head:



                             5                                             5

                 




             







   


                John's height



    John's shortness

Von Stechow is able to combine this with a working theory comparatives and differentials:  


John is taller than Bill

TALL(John) à TALL(Bill)

Bill is shorter than John

SHORT(John) à SHORT(Bill)

We define a notion of normalization for intervals:

For every interval i in R:  norm(i) = {r ( ui: r ( i}

For an interval of real numbers i, the normalizationof i, norm(i) is the result of moving the whole interval i left, so that its left-bound coincides with 0.  If the interval i has a right bound, this makes norm(i) an extent.
With this notion we can define a difference notion for extents and anti-extents:

Let i1 \ i2 be the set theoretic difference of i1 and i2.

Difference:


i1 ¡ i2  =  norm(i1 \ i2)
Example: [0,5] \ [0,4] = [4,5]


                [4,() \ [5,() =   [4,5]

                


norm([4,5]) = [0,1]


    [0,5] ¡ [0,4] = [0,1]



   [4,() ¡ [5,() =   [0,1]


John is two inches taller than Bill

t(TALL(John) ¡ TALL(Bill)) = 2



Take the set theoretic difference, normalize this to an extent, take the top.

Bill is two inches shorter than John

t(SHORT(John) ¡ SHORT(Bill)) = 2



Take the set theoretic difference, normalize this to an extent, take the top.

In  both cases you take the top of an extent, which is well defined.

Furthermore, we also get the following equivalence:


John is two inches taller than Bill




iff
 Bill is two inches shorter than John.

This is all very cute.  We can only assign numerical values to extents.  That's why we can do it for tall but not for short.  On the other hand, we can do all the comparison relations we want, including differential ones, because while the comparison relations are defined in two scales, the semantics of the differential involves normalization of difference interval to an extent.   

But cute is not good enough.  The question is: is it right?

Let us look at the following sentence:

(3) John is taller than five feet.

It is not difficult to get the semantics right for this case:

We assume that five feet denotes the obvious extent:

five feet ( [0,5]

And we get:

(3)  John is taller than five feet.

      TALL(John) à [0,5]

But now we have a problem with (4):

(4) John is shorter than five feet.

SHORT(John) is an anti-extent, but [0,5] is an extent, and they are incomparable because they are in different scales.  But (4) is felicitous, and can be true.   
         

We obviously don't want a theory which predicts (5) to be true:


(5) Nobody is shorter than five feet.

It seems obvious that we would need a second interpreation of five feet, namely as an anti-extent:


five feet ( [5,()

and get:

(4) John is shorter than five feet.

     SHORT(John) à [5,()

With this move we get the correct semantics for (3) and (4).  

But now we get a serious problem of motivation for the account

Let us ask the following question, which I think is a fair fair question:  What do we need this measure value operation for in the first place, except for creating a difference between (1) and (2)?  

-If five feet denotes an extent, as arguably on the basis of (3) it should, why isn't the semantics of (1) as follows:


(1) John is five feet tall.

                  TALL(John) = [0,5]

That is, if we have degrees as intervals, and arguably, five feet is an interval, why do we need to refer to the top of that interval at all?

Here is what we see:

1. -We have four feet five feet,…. as intervals in the scale of extents, 

     -We compare these intervals directly in terms of the order

             John is taller than Bill

     -We have arithmetics directly defined on those intervals

Subtraction:     John is two inches taller than Bill

Multiplication: John is twice as tall as Bill

Exactly the same holds for the scale of anti-extents:

2.  -We have four feet five feet,…. on the scale of anti-extents, 

      -We compare these intervals directly in terms of the order

             John is shorter than Bill

     -We have arithmetics directly defined on those intervals

Subtraction:     John is two inches shorter than Bill

Multiplication: John is twice as short as Bill

3. The scale of extents and anti-extents are linked as converses:


John is taller than Bill iff Bill is shorter than John

John is two inches taller than Bill iff Bill is two inches shorter than John


John is twice as tall as Bill iff  Bill is twice as short as John
The scales of extents and anti-extents have a topology of order and arithmetics directly defined on them.  Why then make irrelevant referenence to the extreme points of the intervals?

Alternatively, let us assume that we do make reference to the extreme points of the intervals.  The choice of the extent denotation of five feet as [0,5] is obviously motivated by the extreme point 5, which we can pick out again by measure value:  t([0,5]) = 5.
But the same is true for the anti-extent denotation of five feet as [5,():  the choice of the anti-extent denotation of five feet is is also obviously by the extreme point 5.  

Onbviously, again, extent scale and anti-extent scale are converses, and the most obvious sense in which they are converses is that you on on extent scale you get the extreme point with t and on an anti-extent scale you get the extreme point with u.

With that, an obvious alternative theory is:


In T, the measure value of i is t(i)


In S, the measure value of i is u(i)

We have now three variant theories:


Theory one:

The measure topology of extents and anti extents does not involve reference to 

extreme points.

Theory two:

The measure topology of extents and anti-extents involves reference to the 

appropriate extreme points, but only with the operation that works well for 

extents.

Theory three:
The measure topology of extents and anti-extents involves reference to the 

appropriate extreme points for extents and anti-extents, where extreme points are 

picked out in the way that is normal to the scale they are extreme in.

Von Stechow tells us that the semantic system has chosen theory two.  

It seems to me that this assumption hangs an enormous payload on the infelicity of (2), #five feet short. 

Von Stechow proposes a powerful system of scales, equipped not only with order, but with arithmetics, and in fact, correct arithmetics; a system of scales moreover that are linked as converses, and in fact, correctly linked as converses.  So far, I am completely on his side.  

But then we need to assume that the semantic system does something unnecessary, refer to extremes, and gets the mathematics of it wrong, fails to convert the notion of extreme when it comes to anti-extents. 
-Why would the semantics insist on using extreme values, doing things with them that it is clearly not good at, if it already has theory one?

-If the semantics insists on using extreme values, why wouldn't it be able to use the correct notion of converse, if it is arguably, apart from this, very good at converse notions?      

That is, von Stechow gives a deep explanation for the difference in felicity  between (1) and (2), but the explantion expects us to accept that our semantic system, and that means in this case our brain, uses faulty mathematics, fails to make one rather obvious conversion.  It seems to me that this is an excessively high price to pay for getting something as simple as the contrast between (1) and (2).  

The naïve theory is, of course, stipulative:  tall and short denote the basic scale and the converse scale on the same domain of degrees, relative to the same measure, Height.   Of the two. only tall denotes the measure Height, only tall names the measure.

A major point of the almost (but not quite) naïve theory is that our semantics system is actually rather good at converses.  I think that this is amply proved in the discussion of dimensional orders and dimensional supremums above.

15. A SKETCH OF A SEMANTICS FOR DEPENDENT STANDARD 

       INTERPRETATIONS OF ADJECTIVES

I will use here variable h to range over height degrees, <r,(,H> and variable a to range over age degrees <r,(,A>

We are, once again interested in adjective tall.  

The interpretation schema we have given for defining adjective meanings out of dimensional meanings is:


λs.λδ. δ s> sHIGH
So far, we have been assuming simple height scales where there is per context assigned a unique scalar point HIGHH,w,k.   However, there are more complex cases.

Most importantly, the context may not determine a single point HIGH but a high point function, for instance – and that is going to be the example we use here - an age dependent high point function:  

HIGHAGE 
=
λa. HIGHH,a,w 
HIGHAGE is a function that maps each age onto a degree which counts as minimally tall for that age.  Thus what counts as high for babies is not necessarily the same as what counts as hight for adults. (Obviously, more factors can be involved.

If the scale involves a hight function, obviously the above adjective interpretation schema is too simple, we need to take the function into account.

For scales where k assigns a height function rather than a high point, we need a more general schema, one that derives initially a relation between a scale and two degrees, one input to the function, one output: 


λs.λδ2λδ1. δ1 s> sHIGH(δ2)

Assuming that the scale is the basic height scale with the height function HIGHAGE, we get:


λaλh. h >H HIGHH,(,w,a
This is a relation between age-degrees and height-degrees.
Grammatically, we need to turn this into a predicate of individuals, not a relation between individuals.

We have available two relevant measure functions:


λx.H(,w(x)
The height function

λx.A(',w(x)
The age function
We must at this point compose with the measure function, and we will assume that this happens through composition-cum-binding:


COMPOSITION CUM BINDING:


R ( [f,g]
=
λx.R(f(x),g(x))

So:


λaλh. h >H HIGHH,(,w,a  (  [H(,A(']  =


λx. H(,w(x) >H  HIGHH,(, w,Aw(x)

The set of individuals whose hight at w is bigger than the height minimum for 

their age at w.

With this we can deal with sentences like:


(1) In our family, everyone is tall (even the baby is tall)



(x[FMw(x) ( H(,w(x) >H  HIGHH,(, w,Aw(x) ]
16.  SUPREMUM DEGREE INTERPRETATIONS IN MODALS

16.1. Heim's Modality Assumption
Heim 2006 discusses cases like (1):

(1) To be accepted into the police school, you have to be 1.65 and you can be 

      1.92.

The natural interpretation for have to be 1.65 in (1) is that 1.65 is the minimal height necessary to be allowed in, and the natural interpretation of can be 1.92 in (1) is that 1.92 is the maximal height possible.
These interpretations are also naturally found with modals inside comparatives:


(2) a. Fortunately, John is taller than he has to be (to be let in).
 
      b. Unfortunately, Bill is taller than he can be (to be let in).
If we assume a standard account of modals as quantifiers over worlds in a set ACCw0 of accessible worlds, and a standard account of measure functions, we get the following interpretations for modals:


(3) a. John has to be 1.65 (to be let in)


          (w ( ACCw0: Hm,w(John) = <1.65,m,H>


          John's height is 1.65 in all accessible worlds.



      b. John can be 1.95 (and be let in)


          (w ( ACCw0: Hm,w(John) = <1.95,m,H>


          John's height is 1.95 in some accessible world.

Let us look at the interpretations of the naïve (but clever) theory with internal modals:


(4) a. John is taller than he has to be (to be let in).

          (w ( ACCw0: Hm,w0(John) >H Hm,w(John)


John's actual height is bigger than his maximal height in the accessible worlds.


      b. John is taller than he can be (to be let in)



(v ( ACCm,w0: Hm,w0(John) >H Hm,w(John)


John's actual height is bigger than his minimal height in the accessible worlds.

It can be shown easily that the interpretations given are wrong, if we make Heim's Modality Assumption:


Heim's Modality Assumption:  

-The modals in (3a), (3b), (4a), (4b) have their normal interpretations as universal and existential quantifiers over accessible worlds.

-The modals in all examples (3a), (3b), (4a), (4b) are interpreted relative to the 

same set of accessible worlds ACCw0,


-The set of accessible worlds ACCw0 is the set of worlds which show how John's 

              height can still vary on the  assumption that it falls within the range that is 


  acceptable for the police school 

With this assumption, the predicted interpretations are all wrong:


(3) a. John has to be 1.65


          John's height is only acceptible if it is 1.65.


Wrong: If he is 1.70, that is acceptable too.


(3) b. John can be 1.95


          1.95 is an acceptable height.

Not wrong, but not intended: this doesn't say that 1.95 is the maximum.


(4) a. John is taller than he has to be.

          John's height is bigger than the maximal acceptible height.

Wrong: it should be bigger than the minimal acceptible height.


(4) b. John is taller than he can be (to be let in)


          John's height is bigger than the minimal acceptible height.

Wrong: it should be bigger than the maximal acceptible height. 

This shows that, if the interpretations in question are to be derived by the semantics, then one cannot both assume Heim's Modality Assumption and the almost (but not quite) naïve theory/naïve (but clever) theory of measures.

There are, then, three strategies:

Strategy 1: Deny that the interpretation effects are to be derived semantically.

Strategy 2: Accept Heim's Modality Assumption and reject the almost (but not quite) naïve theory/naïve (but clever) theory of measures.

Strategy 3: Accept the almost (but not quite) naïve theory/naïve (but clever) theory of measures and reject Heim's Modality Assumption.

It can be shown that strategy 1, the pragmatic strategy, is untenable.  

Look at (3a):


(3)  a. John has to be 1.65 (to be let in)

On a pragmatic strategy, the literal meaning – John is exactly 1.65 in every accessible world – has to be weakened  to:  John is at least 1.65 in every accessible world.

This is the opposite of what we normally find:  normally we strengthen pragmatically from at least interpretations to exactly interpretations. 

What drives this pragmatic weakening would have to be something like the following.

 (3a) can be seen as asserting two things: 

A. John is at most 1.65 in every accessible world (you have to be at most 1.65) 

B.  John is at least 1.65 in every accessible world (you have to be at least 1.65).

Of these two, A is incompatible with background knowledge, but B is contextually plausible.  Thus, we pragmatically reinterpret (3a) as B.

The problem with this pragmatic story is that it predicts that it should be as easy in (5) to get an at most interpretation:


(5)  John has to be 1.96 (to be let in)

A.  John is at most 1.96 in every accessible world (you have to be at most 1.96)

B.  John is at least 1.96 in every accessible world  (you have to be at least 1.96)

Here A is plausible and B is incompatible with background knowledge.  Thus, the same pragmatic rationale as above would lead to an at most interpretation for (5).  But such an interpretation is by far not as easily available as the at least interpretation for (3a).
In fact, it is instructive to look at examples with explicit at least and at most:


(6)  a.   You have to be at least 1.65
     if you want to get into the police school

                   b. ?You can be at least 1.65              if you want to get into the police school

                   c.  ?You have to be at most 1.95       if you want to get into the police school

                   d.    You can be at most 1.96             if you want to get into the police school
In the context specified (6b) and (6c) are distinctly odd.  
Thus, the pragmatic story fails to make the connection between the universal modal and at least (the minimum) and the existential modal and at most (the maximum).

This means, I think, that we are left with strategies 2 and 3.

Strategy 2 is (obviously) Heim's strategy, while strategy 3 is (equally obviously) the strategy I will follow here.   

16.2.  Heim's strategy
Heim assumes an at least interpretation for measuring.  This means that if I am 1.76, I am also every positive height degree smaller than that.  

Technically, we can incorporate this in the almost (but not quite) naïve theory by introducing the Heim measure relation: 
Given measure function Mu,w, the corresponding Heim measure relation is:


Mu,w*(x,δ) iff  0 < δr ( Mu,w(x)r
Heim takes such measure relations as basis and defines >M in terms of them.  At this point, the latter issue will not be our concern.  I will use measure functions whenever convenient.  

With respect to CP-comparatives, Heim follows von Stechow's supremum theory, with the measure function replaced by the Heim measure relation.  Thus, we get:
Heim

taller than ( ¡

λδ. δ >H t<H( λδ. ((λwλx.H(,w*(x,δ)) )]

With Heim's modality assumption, we now get the following interpretations: (I will write 1.65 for <1.65,m,H>):


(3) a. John has to be 1.65 (to be let in)


          (w ( ACCw0: Hm,w*(John, 1.65) 

The modality assumption says that has to is a universal  modal and that ACCw0 is the set of worlds that corresponds to the range of allowed values that John's height can take  (and be accepted into the police school).  

We formulate this at first in terms of measure functions:  in the accessible worlds w Hm,w(John)  takes on values between 1.65 and 195 (ends included).
We make a pragmatic assumption of variety, which says that for all relevant values in this range (possibly up to a certain level of precision) there are worlds in ACCw0 where John's height takes that value.

We reinterpret these assumptions now in each world in ACCw0 in terms of the Heim measure relation.  In each of these worlds w, the measure values for that world are given by the set λδ.Hm,w*(John,δ).

What we find is that the statement entails:

for every world w ( ACCw0: (0,1.65] ( λδ.Hm,w*(John,δ)

By variety, there is a world v where Hm,v(John) = 1.65.

In v, for any degree k >H  1.65:  k ( λδ.Hm,v*(John,δ)
Thus, for any degree k >H 1.65, there is a world (namely v), where k ( λδ.Hm,v*(John,δ).

This means that 1.65 is the biggest degree of height that John has in every accessible world.  

-There is no world z where k <H 1.65 and John has height k  but not 1.65 in z.

-There is no height k >H 1.65 such that for every world z, John has height k in z.
Thus, indeed, (3a) gets a minimality interpretation.


(3) a. John has to be 1.65 (to be let in)


          (w ( ACCw0: Hm,w*(John, 1.65) 


          The minimal heigth required for John to be let in 1.65

With this, we can directly continue to (4a):


(4) a. John is taller than he has to be (to be let in).

         Hm,w0(John) >H t<H( λδ. (w ( ACCw0: H(,w*(John,δ)) 
The supremum of the set of heights  that John has in every world is, by the above argument, 1.65.  Thus, (3a) and (4a) entail (7a):


(7) a. John is taller than 1.65


          Hm,w0(John) >H  1.65

This is, of course, impressively correct.

For the existential modal, we turn to (4b) first:


(4) b. John is taller than he can be (to be let in)

         Hm,w0(John) >H t<H( λδ. (w ( ACCw0: H(,w*(John,δ)) 
Let us assume that in the accessible worlds there is a world v where Hm,v(John) = 1.95 and there is no world z where Hm,z(John) = k, with K >H 1.95.
Given this assumption: 

λδ. (w ( ACCw0: H(,w*(x,δ) = (0, 1.95]

and


t<H( λδ. (w ( ACCw0: H(,w*(x,δ)) = 1.95

So, with the maximality assumption specified, (4b) entails (7b):


(7) b. John is taller than 1.95

And this is, again, impressively correct.

We turn to (3b):


(3) b. John can be 1.95 (and be let in)


          (w ( ACCw0: Hm,w*(John,1.95)

After the above successes, this is distinctly disappointing:  Heim's analysis does no better than the almost (but not quite) naïve/ naïve (but clever) analysis:  it says that in some world w ( ACCw0:   λδ.Hm,w*(John,δ) = (0,1.95].   It doesn not impose a maximality interpretation.  

This is surprising and disturbing. Maximality readings for degrees in existential modals are as readily available as minimality readings are for degrees in universal modals.   

In fact, I do not see that anything can be done about this, as long as we make Heim's modality assumption:  by that assumption, the modal is just an existential quantifier and   
its domain is just the variation range of acceptable heights.  
Thus it says the same as the almost (but not quite) naïve/ naïve (but clever) analysis:

1.95 is an acceptable height.

This is disturbing, because, if the theory doesn't get this basic fact about the maximality interpretation of the existential modal right, all the other impressive results are under suspicion of being artifacts that come out correctly by accident.

And there are more problems. 

Problem one.

The reason we get the right predictions for the modals inside comparatives is exactly the same reason why we get the wrong prediction for explicit  quantifiers inside comparatives:


(4) a. John is taller than he has to be (to be let in).

         Hm,w0(John) >H t<H( λδ. (w ( ACCw0: H(,w*(John,δ)) 
John's height in w0 is bigger  than the maximal degree his height takes in all accessible worlds, which is the minimal accessible height.



John is taller than the minimal acceptable height. 


(8) a. John is taller than every girl is -.


         Hm,w0(John) >H t<H( λδ. (y ( GIRLw0: H(,w*(y,δ)) 
John's height in w0 is bigger  than the maximal height all girls share in w0, which – for the same reason – is the height of the smallest girl.



John is taller than the smallest girl is -.

(4) b. John is taller than he can be (to be let in)

         Hm,w0(John) >H t<H( λδ. (w ( ACCw0: H(,w*(x,δ)) 
John's height in w0 is bigger  than the maximum of the height variation range across the accessible worlds, which is the maximal degree his height takes in the accessible worlds:


John is taller than the maximal acceptable height. 


(8) b. John is taller than some girl is -.


         Hm,w0(John) >H t<H( λδ. (y ( GIRLw0: H(,w*(y,δ)) 
John's height in w0 is bigger  than the maximal height within the set of all the heights of the girls in w0, which is the height of the tallest girl:


John is taller than the tallest girl is -.
Problem two.
In the second place, the facts are more complex than is suggested by the examples given so far.  We have looked at the following inferences:

(9)  
a.   John has to be 1.65 to be accepted for the police school       


b.   I am taller/shorter than John has to be to be accepted.

Hence:

c.   I am taller/shorter than 1.65.


(10)
a. John can be 1.95 and still be accepted for the police school.



b. I am taller/shorter than John can be and be accepted.

Hence:

c. I am taller/shorter than 1.95.

We are now concerned with the semantics of the comparative.  We have seen that Heim gets a minimality interpretation for (9a), and with that, (9b) correctly entails (9c).

We have also seen that Heim doesn't get a maximality interpretation gor (10a), but if we assume a maximality interpretation for (10a), then (10b) does correctly entail (10c).  

However, in this argument we have made one assumption which does not represent the general case:  the relevant interpretations of (9a) and (10a) are not just interpretations concerning minimally possible and maximally acceptable heights, but they assume that there is a unique minimally acceptable height and a unique maximally acceptable height.

This, of course, is not the general case. Let us assume that the minimally and maximally  acceptable heights depend on a decision by the height-committee still to be made.  The ball park is indicated in (11):


(11) 
a. You have to be 1.65 or 1.70 to be accepted for the police school.



b. You can be 1.90 or 1.95 and be accepted for the police school.

Or the situation might be that they can still choose any height between 1.65 and 1.70,  and betweem 1.90 and 1.95:


(12) 
a. You have to be between 1.65 and 1.70 to be accepted for the police 

                             school.



b. You can be between 1.90 or 1.95 and be accepted for the police school.

I will use (11).  In this situation, we find the following inferences:

(13)
a. This year, you have to be 1.65 or 1.70 to be accepted for the police school.

b. When I applied, I was taller than you have to be now (and they didn't take me). 

Hence: c. I was taller than 1.70.

(14)
a. This year, you have to be 1.65 or 1.70 to be accepted for the police school.

            b. When I applied, I was shorter than you have to be now (and they still took me).

Hence: c. I was shorter than 1.65.

(15) 
a. This year, you can be 1.90 or 1.95 and be accepted for the police school.

            b. When I applied. I was taller than you can be now (and they still took me)

Hence
c. I was taller than 1.95.

(16) 
a. This year, you can be 1.90 or 1.95 and be accepted for the police school.

            b. When I applied, I was shorter than you can be now (and they didn't take me)

 Hence
c. I was shorter than 1.90.

Note that the only thing I changed in the examples is the description of the height:  from 

1.65 to 1.65 or 1.70.  I didn't toutch the modal.  Note too that we don't need to interpret the modal as an epistemic modal:  in the context given, it's not that the decision of the height-committee is not yet known, it's not yet made.

If we assume Heim's Modality Assumption, we would assume the same modal analysis as before and the same accessibility relation, which indicates the possible variation of acceptable heights.

Given (11a) and (11b):  clearly the accessible worlds where the height allowed to anybody is the lowest, are those where the decision falls out in favor of 1.65, and someone is just 1.65 and gets accepted.  This means that for some individual grade interval (0,6] is part of his/her height set set in every accessible world and no bigger interval is, hence, Heim (incorrectly) predicts that (13*) is valid:

(13*)
a. This year, you have to be 1.65 or 1.70 to be accepted for the police school.

b. When I applied, I was taller than you have to be now (and they didn't take me). 

Hence: *c. I was taller than 1.65.

Given this, it is clear that Heim does predict correctly that (14) is valid.

Again, within the accessible worlds, the worlds where the acceptable height is maximal are the worlds where the committee goes for 1.95 and some one has that height and gets in.  This means that Heim correctly predicts the validity of (15).  

But she predicts that (16) is invalid, and that (16*) is valid.

(16*) 
a. This year, you can be 1.90 or 1.95 and be accepted for the police school.

            b. When I applied, I was shorter than you can be now (and they didn't take me)

 Hence
c. I was shorter than 1.95.

16.3 An implicit modal constrained by supremum modality.

The diagnisis of this problem is, I think, instructive:  what is relevant for the semantics of these examples is not simply the variation of acceptable height across the accessible worlds, but the variation of minimal acceptable height and maximal acceptable height across the accessible worlds.  
- (13a) tells us that in some of the accessible worlds the minimal acceptable height is 1.65 and in the others it is 1.70.  

-(13b) says that I am taller than the minimal acceptable height in every accessible world.  -Since in some accessible worlds it is 1.70, I must be taller than 1.70 (13c). 

-Similarly, in (14), since in some accessible worlds the minimal acceptable height is 1.60 (14a), and my height is shorter than the minimal height in all accessible worlds (14b), I must be shorter than 1.65 (14c).

A dual argument makes (15) and (16) valid:

- (15a) tells us that in some of the accessible worlds the maximal acceptable height is 1.90 and in the others it is 1.95.  

-(15b) says that I am taller than the maximal acceptable height in every accessible world.  -Since in some accessible worlds it is 1.95, I must be taller than 1.95 (15c). 

-Similarly, in (16), since in some accessible worlds the maximal acceptable height is 1.90 (16a), and my height is shorter than the maximal height in all accessible worlds (16b), I must be shorter than 1.90 (16c).

This diagnosis entails a rejection of Heim's Modality Assumption:

Supremum Modality Assumption:  

-Each example in (13-16) involves an implicit modal which is interpreted as a universal quantifier over accessible worlds.

-The accessibility relation in (13-14) is not the same as that in (15-16).

-In (13-14), the set of accessible worlds MINw0 is the set of worlds which show 

             how the minimal acceptable height can still vary.


-In (15-16), the set of accessible worlds MAXw0 is the set of worlds which show 

how the maximal acceptable height can still vary. 

-Has to in (13)  and (14) and can in (15) and (16) are explicit modals that 

             constrain the choice of the accessibility relation of the implicit modal.  
In short:  

Supremum Modality Assumption:  

(13-16) involve a double modal, the explicit one, 

and an  implicit (universal) one, and that the explicit modal is part of the 

construction of the restriction on the implicit one.

Let us, for simplicity of analysis switch to John again, i.e. use the following examples:


 (17) 
a. John has to be 1.65 or 1.70 to be accepted for the police school.



b. John can be 1.90 or 1.95 and be accepted for the police school.

(18) 
a.  I am taller (shorter) than John has to be:

b.  I am taller (shorter) than John can to be:

We associate with world w0 a set of accessible worlds ACCw0.  With each world w ( ACCw0 we associate a set of height-in-meters degrees: 


Acceptable Heights for John in w:


accw(Hm,John) is  the set of possible heights that are acceptable in w as John's 

            height.   The set accw(Hm,John) varies across the worlds w in ACCw0.  
I will here write accw for accw(Hm,John), taking the intensional characteristics for accw understood.
accw is  a set of heights.  In the almost (but not quite) naïve theory, this means that the notions of supremum t<H and infimum u<H are defined for accw:  t<H(accw) and u<H(accw):

Minimally and maximally acceptable heights:


For w ( ACCw0:  u<H(accw) is the minimally acceptable height for John in w.



                t<H(accw) is the maximally acceptable height for John in w.

With this, we can give the following semantics:

 (17) a. John has to be 1.65 or 1.70 to be accepted for the police school.

(w ( ACCw0: Hm,w(John) = u<H(accw) ( H m,w(John) = 1.65 ( H m,w(John) = 1.70

In every world w where John has height minimally required to be accepted in w, his height is 1.65 or his height is 1.70.


(17) b. John can be 1.90 or 1.95 and be accepted for the police school.

(w ( ACCw0: Hm,w(John) = t<H(accw) ( H m,w(John) = 1.90 ( H m,w(John) = 1.95

In every world where John has the height maximally allowed to be accepted, his height is 1.90 or his height is 1.95.

Given this, the naïve (but clever) analysis will give the following interpretations to the comparatives:

(18) a.  I am taller (shorter) than John has to be:

(w ( ACCw0: Hm,w(John) = u<H(accw) ( Hm,w0(Fred) >H (<H) Hm,w(John)
My actual height is bigger (smaller) than the height John has in every world where he has the height he minimally has to have to be accepted.

(18) b.  I am taller (shorter) than John can to be:

(w ( ACCw0: Hm,w(John) = t<H(accw) ( Hm,w0(Fred) >H (<H) Hm,w(John)
My actual height is bigger (smaller) than the height John has in every world where he has the height he maximally can have and be accepted.

It is easy to see that these interpretations make the right predictions (they just formalize the arguments presented informally above).  So, if, with (17a), we assume that the set of worlds where John has the minimally acceptable height divides into a set of worlds where John's height is 1.65 and a set of worlds where John's height is 1.70, and with variety we assume that neither set is empty, and, with (18a), we assume that for each of these worlds, my actual height is bigger than John's height in that world, then clearly my height is bigger than 1.70.  Etc.

16.4 Degree definites with modal restrictions.
The central question now concerns u<H(αv), the minimal acceptable height in v and t<H(αv).  How do we associate these with respectively has to and can?
For each world v ( ACCw0, αv is a set of degrees.  We can think of this set of degrees αv itself as a set of alternatives:  they are, after all, the degrees that are possible degrees in world v. If so, at this level the modals are functions from sets of degrees to degrees:


has topow(deg) ( ​deg ( u<H
canpow (deg) ( ​deg     ( t<H
 (17) a. John has to be 1.65 or 1.70 to be accepted for the police school.

(w ( ACCw0: Hm,w(John) = u<H(accw) ( H m,w(John) = 1.65 ( H m,w(John) = 1.70

 (must)                                   has to
(17) b. John can be 1.90 or 1.95 and be accepted for the police school.

(w ( ACCw0: Hm,w(John) = t<H(accw) ( H m,w(John) = 1.90 ( H m,w(John) = 1.95

(must)                                   can
This is, of course, a non-standard semantics of the modals (non-quantificational), but one that exploits the standard connection between ( and infimum and ( and supremum.  

Note that accw is a notion in the ballpark of the domain of degrees and the measure function:  it typically indicates value range restructions on measure functions.  This means that the relevant notions of infimum and supremum are the ones that relate directly to the underlying order of the reals, i.e. u<H and t<H.

I will go one step further.  For that, we will go one step back (reculer pour mieux sauter).

The analysis I am after is along the following model:

(17) a. John has to be 1.65 or 1.70 to be accepted for the police school.

(w ( ACCw0: 

Hm,w(John) = the height John has to be in w according to accw to be accepted 





( H m,w(John) = 1.65 ( H m,w(John) = 1.70

(17) b. John can be 1.90 or 1.95 and be accepted for the police school.

(w ( ACCw0: 

Hm,w(John) = the height John can be in w according to accw  and be accepted 

( H m,w(John) = 1.90 ( H m,w(John) = 1.95

Thus, we need to give an analysis for the reconstructed expressions:

the height John has to be in w according to accw to be accepted 

the height John can be in w according to accw  and be accepted 

accw is a set of degrees, the set of heights acceptable for John in w.  For our purposes, it will be useful to work on the result of adding the bounds to this set:


accw b = accw ( {u<H(accw), t<H(accw)}
We associate with accw b a set of accessible worlds ACCw and assume:


Constraint on ACCw 

For every δ ( accw b there is a z ( ACCw : H​m,z(John) = δ


For every z ( ACCw: there is a δ ( accw b: H​m,z(John) = δ
With these constraints we have made in each world w, the set ACCw
into the set of alternatives in w that Heim assumes the modals operate on: the set of worlds, accessible from w, that indicate the range of acceptable heights for John.    

We can continue, and assume, with Heim, that the explicit modals has to and can be are normal universal and existential quantifiers on this set of worlds.

We assume that the is the σ operation, which is a presupositional supremum operation, and we assume that, in this context, supremum means t<H.  



  
t<H(β) 

if t<H(β) ( β

σ(β) =



undefined 
otherwise

In essence, we are assuming that:


Degree definites with modal restrictions:
The explicit modal material is part of an implicit  relative clause construction  on 

a definite degree head. 

the height John has to be -
(in w according to accw)

the height John can be -
(in w according to accw) 

Taking this literally, the construction involves abstraction over a degree variable, interpretation of the head height inside the relative, and some semantic operation H: 
the height John has to be in w according to accw to be accepted 

σ(λδ.(z ( ACCw: H(δ,Hm,z(John)))

the height John can be in w according to accw  and be accepted 

σ(λδ.(z ( ACCw : H(δ,Hm,z(John)))

What is H?   Clearly:


H constraint:

H is a relation between degrees such that:

σ(λδ.(z ( ACCw: H(δ,Hm,z(John))) 
=  u<H(accw)

σ(λδ.(z ( ACCw : H(δ,Hm,z(John)))
=  t<H(accw)
For example,   Heim's relation will work:



H(δ1,δ2)  iff  0 <H δ1 (H δ2
Then we get:

the height John has to be in w according to accw to be accepted 

σ(λδ.(z ( ACCw: Hm,z*(John,δ)) 
=
u<H(accw)
the height John can be in w according to accw  and be accepted 

σ(λδ.(z ( ACCw : Hm,z*(John,δ))
=
t<H(accw)

In short, then, the analysis becomes:

 (17) a. John has to be 1.65 or 1.70 to be accepted for the police school.

(w ( ACCw0: Hm,w(John) = σ(λδ.(z ( ACCw: H(δ,Hm,z(John))) 


     

        
( H m,w(John) = 1.65 ( H m,w(John) = 1.70

(17) b. John can be 1.90 or 1.95 and be accepted for the police school.

(w ( ACCw0: Hm,w(John) = σ(λδ.(z ( ACCw : H(δ,Hm,z(John)))

( H m,w(John) = 1.90 ( H m,w(John) = 1.95

With the naïve (but clever) analysis, we get the following interpretations for the comparatives:

(18) a.  I am taller (shorter) than John has to be:

(w ( ACCw0: Hm,w(John) = σ(λδ.(z ( ACCw: H(δ,Hm,z(John)))





( Hm,w0(Fred) >H (<H) Hm,w(John)
(18) b.  I am taller (shorter) than John can to be:

(w ( ACCw0: Hm,w(John) = σ(λδ.(z ( ACCw : H(δ,Hm,z(John)))





( Hm,w0(Fred) >H (<H) Hm,w(John)
Given a suitable choice of H, the entailments will come out correctly.

We have found it useful to analyze the general case, where the set of acceptable heights still varies from world to world.  This leads to the general case of a double modality:  implicit universal quantification over accessible worlds w where the sets accw of heights acceptable in w still vary, with this accessibility relation restricted by reconstructed definite degree phrases  the height John has to be in w according to accw and the height John can be in w according to accw.  

Often, in context, we will assume that the set of acceptable grades is fixed and no longer open for variation.  In that case, we set ACCw0 to {w0), and reduce the analysis accordingly:

(3) a. John has to be 1.65 (to be let in)

σ(λδ.(z ( ACCw0: H(Hm,z(John),δ)) = 1.65   

The height John has to be is 1.65

u<H(accw0) = 1.65

(3) b. John can be 1.95 (and be let in)

σ(λδ.(z ( ACCw0: H(Hm,z(John),δ)) = 1.95


The height John can be is 1.95
t<H(accw0) = 1.95

(4) a. I am taller (smaller) than John has to be.

Hm,w0(Fred) >H (<H) σ(λδ.(z ( ACCw0: H(Hm,z(John),δ))


Hm,w0(Fred) >H (<H) u<H(accw0)

(4) b. I am taller (smaller) than John has to be.

Hm,w0(Fred) >H (<H) σ(λδ.(z ( ACCw0: H(Hm,z(John),δ))

Hm,w0(Fred) >H (<H) t<H(accw0)

Heim's relation will do fine, but it is not the only perspective possible.

For instance, the set of worlds ACCw is chosen from set of degrees accw.

We can assume that this set of worlds is actually constructed from the set of degrees 

accw.  

A natural construction would be to construct worlds following standard algebraic representation methods, as sets of degrees.  And in domains ordered by (, the standard world-representation of degree δ would be {δ': δ' ( δ}, which, in case the set accwb is an interval is called the ideal generated by δ:  


For δ ( accwb: wδ = {δ' ( accwb: δ' (H δ}.


ACCw = {wδ: δ ( accwb}

In this case we set:

the height John has to be in w according to accw to be accepted 

σ(λδ.(z ( ACCw: δ ( z) 
=
u<H(accw)
the height John can be in w according to accw  and be accepted 

σ(λδ.(z ( ACCw : δ ( z)
=
t<H(accw)

16.5 The advantages of the degree definite with modal restriction analysis.
By looking at the more general case, we found that the semantics of the degree modals in the cases discussed here is best formulated in terms of degree definites with modal restrictions, the height John has to be and the height John can be.

Advantages over heim's analysis:

This perspective solves the problems we posed for Heim's analysis:

Advantage 1.  The variation of the mimimal/maximal possible heights are simply analyzed as variation of the definites the height John has to be and the height John can be across the worlds accessible according to an implicit accessibility relation  (i.e. the more general case). 

Advantage 2. The asymmetry between the universal modal cases and the existential modal cases is restored.  The definite article σ introduces supremum operation t<H, which forces the maximality interpretation of the existential case. 

In looking back at it, the first is maybe not a big deal:  also Heim's analysis can, of course, easily be generalized.   The point is more heuristic: thinking about the more geheral case easily leads to the analysis with definites. 

There are more advantages, though.

Advantage 3.  As we have seen, once we assume an analysis with degree definites with modal restrictions, the height John has to be and the height John can be, the story no longer relies on the analysis of the comparatives: we get the correct results with the almost (but not quite) naïve theory/naïve (but clever) theory of comparatives.  

This is, I would say, an advantage, because now the analysis no longer needs to rely on von Stechow's supremum approach, and we no longer need to make incorrect predictions for explicit quantificational expressions.

The Heim relation, is moved, on this analysis,  from the degree phrases itself to the interpretation of the degree abstraction inside the modal relatives.  This has, I think, two advantages.

Advantage 4.  If Heim is right about the relational analysis of the degree phrases, you would expect a simple modal analysis along the lines that she gives to be all you need.

Why go through the effort to put the modal restriction inside a degree definites?  The answer is, of course, that there is a supremum operation missing in her analysis, but that's not the issue here.  The issue is:  if Heim is right, your really would expect an asymmetry between the universal and existential modal, and that is not what we find.  

On the alternative sketched here, the normal modal analyses in combination with an almost (but not quite) naïve analysis of degree phrases, is just not capable of expression the readings intended, involving minimal and maximal possible degrees.  So, these readings are just not in the competition.  

Advantage 5.  But degree definites with relative clauses are a natural place to look for such readings.  We have made the following proposals:

the height John has to be

σ(λδ.(z ( ACCw: H(δ,Hm,z(John)))

the height John can be

σ(λδ.(z ( ACCw : H(δ,Hm,z(John)))

There is nothing uncontroversial about these analyses, as long as we don't say what H is.

Of course, a naïve intuition would be that H is =, the identity relation:

the height John has to be

σ(λδ.(z ( ACCw: δ = Hm,z(John))

the height John can be

σ(λδ.(z ( ACCw : δ = Hm,z(John))

(which can be seen as build intersectively from height and John has to be.
And Heim, in a way, agrees with this, in as much as she sees δ = Hm,z(John) as a representation of John is δ meters tall and she reanalyzes the latter as Hm,z*(John,δ).
But work on degree relatives (e.g. Carlson 1977, Heim 1987, Grosu and Landman 1998,  Landman 2000, Grosu and Krifka 2007, Grosu and Landman, ms. Landman ms.) has precisely argued that the internal semantics of certain kinds of relative clauses (including cases that involve degree abstraction) is more comples than that.  Grosu and Landman 1990 argue, for the relative clauses that they discuss, an  internal maximalization operation.  Grosu and Krifka discuss cases where the internal semantics of the relative involves a highly complex operation instead of simple intersection.

I am not discussion the general semantics of relative clauses here, except to point out that, if the more recent literature on relative clauses brings out one point, it is that the internal semantics of degree relatives seems to be a collection point for complexity (this is especially clear in the examples discussed in Grosu and Krifka 2007 and the Japanese cases studied in Grosu and Landman 2008).  In this sense it is the natural place for modal minimalizer/mazimalizer operations like H to be introduced.   Thus, an advantage of the analysis is that it puts the modal minimalizer/mazimalizer effects in the grammatically plausible place. 

17.  ADJECTIVES AND COMPARISON SETS

17.1 DETERMINING HIGH AND LOW

In context k we are given the basic scale for H in k and its converse; k determines two points, HIGHH,k and LOWH,k, and the semantics of the adjectives is:


[AP tall]    (
λδ. δ >H HIGHH,k

[AP tall]    (
λx. H(,w(x) >H HIGHH,k

[AP short] (
λδ. δ <H LOWH,k


[AP short] (
λx. H(,w(x) <H LOWH,k
I assume a classical semantics, so that:


[AP not tall] (
λδ. δ (H HIGHH,k

[AP not tall] (
λx. H(,w(x) (H HIGHH,k
The values, HIGHH,k and LOWH,k are context dependent.  We are now interested in how these values are determined.  We assume that context k determines H-context kH which contains the relevant factors for H.


Given measure H. 

An H-context is a pair: kH = < Ck,H,Mk,H> where:  


1. Ck,H , the comparison frame, is a tuple <Xk,H, Lk,H , Sk,H Nk,H> 


    where Xk,H is a comparison set, and Lk,H Sk,H and Nk,H  are explained

                below.


2. Mk,H  is a method for assigning or calculating the values HIGHk,H and 

                LOWk,H.   Mk,H(Ck,H) =<LOWH,k, HIGHH,k>
As Kamp, Klein, Kamp and Partee, and many others have shown, the selection of the comparison set is highly context dependent, and negotiable in discourse (meaning that we readily adopt and accommodate changes in the comparison as the discourse evolves).

Look at:


(1) a. Gulliver was not a particularly tall man.

                  b. Though not particularly tall, in Lilliput, Gulliver was huge.

In (1a) we set the comparison set, in context, to the set of Englishmen that Gulliver mixes with.  In (1b), we keep the same comparision set for the first part of the statement, but, we change the comparison set to the set including Gulliver and the inhabitants of Lilliput.

Also the methods for calculating HIGH and LOW are highly context dependent and discourse negotiable.

Often, what Mk,M does is choose a middle point  MIDH,k and a distance δH,k and set:


HIGHH,k = MIDH,k +H δH,k
LOWH,k =  MIDH,k ¡H δH,k
How the middle point and δ are chosen varies.  

This happens for instance in: 

The method of the majority: 

-Make a graph of numbers of people against their height.  Set MIDH,k to the height of the majority.  Move in the graph on either side to the first height where the number of people is getting significantly less than the height at MIDH,k.  Set δ to the difference between these two heights.

The method of the average: 

-Similarly, but with avarage height, instead of majority height.

But other methods are possible.  For instance:  the following method is individualized and does not first determine a mid point:

The Rothstein method:
LOWH,k is the height (from the ground) to the pupil of your eye (if you look straight ahead and you see the crown of Mary's head, she is short).

Now take a person (with an idealized average head) whose pupil is at the same height as the crown of your head.  The height of his or her crown is HIGHH,k (if Jane looks straight ahead and sees the crown of your head, she is tall).

Since the method is individualized, it is obviously bound to lead to more discourse negotiation than others.

In general, we expect different kinds of methods to be semantically relevant, because that is what we seem to find for many and few (see Lappin), and this seems to be the same ballpark.

Let's think about an example.

We start – because it is an example – with the set A of existing elephants and a very small comparison set, {e1,e2}.  

For reasons to become clear, this is a patently unnatural comparison set, and hence a completely unnatural context, but it will do for the example.  

Let us assume furthermore that H((e1) <H H((e2).  

We need to assume a method for setting HIGH and LOW.   Let us assume that we use the method of the average in X:

HIGHk,H =  (({H((x): x ( X}) + δ.

                              |X|

We don't know at this point what δ should be.  Let us assume, for instructive purposes, that in this small context we set δ = 0, and that in this example we keep it at 0.  

(This is  not particularly natural.  More natural would be to assume that δ gets reset in the process of more comparison objects coming in.  Since that effect is similar to the effect I am discussing here, I will use the simpler model here for the example.) 

 We get:

HIGHk,H =  ½H((e1) + ½H((e2)

Since, H((e1) <H H((e2), it follows that:

H((e1) <H HIGHk,H <H H((e2)
On the almost (but not quite) naïve semantics given:


TALL(x) is true in k if H((x) >H HIGHk,H

It follows that:

(TALL(e1) ( TALL(e2) is true in context k.
Now we add a third elephant to the comparison set e3: 

we go to context k'  with Xk',H = {e1,e2,e3},

Let us assume that:

H((e2) <H < H((e3)

In fact, for the sake of the example, let us assume that:


H((e3) ¡ H((e2) = H((e2) ¡ H((e1) 
In that case:  1/3H((e1) + 1/3H((e2) + 1/3H((e3) = H((e2).  

Hence what follows is:


(TALL(e3) ( (TALL(e2) ( TALL(e1) is true in context k'.
Thus, in the transition from k to k' the truth value of TALL(e2) has changed:  e2 no longer counts as tall.  When we add a fourth object, the truth values may flip flop again.  

The idea is, however, than when the context set becomes big enough, the flip-flop effect becomes less and less.  

Thus, adding Hagrid to the comparison set may bias the assesment of tallness of an average basketball player for a while (since he is so much taller than them), but when the comparison set is rich enough, also our basketball players will stabily come out as tall. 

On the other hand, there may well be individuals that in A, on the method of averaging, stay true borderline cases.  I will say more about this below, when I introduce the full comparison structures.  As we will see, for true borderline cases, the truth value of d is tall keeps flip flopping.

On this theory, the linguistic, semantic meaning of tall is 'above HIGHH'.  

Tall doesn't mean semantically 'taller than the average', it means 'above HIGHH'.  

It may well mean 'taller than the average' pragmatically, namely in a context where the method for establishing what counts as HIGHH is the method of averaging.  

17.2 COMPARISON FRAMES AND SMOOTHIES

Let D be the domain of possible objects, w0 a possible world.   

Ck,H , the comparison frame, is a tuple Ck,H = <Xk,H, Lk,H,Sk,H,Nk,H> where:


0. Xk,H ( Lk,H ( Sk,H ( D

1. Xk,H is the comparision set for H in k.


    Xk,H  is a finite set of objects existing in w0.

2. Lk,H is the limit set for Xk,H.


    Lk,H  is a finite set of objects existing in w0.

3. S​k,H ¡ Lk,H is the set of smoothies for Lk,H 
    Sk,H ¡ Lk,H is a countable set of objects not existing in w0. 
4.  Nk,H is the set of normal H-pattern encoding worlds, extending Xk,H through 

     Lk,H to Sk,H.
A world extending Xk,H through Lk,H to Sk,H is an enumeration w of Sk,H. 

whose initial part is an enumeration of Xk,H and

whose middle part is an enumeration of Lk,H ¡ Xk,H.
Let WX,L,Z be the set of all worlds extending Xk,H through Lk,H to Sk,H. 

 Nk,H is a subset of WX,L,Z.

We think now of our discourse participant as a scientist, and the comparison set as her sample set.  Let's say that  our scientist is trying to determine what counts as tall for an elephant, and her sample set is the set of elephants she has measured all over European zoos.  With this, she may declare Jumbo tall, because Jumbo is δ above the average in sample set XH,k.   

In this case, she is making a statement which is directly linked to her sample set, and hence may be quite instable: when she has sampled more elephants, she may discover after all that Jumbo isn't as tall as she thought, for an elephant, that is.

Alternatively, our scientist may be convinced that she has collected a big enough sample to draw conclusions about the size-patterns among elephants.  At this point she is prepared to make a more sweeping claim:  Jumbo is really tall (for an elephant).  Note: not very tall, but really, clearly, distinctly tall.  At this point, our scientist is making the claim Jumbo is tall not simply on the basis of the comparison set, but on the basis of the comparison set and the height pattern.   
A world extending Xk,H a way of adding new relevant comparable objects to the data set. Ideally, we add all the relevant existing elephants (though relevant is important here:  we are dealing with genericity here, so we may explain why we exclude certain kinds of elephants, elephants with certain abnormal gen combinations, etc.).  Thus our world w extends Xk,H to Lk,H , by adding the objects from Lk,H to Xk,H in a certain order.  Let us for the moment ignore what happens after that.

While set Lk,H is taken to be finite, it is usually to big to be available for inspection.  The idea is, however, that if there is a certain patterning in height within the relevant population (i.e. within Lk,H), then, if we are careful, we can make that patterning visible on the enumeration branches, on the worlds extending Xk,H.  
That is, if we are careful to look only at enumeration branches extening Xk,H  where the order of objects coming in is normal, in that it is not biased for height, then if there are enough objects involved, the general picture of the height distribution gets established on an enumeration branch at some stage, and doesn't change after that in essential ways.

This means that from the set of all enumerations, all worlds extending XkH through Lk,H to Sk,H, we leave in, in the set of normal worlds, only worlds in which the object addition process is reasonably normal, reasonably as expected given the height distribution that gets estabished.  

That is, given the distribution of actual elephants across the Height spectrum, we expect, in a random sample, the elephants to come in a certain normal distribution:  a world that first adds all the midgid elephants and keeps the majority of normal-up-to-giant elephants up its sleeve, to be pulled out triumphantly at the end, is a world that is biased for height, and not normal.  Such worlds are not included in Nk,H.
The idea is this.  Our scientist has observed a pattern in the data in het sample set.  She thinks that the pattern is a true generalization.  If it is, then, in the pattern preserving worlds extending her sample set, the pattern should stabilize in the addition process.

We now come to the smoothies.

We think of each world w in Nk,H as establishing a certain hight pattern.  The smoothies in Sk,H ¡ Lk,H are there to intensify or smoothen the pattern.  

The idea is the following:  in Lk,H we have established a certain distributions of the actual objects along the height spectrum (in w0).  The height-smoothies are objects that in w0 are only possible objects.  


The height of smoothies:
We extend measure function H(,w0 to measure function H(,w0S, the function which 

assigns to all objects existing in w0 the same height value as H(,w0 does, and that 

assigns to the smoothies in Sk,H ¡ Lk,H height values in such a way that the 

smoothies are distributed over the height spectrum according to the pattern that  

underlies in w0 the height distribution of the objects in Lk,H.
What we said about the normality of worlds in the extension from Xk,H to Lk,H holds too in the extension from Lk,H to Sk,H:  the order in which the smoothies come in w is restricted to normal patterns, patterns that are not biased inappropriately with respect to the height distribution:  the actual clustering of objects across the height spectrum makes some predictions as to how new objects coming in are to be distributed along the spectrum.  Deviations from this pattern are tolerated along world to some extent, but if the pattern deviated too much, we suspect interfering factors, and we put the world aside.

I have made the set of smoothies for Lk,H countably infinite.   In a way, the idea is just that you have as many smoothies available as neeeded.  Importantly, the height distribution of the smoothies in w is not 'checked' for the whole set of smoothies, but is checked along the branch.  That is, when I said above that the smoothies are distributed according to the pattern that underlies the height distribution of the objects in Lk,K I do not mean that we compare the height distribution in Lk,K directly with that in Sk,H. Rather, we compare the incremental height distribution along the branch w from Lk,K upwards into Sk,H.  (The reason being that the height pattern may be invisible on the completed infinity of  Sk,H).
With this we can introduce a series of semantic notions:

Let φ be a formula, Ck,H = <Xk,H, Lk,H,Sk,HNk,H>, w a world extending X through L to S. 
φ t-stabilizes on w iff for some n: φ is true relative to context set {w1,…,wn} 

                                     and for every k>n: ( is true relative to {w1,…,wn,…,wk}. 

φ f-stabilizes on w iff for some n: φ is false relative to context set {w1,…,wn} 

                                    and for every k>n: ( is false relative to {w1,…,wn,…,wk}. 

φ stabilizes on w  iff φ t-stabilizes on w or φ f-stabilizes on w.
φ is instable on w iff φ does not stabilize on w.

φ is t-stable in k iff  φ t-stabilizes on every world in Nk,H
φ is f-stable in k iff  φ f-stabilizes on every world in Nk,H
φ is stable in k iff φ is t-stable in k or f-stable in k, otherwise instable in k.
φ is strongly instable in k iff φ is instable on every world in Nk,H.
I add for later use another notion:

( is almost t-stable in k if 

1. ( is not f-stable on any worlds in Nk,H.
2. ( is not t-stable on some worlds in Nk,H. 


3. In each world in Nk,H, stages where ( is false are rare in comparison to stages 

                where ( is true.  (This comparative frequency is measured along the branches, 

                for instance, incrementally)

We can introduce into the language model operators S, where: 

S(φ) is true in k if φ is t-stable in k.


A(() is true in k if ( is almost t-stable in k
And we can assume that S is an operator which can be pragmatically accommodated.  

That is, when I utter 

Jumbo is tall 

in a context k, this may be taken as a local, non-modal statement to the effect that Jumbo is smaller than the average of elephants in the sample set in k.  But it can also be taken as a much stronger modal statement: 

S(Jumbo is tall), 

meaning that on all reasonable ways of extending your sample, Jumbo's hight is going to be above the average for the extended samples.  

We could express this also as:


Jumbo is really, clearly, distinctly tall
or express the same intonationally and non-verbally:


Jumbo is (pause) TALL (nodding your head with an impressed expressing).

17.3 THE SORITES PARADOX

Here is a version of the paradox:

(1)  Someone who is 1 meter 50 is short.

(2) (x(y[ if x is short and y is indistinguishably taller than x, then y is short]


(3) Someone who is 1 meter 95 is short.

Let us set up the relevant constraints.  Let us assume that we are talking about the set A of human beings, let's make them adult and Dutch.  

The comparison set will determine the interpretations of short and tall but does not determine the domain of quantification.  

We will assume that if you were to put all Dutch people in a hight line, you will find for each person between 1 meter 50 and 1 meter 95 meters a person who is indistinguishably taller than that person.  

For our purposes  every relevant model for this inference contains the domain of actual Dutch adults in world w0 as specified above, containts a fixed interpretation for is indistinguishably taller than: λδ2λδ1. δ1 >H δ2 ( δ1 ( δ2, where indistinguishably means: as far as our eye, or measure instruments is concerned.

So these factors we keep fixed.  Our models differ in that they can chose different height context kH.  
This means that the above inference is valid on the specified models if in every context where the premisses are true, the conclusion is true as well.

This is a static notion of entailment, and on this notion, the sorites entailment comes out as trivialy valid.  The reason is that premise (2) doesn't come out as true in any context k.

Let k be a context.   There are Dutch people who are 1.50, so whatever method is chosen to determine who is short in context k, they must count as short, to make premise (1) true.  

The semantic, however, is classical.  We have assumed that there is in the domain a sequence of pairwise indistinguishable Dutch adults from 1.50 to 1.95, and the classical semantics will tell us that some object d1 is the line is short, but d2, the next, one up is not.  Thus, premise (2) is not true in k. 

The point of the paradox is that this is an uninteresting sense in which the inference is valid: if the paradox is compelling, then surely not for the reason that the classical semantics makes premise (2) false in every context.  If anything, that goes against the intuition that there is a sense in which premise (2) is true!

What happens, I think, is the following.  We have been using so far in our examples as method for calculating LOWk,H the method of averages.  

The second premise of the argument can be naturally  interpreted as a different method for calculating LOWk,H.  


THE METHOD OF THE PREMISES:

We chose an object d1, such that Hm(d1)=1.50 let Xk,H = {d1} and set LOWk,H at 1.50 + ε, where ε is small. 
We go from context k to context k+d by adding object d to the comparison set.

We constrain LOWk+d,H as follows:



      t<H({Hm(x): x ( Xk,H ( Hm(x) <H LOWk,H} ( {Hm(d)}) + ε





if for some x' ( Xk,H: H((d) ~ H((x') 
LOWk+d,H  = 


      LOWk,H

otherwise
This is a dynamic constraint on context revison.  And the intuition is: we try to keep short closed under indistinguishable values.  


With this method, the second premise because dynamically plausible:


For all contexts k and d1 and d2:

 If d1 is short is true in k and H((d2) >H H((d1) and H((d2) ~ H((d1), then, given 

the method of premise 2, d1 is short and d2 is short are both true in context k+d1.
Now, let us assume context kH = <Xk,H, Lk,H,Sk,H,Nk,H>.

We are interested in what happens on the worlds in Nk,H.  

Xk,H is our sample set of adult Dutch people, Lk,H is the set of all adult Dutch people.  

Each initial stretch wn of world w ( Nk,H  can be seen as a virtual context extending k.    Given that, along the sequence the value of LOW gets reset from LOWwn to LOWwn+1.  

Since all Dutch people eventually come into world w, and, by, assumption, we have a sequence of indistinguishability pairs, LOW gets pushed up higher and higher:  as soon as we come along any person d, indistinguishably taller than a person who so far counts as tall, we push LOW up.

Now we assume that there are enough Dutch people so that we can in principle make many such indistinguishability chains, and we assume that along our worlds, the individuals coming in are not chosen in any order related to height.  Given this, if at stage wn, HIGH is pushed up to a certain point (but not yet the extreme),  there is always an individual not yet in the enumeration taller than, but indistinguishable from someone already in the enumeration.  This means that there will be a stage in w where that object gets added and LOW is reset to above that object.  

This means that in every world w in Nk,H reaches a stage where everybody who is 1.95 is in the enumeration and part of an indistinguishability chain upwards, and hence at that stage, anyone of these 1.95 people counts as short.  Thus, it follows that:


S(Someone who is 1.95 is short) is true in k.

Thus, the conclusion that follows is:  someone who is 1.95 is short is t-stable in k. 

For this argument to go through, we need to liberalize for the moment a constraint on our models, namely that LOWk,H <H HIGHkH.  Let's assume that for the moment.

Obviously, then, a similar argument will then show that:

someone who is 1.95 is short is t-stable in k. 

This is the conclusion that my daughter reached with great hilarity when exposed to the paradox at a tender age at the dinner table:  A dwarf is tall ….and a giant is short!

What goes wrong?

First of all, the following.  I have called the constraints imposed the method of the premises, suggesting that the premises all by themselves give you a viable method for determining the value of (in our case) LOWk,H.  

 But, on second thought, this is not a viable position (apart from the fact that it leads to the paradox). 

The problem, the method relies on the availability of indiscernable objects to determine the contextual value of LOWk,H.  According to the method, you must start out somewhere.  Let's make the not so improbable assumption that we out at an object d0 and context k0 with Xk0 = {d0}, where d0 is an excellent example of the 'prototypical very short adult Dutch'.  For instance Hm(d0) = 1.50, which is indeed very short for an adult Dutch person.  LOWk0,H = 1.50 + ε.

Now we make k0 part of a normal context k with comparison set Xk,H. What happens with LOWk,H?  Well, that depends on Xk,H.  Let us assume that the objects in Xk,H themselves form a normal distribution over the height spectrum. (Note that I didn’t impose this as a requirement:  normality of distribution is a requirement on the extensions above Xk,H, but there is no reason not to assume that normally in a comparison set the height distribution is pretty much normal.).  Then it depends by and large on the size of Xk,H what LOWk,H is.

-If Xk,H is small, then, since the distribution of objects over the height spectrum is normal, the chance that there is much of a chain of indiscernables up from d0 is very small.  Which means that LOWk,H  is most likely to be still where it was at 1.50 + ε or thereabouts.  

-If Xk,H is large, then,  since the distribution of objects over the height spectrum is normal, if there is a considerable chain up from 1.50 + ε, the chance that the chain goes all the way up to the tall objects is considerable, which means thah LOWk,H has fallen prey to the poaradox.  The reason is that the normal distribution of Dutch is obviously on the thin side in the low region along 1.50.  If it is thick enough to produce a chain of indiscernables up from 1.50 to, say, 1.63 (an area where the number of Dutch with that height starts to grow), you can be sure that if the distribution is pretty much normal in Xk,H there is going to be a chain much higher up, simply because you are much more likely to find indiscernables in the area between 1.63 and 1.85.

This means that the method of indiscernables, as a method for determining the meaning of short, fails completely:  it is not able to extend the meaning up from very short to include reasonably short up to on the taller side of short without going all the way up to far.  

It doesn't help if we were to increase the increment:  i.e. instead of requiring the taller one indiscernably taller to make the taller one a bit taller.  

This would make it easier to push LOWk,H up, since you don't need to wait till indiscernables come in, so it would already work on smaller comparison sets, but, obviously, that only means (on normal distributions) that it goes wrong earlier.  

Or in other words:  that it is less intuitively acceptable as a method for determining LOWkH in the first place  (you shouldn't accept:  if x is short and y is an inch taller than x, then y is short, because x may be just on the taller side of short,and you wouldn't accept that someone an inch (ca. 2.5 cm) taller than x counts as short.

It is clear what the reason is that the method of indiscernables goes wrong as a method for determining LOWk,H: it doesn't have a criterion to stop, and obviously, the meaning of short does involve a criterion to stop.  That's why the paradox leads to contradiction, because the method of the premises will always conflict with the criterion to stop.  

In other words, since the method of the premises doesn't work – not even on small sets – minimally, we must assume that there is in context k some other method for determining LOWk,H, a method independent of the method of indiscernables.

-For instance, the method of avarages, or the method of eye-height, or a method of  distance up from the prototype, etc.  

This de facto removes the method of indiscernables from the determination of LOWk,H.  This, of course, doesn't by itself remove the paradox.  Even though the second premise conflicts with any working method for determining LOWk,H, it is not obviously false, that is, of course, what brings in the paradox.  So let us analyze with precision what the current theory predicts about the truth conditions of premise (2).  

I will take the inference schema as taken to be a generic inference pattern, which means that it quantifiers over a domain which includes real and possible objects, more precisely:  actual adult Dutch and adult Dutch smoothies.  

Let us assume that we use the method of avarages for setting LOW:  

LOWk,H = AVERAGE(Xk,H) ¡ δ.

Initially, on a small comparison set, all statements of the form SHORT(x) may flip flop for a while, so let us assume that Xk,H contains a considerable sample of adult Dutch, reasonably distributed over the height-spectrum (say, we've been busy all day measuring adult Dutch (and the heels of their shoes) in the Kalverstraat in Amsterdam on shopping Sunday afternoon).  Our sample is big enough so as to allow within Xk,H unbroken chains of indiscernable pairs upward from 1.50 to 1.95.  

Now, our method of measuring may not be so precise, but our method of calculating is competely precise.  This means that in k, where it is fixed what Xk,H is, it is fixed what AVERAGE(Xk,H) ¡ δ is.  

And this means that for any indiscernability chain d1…dm in Xk,H there is going to be one pair <dn,dn+1> where Hm(dn) <H LOWk,H and (( Hm(dn+1) <H LOWk,H).

But the boundary is not fixed.  Take a given pair <dn,dn+1> in such a chain. 

in k SHORT(dn) ( (SHORT(dn+1).  This statement hasn't stabilized on w:  for instance, we we expect that when the data grows the way we think it going to grow from here, LOW is likely to settle at a value a bit higher than both.  The truth value hasn't stabilized on w, but it will stabilize later on:  in the end SHORT(dn) ( SHORT(dn+1) will become stabily true.

Something similar holds a bit higher up in the chain for the pair <dp,dp+1>  While at stage k, (SHORT(dp) ( (SHORT(dp+1), dp's value outside short may not yet be stable:  adding more objects may for a while make the  balance shift in the other direction and, say, in context k'  we find SHORT(dp) ( (SHORT(dp+1).  

Again, we may predict that in the long run k's decision will win, and both dp and dp will stabilize as not short.  

But on each branch there is is a region –  on our branch somewhere within dn+1 … dp – 

where on the method of averages the truth value is not going to stabilize.  This is the area of the true borderline short adult Dutch (on the method of average minus δ).  

For these people x, when the comparison set grows big, it will continue to depend on the next stretch of additions to k what the truthvalue of SHORT(x) is going to be:  the next set of additions are by assumption normal with respect to the height distribution, which means that they may well show some advantage either to the low side or the high side.  And this may well make the value of LOWk,H come out just below or just above their height  (in particular if we take into account that we measured the height with some imprecision, so that the height given really stands for a margin or error interval.)

Now, at some point k* Xk*,H = Lk*,H, the set of all actual Dutch.  And at this point, as far as reality is concerned the buck stops.  If we stopped here, then also for these borderline cases x the truth value of SHORT(x) would stabilize arbitrarily on the truthvalue of SHORT(x) in relation to LOWk*,H, and since that is the endpoint, that truth value would be trivially stable.  

But that misses the point, and that is what the smoothies are for.  The world doesn't stop here, but the pattern gets frozen here.  We take the height distribution reached at k* as given, and continue to add new (this time possible) adult Dutch, in a process that would be the normal extension of the process up to k*, given the distribution found in k*.  

The idea is that, if possible objects are added according to the pattern established in k*,  the value of LOW will continue to wobble around the value found in k*:  we add possible objects in a sequence that would be reasonably normal given the distribution over the height spectrum in k*, this may well at some stage lower the value of LOW a bit, making our borderline statement SHORT(x) false, but since the extension process is normal, after that we are likely to find for while a stretch which is more dominantly on the high side of the spectrum, and the value of LOW will go up a bit, making SHORT(x) true again.  

The identity of the smoothes is, in this quantitative context, obviously immaterial.  The worlds in Nk,H  are branches which represent different orders in which ultimately the same actual and the same possible objects are added to the context set.  This means that ultimately, as far as the actual objects are concerned, the branches settle on the same set of borderline cases a for which the statement SHORT(x) is instable.

(All of this is, of course, given a method for calculating and a choice of comparison frame.)

In fact, what we expect to find is the following.

Given an indiscernability chain d1 …dm.

We expect that for for each branch w there is an n such that d1…dn  are stabily short on w

                                         and there is a p+1 such that  dp+1 …dm are stabily not short on w

On branch w, above n, we expect to find a range dn+1 …dq of objects that are almost stabily short and a range range dr+1 …dp of objects that are almost  stabilily not short:

These objects get the opposite truth value exceptionally, when the range of normalily goes exceptionally against their height (but, of course, within the bounds of normality).

So we find some but few flip-flops for these objects.  

Towards the middle flip-flops should increase, and the middle area dq+1…dr the objects flip-flop sytematically.

Note that while for each branch we find a division like this, it remains to be seen whether these divisions are made at exactly the same points on each branch.  We may allow for some variation depending on the variation in the normal addition process.

What does this mean for the paradox?
We already saw that the second premise was statically false:

(2) (x(y[ if x is short and y is indistinguishably taller than x, then y is short]

In context k, the cut-off point is determined arbitrarily, hence 

for some <dn,dn+1>:  Hm(dn) <H  Hm(dn+1) ( Hm(dn) ~  Hm(dn+1) ( 

                                 SHORT(dn) ( (SHORT(dn+1) is true in k.
If we look globally, at what happens in each world, this is not going to change:  not only is (2) false locally in context k, but it is in fact stabily false in context k.  

The reason is that at each stage wn of any world w, the semantics is classical.  That is, at each such stage for each chain of indiscernable pairs the distinction between the ones that are short and not is made somehwhere.  The stability theory says that it is not always made at the same point.  nevertheless, when the world w is big enough to include full chains of indiscernable pairs in its comparison set, there is at any such stage wn an instance which falsifies (2) at that stage.  And this means that (2) is stabily false in k.

So far, then, the stability theory doesn't help us at all:  we still cannot find any context where the second premise true, which avoids the paradox, but at the cost of not accounting for the intuitive plausibility of (2). 
We can use the stability theory, however, to extract as much as we can of the plausibility of (2).  

The idea is this.  A quantificational statement like every cat is intelligent may be literally false, and still be a perfectly viable generalization if the following two conditions hold: 1. Almost every cat is definitely intelligent 

2. The cats that are not definitely intelligent are borderline cases of intelligent cats, on the intelligent side of the border. 

Note that I use the term viable generalization rather than generic truth.  We're interested here in a particular instance of generic truth.  As is well known, in general, the connection between genericity and universality is much less direct (truth for almost all instances is, for instance, not a general requirement). 
Let us define the definition schema for the notion viable generalization:

(x( is a viable generalization in k if:


a.  For almost every d ( Lk,K: S(([d/x]) is true in k. 
( is t-stable in k for almost every actual object in Lk,H.

b.  For every d ( Sk,H: S(([d/x]) ( A(([d/x]) is true in k.

( is t-stable or almost t-stable in k for every object in Sk,H. 

This is the definition schema, in our case, this schema gets generalized to pairs of objects.  I give a formula with generalized quantifiers over pairs:

(2) (x(y[ if x is short and y is indistinguishably taller than x, then y is short]

(2) is a viable generalization in k if:
     a. ALMOST ALL[λyλy. Lk,H(x) ( Lk,H(y) ( Hm(x) <H Hm(y) ( Hm(x) ~ Hm(y),

                                                λyλx.S(SHORT(x)) ( S(SHORT(y)) ]

For almost all actual indiscernible pairs where the smallest is stabily short, the larger is also stabily short.

     b. 
             ALL[λyλy. Sk,H(x) ( Sk,H(y) ( Hm(x) <H Hm(y) ( Hm(x) ~ Hm(y),

λyλx.S(SHORT(x)) ( S(SHORT(y)) ( A(SHORT(y)]

For all indiscernible pairs where the smallest is stabily short, the larger is either also stabily short, or almost stabily short.

This means that the only exceptions to the universal pattern in (2) found are pairs where the smaller one is stabily true, and the larger one allows only branches on which it is t-stable or branches on which it is instable (so no branches on which it is f-stable), and on the branches where it is instable, looking incrementally, f-stages are rare in comparison to t-stages.  

Now in a reasonably rich example, like that of the elephants, these conditions are naturally satisfied for the predicate short.  

In other words, though (2) is locally false in natural context k (false in k), and though (2) is globally false in natural context k (t-stable in k), (2) is nevertheless a viable generalization in k.

As far as the sorites argument is concerned, the following follows:

We accept premise (1), someone who is 1.50 is short, as stabily true in in reasonably rich context k with comparison sets of adult Dutch.  Since k is reasonably reach, the method of averages will give you this unproblematically.
premise (2), someone who is undiscernibly taller than someone short is also short, we accept, but not as a literal truth in k, but as a viable generalization in k.   This is reasonable and unproblematic.   

 It does not follow that we must accept conclusion (3) in context k.

Thus, we account for the pragmatic plausibility of accepting both premises in a normal context, without being forced to accept the conclusion.

In what does the persuasiveness of the paradox lie?  In the tempting, but false illusion that premise (2) can be regarded as a method for determining LOWk,H.  This looks indeed just plausible and temptingly recursive:  determine who is really short, and make someone short if he or she has roughly the same height as someone already determined to be short.  It is only on second thought, on analysis, that you realize that that just won't do as a method of determining LOWk,H.
17. 5 A NOTE ON CONTEXT DEPENDENT COMPARATIVES
From dimensional expression α we derive both the gradable adjective αadj and the comparative α-er.  While the adjective   

While the adjective meaning is standardly context dependent, in that it depends on the comparison set, mostly, the comparison meaning is not.

So, whether or nor Iwana is tall is true depends on the comparison set (giraffes, in this case), but whether or not Iwana is taller than Adam is true does not similarly depend on the comparison set.   

There are also dimensional expressions, mainly those that involve an evaulative component, where the comparision relation itself is context dependent.

(1) 

a. The Da Vinci Code is better than Middlemarch [Out of the blue, say, the film], but… 
b. Middlemarch is a better book than the Da Vinci Code, but…

c. The Da Vinci Code is a better book than Middlemarch to read on the plane, but….

d. Middlemarch is a better book than the Da Vinci Code, to read on the plane, if you're 

     sitting next to George Steiner, but…

e. The Da Vinci Code is a better book than Middlemarch to read on the plane, if you're 

     sitting next to George Steiner,  but he's in a jolly mood, but….

How should we deal with this context dependency?  Obviously, we can intruduce more context dependent scales, scales in which also the measure Mk is context dependent.   Notice, however, that what flips the truth value here are general situational conditions, more than specific comparison set constraints.  That is, the context dependency we see here is what we see for adjectives as well, on top of the comparison set dependency.  

(2) 

a. Middlemarch isn't good, but…

b. Middlemarch is a good book,  but… 

c. Middlemarch isn't a good book to read on the plane, but… 

d. Middlemarch is a good book to read on the plane if you're sitting next to George 

    Steiner, but…

e. Middlemarch isn't  a good book to read on the plane if you're sitting next to George 

    Steiner, but he's in a jolly mood, but…

In fact, what we see here is that the comparison set interpretation of the adjective plays a dominant role in the cases (like 2a and 2b) where the situational constraints are unspecified.  When the situational constraints  become specified  - as in the cases from c. onwards –  the comparison set moves into the background:  books are now evaluated  with respect to how well they satisfy the needs of the moment.

That is, if at first we may well be interpreted to mean that a book is a good book, partly because it is better than so many other books, this becomes irrelevant in c:  good here means just: suitable to overcome the boredom of the flight.

In the almost (but not quite) naïve theory, what varies with situational constraints in context dependent comparatives like better, is the values assigned by the measure function G(,.  This is where these comparatives  differ from non-context dependent comparatives like taller.  

Under normal circumstances, situational constraints like where you are (on a plane/on the ground) with whom (sitting next to George Steiner/Ofrah Winfrey), etc. do not affect the values of the measure function H(,, and hence cannot flip the comparision relation 

λyλx. H(,(x) >H H(,(y) around.  Such conditions do effect the relation 

λyλx. G(,(x) >H G(,(y).  
Of course, I have been leaving out the world parameter here.   And I have been assuming all along that world is short for sequences of indexical parameters.  And the situational dependency in better in (1), is of course similar to the temporal dependency of all comparatives:

(3)  a. Buck was taller than Chuck, at birth, but…

       b. Chuck was taller than Buck, when they got weighted first in Tipat Halav (infant 

           care), but…
       c.  Buck was taller than Church, when they went to kindergarden.

Obviously, the one thing that is different is the incrementaly of situational conditions (if A, if A and B, if A and B and C,…).  The latter is, of course, exactly the kind of modal setting conditions that have been studied in counterfactuals (e.g. Lewis 1972).

In other words, we are dealing with relations:


λwλyλx. H(,w(x) >H H(,w(y) 

λwλyλx. G(,w(x) >H G(,w(y).  
The values of measure function H only vary with parameter time in w, but the values of G vary with more and different situational factors.  Thus, contexts k  themselves become papameters in measure functions (or rather, we assume a correpsondence mapping).  

Obviously, the relation between incremental notions of context and functions that depend on contextual parameters needs to be formulated explicitly, most appropriately in a dynamic theory of context.  But, it seems, once the nature of the context dependency is understood correctly, we do not need to make the theory of comparatives ultra context dependent.  

In particular,  in the notion of scale we have developed here, the scalar points HIGH and LOW are obviously context dependent, as they should be.   While there is some context dependency concerning measure and unit, we do not need to assume extreme context dependency of measure, since we can pack the context dependency in the measure function, where we need it anyway.

Thus, we do not need to assume, to deal with example (1), a sequence of measures
Mk1,…Mkn, for contexts:

k1
k2 = k1 restricted to books

k3 = k2 restricted to objects useful for plane trips

k4 = k3 restricted to situations where one sits next to George Steiner.

etc…

The restrictions mentioned enter into the situational restrictions upon world parameter w0.   

This allows us to keep the comparison theory more workable.

18.  THE CONCEPTUALIST PROGRAM
What I call here the Conceptual Program was initiated by Kamp 1975.  The fundamental idea is that the notions of degrees, scales, and comparison are conceptually derived notions, derived from the basic semantics of the adjectives. 
The idea is that we start out with a theory of adjective meanings.  For Kamp, whose main aim in Kamp 1975 is to develop a theory of vagueness, this is provided by the theory of vagueness, in terms of vagueness models (partial models and their precisifications).  

Kamp uses the topology of partial interpretations and precisifications to define a 

comparison relation.  Following the spirit of representation theorems for Boolean algebras or event structures (see Kamp 1979, van Benthem 1983, Landman 1991), the Conceptual Program's aim is to prove that if we constrain the axiomatic theory of adjective meanings well enough (so that the presence and absence of the relevant relations are witnessed) with (hopefully) conceptually plausible axioms, we can prove that the comparison structure thus defined is rich enough to be isomorphic to the comparison relations that naïve or almost (but not quite) naïve theories use as primitives in the semantics of comparatives and adjectives:




measure structures





           equivalence classes




comparison relation






definition


          conceptual structure of adjective meanings

  isomorphism




         underlying comparison relation

Kamp doesn't actually do this in his paper, but it clearly is the spirit of the program, and the spirit of later works in the same program (like  Klein 1980), and also recent work like van Rooy 200?.

In the discussion concerning such a conceptual reconstruction of the notion of comparison there are two steps that are to be scrutinized:

1.  The adequacy and naturalness of the derivation of the measure structures from the fined comparison relation.  This discussion I will postpone to the next section.  

2. The adequacy and naturalness of the basic definition of the comparison relation.  This is the topic of the present section.  I will look at three types of definitions here, the one by Kamp 1975 and others following that (like Landman 1992, Sassoon 200?); the one from McConnell-Gines197? and Klein 19?? following that; the one from Klein 19?? and van Rooy 200? following that.   

18.1 KAMP

Let me, for ease of reference, introduce the basic concepts of Kamp's theory of vagueness, 

Let L be a language for predicate logic with only variables.

     A partial model for L is a structure M = <D,F+,F¡> where:


1. D ≠ Ø


2. for every n-place relation P:  F+(P), F¡(P) ( Dn
                                                               F¡(P) ( F+(P) = Ø

     A partial model M for L is total iff for every n-place relation P: F¡(P) ( F+(P) = Dn
     Let M1 and M2 be partial models for L:

     M1 ( M2, M2 is a precisification of M1 iff


1. DM1 ( DM2

2. for every n-place predicate P:  F+M1(P) ( F+M2(P)





     F¡M1(P) ( F¡M2(P)
A vague model for L is a triple <M,AM> where:


1. M is a partial model for L.


2. AM is a set of partial models for L such that:


    For every A 2 AM: either AM ( M or M ( AM.


3. The maximal chain condition:


     For every maximal chain C= A0 ( … ( An ( …of models in AM:


     (C is a total model and (C ( AM.

An alternative formulation for the maximal chain condition is:

     The maximal chain condition:
     For every A ( AM there is a total model C ( AM such that A ( C.

CM is the set of total models in AM.

This is equivalent to the formulation of the theory in terms of Kripke models formulated in the exposition of Kamps' theory in Landman 1991 (following Fine 1975).  

What vague models encode is well known: adjectives (one place predicates) are vague, this means that they are interpreted in a partial model (a precision state), and in that model the interpretation function specifies for, say, tall, the objects that are tall according to that precision state (F+(TALL)), the objects that are not tall according to that precision state (F¡(TALL)), and the objects in the gap, the borderline cases.  

The vagueness of an adjective in a precision state is measured modally by looking at precisifications of the precision state.  The intuition is that vagueness does not mean that you cannot draw a precise border, but that you can draw that border in different ways.  

The truth of a comparative statement x is taller than y in a given precision state s is defined in terms of the truth value of x is tall and y is tall in precision states that relate to s by the relation of precisification.  The definition of the truth conditions for the comparative is essentially modal.  Kamp only defines the comparison relation for objects that are not in the positive or negative extension of the predicate.  There are different ways to improve upon that.  I give one here (for another, see Sassoon 200?)/

Let us assume that the logical language contains two modal operators, with the following semantics:


9Eφ0A,g = 1 iff for every A' ( AM: if A ( A' then 9φ0A',g = 1


(φ is true in every precisification of A)


vRφ0A,g = 1 iff for every A' ( AM: if A' ( A then 9φ0A',g = 1

(φ  is true in every reduction of A)

Let us define, for predicate P, some relations on partial modal A that express exactly where any two objects are located with respect to F¡(P) and F+(P):


9x1 <P¡ x20A,g = 1 iff g(x1) ( F¡A(P) and g(x2) ( F¡A(P)


9x1 <P+ x20A,g = 1 iff g(x1) ( F+A(P) and g(x2) ( F+A(P)


9x1 =P¡ x20A,g = 1 iff g(x1) ( F¡A(P) and g(x2) ( F¡A(P)

9x1 =P+ x20A,g = 1 iff g(x1) ( F+A(P) and g(x2) ( F+A(P)

9x1 =P( x20A,g = 1 iff g(x1) ( F¡A(P) ( F+A(P) and g(x2) ( F¡A(P) ( F+A(P)

With this, we can now piece together the semantics of the comparative relations, by looking at all the cases:


x1 ≥P x2 :=



   x2 <P¡  x1  (  x2 <P+   x1  (


( x1 =P(  x2  (  E(P(x2) (  x1 =P+ x2) )  (


( x1 =P¡ x2  (   R(x2 =P( x2 ( x1 =P( x2)  ) (


( x1 =P+ x2   (   R(x1 =P( x1 ( x1 =P( x2) ) 

The idea is quite simple:

-If x2 is not tall, according to M, and x1 is either borderline or tall, x1 is at least as tall as x2 (in fact, taller).

-If x1 is tall, according to M, and x2 is either not tall or borderline, x1 is at least as tall as x2 (in fact, taller).

-if both x1 and x2 are both borderline tall, according to M, we follow Kamp and let x1 be at least as tall as x2 if every precisification in AM of M that makes x2 tall, makes both of them tall (i.e. precisifications either make x1 tall first, or make x1 and x2 tall simultaneously).

-if both x1 and x2 are not tall, according to M, we look at reductions, and check who goes out of NOT-TALL first:  if x1 and x2 are not tall in M, then x1 is at least as tall as x2 if every reduction of M which moves x2 from FTALL¡ to the gap (and hence makes 

x2 =TALL( x2 true) has x1 in the gap as well.

Thus, the intuition is that, for non-tall individuals d1 and d2, d1 is at least as tall as d2 if d1 moves from NOT-TALL to the gap first (or they move together).

-if both x1 and x2 are tall, according to M, we also look at reductions, and check who goes out of TALL first:  if x1 and x2 are tall in M, then x1 is at least as tall as x2 if every reduction of M which moves x1 from FTALL+ to the gap (and hence makes 

x1 =TALL( x1 true) has x2 in the gap as well.

Thus, the intuition is that, for tall individuals d1 and d2, d1 is at least as tall as d2 if d2 moves from TALL to the gap first (or they move together).

We get the definition of >P by appropriately sharpening the relevant clauses in the above definition (by replacing  moves first or together with by moves first).
This analysis can be improved upon in various ways (See e.g. Sassoon 200?,  and Kamp 1975), but I have given enough structure here for my purposes.

Let us look at a very basic case.  

We have a precision state M, and two individuals d1 and d2, and d1 and d2 are, according to M, borderline tall:  d1 =TALL( d1.  Let us assume now that in M it is true that 

d1 ≥TALL d2.  This, as we have seen, is expressed as a modal relation in the vagueness model.  It means that:

     {A ( AM: M ( A and d2 is tall in A} (  {A 2 AM: M ( A and d1 and d2 are tall in A} 
And that entails Kamp's original requirement:

     {C ( CM: d2 is tall in C} ( {C ( CM: d1 and d2 are tall in C} 
This means that, of the four logically possible types of completions, M allows only three:



d1 is tall

d1 is tall

d2 is tall

d2 is not tall


d1 is not tall

d1 is not tall

d2 is not tall

d2 is tall

Each block here is a set of completions.

So, as mentioned  before, the truth of the comparative statement d1 ≥TALL d2 is brought about by a modal gap, a gap in the set of completions:  the right-bottom block is empty.

The question that I want to ask now is: where does this modal gap come from?  How come there are no completions above M where d1 is not tall but d2 is tall?

The trivial answer is obvious:  because there are no such completions in AM.   But that is not what I mean.  The question I am asking is:  how come there are no such completions in AM?

To see that this is a serious question, which points at a seriously problematic aspect of Kamp's theory, let us see how a similar question can be (and has been) answered in the case of true modals.

In modal logic, the accessibility relation encodes gaps in the set of accessible possibilities.  If  something is logically possible, but not actually (say, deontically) possible in a situation, this means that possibilities where this thing happen are not in the set of possibilities accessible from that situation;  hence the set of accessibile possibilities shows a gap in comparison with the set of all possibilities:  some possibilities are not there.  

Here too we can ask:  why are those possibilities not there?  One answer that has been discussed extensively in the literature is:  The possibilities are not there due to modal supervenience:  there happen to be facts in the real world, which prevent these possibilities from being accessible.  

But in modal logic, this is by far not the only answer.  David Lewis, for one,  has defended a view of modal realism (e.g. Lewis 197?).  On the view of modal realism, the answer to the question asked is trivial: the possibility is not there simply because it is not there!

The idea of modal realism is that we walk through modal space like we walk through real space.   While you walk through childhood and adolescence, you walk through modal space.  You may experiment with paths your parents didn't even know existed, and a smack (or a good talk from parent to child) will tell you which paths are inaccessible when you enter adulthood.   Crucially, the smack itself is not a fact in the world on which the impossibility of the path supervenes:  it is a directive to point you in the right direction in modal space.  In other words, the smack is not what causes the path not to be there.  It's the other way round:  the smack happened because you happened to follow a path that is deontically inaccessible.

My point here is not to evaluate the possibility or attractiveness of modal realism.  For my purposes here it is enough to recognize modal realism as an option in the interpretation of modals, that is, an option that we cannot reject out of hand as incoherent.

If so, this means that, for real modality it is actually possible to do away with my question.  If we assume a modally realist interpretation of modality, the gap is there, because your situation happens to be located in a region of modal space where those particular possibilities are not accessible.  Period!

The question I want to ask now is: is a similar answer similarly an option we cannot reject out of hand in the modal theory of comparitives: i.e.  the precisification gap is there because you happen to be located in a region of the modal space of precisifications, where that precisification is not accessible.

Let us chose, in analogy to the modal case, a super-realistic model for precisifications.  In fact, the many-world interpretation of quantum mechanics provides an excellent instance of exactly such a modal realistic theory.   We are in a situation where we haven't measured the momentum and place of a particle in the classical experiment with the two slits and the screen behind them.  The particle 'goes through' the slits and hits the screen.  It is at this point in a superstate: it has hit the screen with some probability at any of the points of the screen, w1,…,wn, and it is in the superstate that is composed from them, call it:  w1+…+wn.

If you add measuring to the process, you precisify and you collapse into one of the states w1,…,wn.  The state w1 + … + wn however reflects the reality of where the particle hits (this is the modal realism).

Now we make a thought experiment.  Suppose that world wk has probability 0.  Then it is not part of the composition of the superstate w1 + … + wn in the sense that wk is not a state such that adding measuring (precisification) to the process allows you to end up in wk.  This means that wk represents a gap in the space of precisifications.       

Now we ask the same question that we asked in the modal case:  why is there a wk-gap in the precisifications?

The modal-realistic answer would be, in analogy to the answer in the case of modals:   there is a wk-gap because we happen to be in a particular region of superspace, where wk is not accessible.  Period!

The problem is that this answer is just not acceptable.  Physics, including quantum mechanics, is classical enough that it requires explanations for events of probability 0.  That is, if the probability of wk is 0, physics needs to explain why that is so.  And this explanation is either that the probability is 0 because the theory forbids the probability to be bigger than 0, or (more commonly) because a fact about the input conditions, i.e. a fact in the world, sets the probability to 0 (like the big leaden wall which screens position wk off from the other points).  

In other words, the standard assumption is that the possibility is not part of the superstate (in the sense that precisification will not realize that possibility) because of some fact in the world.  Thus, the gap in the space of superstates does supervene upon facts in the world and the physical theory.  And this means that the modal realistic account, the account which says that we can leave accessibility a primitive, is just not acceptable here.

The case for the gap in the precisifications is exactly similar to this.

There is a gap in the precisifications:  possibilities where d1 is not tall but d​2 is tall are absent.  It just won't do to say that these possibilities are absent because we happen to be in a precision state located in a region of the world of precisision states, where it is absent.  It is absent, because some fact in the world causes it to be absent.

But which fact?  Kamp's theory doesn't tell us, of course.  But there is an obvious candidate, namely the fact that d1 is actually at least as tall as d2. 

Kamp's comparison relation is defined in terms of the space of possible precisifications. The gaps in the structure of precisifications, in comparison with the set of all logically possible precisifications are triggered by facts in the world, facts about height differences between individuals.  Hence it isn't true that Kamp actually manages to define the comparative relation in terms of the adjective meaning in his vagueness models.  He manages to define a relation all right, but the fact that this relation is the intuitive taller than relation must be enforced independently by constraining the precisification structure so as to respect the facts in the world about height differences.  

Thus what I am arguing is the following.  A simple modal realistic approach to precisifications is not plausible in the way this may be plausible in the case of normal modals:  a supervenience account of precisification is much more plausible.  But on a supervenience account the precisification structure does not define the actual comparision relation, it defines a relation that is constrained (stipulated) to be identical   

to the actual comparison relation of height in the world.  

Since it is the latter relation that the almost (but not quite) naïve theory uses to build the semantics of adjectives and of comparatives of, on a supervenience interpretation of Kamp's theory, the semantics of adjectives and comparatives depends as much on the underlying comparative relation as the almost (but not quite) naïve theory does, and the complex definition of the comparative meaning in terms of the adjective meaning loses its point.  

If supervenience is not the way to go, then the theory needs another account of how the space of precifications around a precision state comes to be what it is, an account moreover that doesn't depend on an underlying comparative relation, a conceptual account.  Such an account is absent in the precisification tradition.  

The present discussion does not one way or other affect the merit of precisification theories as theories of vagueness, it affects the attempt of using that theory to define the comparative.  That attempt, I would claim, is so far unsuccesful.

The criticism so far has been very general, aimed at the problems underlying a modal analysis of the comparative in terms of supervaluation theory.  The particular definition of the comparison given, and proposals like it, come in for more problems, though.  

In the semantic examples that I have given, the method for setting HIGH and LOW so far has been itself comparative (e.g. 'more than the majority').  It should be stressed that this is not a necessary feature of the theory.  Take for instance loveliness.  You are a person with high standards.  Your standards are not comparative:  to be lovely one needs to satisfy a set of well defined criteria:  one needs to have certain properties and lack others.  You are not much of a cultural relativist:  you apply the same standards everywhere.    

Nevertheless, also for you, loveliness comes in degrees.  

What this means, of course, is that your method for setting HIGHk,L is callibrated with your intensional criterion for loveliness. For instance as follows:


You determine the subset L of comparison set Xk,L: the set of individuals that satisfy your intensional criteria for loveliness.  You set  HIGH to the <L-infimum of the loveliness degrees of the objects in that set.


HIGHk,L = u<L({L((x): x ( L})   

This means nothing but that the degree interpretation and a non-degree interpretation of the adjective are made to coincide in context.   Thus, an adjective like lovely may well have a non-scalar meaning.   This does not mean that we must derive an ambiguity in the grammar (although we surely can).  What I call meanings here is better called aspects of meaning and can be seen as constraints on the setting of HIGHk,M.
The essence of the scalar meaning of degree phrases is that they involve more and less, this is what degree structures are about and what comparative relations are built of.  With very few exceptions, we derive adjectives from scalar dimensions, and this means that (except for the few exceptions) they have more and less built into their system, their grammar.  With few exceptions, nouns are not derived from scalar dimensions, they do not have more and less built into their grammar, degree interpretation and comparision for them are imposed contextually and through periphrastic constructions (like more of a book than). 

Now we come to the definition of the comparative in terms of the adjective.  We assume precisely a case where the meaning of the adjective lovely is not fixed comparatively, but through intensional criteria.   We assume that Albertine and Andree are both lovelely, in fact, they are your favorites, even though, for reasons that you cannot completely rationally explain, Albertine is your absolute favorite.  
On the analysis given, this means:  every way of setting your standards for what counts as lovely higher that takes Albertine out of the extension of lovely, takes Andree out as well.  

But, on the non-comparative meaning of lovely, what is a way of taking Albertine, or Andree out of the extension of lovely?  It is modeled on the idea of making the predicate more precise, but that is not what it is, of course.  What we use is that we make the predicate more restrictive.  But, given the absolute meaning we use for lovely, we can only make the predicate more restrictive, by changing the meaning.  This is, because Albertine and Andree satisfy the your intensional criteria for loveliness.  In order to contemplate situations in which one of them is longer in the extension of lovely, you are obviously not going to change their properties or your feelings about them, because we are concerned with who is here and now lovely for you.  So the only way you can manipulate the extension of lovely is by changing your intensional criteria, i.e. by changing the meaning.  

But that is bizar as a semantic theory of the comparative:  what the definition of the comparative claims is that the truth conditions of  Albertine is more lovely than Andree in a normal context k are defined, not in terms of the normal meaning in k of the adjective lovely, but of the meaning of lovely in certain bizar and completely unnatural contexts, in fact, contexts in which you yorself would no longer be willing to say that the meaning of lovely there is what you would call lovely, since your definition of loveliness will always include the two of them.  

 I think this makes this definition, and other similar ones, unacceptable in a semantic theory for natural language.  As we will see, pretty much the same criticism applies to the proposed definition in Klein 1980.
18.2 McCONNELL-GINET

McConnell-Ginet 1973 proposes a different reconstruction of the comparative meaning in terms of the meaning of the adjective.  This reconstruction is taken over in the later part of Klein 1980.  While for Kamp the definition of the comparative is in terms of the adjective and precisifications, for McConnel-Ginet it is in terms of the adjective and monotonicity preserving adjective modifiers.  Adjective modifiers are expressions like barely, fairly, very,..  They map adjective meanings onto adjective meanings (type adj,adj>, where adj is the type of adjectival modifiers).  Some, like very can be productively self-composed to form new adjective modifiers: very ( very,    very ( very ( very…
Following McConnell-Ginet, we can define the comparative meaning as follows:


We define >TALL , taller than, as a relation between individuals.

Let μ be a variable of type <adj,adj>. Let mp stand for monotonicity preserving.

>TALL 
=
λyλx. (μ[ mp(μ) ( ((μ(TALL))(x)) ( (((μ(TALL))(y)) ]
This definition is based on an attractive idea:  Chuck and Buck are both very tall, but Chuck is taller than Buck.  We can express this in terms of the adjective meanings with help of the monotonicity preserving adjective modifier very very very very.

While it is true that both Chuck and Buck are very very very tall, Chuck is very very very very tall, and Buck is not very very very very tall.   
Let us, for the moment, use the almost (but quite) naïve theory to define the notions of monotonicity and monotonicity preservation.


Let x ( D, s be a height scale based on unit (

[x,()s  = {y ( D: H((y) s( x}  
The ideal generated by x under scale s

Is  = {[x,()s: d ( D}.

On the basic height scale SH,(,k, these definitions become:


[x,()>H  = {y ( D: H((y) (H x}
The ideal generated by x under >H
I>H  = {[x,()>H: d ( D}.

= the filter generated by x under <H
I>H is the set of all sets that are upward monotonic with respect to (H




On the converse height scale, Sh,(,kc the same definitions give:


[x,()<H  = {y ( D: H((y) (H x}
The ideal generated by x under (H 

I<H  = {(x,()<H: d ( D}.

For clarity, we can also write the latter as:


((,x)<H  = {y ( D: H((y) <H x}

I<H  = {((,x)>H: d ( D}.

I>H is the set of all sets that are downward monotonic with respect to (H




With the dimensional meaning of the adjectives as scales (taking ( given), we can define: 

vADJadj0  (  λs.Is (vADJdim0)
Thus:  

vTALLadj0    ( λs.Is (SH,u,k)

vSHORTadj0 ( λs.Is (SH,u,kc)

With these constraints, tall and short are required to be monotonic  and consistent on their respective scales.


Monotonicity:


If TALL(x) and    x (H y then TALL(y)
Upward monotonic on (H
If SHORT(y) and x (H y then SHORT(x)
Downward monotonic on (H
We now define:

mp(μ,(H) iff  for every P ( adj: 

     if P is upward monotonic relative to (H,      μ(P) is upward monotonic relative to  (H

     if P is downward monotonic relative to (H, μ(P) is downward monotonic relative to (H

For clarity of discussion I will add one more obvious constraint of consistency and a not so obvious constraint of variety:


Consistency:

vTALLadj0  ( vSHORTadj0  = Ø

Variety:

(d1 ( D: (d2 ( vTALLadj0    : d1 <H d2
(d1 ( D: (d2 ( vSHORTadj0 : d2 <H d1
I impose variety here only to make sure that relevant adjective interpretations are not both upward monotonic and downward monotonic.  In a picture monotonicity preservation means:



                     SHORT                                                                                         TALL


           μ(SHORT)







μ(TALL)

We defined monotonicity relative to (H, but if we generalize this to the scale, we can do without the constraint of variety:


Monotonicity preserving:


mp(μ,s)  iff for all P ( Is: μ(P) ( Is
Upward is now scale dependent, so it is upward on the basic scale, but downward on the converse scale.

Let us now work the scalar element explicitly into the theory:

Let us define:  TALLadj = adj(TALLdim), where TALLdim is defined as usual as a scale (assuming ( set), and adj denotes a function from scales to sets of individuals, constrained as above:


vadj(TALLdim)0   ( λs.Is (vTALLdim0)

The same for SHORTadj.
With this we have made the dimensional element explicit in the adjective and in the monotonicity constraint, which means that we can rewrite the comparative definition as:

>TALL 
=
λsλyλx. (μ[ mp(μ,s) ( [μ(adj(s))](x) ( ([(μ(adj(s))](x) ]  (vTALLdim0)
There is something illuminating about this reconstruction of the comparative definition:  as can be seen, the adjectival meaning of tall plays, in essence,  no role in this definition.  The only thing that plays a role is the scale TALLdim.  The information we need is that we are dealing with an order of height, and an orientation in the same direction as the basic scale.  Once this information is fixed, we can redefine >TALL as:


Let ρ be a variable over sets of individuals.


>TALL 
=
λsλyλx. (ρ ( Is: ρ(x) ( ( ρ(y) (vTALLdim0)
This definition is unobjectionable, but it wears its weakness on its sleeves.

It shows very clearly that the one thing that McConnell-Ginet's approach cannot do with out is the notion upward monotonic relative to scale s.   

But scale s is precisely the scale that the definition of the comparative tries to define in terms of the meanings of the adjectives, if the theory is to be interpreted as a conceptual theory, a theory that derives the comparative order as something conceptually complex.

And this means that my criticism of McConnell-Ginet's theory is in essence the same as that of Kamp's:  the so-called conceptual reconstruction in fact presupposes the order it claims to define, that is, the order in terms of which the almost (but not quite) naïve theory defines both adjective and comparative.  Thus again, McConnnel-Ginet's theory, like Kamp's theory, does in fact exactly what the naïve theory does: it defines both the adjective meanings of adjectives and the meanings of comparatives in terms of an underlying comparison relation.  

If so, there is no 'framework difference'  after all, and the theories can be directly compared, and the question remains:  why build in all this complexity in the theory if the arguments that the comparative should be derived from the adjective are unsound, and there is no empirical advantage to the complex theory?

I have not seen this question adequately answered (not for Kamp's approach, not for McConnell-Ginet's).

18.3 KLEIN

I have argued that neither the theory of Kamp, nor that of McConnell-Ginet is able to derive the comparison relation that underlies in the naïve theory both adjective and comparative meanings.  This is different for the theory of Klein 1980 (the first analysis he proposes in the 1980 paper, the second is McConnell-Ginet's), and van Rooy 200?  which differs from Klein in that van Rooy wants to derive a comparison relation less ordering properties than Klein, but is in the essential respect – the basis of the comparison definition – derived from Klein.  

As I mentioned above, Klein introduces comparison sets in the semantics of adjectives, and that aspect of his theory I regard, obviously, as a highly valuable contribution, an aspect that I have taken over.  In fact, it will be useful for the discussion of this section to make the comparison sets visible in the logical language:  

  
-If P is an adjective and Q a comparison set expression then PQ is an adjectival 


 predicate of type <d,t>.  


-If x1…xn are expressions of type d, {x1,…,xn} is a comparison set expression.
With this we can write:


Jumbo is small

SMALL{e1,…en}(j)


Jumbo is small relative to comparison set {e1,…en}.

Klein's proposal for the semantics of the comparison is as follows:


>TALL
=
λyλx.TALL{x,y}(x) ( (TALL{x,y}(y) 

x is taller than y iff in the comparison context that consists solely of x and y, x 

                                            counts as tall and y does not.

To turn this into a relation that has enough properties that comparison relations should have, constraints are necessary on the meanings of the adjectives.  For instance, transitivity would say that if in the context {x,y} x is not tall and y is tall, and in the context {y,z} y is not tall and z is tall, then in the context {x,z} x is not tall and z is tall.  For in depth discussion of such constraints, see the papers by Klein and van Rooy.

Though I will not go into this discussion here, these contraints need to be scrutinized with respect to the same question we asked for Kamp and McConnell-Ginet:  do the theories proposed really manage to define the comparative order, or do they, on closer scrutiny, presuppose that relation.  I will not go into this discussion, because a  more fundamental discussion needs to take precedence.

What underlies Klein's conceptual reconstruction of the comparison are two ideas: 

1.  We establish the truth of a statement x is tall within a comparison set. 

I have taken over this very assumption, by making the calculation of the scalar point HIGH sensitive to the comparison set,  so I am not going to object to this aspect of Klein's theory.

2. The semantics of the comparative x is taller than y is analyzed in terms of the conjunction x is tall and y is tall  relative to comparison set {x,y}.  

This analysis is unproblematic for the cases where the height of  x and y is in different ranges of the scale.  Thus if x is small and y is tall, it follows, we assume, that x is not tall relative to {x,y} and y is tall relative to {x,y}, so y is taller than x.  Similarly, if x is borderline tall and y is tall.

But what if x and y are both tall?  

Let's say, once again that Albertine and Andree are the most lovely persons  know.  And let's say that, for me, Albertine is just that much more lovely than Andree. Why?  Well, because my heart misses a beat just a little bit more often when I meet Albertine.  So I accept:


Albertine is (even) more lovely than Andree.

Now, for Klein this means that:


Albertine is lovely relative to {Albertine, Andree} and


Andree is not lovely relative to {Albertine, Andree}.

But this makes no sense.  Albertine and Andree are the two loveliest persons you know.  Obviously, both are lovely, and in fact, both are lovely in every context that respects yout standards for loveliness,  which, let's face it, is what counts when you judge their loveliness.

Klein's definition of the comparitive says that if Albertine and Andree come out as lovely in your every context, you regard them as equally lovely.  It seems to me that that just shows that Klein is wrong.

Now, we can interpret his analysis slightly differently.  Let us think about the comparison set  {Albertine, Andree} not as a normal contextual comparison set, but as the comparison set in a context where I put a pistol on your chest and force you to chose one, if you think there is a difference.  (Here the microphone of the Televison Show Host is as good as pistol):  


Answer or die:  only one of Albertine and Andree is lovely.  Which one?

Only one of these two beautiful ladies can be his LOVELY and he is 


going to choose now: Fred, which one is Lovely?
One problem with this is that for Albertine and Andree you might be willing to brave the pistol:  both are lovely.  And yet, Albertine is that much more lovely than Andree.

More seriously, despite what Televison Shows try to convince us of, the context that we 
set up here is distinctly unnatural.  I have shown before that methods for determining HIGH may well make this very unnatural decision (one of them is lovely, the other is not) in these contexts, but they are irrelevant, because when the comparison sets grow, become more natural, their results are ignored.  So, what Klein does is propose that we charactarize the meaning of the comparitive x is more lovely than y in terms of conjunctive loveliness judgements in semantically and pragmatically unnatural contexts:  i.e. the meaning of the comparative is derived from the meaning of the adjective in unnatural contexts. 

But the whole point about these unnatural pistol or microphone contexts, is that these contexts change the meaning of the adjective:  with a pistol or a microphone you can force lovely to mean  very very very very very lovely, and indeed, Albertine is that, while Andree is only very very very very lovely.  But the fact that a pistol can effect a change of meaning along these lines tells you very little about the normal meaning of the adjective.
In this way, then, Klein's idea comes down to:


Albertine is more lovely than Andree if when you change the meaning of lovely 

            so that if both are lovely they are equally lovely, Albertine is lovely and Andree is 

            not.

I think that, once again,  this is not an acceptable account of the meaning of the comparative, and I do not see any compelling reason to prefer such an account over the scalar analysis along naïve lines.  Since this approach (i.e. the one by Klein and van Rooy) is the only reconstructionist approach I know of that may work its reconstruction succesfully without presupposing the comparison relation, I think the reconstructionist program is in jepardy:  the reconstruction is surely possible, but only from a base step that is too dubious to be incorporated in a solid semantic theory.

19. REBUTTALS
19.1:  THE CASE OF KARLSSON AND THE CASE OF GILLES AND VLAD.

I have argued against defining the meaning of the comparatative in terms of the meaning of the adjective.  I have, in fact, also argued against defining the meaning of the adjective in terms of the meaning of the comparative.  That is, I have argued that one aspect of the meaning of the adjective is definable in terms of the comparative (and the comparison set).

One can argue that in this I claim too little semantic relation between the comparative and the positive.   There are two such arguments:

Argument 1. Adjective meanings are comparative.  The case of Karsson.
Karlsson holds up his hand with two clearly small candies c1 and c2,  but of clearly differentiated size and says:



(1) Do you want the small one or the big one?

Clearly, both c1 and c2 are small, very small, hardly worth it, one would almost say.  But his greedy eye has detected a difference and he relies on your sense of good manners to act accordingly (the case has been extensively discussed in Lindgren 195?).  it seems that (1) is fine in this context, which is just what you would want, to get a Kleinian analysis off the ground:


(2)  SMALL{c1,c2}(c1) ( (SMALL{c1,c2}(c2)

The point then is this:  with the linguistic fact in (1) in hand you can ask:  what are you complaining:  (1) shows that the basic meanings of adjectives are in fact already comparitive, just as Klein claims.  Why not take (1), as analyzed as (2),  as a  basis for the semantics of the comparative.  That seems rather an insightful idea.  

Argument 2. There is a relation between the positive and the comparative that is not present between the negative and the comparative.  The case of Gilles and Vlad.

Albertine and Andree are both lovely, but Albertine is just a little more lovely than Andree.  Fine.  But what about Gilles de Rais and Vlad the Impaler?  Both are loathesome.  Let's say, Gilles is even more loathsome than Vlad.  That ought to mean that (3) is true:


(3)  Vlad the Impaler is more lovely than Gilles de Rais.    

But we don't feel like accepting that.  And it seems that the reason we don't accept this is that both Vlad and Gilles are far from lovely.  If so, it seems that after all the positive meaning of lovely has an influence on the semantics of the comparative.
19.1.1. COMPARATIVE ADJECTIVE MEANINGS.  THE CASE OF KARLSON.
You tell me that I should take the case of Karlsson, the felicity of (1), as a solid basis for the semantics of the comparative.


(1) Do you want the small one or the big one?

I agree that (1) is felicitous.   I don't have an analysis for it.  However, intersting as it is, it is rather a marginal phenomenon.  It is actually quite hard to find other similar examples that are judged natural, or acceptable at all.


(3)
[two plates of hot soup, one of them steaming]

                        #Do you want the hot one or the cold one?



# Do you want the hot one or the cool one

#Do you want the hot one or the tepid one

maybe Do you want the hot one or the warm one

maybe Do you want the hot one or the not so hot one?

What happens in (3) is the following:  

we have two hot plates of soup.  We can reinterpret the adjective hot so that in this context it means very hot, and then we make a distinction between the hot one and the not so hot one, or the hot one and the less hot but warm one.  This allows us to say:  the hot one or the not so hot one.
There is a clear limit to this, and it is the limit of truth:  in shifting the border between them, you can now call the one in the lower region warm, but nothing lower than that. 

That is, one of the soups is steaming, so it is obviously hot.  We decided the other one was hot too, but maybe, we could have decided just as well that it wasn't really hot, but just warm:  what is hot for one is merely warm for another.  So we can divide up the pair into a hot one and a warm one, because, maybe one of the two was close to the borderline of hot.    

But it won't do to call either of them tepid/cool/cold.  

Also, if both of them are clearly piping hot, but one of them is still bubbling and the other just no longer, you couldn't ask:


(4) #Do you want the hot one or the warm one.

                  # Do you want the hot one or the not so hot one.
And this, again, is just a question of truth:  the less hot one is still piping hot, and cannot be described as warm or not so hot.

We have already seen that lovely patterns with hot and not with small:


(5)
[Albertine and Andree]

                        #Do you want me to invite the lovely one or the not so lovely one?

Going through different kinds of adjectives only stresses the fact that the case of (2) is an exceptional case:  


(6)
a. [two highly qualified job candidates]



    #Shall we hire the clever one or the dumb one?



    #Shall we hire the clever one or the not so clever one?


b. [Two mixings of a heavy metal song]



    #Should we put the loud mixing or the soft mixing on the album?

The point about (6b) is not that you can't say (6b), but it is hard to say it without being ironic (and even a heavy metal mixer might see the irony).  And irony makes the point.

It is in fact hard  to find cases that are as easily felicitous as the case of small and big.  

I have no account of why (2) is felicitous.  It is, of course, easy to say that in (2) the positive adjectives have indeed a comparative interpretation, i.e. (2) means (7)

(2)     Do you want the small one or the big one?

(7)     Do you want the smal(ler) one (of the two) or the big(ger) one (of the two).
Wile that seems correct, it doesn't answer the question of why (2) allows this, and the others do not.

However, given that the case in (2) actually seems rather a special case, it seems wrong, or even  irresponsible, to make it the motivating basis for the semantics of comparatives.  

The semantics of the comparative needs to work for all gradable adjectives, and most of these just don't work like small and big.  

19.1.2 GILLES AND VLAD
Gilles de Rais is even more loathesome than Vlad the Impaler, while both are extremely loathsome,    Does that mean that we much declare Vlad the Impaler more lovely than Gilles de Rais.

In the analysis that I have given, this would only be the case if we decided that lovely and loathsome denote the basic scale and converse scale of one and the same measure. But  I have not made that assumption, and in fact, there is no reason to do so.   Rather, loathsome and lovely are  better interpreted on scales of inverse measures.

Thus, we can assume that the values are comparable in that both the scale of loveliness and the scale of loathsomeness can be naturally mapped onto a third comparison scale, and the two measure functions (( and (( may assign values that translate into different sections of the comparison scale:

In the picture, the ranges of the measure functions (( and (( are mapped onto a comparison scale COMP(:
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Let τ1 be the relevant translation map from the LOATHSOME scale into COMP( and τ2 from the LOVELY scale into COMP(.
We put the following constraint on the measure functions and their translation into COMP(:

(d ( D: if COMP((d) >COMP( τ1(0LOATHSOME) then (((d) = <0,(,LOATHSOME> 
(d ( D: if COMP((d) <COMP( τ2(0LOVELY)       then  (((d) = <0,(,LOVELY> 
What this means is that the measure functions (( and (( do not assign negative values.  The negative values on their scales are for calculating purposes only.  
Thus, if we assume that:

(((GILLES DE RAIS) >LOATHSOME (((VLAD THE IMPALER)

this will mean that:

τ1((((GILLES DE RAIS)) <comp τ1((((VLAD THE IMPALER)).

This does not mean that:  

τ2((((GILLES DE RAIS)) <comp τ2((((VLAD THE IMPALER)).

since: 

τ2((((GILLES DE RAIS)) = τ2((((VLAD THE IMPALER)) = τ2(0LOVELY)

since we assume that:

(((VLAD THE IMPALER) = (((GILLES DE RAIS) = <0,(,LOVELY>, by the 

Thus, even if you assume that Gilles de Rais is more loathsome than Vlad the Impaler, this doesn't make Vlad more lovely than Gilles: both have loveliness-count 0 on the loveliness scale.

There is, then a different relation between objects that stand in the lovelier  relation and objects that are lovely on the one hand and objects that stand in the lovelier relation and objects that are loathsome on the other.  Both the relation lovelier and the adjective lovely have an interpretation that is,  by meaning, related to the scale of Loveliness (since lovely is a gradable adjective).  The adjective loathsome does not have a direct semantic relation to the scale of loveliness, and hence to the lovelier relation; it has an indirect relation through the inverse connection of the scales.  The facts just follow from this.  So no further conclusions can or should be drawn from this about the interdefinability of the adjective and the comparative. 

19.2  THE ACQUISITION QUESTION
Adjectives are acquired before comparatives are.  A theory in which comparatives are derived from adjectives would fit that better than a theory in which adjectives are derived from comparatives, or a theory in which both adjectives and compariatives are derived from something else.  Thus, we prefer a theory in which comparatives are derived from adjectives.
I will not try to refute this argument directly, but develop some thoughts here about what the almost (but not quite) naïve theory entails for acquisition.

We consider now the child  who uses adjectives but not yet comparatives.  While comparatives are morphologically complex, adjectives have null-morphology, which the child will assume is no morphology.  With this we expect the child to have adjectives before it has comparatives, whatever the semantics.

The question is:  isn't there a paradox?  Given the semanics that I have given here, shouldn't the child, in order to use adjectives at all, have acquired already so much scalar  semantics, that the comparative should come at no cost?  That is, the semantics that derives the scalar adjective meaning straightforwardly derives the comparative meaning as well. Shouldn't we expect comparatives to come in before adjectives, or at least simultaneously?  Or shouldn't we expect this to be possible in some languages, and hence shouldn't we find languages where comparatives are acquired before adjectives?

The simple answer is: we know about acquisition that morphologically complex forms are acquired later;  the relative costs of the particular semantic complexity involved here is acquisitional speculation, we just don't know.  

We can say a bit more, though.  While, on the semantics given, it is true that the scalar semantics of the adjective forms a whole with that of the comparative, adjective and comparative differ, in that part of the adjective meaning can be acquired independently of the adjective's scalar meaning.

We have argued above that the scalar part of the adjective's meaning – the scale SM,u,k and the method for determining HIGHM,u,k – need not exhaust the meaning of the adjective:  you don't necessarily need to scale people on your loveliness scale and check that they are above the minimal loveliness point, in order to determine whether they are lovely, you can use a battery of non-scalar methods also associated with the meaning of lovely.

Given this, it is quite plausible to assume that when the child first acquires adjectives it treats them as predicates, non-scalar predicates.  That is, like nouns, but not necessarily of the same category as nouns (the facts that adjectives are more context dependent than nouns, and in fact, that their context dependency is mediated by noun meanings is acquired at a very early stage.  This accounts for some of the differences in meaning between nouns and adjectives at early stages,  see Damon et at. 2006.  I am not concerned with these differences here.)  On this model, adjectives are acquired before comparatives, because they are first acquired with non-scalar meanings.  The scalar meaning comes later, as does the comparative.

On this picture, what does the child need to do later on to acquire scalar meanings? 

At the later stage the system of measures and scales becomes available for semantic reference.

1. At this point, the adjective acquires a new meaning of the new scalar category dimension, as the name of a measure scale, denoting the basic scale or the converse scale.  At this point the contrast between tall and short is codified as a contrast within one scale, while that between fat and thin is codified as a contrast on mirror-connected scales.
This doesn't mean, of course, that these adjectives weren't treated as contrasting by the child before.  It means that the contrast wasn't yet codified in the adult way.

2. The meaning of the adjective in the adjectival category gets enriched in a very simple way.  The meaning before the scalar enrichment determines in a context k an extension of the adjective.  With the availability of the measure function, the objects in the extension of the adjectives now acquire scalar values.  We only need one semantic assumption on the new dimensional meaning of the adjective:

for context k, the dimensional meaning of the adjective sets HIGHM,u,k below the measure function values of the objects that were in the extension of the adjective in k before.

In other words: the scalarly enriched meaning is conservative on the non-

scalar meaning.

Conservativity also means that when new meaning extensions happen, for instance, by adding reasonable methods for calculating HIGHM,u,k, the non-scalar meaning constraints are preserved.   

3.  The full scalar adjectival meaning can be seen as a generalization of the previous step:  not only are the measure function values of the objects that already in the non-scalar semantics fell in the extension of the adjective above HIGHM,uk, but we can now turn this upside down:  being in the extension of the adjective is equated with having a value above HIGHM,u,k. 
4. At this point –er​, more, and less can acquire their interpretation as scalar differential functions, and the semantics of the comparative becomes available.

5. It is not clear that this story makes much predictions about the relative timing of the acquisition of full scalar meanings of adjectives and comparatives on the one hand and the acquisition of numerical phrases, measures, unit phrases, including the acquisition for some adjectives of a meaning of the category measure as the name of the relevant measure on the other.

In short, then, the acquisition of comparatives concerns the maturation of the scalar theory associated with the items –er, ​more, less.  What expressions have a morphological comparative is, of course, determined by the language; the elements more and less are generally cross-categorial:  while most frequent with adjectives and adverbials, they can apply to verbal elements as well, and also to some nominal elements.  What is required for this application is that the elements in question pick up a scalar meaning.

I have discussed this above for adjectives:  a scalar meaning, a meaning as a dimension becomes intergrated with the meanings the adjective already has as a predicate and modifier.  Verbs too easily are given meanings in which one of the arguments is a scalar argument, in terms of which the event progression is measured (see the discussion of this in Krifka 19… and Rothstein 200?).  Thus we find:


(1)  a.  Dafna resembles my sister more than she resembles Susan's brother.  

                   b.  I rode my bicycle more this year than I did over the last six years.     
                   c.  I missed you more than you think.

Here too, we would assume, in terms of maturation, that non-scalar verb meanings develop first, and that the scalar aspect of the verbs meaning is tagged on later.  

The same holds for nouns like in (2a), though one would think for nouns scalar interpretations are more often a question of pragmatic scale assignment, as in (2b).

(2)  a.  He showed more common sense than I would have believed he had.

       b. He is less of a poet than his sister is.

In short, as far as the issues discussed here are concerned, the acquisition facts do not favor an analysis following the 'conceptual program'  over the almost (but not quite) naïve approach.

19.3. CONCEPTUAL REDUCTION OF COMPARATIVES ACCORDING TO

         THE ALMOST (BUT NOT QUITE) NAÏVE VIEW.

The comparative is acquired later because it is morphologically a complex form.  The comparative denotes a comparison relation.  The conceptual program tries to derive the comparison relation as a complex.  

Now, of course, semantically, since the comparative is semantically complex, the relation derived is also semantically complex, symplifying: 

>H =   λδ.δr > 0  (  λδ2λδ1.(δ1 ¡H δ2)
But that is not the issue that is at stake in the discussion between the conceptual program and the naïve theory.  For the conceptual program the very relation >H must be defined in terms of properties (adjective meanings).  Since obviously first-order relations cannot be defined in terms of (boolean combinations of) first-order properties, a second-order element must be smuggled in, like quantification over comparison sets.  

I think it is important to distinguish this issue from the acquisition issue.  The linguistic complexity of the comparative is independent of the question whether the underyling comparison relation  (the scale relation) is a conceptual primitive or not.

As I have argued, I do not find the conceptual reduction of comparative relations in terms of properties viable or even laudable as an aim.  As far as conceptual reduction goes, the scalar theory presented here points in a very different direction. 

Look once again at the analysis provided here:

     (1)  Fred is (mucht) taller than Susan

           There is a (big) difference δ1 in height between Fred and Susan in Fred's favor.

Our capacity to judge the truth of (1) depends on our capacity to see differences between objects (which is obviously something we do from birth) and to see differences along one and the same dimension, like height (which we also do from birth and spend a lifetime refining).

   (2)  Susan is (a little) taller than Dafna

          There is a (little) difference δ2 in height between Susan and Dafna in Dafna's favor.

Thus, our capacity to judge (1) and (2) requires our recognition that the differences in question in (1) and (2) are along the very same dimention, in this case Height.

But there is more, indicated by the size indications in parentheses.

Within a dimension, like Height, we have – according to the scalar theory – the capacity to judge size differences between height differences:

     (3) δ1 is bigger than δ2
           there is a size difference k between δ1 and δ2 in δ1's favor.

The assumption of the latter capacity is the crux of the scalar theory:  

-we are not just able to see that people are different from each other, we are able to see that they are of different height; 

-we are not just able to see that people are of different height, we are able to see that differences of height are of different size.

What the naïve scalar theory gives you is precisely the naïvest possible theory in which differences of height have different sizes.  It does this by taking a particular stand on the contextual dimensionality issue:  

you choose the sense M of the adjective you intend:  the theory of sizes of differences for that measure M is a linear order.   

This is not the only possibility:  if (following van Rooij) you want a notion of adjectival sense M which is still somewhat undespecified, you may weaken your theory of sizes of differences for M to less than a linear order.  The issue of underspecification is is an issue that I have arguably paid little attention to here; which is the best strategy to deal with it is pretty much open still.
Nevertheless, the conceptual primitives of the naïve theory are:


-Differences in M beween objects, for measure M.


-Differences in size between differences in M.

1. For basic naturalistic notions like height, etc. the standard assumption is that the child doesn't need to learn to make these differences, it makes them.

2. What we do learn is to do this productively: we learn that you can make a scale out of anything.  In other words, we learn that we can let a non-naturalistic notion be a measure M and play the same game:  I give you huggability and you form without problem the notion differences in huggability between objects.  This, of course, relies on the irresistible human urge to generalize.

3. The same urge leads to the fundamental second step:  for any measure M, we recognize differences between M-differences:  i.e. differences come in size. 

In its general form, this is of course quite abstract, but the origins of it are not:  just as we see differences in height, we see that these differences are different in size (when they are).  That is, we see directly that Fred is taller than Susan, and, when putting them next to each other, we see that Susan is at the moment still a little bit taller than Dafna.  We indicate the respective differences themselves as distances between my thumb and my index finger, and we see unproblematically that the first is bigger, mch bigger than the second. 

Again, it is not clear that the basis of this needs to be learned. The generalization of this obviously does need to be learned (like the sizes of temporal intervals outside our personal experience, intervals of historic time, let alone the history of earth, or the universe).

The naïve analysis of taller than in (1) and (2) took place in terms of height differences δ1 and δ2.  Obvious logical properties of the relation taller than are reducible to the difference in size of the differences δ1 and δ2. 
     (3) δ1 is bigger than δ2
           there is a size difference k between δ1 and δ2 in δ1's favor.

The question is:  doesn't this involve an infinite regress:  when we have size differences k and m, we will need yet another notion of the difference between k and m.  

The naïve answer to this is: no, we do not get an infinite regress:  the realization that beyond the different measure scales lies only one more measure scale, which underlies all –  the number system of  Mathematics –  is one of the Supreme Insights of the Human  Spirit.  

19.4. CROSS-LINGUISTIC DISTRIBUTION
The two issues discussed here answer, I think, also rebuttals that come from cross-linguistic concerns?  Why, the conceptualist asks, is cross-linguistically typically the adjectival form the one that has null-inflection, while the relational form is marked by inflection.  Doesn't that show that the latter is derived?  
Given the above discussion, it is a mistake to present the comparative as a semantic system with a predicate (the adjective) and a relation (the comparative).  

Grammatically we are concerned with what the meanings are of items like more and less, and how they are incorporated in the grammar.  Conceptually, we are concerned not with primitive relations and predicates (both are derived) but with the concepts: difference in degree, difference in size.

In the semantic type shifting theory that I favor, the scalar meanings of adjectives and of comparatives are derived through semantic operations.  Cross-linguistically, the comparative operation tends to be morphologically or lexically realized, while the adjective forming operation is not.  When you think about it, it is not hard to come up, if you want to, with reasons why this should be so  (if you want to, because it is not clear that the issue is very deep).  I fail to see why the cross-linguistic facts would do something as extraordinary as justify the approach of the Conceptual Program.
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