FINITE BOOLEAN ALGEBRA

1. Deconstructing Boolean algebras with atoms.

Let $B = \langle B, \leq, \neg, \land, \lor, 0, 1 \rangle$ be a Boolean algebra and $c \in B$.

The ideal generated by c, $(c]$, is:

$$(c] = \{ b \in B : b \leq c \}$$

The filter generated by c, $[c)$, is:

$$[c) = \{ b \in B : c \leq b \}$$

The ideal-relativization of B to c, $(c]$, is the structure:

$$(c] = \langle (c], \leq (c], \neg (c], \land (c], \lor (c], 0(c], 1(c] \rangle,$$

where:

1. $\leq (c] = \leq [(c]$;
2. $\neg (c] = \{ <x, \neg x \land c> : x \in (c) \}$;
3. $\land (c] = \land [(c]$;
4. $\lor (c] = \lor [(c]$;
5. $0(c] = 0$
6. $1(c] = c$

THEOREM 1: $(c]$ is a Boolean algebra.

PROOF:
1. $\langle (c], \leq (c], \land (c], \lor (c], 0(c], 1(c] \rangle$ is a substructure of $\langle B, \leq, \land, \lor, 0, 1 \rangle$: namely, if $a, b \in (c]$, then $a, b \leq c$, hence $(a \land b) \leq c$ and $(a \lor b) \leq c$, hence $(a \land b) \in (c]$ and $(a \lor b) \in (c]$. Further $0(c] = 0$.
2. $\langle (c], \leq (c], \land (c], \lor (c], 0(c], 1(c] \rangle$ is bounded by $0(c]$ and $1(c]$. We have seen already that $0(c]$ is the minimum of $(c]$. $1(c] = c$, and c is, obviously, the maximum of $(c]$. We have proved under 1. that $\langle (c], \leq (c], \land (c], \lor (c] \rangle$ is a sublattice of $\langle B, \leq, \land, \lor \rangle$. Since $\langle B, \leq, \land, \lor \rangle$ is distributive, it follows that $\langle (c], \leq (c], \land (c], \lor (c] \rangle$ is distributive (since the class of distributive lattices is closed under substructure).
3. We have proved under 1. that $\langle (c], \leq (c], \land (c], \lor (c] \rangle$ is a bounded distributive lattice. So we only need to prove that $(c]$ is complemented, i.e. that $\neg (c]$ is complementation on $(c]$. First: $(c]$ is closed under $\neg (c]$. This is obvious, since obviously $\neg x \land c \leq c$, for any $x \in B$, hence also for any $x \leq c$.

Secondly, $\neg (c]$ respects the laws of $0(c]$ and $1(c]$:

Let $a \in (c]$. $a \land (c] \neg (c](a) = a \land (\neg a \land c) = (a \land \neg a) \land (a \land c) = 0 \land (a \land c) = 0$

$a \lor (c] \neg (c](a) = a \lor (\neg a \lor c) = (a \lor \neg a) \lor (a \lor c) = 1 \lor (a \lor c) = a \lor c = c$

Thus, indeed $\neg (c]$ is complementation on $(c]$. ◇

Note: except for the trivial case where c is 1, $(c]$ is not a sub-Boolean algebra of B, because 1 is not preserved. It is a Boolean algebra on a subset of B.

1
The filter-relativization of \(B \) to \(c \), \(|c|\), is the structure:
\[
|c| = \langle B_{|c|}, \leq_{|c|}, \wedge_{|c|}, \vee_{|c|}, 0_{|c|}, 1_{|c|} \rangle,
\]
where:
1. \(\leq_{|c|} = \leq |B_{|c|} \)
2. \(\neg_{|c|} = \{<x, \neg x \vee c>: x \in |c|\} \)
3. \(\wedge_{|c|} = \wedge |B_{|c|} \)
4. \(\vee_{|c|} = \vee |B_{|c|} \)
5. \(0_{|c|} = c \)
6. \(1_{|c|} = 1 \)

THEOREM 2: \(|c|\) is a Boolean algebra.

PROOF:
1. \(<|c|, \leq_{|c|}, \wedge_{|c|}, \vee_{|c|}, 1_{|c|}> \) is a substructure of \(<B, \leq, \wedge, \vee, 1> \): namely, if \(a, b \in |c| \), then \(c \leq a, b \), hence \(c \leq (a \wedge b) \) and \(c \leq (a \vee b) \), hence \((a \wedge b) \in |c| \) and \((a \vee b) \in |c| \).
2. \(<|c|, \leq_{|c|}, \wedge_{|c|}, \vee_{|c|}, 0_{|c|}, 1_{|c|}> \) is bounded by \(0_{|c|} \) and \(1_{|c|} \). We have seen already that \(1_{|c|} \) is the maximum of \(|c|\). \(0_{|c|} = c \), and \(c \) is, obviously, the minimum of \(|c|\).
3. We have proved under 1. that \(<|c|, \leq_{|c|}, \wedge_{|c|}, \vee_{|c|}> \) is a sublattice of \(<B, \leq, \wedge, \vee> \).
4. Thus, we have proved that \(|c|\) is a bounded distributive lattice. So we only need to prove that \(|c|\) is complemented, i.e. that \(\neg_{|c|} \) is complementation on \(|c|\).

First: \(|c|\) is closed under \(\neg_{|c|} \). This is obvious, since obviously \(c \leq \neg x \vee c \), for any \(x \in B \), hence also for any \(x \) such that \(c \leq x \).

Secondly, \(\neg_{|c|} \) respects the laws of \(0_{|c|} \) and \(1_{|c|} \):
Let \(a \in |c| \). \(a \wedge_{|c|} \neg_{|c|} (a) = a \wedge (\neg a \vee c) = (a \wedge \neg a) \vee (a \wedge c) = 0 \vee (a \wedge c) = a \wedge c = c \)
\(a \vee_{|c|} \neg_{|c|} (a) = a \vee (\neg a \vee c) = (a \vee \neg a) \vee (a \vee c) = 1 \vee (a \vee c) = 1 \)
Thus, indeed \(\neg_{|c|} \) is complementation on \(|c|\).

LEMMA 3: If \(c \neq 1 \) then \((c \cap \neg c) = \emptyset \)

PROOF: Let \(x \in (c \cap \neg c) \). Then \(x \leq c \) and \(\neg c \leq x \). Then \(x \leq c \) and and \(x \leq c \).

Then \(x \vee \neg x \leq c \), hence \(c = 1 \).

THEOREM 4: \(|c|\) and \(|\neg c|\) are isomorphic.

PROOF:
If \(c = 1 \), then \((c) = [\neg c] = B \). So clearly they are isomorphic.
So let \(c \neq 1 \).

We define: \(h: (c) \rightarrow [\neg c] \) by:
for every \(x \in (c) \): \(h(x) = x \vee \neg c \).
1. Since for every \(x \in B \), \(\neg c \leq x \vee c \), also for every \(x \in (c) \): \(\neg c \leq x \vee c \). Hence for every \(x \in (c) \): \(h(x) \in [\neg c] \), hence \(h \) is indeed a function from \(|c|\) into \([\neg c]|. \)
2. Let \(y \in [\neg c] \). Then \(\neg c \leq y \). Then \(\neg y \leq c \), hence \(\neg y \in (c) \). Take the relative complement of \(\neg y \) in \((c) \): \(\neg (\neg y) \in (c) \). This is \(y \wedge c \in (c) \).

\[
h(y \wedge c) = (y \wedge c) \vee \neg c = (y \vee \neg c) \wedge (c \vee \neg c) = (y \vee \neg c) \wedge 1 = y \vee \neg c = y.
\]

Hence \(h \) is onto.

3. Let \(h(x_1) = h(x_2) \). Then \(x_1 \vee \neg c = x_2 \vee \neg c \). Then \(\neg (x_1 \vee \neg c) = \neg (x_2 \vee \neg c) \).

Then \(\neg x_1 \wedge c = \neg x_2 \wedge c \). Since these are the relative complements of \(x_1 \) and \(x_2 \) in Boolean algebra \((c) \), it follows that \(x_1 = x_2 \).

Hence \(h \) is one-one.

4. \(h(0) = 0 \vee \neg c = \neg c \).

\[
h(c) = c \vee \neg c = 1
\]

\[
h(a \wedge b) = (a \wedge b) \vee \neg c = (a \vee \neg c) \wedge (b \vee \neg c) = h(a) \wedge h(b)
\]

\[
h(a \vee b) = (a \vee b) \vee \neg c = (a \vee \neg c) \vee (b \vee \neg c) = h(a) \vee h(b)
\]

\[
h(\neg c)(a) = h(\neg a \wedge c) = (\neg a \wedge c) \vee \neg c = \neg (a \vee \neg c) \vee \neg c = \neg\neg c(a \vee \neg c) = \neg\neg c(h(a))
\]

Thus, indeed, \(h \) is an isomorphism.

\[
\text{LEMMA 5: If } a \text{ is an atom in } B \text{, then for every } x \in B-\{0\}: a \leq x \text{ or } a \leq \neg x.
\]

\[
\text{PROOF: Let } a \text{ be an atom in } B. \text{ Suppose that } \neg (a \leq x). \text{ Then } (a \wedge x) \neq a. \text{ But } a \wedge x \leq a. \text{ Since } a \text{ is an atom, that means that } a \wedge x = 0. \text{ But that means that } a \leq \neg x.
\]

\[
\text{CORROLLARY 6: If } a \text{ is an atom in } B, \text{ then } (\neg a) \cup [a) = B.
\]

\[
\text{PROOF: This follows from lemma 5: Let } x \in B \text{ and } x \not\in [a). \text{ Then } \neg (a \leq x). \text{ Hence by lemma 5 } a \leq \neg x, \text{ and that means that } x \leq \neg a, \text{ hence } x \in (\neg a).
\]

All this has the following consequence for finite Boolean algebras:

\[
\text{THEOREM 7: Let } B \text{ be a finite Boolean algebra. Then } |B| = 2^n, \text{ for some } n \geq 0.
\]

\[
\text{PROOF: If } |B| = 1 \text{ then } |B| = 2^0. \text{ If } |B| = 2 \text{ then } |B| = 2^1.
\]

Let \(|B| > 2 \). We define for \(B \) a decomposition tree \(\text{DEC}(B) \) in the following way:

\[
\text{top}(\text{DEC}(B)) = <B,a_0,0>, \text{ with } \neg a_0 \text{ an atom in } B.
\]

for every node \(<A,a,n> \in \text{DEC}(B)\): if \(|A|>2\) then
daughters\(<A,a,n>) = \{<\neg a,a_1,n+1>,<\neg a,a_2,n+1>\}, \text{ with } \neg a_1 \text{ an atom in } (a) \text{ and } \neg a_2 \text{ an atom in } [\neg a].
\]

Let \(<A_1,a_{A_1},k+1>,<A,a_{A},k> \in \text{DEC}(B) \) and let \(<A_1,a_{A_1},k+1> \) be a daughter of \(<A,a_{A},k> \). Then \(|A| = 2 \times |A_1| \).

Obviously, this means that for any node \(<A,a_{A},k> \in \text{DEC}(B)\): \(|B| = 2^k \times |A| \)

This means that if \(<A_1,a_{A_1},k>,<A_2,a_{A_2},k> \in \text{DEC}(B) \), then \(|A_1|=|A_2| \).
And that means that if \(<A_1,a_{A_1},k>\), \(<A_2,a_{A_2},k>\) \(\in\) \(\text{DEC}(B)\), either both \(A_1\) and \(A_2\) decompose (if \(|A_1|>2\)), or neither do (if \(|a_1|\leq 2\)).

Thus for any \(k\) such that some \(<A,a_A,k>\) \(\in\) \(\text{DEC}(B)\): all nodes \(<A,a_A,k>\) \(\in\) \(\text{DEC}(B)\) decompose, or none do.

This means that for some \(k > 0\): \(\text{leave}(\text{DEC}(B)) = \{<A,a_A,k>: <A,a_A,k> \in \text{DEC}(B)\}\) (all leaves have the same level, and hence the same cardinality.)

Let \(<A,a_A,k>\) \(\in\) \(\text{leave}(\text{DEC}(B))\). Then it follows that \(|B| = 2^k \times |A|\).

Since \(<A,a_A,k>\) \(\in\) \(\text{leave}(\text{DEC}(B))\), \(|A|\leq 2\).

For some \(<C,a_C,k-1>\) \(\in\) \(\text{DEC}(B)\), \(<A,a_A,k>\) is the daughter of \(<C,a_C,k-1>\), hence \(|C| = 2 \times |A|\), \(|C| > 2\) and \(|A| \leq 2\). This means that \(|A|=2\).

Hence \(|B| = 2^{k+1}\). Hence for some \(n>1\): \(|B| = 2^n\).

We have now proved that for every finite Boolean algebra \(B\) \(|B| = 2^n\) for some \(n\geq 0\).
2. Constructing product Boolean algebras.

Let \(A \) and \(B \) be Boolean algebras.

The **product** of \(A \) and \(B \), \(A \times B \), is given by:

\[
A \times B = \langle B, \leq, \land, \lor, \neg, 0, 1 \rangle
\]

1. \(B_x = A \times B \)
2. \(\leq_x = \{ <a_1, b_1>, <a_2, b_2> : a_1 \leq_A a_2 \text{ and } b_1 \leq_B b_2 \} \)
3. For every \(<a, b> \in A \times B \): \(\neg_x(a, b) = (\neg_A a, \neg_B b) \)
4. For every \(<a_1, b_1>, <a_2, b_2> \in A \times B \):
 \[
 a_1 \land_x a_2, b_1 \land_B b_2
 \]
5. For every \(<a_1, b_1>, <a_2, b_2> \in A \times B \):
 \[
 a_1 \lor_x a_2, b_1 \lor_B b_2
 \]
6. \(0_x = <0_A, 0_B> \)
7. \(1_x = <1_A, 1_B> \)

THEOREM 8: \(A \times B \) is a Boolean algebra.

PROOF:

1. \(\leq \) is a partial order.
 reflexive:
 Since for every \(a \in A \): \(a \leq_A a \) and for every \(b \in B \): \(b \leq_B b \),
 for every \(<a, b> \in A \times B \): \(<a, b> \leq <a, b> \).

 antisymmetric:
 Let \(<a_1, b_1> \leq <a_2, b_2> \) and \(<a_2, b_2> \leq <a_1, b_1> \).
 Then \(a_1 \leq_A a_2 \) and \(b_1 \leq_B b_2 \) and \(a_2 \leq_A a_1 \) and \(b_2 \leq_B b_1 \),
 hence \(a_1 = a_2 \) and \(b_1 = b_2 \), hence \(<a_1, b_2> = <a_2, b_2> \)

 transitive:
 Let \(<a_1, b_1> \leq <a_2, b_2> \) and \(<a_2, b_2> \leq <a_3, b_3> \).
 Then \(a_1 \leq_A a_2 \) and \(b_1 \leq_B b_2 \) and \(a_2 \leq_A a_3 \) and \(b_2 \leq_B b_3 \),
 hence \(a_1 \leq_A a_3 \) and \(b_1 \leq_B b_3 \), hence \(<a_1, b_1> \leq <a_3, b_3> \).

2. \(\land_x <a_2, b_2> = <a_1 \land_A a_2, b_1 \land_B b_2> \)
 \(a_1 \land_A a_2 \leq_A a_1, a_1 \land_A a_2 \leq_A a_2, b_1 \land_B b_2 \leq_B b_1, b_1 \land_B b_2 \leq_B b_2, \)
 hence \(<a_1, b_1> \land_x <a_2, b_2> \leq <a_1, b_1> \land <a_1, b_1> \land_x <a_2, b_2> \).

Let \(<a, b> \leq <a_1, b_1> \) and \(<a, b> \leq <a_2, b_2> \).
Then \(a \leq_A a_1 \) and \(b \leq_B b_1 \) and \(a \leq_A a_2 \) and \(b \leq_B b_2 \), hence
\(a \leq_A a_1 \land_A a_2 \) and \(b \leq_B b_1 \land_B b_2, \) hence
\(<a, b> \leq <a_1, b_1> \land <a_2, b_2> \).

Hence \(\land_x \) is meet in \(\leq \).

3. We show that \(\lor_x \) is join in \(\leq \) by a similar argument.
4. \(0_x = <0_A, 0_B> \). Since for every \(a \in A \): \(0_A \leq_A a \) and for every \(b \in B \): \(0_B \leq_B b \),
 for every \(<a, b> \in A \times B \): \(<0_A, 0_B> \leq <a, b> \). Hence \(0_x \) is the minimum under \(\leq \).
 Similarly \(1_x \) is the maximum under \(\leq \)
So $A \times B$ is a bounded lattice.

5. $(a_1, b_1) \land_x (a_2, b_2) \lor_x (a_3, b_3) =$
 $a_1 \land_B (b_1 \lor_B b_2) =$
 $(a_1 \land_B a_2) \lor_B (a_1 \land_B a_3) =$
 $(a_1, b_1) \land_x (a_2, b_2) \lor_x (a_3, b_3) =$
 $\langle a_1, b_1 \rangle \land_x (a_2, b_2) \lor_x (a_3, b_3) =$

So $A \times B$ is distributive.

6. \neg_x satisfies the laws of 0, and 1:
 $(a, b) \land_x \neg_x (a, b) =$
 $(a, b) \lor_x (\neg a, \neg b) =$
 $(a, b) \lor_x \neg_x (a, b) =$

So $A \times B$ is a Boolean algebra.

Let B_1 and B_2 be isomorphic Boolean algebras such that $B_1 \cap B_2 = \emptyset$, and let h be an isomorphism between B_1 and B_2.

We define the product of B_1 and B_2 under h, B^{h}_{1+2}:

$B^{h}_{1+2} = \langle B^{h}_{1+2}, \leq_{1+2}, \neg_{1+2}, \land_{1+2}, \lor_{1+2}, 0_{1+2}, 1_{1+2} \rangle$ where:

1. $B_{1+2} = B_1 \cup B_2$.
2. $\leq_{1+2} = \leq_1 \cup \leq_2 \cup \{ (b_1, b_2) : h(b_1) \leq_2 b_2 \}$
3. \neg_{1+2} is defined by:
 $\neg_{1+2}(b) = \begin{cases}
 \neg_2(h(b)) & \text{if } b \in B_1 \\
 \neg_1(h^{-1}(b)) & \text{if } b \in B_2
 \end{cases}$

4. \land_{1+2} is defined by:
 $a \land_{1+2} b = \begin{cases}
 a \land_1 b & \text{if } a, b \in B_1 \\
 a \land_2 b & \text{if } a, b \in B_2 \\
 a \land_1 h^{-1}(b) & \text{if } a \in B_1 \text{ and } b \in B_2
 \end{cases}$

5. \lor_{1+2} is defined by:
 $a \lor_{1+2} b = \begin{cases}
 a \lor_1 b & \text{if } a, b \in B_1 \\
 a \lor_2 b & \text{if } a, b \in B_2 \\
 h(a) \lor_1 b & \text{if } a \in B_1 \text{ and } b \in B_2
 \end{cases}$

6. $0_{1+2} = 0_1$.
7. $1_{1+2} = 1_1$.
THEOREM 9: B_{1+2}^1 is a Boolean algebra.

PROOF:
1. \le_{1+2} is a partial order.
 \le_{1+2} is reflexive:
 If $a \in B_1$: $a \le_1 a$, hence, $a \le_{1+2} a$
 If $a \in B_2$: $a \le_2 a$, hence, $a \le_{1+2} a$

 \le_{1+2} is antisymmetric.
 Let $a \le_{1+2} b$ and $b \le_{1+2} a$. This is only possible if $a, b \in B_1$ or $a, b \in B_2$.
 In the first case $a \le_1 b$ and $b \le_1 a$, hence $a = b$.
 In the second case $a \le_2 b$ and $b \le_2 a$.

 \le_{1+2} is transitive.
 Let $a \le_{1+2} b$ and $b \le_{1+2} c$
 If $a, b, c \in B_1$, then $a \le_1 b$ and $b \le_1 c$, hence $a \le_1 c$, and $a \le_{1+2} c$
 If $a, b, c \in B_2$, then $a \le_2 b$ and $b \le_2 c$, hence $a \le_2 c$, and $a \le_{1+2} c$
 If $a \in B_1$ and $b, c \in B_2$, then $h(a) \le_2 b$ and $b \le_2 c$.
 Then $h(a) \le_2 c$ and $a \le_{1+2} c$.
 If $a, b \in B_1$ and $c \in B_2$, then $a \le_1 b$.
 Since h is an isomorphism, this means that $h(a) \le_2 h(b)$, and hence $h(a) \le_2 c$. Hence $a \le_{1+2} c$.

2. \land_{1+2} is meet under \le_{1+2}.
 If $a, b \in B_1$: $a \land_{1+2} b = a \land_1 b$, which is meet under \le_1, and $\le_1 = \le_{1+2} \{B_1\}$.
 If $a, b \in B_2$: $a \land_{1+2} b = a \land_2 b$, which is meet under \le_2, and $\le_2 = \le_{1+2} \{B_2\}$.

 If $a \in B_1$ and $b \in B_2$, then $a \land_{1+2} b = a \land_1 h^{-1}(b)$.
 $a \land_1 h^{-1}(b) \le_1 a$ and $a \land_1 h^{-1}(b) \le_1 h^{-1}(b)$.
 By definition of \le_{1+2}, $h^{-1}(b) \le_{1+2} h(h^{-1}(b))$.
 So $h^{-1}(b) \le_{1+2} b$.
 Then $a \land_1 h^{-1}(b) \le_{1+2} b$.
 This means that $a \land_{1+2} b \le_{1+2} a$ and $a \land_{1+2} b \le_{1+2} b$.

 If $x \le_{1+2} a$ and $x \le_{1+2} b$, then $x \le_1 a$ and $h(x) \le_2 b$.
 Since h is an isomorphism, then $h^{-1}(h(x)) \le_1 h^{-1}(b)$, i.e. $x \le_1 h^{-1}(b)$.
 then $x \le_1 a \land_1 h^{-1}(b)$ Hence $x \le_{1+2} a \land_{1+2} b$.
 So instead \land_{1+2} is meet under \le_{1+2}.

3. \lor_{1+2} is join under \le_{1+2}.
 If $a, b \in B_1$: $a \lor_{1+2} b = a \lor_1 b$, which is join under \le_1, and $\le_1 = \le_{1+2} \{B_1\}$.
 If $a, b \in B_2$: $a \lor_{1+2} b = a \lor_2 b$, which is join under \le_2, and $\le_2 = \le_{1+2} \{B_2\}$.

 If $a \in B_1$ and $b \in B_2$, then $a \lor_{1+2} b = h(a) \lor_2 b$.
 $b \le_2 h(a) \lor_2 b$ and $h(a) \le_2 h(a) \lor_2 b$.
 As we have seen $a \le_{1+2} h(a)$, hence $a \le_{1+2} h(a) \lor_2 b$.
 So $a \le_{1+2} a \lor_{1+2} b$ and $b \le_{1+2} a \lor_{1+2} b$.

 If $a \le_{1+2} x$ and $b \le_{1+2} x$, then $h(a) \le_{1+2} x$, hence $h(a) \lor_2 b \le_2 x$.

Hence a \lor_{1+2} b \leq_{1+2} x.
So indeed \lor_{1+2} is join under \leq_{1+2}.

4. \ 0_{1+2} = 0_1.
If a \in B_1, 0_1 \leq a. hence 0_{1+2} \leq_{1+2} a.
If a \in B_2, then h(0_1) \leq a, hence 0_{1+2} \leq_{1+2} a.
So indeed 0_{1+2} is the minimum under \leq_{1+2}.
Similarly, 1_{1+2} is the maximum under \leq_{1+2}.

We have proved so far that \mathbf{B}_{1+2}^h is a bounded lattice.

5. Distributivity: a \land_{1+2} (b \lor_{1+2} c) = (a \land_{1+2} b) \lor_{1+2} (a \land_{1+2} c)

a. Let a,b,c \in B_1 or a,b,c \in B_2, then distributivity follows from distributivity of \land_1 and \lor_1 and of \land_2 and \lor_2.

b. Let a \in B_1 and b,c \in B_2
a \land_{1+2} (b \lor_{1+2} c) = a \land_1 (h^{-1}(b) \lor_2 h^{-1}(c)) = (a \land_1 h^{-1}(b)) \lor_1 (a \land_1 h^{-1}(c)) = (a \land_{1+2} b) \lor_{1+2} (a \land_{1+2} c)

So indeed \land_{1+2} is join under \leq_{1+2}.

Similarly, \leq_{1+2} is the maximum under \leq_{1+2}.

We have proved so far that \mathbf{B}_{1+2}^h is a bounded lattice.

5. \neg_{1+2} satisfies the laws of 0_{1+2} and 1_{1+2}.
If a \in B_1,
a \land_{1+2} \neg_{1+2}(a) = a \land_1 h^{-1}(\neg_{1+2}(a)) = a \land_1 h^{-1}(\neg_{1+2}(h(a))) = a \land_1 h^{-1}(h(\neg_1 a)) = a \land_1 \neg a = 0_1 = 0_{1+2}
a \lor_{1+2} \neg_{1+2}(a) = h(a) \lor_2 \neg_{1+2}(a) = h(a) \lor_2 \neg_2(h(a) = 1_2 = 1_{1+2}.
If a \in B_2,
a \land_{1+2} \neg_{1+2}(a) = h^{-1}(a) \land_1 \neg_{1+2}(a) = h^{-1}(a) \land_1 \neg_1(h^{-1}(a) = 0_1 = 0_{1+2}

a \lor_{1+2} \neg_{1+2}(a) = a \lor_2 h(\neg_{1+2}(a)) = a \lor_2 h(\neg_1(h^{-1}(a)) = a \lor_2 \neg_2(a = 1_2 = 1_{1+2}.

Thus B_{1+2}^h is a Boolean algebra. ◀

THEOREM 10: Let B_1 and B_2 be isomorphic Boolean algebras such that B_1 \cap B_2 = \emptyset, and let h be an isomorphism between B_1 and B_2.
Let \{0,1\} be a Boolean algebra of cardinality 2.
B_{1+2}^h is isomorphic to B_1 \times \{0,1\}

PROOF:
We define function k from B_1 \cup B_2 into B_1 \times \{0,1\}:
For all x \in B_1: k(x) = \langle x,0 \rangle
For all x \in B_2: k(x) = \langle h^{-1}(x),1 \rangle

1. Since h is an isomorphism between B_1 and B_2, and B_1 \cap B_2 = \emptyset, k is obviously a bijection between B_1 \cup B_2 and B_1 \times \{0,1\}.
2. If x \in B_1, k(\neg_{1+2}(x)) = \langle h^{-1}(\neg_{1+2}(x)),1 \rangle = \langle h^{-1}(\neg_2(h(x)), \neg_{1+2}(x), 0 \rangle = \langle h^{-1}(h^{-1}(x)), \neg_{1+2}(x), 0 \rangle = \langle \neg_1(x), \neg_{1+2}(x), 0 \rangle = \langle \neg_1(x), 0 \rangle = \langle x,0 \rangle
3. k(0_{1+2}) = k(0_1) = \langle 0_1,0 \rangle = 0_x.
k(1_{1+2}) = k(1_2) = \langle h^{-1}(1_2),1 \rangle = \langle 1_1,1 \rangle = 1_x.

4. k preserves meet:
If a,b \in B_1 then k(a \land_{1+2} b) = k(a \land_1 b) = \langle a \land_1 b,0 \rangle = \langle a,0 \rangle \land_x \langle b,0 \rangle = k(a) \land_x k(b).
If a,b \in B_2 then k(a \land_{1+2} b) = k(a \land_2 b) = \langle h^{-1}(a \land_2 b),1 \rangle = \langle h^{-1}(a) \land_1 h^{-1}(b),1 \rangle = \langle h^{-1}(a),1 \rangle \land_x \langle h^{-1}(b),1 \rangle = k(a) \land_x k(b).
If a \in B_1 and b \in B_2 then k(a \land_{1+2} b) = k(a \land_1 h^{-1}(b)) = \langle a \land_1 h^{-1}(b),0 \rangle = \langle a \land_1 h^{-1}(b),0 \rangle \land_{\{0,1\}} 1 \rangle
\langle a,0 \rangle \land_x \langle h^{-1}(b),1 \rangle = k(a) \land_x k(b).

5. k preserves join:
If a,b \in B_1 then k(a \lor_{1+2} b) = k(a \lor_1 b) = \langle a \lor_1 b,0 \rangle = \langle a,0 \rangle \lor_x \langle b,0 \rangle = k(a) \lor_x k(b).
If a,b \in B_2 then k(a \lor_{1+2} b) = k(a \lor_2 b) = \langle h^{-1}(a \lor_2 b),1 \rangle = \langle h^{-1}(a) \lor_1 h^{-1}(b),1 \rangle = \langle h^{-1}(a),1 \rangle \lor_x \langle h^{-1}(b),1 \rangle = k(a) \lor_x k(b).
If \(a \in B_1 \) and \(b \in B_2 \) then \(k(a \lor 12 \ b) = k(h(a) \lor 2 \ b), 1> = <a \lor 1 \ h^{-1}(b), 1> = <a \lor 1 \ h^{-1}(b), 0 \lor \{0,1\} \ 1> = <a, 0> \lor x <h^{-1}(b), 1> = k(a) \lor x k(b) \).

Thus indeed \(k \) is an isomorphism.

THEOREM 11: Let \(B \) be a Boolean algebra of cardinality larger than 2 and let \(\neg a \) be an atom in \(B \).

Let \(h: (a] \rightarrow [-a) \) be the isomorphism defined by:

for every \(x \in (a] \): \(h(x) = x \lor \neg a \).

Then \(B(a]+[-a) \ ^{h} = B \).

PROOF:

1. \(B(a]+[-a) = (a]+[-a) = B \).
2. \(\leq (a]+[-a) = \leq B \).
 a. Let \(<x,y> \in \leq (a]+[-a) \).
 Either \(x,y \in (a] \), then \(x \leq B y \), or \(x,y \in [-a) \), then \(x \leq B y \), or \(x \in (a] \) and \(y \in [-a) \) and \(h(x) \leq [-a) y \). Since \(h(x) = x \lor B \neg a \), then obviously \(x \leq B y \).
 So in all cases \(<x,y> \in \leq B \).

b. Let \(<x,y> \in \leq B \), i.e. \(x \leq B y \).
 Either \(x,y \in (a] \), then \(<x,y> \in \leq (a]+[-a) \), or \(x,y \in [-a) \), then \(<x,y> \in \leq (a]+[-a) \).
 It can't be the case that \(y \in (a] \) and \(x \in [-a) \), because then \(y \in [-a) \), but then the intersection of \((a] \) and \([-a) \) would not be empty, and it is.
 This leaves only the case that \(x \in (a] \) and \(y \in [-a) \).
 Now \(x \leq B y \) and \(\neg a \leq B y \), hence \(x \lor B \neg a \leq B y \). But \(h(x) = x \lor B \neg a \). Hence \(<x,y> \in \leq (a]+[-a) \).

Thus, indeed \(\leq (a]+[-a) = \leq B \).

This means that \(B(a]+[-a) \ ^{h} \) and \(B \) are the same partial order. That means, of course, that they have identical joins and meets, and this means that they are the same bounded distributive lattice. Since in a bounded distributive lattice, each element has a unique complement and since \(\neg (a]+[-a) \) and \(\neg B \) map every element onto its complement, \(\neg (a]+[-a) = \neg B \). Hence, indeed, \(B(a]+[-a) \ ^{h} \) and \(B \) are the same Boolean algebra. ◀
THEOREM 12: Let B_1 and B_2 be Boolean algebras, $\neg a_1$ an atom in B_1 and $\neg a_2$ an atom in B_2, and let $(a_1]$ be isomorphic to $(a_2]$. Then B_1 and B_2 are isomorphic.

PROOF:
Let h_1 be the isomorphism between $(a_1]$ and $[\neg a_1]$ defined by:
- for all $x \in (a_1]$: $h_1(x) = x \lor_{B_1} \neg B_1(a_1)$
Let h_2 be the isomorphism between $(a_2]$ and $[\neg a_2]$ defined by:
- for all $x \in (a_2]$: $h_2(x) = x \lor_{B_2} \neg B_2(a_2)$
Let k the isomorphism between $(a_1]$ and $(a_2]$. Let $\{0,1\}$ be a two element Boolean algebra.

$B_1 = B_{[a_1] + [\neg a_1]}^{h_1}$ and $B_2 = B_{[a_2] + [\neg a_2]}^{h_2}$, by theorem 11.

B_1 is isomorphic to $(a_1] \times \{0,1\}$ and B_2 is isomorphic to $(a_2] \times \{0,1\}$, by theorem 10.

Define g: $(a_1] \times \{0,1\} \rightarrow (a_2] \times \{0,1\}$ by:
- for every $<a,b> \in (a_1] \times \{0,1\}$: $g(<a,b>) = <k(a),b>$.
It is straightforward to prove that g is an isomorphism between B_1 and B_2.

All this has the following consequences for finite Boolean algebras:

THEOREM 13: Any two finite Boolean algebras of the same cardinality are isomorphic.

PROOF:
1. Obviously, up to isomorphism, there is only one Boolean algebra of cardinality 1 or cardinality 2. Up to isomorphism, there is only one partial order of cardinality 1, hence also only one Boolean algebra. Up to isomorphism there are two partial orders of cardinality 2: $\{\{0,1\},\{\{0\},\{0,1\}\}\}$ and $\{\{0,1\},\{\{0\},\{0,1\}^>,\{1\}\}\}$. Only the second is a lattice and a Boolean algebra.

2. If all Boolean algebras of cardinality 2^n, $n>0$ are isomorphic, then all Boolean algebras of cardinality 2^{n+1} are isomorphic.
This follows from theorem 12. Let B_1 and B_2 be Boolean algebras of cardinality 2^{n+1}, and assume that all Boolean algebras of cardinality 2^n are isomorphic.
Let $\neg a_1$ be an atom in B_1 and $\neg a_2$ be an atom in B_2. $(a_1]$ and $(a_2]$ are Boolean algebras of cardinality 2^n, hence, by assumption they are isomorphic. Then, by theorem 12, B_1 and B_2 are isomorphic.
1 and 2 together prove that any two finite Boolean algebras of the same cardinality are isomorphic.

COROLLARY 14: Up to isomorphism the finite Boolean algebras are exactly the finite powerset Boolean algebras.

PROOF:
For every $n \geq 1$, if $|X| = n$ then $\langle \operatorname{pow}(X),\{-\},\cap,\cup, X,\emptyset \rangle$ is a powerset Boolean algebra of cardinality 2^n. By theorem 13, every Boolean algebra of cardinality 2^n is isomorphic to it.
So, we can construct every finite Boolean algebra as a powerset Boolean algebra. We can also use the product construction under an isomorphism to construct all finite Boolean algebras.

Cardinality 1:

\[o_1 \quad \text{a point in 0-dimensional space.} \]

Cardinality 2:
Take two non-overlapping Boolean algebras of cardinality 1 and an isomorphism, and construct the product:

\[o_1 + o_2 + \{<1,2>\} \rightarrow \]

\[o_1 \quad \text{a point moved along a new dimension:} \]
\[o_2 \quad \text{a line in 1-dimensional space.} \]

Cardinality 4:
Take two non-overlapping Boolean algebras of cardinality 2 and an isomorphism, and construct the product:

\[o_2 + o_4 + \{<1,3>,<2,4>\} \rightarrow \]

A line moved along a new dimension.
A square in 2-dimensional space.

Cardinality 8:
Take two non-overlapping Boolean algebras of cardinality 4 and an isomorphism, and construct the product:

\[o_4 + o_8 + \{<1,5>,<2,6>,<3,7>,<4,8>\} \rightarrow \]

A square in 2-dimensional space.
Cardinality 16:
Take two non-overlapping Boolean algebras of cardinality 8 and an isomorphism, and construct the product:

\[
\begin{align*}
\begin{array}{c}
8 \\
6 \\
2 \\
1 \\
\end{array}
\end{align*}
\begin{align*}
+ & \begin{array}{c}
16 \\
14 \\
10 \\
9 \\
\end{array}
\end{align*}
\begin{align*}
\begin{array}{c}
6 \\
0 \\
0 \\
15 \\
\end{array}
\end{align*}
\begin{align*}
\begin{array}{c}
7 \\
4 \\
5 \\
13 \\
\end{array}
\end{align*}
\begin{align*}
\begin{array}{c}
12 \\
0 \\
0 \\
11 \\
\end{array}
\end{align*}
\begin{align*}
\begin{array}{c}
14 \\
0 \\
0 \\
15 \\
\end{array}
\end{align*}
\begin{align*}
\begin{array}{c}
15 \\
0 \\
0 \\
11 \\
\end{array}
\end{align*}
\begin{align*}
\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
\end{array}
\end{align*}
\begin{align*}
\begin{array}{c}
<1,9>,<2,10>,<3,11>,<4,12>,<5,13>,<6,14>,<7,15>,<8,16> \rightarrow
\end{align*}
\]
A 4-dimensional object: