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Abstract

Stretching experiments in bio-molecules are increasingly used to extract the free

energy profiles of such molecules. In order to measure the free energy landscape, these

experiments should be sufficiently slow to keep the system in equilibrium. In practice,

quite frequently these measurements are out of equilibrium [1]. Nevertheless, if the

deviation from equilibrium is not too strong, the free energy profiles can be extracted

from a repeated non-equilibrium experiment, by using the Jarzynski equality [2, 3].

We can learn about the behavior of such systems by examining the simple model of

an ideal polymer.

We consider several cases of an ideal polymer being dragged by an external force

during a finite time. The work W in such a process depends on the initial state of

the polymer. By repeating this process multiple times (for different initial states),

we get the probability distribution P (W ) of the work. The free energy difference

between the initial state and the final (equilibrated) state ∆F , can be extracted from

the calculated P (W ), provided the deviation from equilibrium is not too strong. If

we know P (W ) analytically, we can always find ∆F . We consider both Newtonian

dynamics and overdamped Langevin equations, for a polymer that is moving either

in free space, or is initially located near a repulsive wall. In all cases one end of a

polymer is dragged with a constant velocity v.

We calculate P (W ) (either analytically or numerically), and demonstrate that

there is a critical velocity vc, such that for v � vc the ∆F can be easily reconstructed,

while for v > vc such reconstruction is, practically, impossible. We determine the

dependence of vc on the number of monomers N .
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Chapter 1

Introduction

1.1 Simple polymer models

A polymer is a long molecule consisting of repeating elementary units called monomers.

Monomers are connected to each other by covalent bonds. At room temperature, the

bond energy� kBT , where kB is the Boltzmann constant and T is the temperature.

The number of monomers N defines the degree of the polymer. Polymers in which

all the monomers are identical are called homopolymers, and polymers which contain

several types of monomers are known as heteropolymers.

Polymer systems have been subject to extensive study for many decades [4–6].

The interest in such macro-molecules arises mainly from their natural occurrence in

biological systems, e.g., DNA and proteins. Artificial polymers are very common in

everyday life and are of great commercial and industrial value. Flexible polymers

are characterized by an enormous number of spatial configurations. Therefore, the

shape of the polymers can only be usefully described statistically. Since the mid -

20th century, much effort has gone into constructing physical models describing the

statistical behavior of polymers. The simplest model to describe a linear polymer

chain is the ideal chain model. This model disregards interactions between monomers

that are not nearest-neighbors along the chain, even if they occupy the same place in

space. This situation is obviously impossible for real polymers, but there are several

types of polymeric systems that resemble the ideal chain model. Such a system for

example, is a polymeric dilute solution in a solvent at a special temperature, called

the Θ-temperature. Another reason for using the ideal chain model is simplification

of the mathematical treatment.

Consider a linear chain with N + 1 monomers (numbered 0 to N). We denote by

Ri the vector from some origin to the ith monomer, and ri ≡ Ri −Ri−1 the bond

vector that goes from the (i − 1)th monomer to the ith monomer. The simplest

means of describing the size of the polymer is the end-to-end vector Ree, which is

the vector connecting the zeroth monomer to the last monomer

Ree = RN −R0 =
N∑
i=1

ri. (1.1)

1
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r1

rN-1

rN

r2

Figure 1.1: An ideal polymer of N + 1 monomers presented as N random steps.

Another measure for the size of the polymer called radius of gyration [5] Rg defined

via

R2
g =

1

N + 1

N∑
i=0

〈
(Ri −Rcm)2〉 , (1.2)

where 〈· · · 〉 denotes average over all the spatial configurations of the polymer, and

Rcm is the position vector of the polymer’s center of mass

Rcm =
1

N + 1

N∑
i=0

Ri. (1.3)

1.1.1 Freely jointed chain

A simple realization of a polymer could be that of equally separated monomers, with

constant |ri| = a. In free space, the system is rotationally invariant, and therefore,the

mean end-to-end distance 〈Ree〉 = 0. The size of the chain is therefore characterized
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by the root-mean-square (r.m.s) end-to-end distance defined via

R2 =
〈
R2

ee

〉
(1.4)

=
N∑

i,j=1

〈ri · rj〉 . (1.5)

The average 〈ri · rj〉 = a2δij because there is no correlation between the directions

of different bond vectors. Thus

R = a
√
N. (1.6)

Generally, R can be related to the number of monomers N as

R = aN ν , (1.7)

where the exponent ν = 1
2

for ideal polymers, but can be larger for polymers in good

solvents.

1.1.2 Random walks and ideal polymers

Consider a particle making a random walk [7, 8] with a constant step size |ri| = a.

The trajectory of this random walk is one conformation of a freely jointed chain.

According to the central limit theorem, the distribution of the sum Ree =
∑N

i=1 ri

of N � 1 random variables that have finite variance will be Gaussian. Thus, we get

the distribution of the end-to-end vector

PN(Ree) =

(
d

2πNa2

) d
2

e−
dR2

ee
2Na2 , (1.8)

where d is the space dimension.

The entropy of the chain is related to the number of available configurations NN
as

S(Ree) = kB lnNN = S(0)− d

2
kB

R2
ee

Na2
. (1.9)

The free energy F of the chain can be obtained from the entropy as F = U − TS,

where U is the internal energy. Taking into account the fact that U in ideal polymers

does not depend on Ree we get

FN(Ree) =
1

2

dkBT

Na2
R2

ee + FN(0). (1.10)
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This can be interpreted as an energy of a long spring with an effective spring constant

keff = dkBT
Na2

. This is an entropic spring, since the source of the free energy is the large

number of chain conformations.

1.1.3 Gaussian chain

The same distribution as (1.8) can be obtained by initially taking a bond length that

has a Gaussian distribution [6, 9]

P (ri) =

(
d

2πa2

) d
2

e−
dr2i
2a2 . (1.11)

In other words, in d = 3 case we can replace the bonds by springs with a spring

constant k = 3kBT
a2

.

Consider a linear chain of N + 1 monomers connected by such springs. The

unstretched lengths of the springs is zero. All the monomers have the same mass

m and all the springs have the same spring constant k. The potential energy of the

system is

V =
1

2
k

N∑
i=1

(Ri −Ri−1)2 =
1

2
k

N∑
i=1

r2
i . (1.12)

Any sub-chain of a Gaussian chain is also a Gaussian chain no matter what is the

size of the sub-chain.

Figure 1.2 depicts an illustration of a Gaussian chain. Notice, that the fact

that the unstretched length of the springs is zero, lead to decomposition of the

potential to d independent directions, which allow us to deal with only one direction

(x coordinate). For that reason, we consider only the 1D Gaussian system, and the

other directions will not influence our calculations.
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Figure 1.2: Illustration of a Gaussian chain consisting of N + 1 monomers and N
springs with spring constant k. We consider only 1D Gaussian chains in this thesis.
The second dimension is for illustration only.



Chapter 2

Review of Relevant Results

2.1 Ideal polymers near a repulsive wall

Equilibrium interaction between polymers and repulsive surfaces have been a subject

of intensive study for the last several decades. Current experimental methods allow

a detailed study of biological macro-molecules [10]. In particular, the atomic force

microscopy [11] (AFM) is an important tool in measuring force-displacement curves

of bio-molecules, and reconstructing their free energy profile [12].

Figure 2.1 depicts an ideal polymer that is held in equilibrium at distance x

of the end-monomer from a plane, while its other end is free. When x is much

larger then the microscopic distance a, and samller than the root-mean-square end-

to-end distance R of the polymer, then it becomes the only relevant quantity that

has dimensions of distance. From purely dimensional considerations the equilibrium

force that the wall applies on the polymer is given by [13–15]

fwall = AkBT

x
, (2.1)

where A is a dimensionless prefactor. Expression (2.1) is more general, and valid

also for a polymer in a vicinity of scale-free surface, i.e., surface that does not change

its geometry under compressing or stretching transformation r → λr. It has been

shown [13] that the value of the prefactor A depends only on the critical exponents

characterizing the scale-free surface. The free energy difference ∆F between the

initial state (where the polymer is near the wall x ≈ a), and the final state (where

the polymer is far away from the wall x ≈ R) can be calculated from by integrating

2.1:

∆F = −
R=aNν∫
a

AkBT

x
dx = −AkBTν lnN. (2.2)

Notice, that since the limits of the integration are approximated, this expression to

the free energy difference is valid up to a constant term. When a very long flexible

polymer is located near a repulsive wall, the number of its available configurations

is reduced relative to being in free space. In general, the number of configurations

6
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fwallx

Figure 2.1: A polymer is held by its end near a repulsive wall. A force fwall exerted
to its end by the wall. Positive direction of the force is defined away from the wall.
If we want to keep the polymer at equilibrium we must apply a force −fwall on its
end to counteract the repulsion of the wall.

is given by

NN ∝ zNNγ−1, (2.3)

where z is the effective coordination number and γ is a universal exponent. For ideal

polymers near a rigid wall, it can be shown by the method of images [16], that γw = 1
2

(“w” denotes wall), while for ideal polymers in free space γf = 1 (“f ” denotes free

space). Thus, ∆F can be calculated from the entropy change ∆S between the initial

and final states:

∆F = −T∆S

= −T
[
kB ln

(
Nγf−1

)
− kB ln

(
Nγw−1

)]
= − (γf − γw) kBT lnN. (2.4)

Since (2.3) is valid up to a proportionality constant, the expression (2.4) for the free

energy is valid up to a constant term. Equating (2.2) with (2.4) yields the prefactor

A =
γf − γw

ν
. (2.5)

Since the exponent ν = 1
2
, we simply get that A = 1.
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2.2 Non-equilibrium processes

Consider an arbitrary system which is initially in equilibrium with a thermal bath,

i.e., the initial state is chosen from a canonical ensemble. An external work W can

be performed to bring the system from the initial state to another state. Then we let

the system equilibrate to a final state by keeping it in contact with the same thermal

bath it contacted in the beginning. The free energy difference between the final and

the initial states is denoted ∆F . It is known from elementary thermodynamics that

when a system is driven from the initial to the final state by an isothermal reversible

process, then the work W = ∆F . If, in contrast, the process connecting initial and

final states is irreversible, W might depend on the initial state and details of the

process, and therefore vary upon repetition of the process with 〈W 〉 ≥ ∆F , where

〈· · ·〉 denotes a thermal average over initial states and changes during the process.

A remarkable relation derived by Jarzynski [2] relates the distribution P (W ) of

the non-equilibrium work W to the equilibrium free energy difference ∆F by

〈
e−βW

〉
=

∞∫
−∞

e−βWP (W )dW = e−β∆F , (2.6)

where β = 1/kBT . Thus, ∆F can be expressed in terms of P (W ) as

∆F = − 1

β
ln

 ∞∫
−∞

e−βWP (W )dW

 . (2.7)

Reconstruction of ∆F can be understood as measurement of the area A under

function f(W ) = e−βWP (W ). In order to reconstruct A correctly, we need to sample

values of W around the peak of f(W ). Usually, f(W ) is shifted from P (W ) towards

the lower values of W so that the peak of f(W ) is located on the tail of P (W ), as

shown in Figure 2.2. In other words, the values of work which significantly contribute

to ∆F arise only rarely. An accurate estimate of ∆F hence requires proper sampling

of those rare work values. In order to reconstruct ∆F correctly we must have a

substantial overlap between P (W ) and f(W ).

An interesting question could be asked: What is the probability to get values of

work that smaller than ∆F by ξ? In other words, what is the probability to violate
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W

e
−βW

P (W )

P (W )

Figure 2.2: The distribution of work P (W ) and the shifted function f(W ) =
e−βWP (W ). We can see that when the shift between these function is large, there is
little overlap between them. Thus, if the functions are too shifted from each other,
the probability to reconstruct the area under f(W ) is zero.

the second law of the thermodynamics? The answer [17] follows from (2.6):

Prob(W < ∆F − ξ) =

∆F−ξ∫
−∞

P (W )dW (2.8)

≤
∆F−ξ∫
−∞

P (W )e(∆F−ξ−W )/kBTdW (2.9)

≤ e(∆F−ξ)/kBT

∆F−ξ∫
−∞

P (W )e−W/kBTdW (2.10)

= e−ξ/kBT . (2.11)

Thus, if ξ is larger than a few kBT we have no reasonable hope to measure work values

that violate the second law of the thermodynamics. Notice, that this constraint does
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not depend on the size of the system.

Generally, we can expand the logarithm of the exponential average in (2.7) in

terms of cumulants [2, 18]

∆F = µ− β

2
σ2 + ... (2.12)

where µ = 〈W 〉 and σ2 =
〈
(W − 〈W 〉)2〉. If P (W ) is a Gaussian centered around

an average µ with width σ

P (W ) =
1√
2πσ

e−
(W−µ)2

2σ2 , (2.13)

the cumulant expansion (2.12) is truncated at the second order [2], i.e., the terms

beyond σ2 are absent, and we get a simple relation between the free energy difference

and the mean and variance of the work

∆F = µ− β

2
σ2. (2.14)

It had been shown, that for slow processes in general diffusive systems the distri-

bution of work is indeed Gaussian [19, 20]. For the case of Gaussian distributions

with ∆F = 0, i.e., µ = β
2
σ2, we find that f(W ) is another Gaussian centered around

−µ. In other words, f(W ) is shifted to the left by 2µ. Therefore, in order to have a

substantial overlap between P (W ) and f(W ) we demand that

µ� σ. (2.15)

Experimental tests [1, 21–29] and numerical simulations [30–34] of the classical

Jarzynski equality have been successfully performed in various systems, as well as

for quantum systems [35,36].



Chapter 3

Dragging a Polymer in Free Space

In this chapter we consider the problem of 1D Gaussian chain being dragged with

a constant velocity v in free space during time t. The end of the chain, i.e., the

monomer numbered 0, is being dragged from one place (x0 = 0) to another (x0 = vt),

as depicted in Figure 4.1. The problem is solved analytically both for Newtonian

dynamics (zero friction and no thermal noise) and overdamped Langevin dynamics,

where the inertial terms are neglected. Both cases posses a natural time scales which

are set either by the natural frequency of the spring in the Newtonian case, or by the

friction constant in the overdamped case. We verify the Jarzynski equality, and find

the critical pulling velocity for which Jarzynski equality can be practically used to

reconstruct the free energy difference ∆F between two different equilibrium states

of the chain (for numerically calculated P (W )).

Figure 3.1: A Gaussian chain is being dragged by its end with a velocity v along
distance vt. We are interested in the distribution of work done on the polymer
during the pulling. Notice, that we consider only 1D Gaussian chains, and the
second dimension is for illustration only.

11
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3.1 Newtonian dynamics

In this section we consider a harmonic oscillator or a Gaussian chain whose dynamics

is governed by Newton’s laws of motion. The chain is initially in equilibrium and

coupled to a thermal bath with a certain temperature T . At time t = 0 we disconnect

the chain from the thermal bath and start dragging its end with a constant velocity

v during time t. At the end of the process we connect the system again to a thermal

bath with the same temperature and let the system relax to an equilibrium state.

The free energy difference ∆F is measured between the initial equilibrium state and

the final equilibrium state. We start with the case of single harmonic oscillator

(N = 1) and generalize it for the case of a Gaussian chain (N > 1)

3.1.1 Single oscillator

Consider the motion of a particle of a mass m at position x1 attached by a spring

with force constant k to a point x0, which moves with velocity v, i.e., at time t its

position is x0 = vt. Such a motion is described by Newton’s equation

mẍ1 = −k(x1 − vt). (3.1)

Since the mass m and the spring constant k define an elementary frequency ω =√
k/m, we can simplify our equation by using dimensionless time, i.e., ω−1t =√
k/mt→ t. Our calculations will be performed at temperature T , which can be used

to define dimensionless velocity
√
m/kBTv → v, as well as dimensionless distance√

k/kBTx→ x. The energy will be measured in units of kBT , which corresponds to

setting kBT = 1. In these dimensionless variables the momentum p coincides with

the velocity, the Hamiltonian (energy) of the system becomes 1
2
p2

1 + 1
2
(x1− vt)2, and

the equation of motion becomes

ẍ1 = −(x1 − vt). (3.2)

The transformation from dimensionless to dimensional variables is detailed in Ap-

pendix A. (In the next section we will consider an overdamped motion of a particle,

which will require a different choice of dimensionless time units.)

The system is initially connected to a thermal bath so that the initial values of

the canonical variables, position x0
1 and momentum p0

1, are chosen from a canonical
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ensemble with the probability

ρ(x0
1, p

0
1) =

1

2π
exp

[
−1

2

(
x0

1

)2 − 1

2

(
p0

1

)2
]
. (3.3)

At time t = 0 we disconnect the system from the thermal bath and start moving x0

with a constant velocity v (x0 = vt) by applying a force f . Notice that the force is

not determined by external constraint, but rather is such that it maintains a constant

velocity v. After time t we stop, connect the system to the thermal bath again and

let it reach the equilibrium. The free energy difference ∆F between the initial state

and the final state is zero, because it does not matter where x0 is located in the

space. The solution of the equation of motion (3.2) is

x1(t) = x0
1 cos t+

(
p0

1 − v
)

sin t+ vt. (3.4)

The work done by the force f is

W (x0
1, p

0
1) = −v

t∫
0

(x1 − vt′) dt′

= −v
[
x0

1 sin t−
(
p0

1 − v
)

(cos t− 1)
]
. (3.5)

Repeating this process for different initial conditions produces work distribution

P (W ). The work W is a linear function of the Gaussian variables x0
1 and p0

1, therefore

P (W ) is a Gaussian characterized by its mean µ = 〈W 〉 and variance σ2 = 〈W 2〉 −
〈W 〉2. From (3.3) we can see that 〈x0

1〉 = 〈p0
1〉 = 0 and

〈
(x0

1)
2
〉

=
〈

(p0
1)

2
〉

= 1.

Therefore, the mean work is given by

〈W 〉 = 2v2 sin2

(
t

2

)
, (3.6)

and the mean squared value of work is given by

〈
W 2
〉

= 4v2 sin2

(
t

2

)
. (3.7)

Thus, we get a relation between the mean and the variance of work

µ(t) =
1

2
σ2(t) = 2v2 sin2

(
t

2

)
. (3.8)



CHAPTER 3 DRAGGING A POLYMER IN FREE SPACE 14

Notice, that the mean value of W vanishes every complete period, i.e., when t is an

integer multiple of 2π. Indeed, Jarzynski equality gives us ∆F = µ − 1
2
σ2 = 0 for

this case. We can see that the typical value of µ is v2, thus requirement (2.15) yields

a condition on the pulling velocity v � 1. The critical case is when µ ≈ σ, which

defines the critical velocity

vc ≈ 1. (3.9)

If we restore the dimensions to the velocity, this means that in order to reconstruct

∆F correctly the pulling velocity should not exceed the typical thermal velocity

vc ≈
√
kBT/m.

3.1.2 1D polymer

Consider a 1D Gaussian chain of N identical monomers. The positions and the

momenta of the monomers are {xn}Nn=1 and {pn}Nn=1. The first monomer is connected

to a point x0 by a harmonic spring. The polymer is being dragged by moving x0

with constant velocity v during time t, i.e., x0 = vt. The equation of motion of the

nth monomer, for 1 ≤ n ≤ N − 1 in the laboratory reference frame is given by

ẍn = −2xn + xn+1 + xn−1, (3.10)

and for n = N

ẍN = −xN + xN−1. (3.11)

In Appendix B, we show that working in the moving reference frame, where x̃n =

xn−vt, the system can be decomposed intoN eigenmodes (called phonons in mechan-

ics and Rouse modes [6] in polymer physics) by performing a discrete sine Fourier

transform

xn = A
N∑
q=1

x̃q sin (αqn) + vt, (3.12)

where x̃q is the amplitude of the qth mode with respect to the moving reference

frame and

A =

√
2

N + 1
2

; αq =
π(q − 1

2
)

N + 1
2

. (3.13)

We chose the sine transform and these values of αq to satisfy the boundary conditions,

where we demanded that one end of the polymer is moving with constant velocity

x0 = vt, and the other end is “free”, i.e., the only force acting on the Nth monomer is



CHAPTER 3 DRAGGING A POLYMER IN FREE SPACE 15

the force applied by the (N−1)th monomer. It is convenient to present the constant

velocity v as

v = A
N∑
q=1

vq sin (αqn) , (3.14)

where

vq =
1

2
Av cot

(αq
2

)
, (3.15)

and q = 1, 2, .., N . Notice that (3.14) is correct for any 1 ≤ n ≤ N . This way the

problem completely separates into set of N independent differential equations

ẍq = −ω2
q (xq − vqt) , (3.16)

where xq is the amplitude of the qth mode with respect to the laboratory reference

frame, and

ω2
q = 4 sin2

(αq
2

)
. (3.17)

This can be understood as N independent oscillators. Each oscillator has its own

frequency ωq and it is being pulled by an effective velocity vq. The general solution

for the amplitudes xq in the laboratory reference frame is given by

xq(t) = x0
q cos(ωqt) +

(
p0
q − vq

)
sin(ωqt) + vqt, (3.18)

where x0
q = xq(t = 0) and p0

q = pq(t = 0). The total work done on the polymer

during this process is

W =
∑
q

Wq, (3.19)

where Wq is the work performed on the qth oscillator. Each Wq has a Gaussian

distribution. Thus, W is also a Gaussian distribution with µ =
∑N

q=1 µq and σ2 =∑N
q=1 σ

2
q . Thus, using the results for a simple harmonic oscillator (3.8) we get

µ(t) =
1

2
σ2(t) = 2

N∑
q=1

v2
q sin2

(
ωqt

2

)
. (3.20)

Substituting ωq and vq according (3.17) and (3.14) gives

µ(t) =
N∑
q=1

v2

N + 1
2

cot2
(αq

2

)
sin2

[
t sin

(αq
2

)]
(3.21)
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For N � 1 and q � N , we find that αq � 1. Thus, we can approximate sin
(αq

2

)
≈

αq
2

, and cot
(αq

2

)
≈ 2

αq
and get

µ(t) ≈
N∑
q=1

v2

N + 1
2

(
2

αq

)2

sin2
(αq

2
t
)

(3.22)

=
N∑
q=1

v2

N + 1
2

(
2

α2
q

)
[1− cos(αqt)] (3.23)

=
N∑
q=1

2v2 N + 1
2[

π(q − 1
2
)
]2 {1− cos

[
π(q − 1

2
)

N + 1
2

t

]}
. (3.24)

Since this approximation is valid only for q � N , it will stop working after long time

t� N . Now we define scaled mean work

M∗(t) ≡ µ(t)

N + 1
2

, (3.25)

and scaled time

t∗ ≡ t

N + 1
2

. (3.26)

By taking the limit N →∞ we obtain

M∗(t∗) ≈ 2v2

π2

∞∑
q=1

1(
q − 1

2

)2 −
2v2

π2

∞∑
q=1

4

(2q − 1)2 cos

[
2π(2q − 1)

4
t∗
]
. (3.27)

With the use of the identity

∞∑
q=1

1(
q − 1

2

)2 =
π2

2
, (3.28)

we find

M∗(t∗) ≈ v2 − 2v2

π2

∞∑
q=1

4

(2q − 1)2 cos

[
2π(2q − 1)

4
t∗
]
. (3.29)

This is exactly the Fourier series of a triangle wave1 with an amplitude of 2v2 and

period time of T ∗ = 4. Let ΛT (t) denote a triangle wave with an amplitude 1 and

1The Fourier series of a triangle wave with an amplitude A and period time T is given by:

f(t) = A
2 −

A
π2

∞∑
q=1

4
(2q−1)2 cos

(
2π(2q−1)

T t
)
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period time T . In this notation

M∗(t∗) ≈ 2v2Λ4(t∗), (3.30)

or, in the original variables

µ(t) ≈ 2Nv2Λ4N(t). (3.31)

Notice, that this approximation is not valid anymore when t� N .

Figure 3.2 depicts two different plots of µ versus time for different Ns. The

system has a period which corresponds to the lowest frequency T = 2π/ωq=1 ≈ 4N .

To find the critical velocity vc we demand that µ� σ. Using the fact that µ = 1
2
σ2
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Figure 3.2: The mean work µ = 〈W 〉 for v = 1 and for polymer of length (a)
N = 10 (b), N = 100. When N grows, µ more resembles a triangular wave.

this condition becomes µ� 2. For N � 1, we know that µ ≈ 2Nv2, and therefore

vc ≈
1√
N
. (3.32)

Notice, that if we measure the velocity in relative units u ≡ v/vc, and the total

pulling length in units of a mean square polymer size ` ≡ L/
√
N , we find that for

fixed u and ` the distribution P (W ) is independent of N (for N � 1).

Numerical Results

In order to demonstrate the existence of a critical velocity, we performed 103 sim-

ulations of dragging a polymer in free space, with initial conditions chosen from a
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canonical distribution. At each simulation the end of the polymer is being dragged

along a distance L =
√
N , i.e., ` = 1. The choice of L =

√
N anticipates the need

that arises later in this work, when we will consider the case of a polymer which

is being dragged away from a wall. In this case, the pulling length will be more

important, where on one hand we need L to be larger than
√
N , but on the other

hand being as small as possible. We calculated the work W , and built a histogram

representing P (W ). More details on the specific numerical method that we used can

be found in Appendix C.

Figure 3.3 depicts the calculation of the area under f(W ) = e−WP (W ), which

enables calculation of ∆F , for different velocities. Since µ ∼ v2 and σ ∼ v, large

velocity means large separation between f(W ) and P (W ). As we can see, when

v > vc the reconstruction is poor.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
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Numerical results

(a) v = 0.1vc
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W

P(W)
e
−W

P(W)
Numerical results

(b) v = 2vc

Figure 3.3: The dashed line depicts the theoretical distribution function P (W ).
The red line depicts the shifted function f(W ) = e−WP (W ), which was calculated
numerically using 103 different initial states. The polymer of size N = 100 is being
dragged along distance vt =

√
N . The dashed line depicts the theoretical value

of P (W ), while the red line shows the theoretical curve f(W ). The histogram is a
numerical reconstruction of f(W ). As expected, the reconstruction of the area under
f(W ) is poor when v > vc.

Figure 3.4 depicts the probability distribution of W for different N while u =

v/vc = const. As has been expected from our theoretical treatment, the shape of the

distribution does not depend on N for fixed u.
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Figure 3.4: Probability distribution P (W ) of work for a polymer that is being
dragged along distance vt =

√
N at different velocities. The histogram has been

constructed from 103 separate numerical simulations. We can see that for same
u = v/vc, P (W ) has no dependence on N , as has been expected.
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3.2 Overdamped Langevin dynamics

In this section we consider a Gaussian chain which is dragged in a very viscous fluid.

In such a case its dynamics governed by the overdamped Langevin equation (where

the inertia term can be neglected). The chain is initially in equilibrium and remains

coupled to a thermal bath during the entire process. Our calculation of the work

resembles [37–40] where P (W ) was calculated for an ideal polymer being stretched.

3.2.1 Single oscillator

A harmonic oscillator controlled by Langevin equation was one of the first systems

used to demonstrate the Jarzynski equality [41]. There is an extensive theoretical

and experimental literature on the subject. Theoretical treatment of a dragged

Brownian particle [42] followed an experimental study of translation of a particle

in an optical harmonic trap [43], in order to test the violation of the second law of

thermodynamics. Other works included a driven harmonic oscillator [44], as well as

oscillator subjected to an external non-thermal Gaussian noise [45]. The application

of Jarzynski equality was also demonstrated by experiments on harmonic oscillator

with varying force constant [24, 25]. A particle that is dragged in a more general

potential was also studied [46,47].

In our case, we consider a particle of mass m moving in a potential created by

a spring with force constant k attached to a point x0 which is moving with velocity

v, i.e., at time t we have x0 = vt. If this motion is in a viscous liquid and under an

influence of a thermal noise, it can be described by Lagevin [6] equation

mẍ1 = −k(x1 − vt)−mγẋ1 +R(t), (3.33)

where γ is a friction constant, while R(t) represents a temperature-depended noise

that satisfies

〈R(t)〉 = 0 ; 〈R(t)R(t′)〉 = 2γkBTδ(t− t′) , (3.34)

where 〈· · · 〉 denotes an average over ensemble of thermal noise. When the friction is

strong, the particle loses its momentum at very short times and for such overdamped

motion the inertia term on the left-hand-side of the equation can be chopped.

As in the Newtonian case, we can use dimensionless variables. The friction con-

stant γ and the force constant k define relaxation time τ = γ/k, which can be used to
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define dimensionless time t/τ → t. As in the Newtonian case, we will use kBT as an

energy unit that can be used to define dimensionless distance
√

k
kBT

x → x, as well

as dimensionless velocity τ
√

k
kBT

v → v. In these units the overdamped Langevin

equation becomes

ẋ1 = −(x1 − vt) +R(t), (3.35)

where the random thermal force in the dimensionless units satisfies

〈R(t)〉 = 0 ; 〈R(t)R(t′)〉 = 2δ(t− t′) . (3.36)

In the reference frame moving at velocity v, x̃1 = x1 − vt, and equation (3.35) looks

even simpler

˙̃x1 = −x̃1 − v +R(t). (3.37)

By multiplying both sides of the equation by et, we get

d

dt

[
etx̃1

]
= (R(t)− v) et, (3.38)

which can be integrated to obtain

x̃1(t) = x̃0
1e
−t + e−t

∫ t

0

(R(t′)− v
)
et
′
dt′. (3.39)

In these dimensionless units x̃1 is the stretching of the spring, and −x̃1 is the force

that needs to be applied on the spring to keep it moving with constant velocity v

(in the laboratory frame). The force in the laboratory frame is the same as in the

moving frame and therefore, the work performed on the system during time t is

simply

W (t) = −v
∫ t

0

x̃1(t′)dt′. (3.40)

As seen in (3.39), x̃1(t) is a sum of Gaussian variables. Therefore, x̃1(t) is a

Gaussian variable. Thus, the work W is also a Gaussian variable. In order to find

the distribution of work P (W ) we only need to find µ
〈
W
〉

and σ2 =
〈
W 2
〉
−
〈
W
〉2

.

These, will define the distribution

P (W ) =
1√

2πσ2
exp

(
−(W − µ)2

2σ2

)
. (3.41)
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From (3.40) we can calculate:

〈
W
〉

= −v
∫ t

0

〈
x̃1(t′)

〉
dt′ = v2

(
e−t + t− 1

)
, (3.42)

and

〈
W 2
〉

= v2

∫ t

0

∫ t

0

〈
x̃1(t′)x̃1(t′′)

〉
dt′dt′′ = v4

(
e−t + t− 1

)2
+ 2v2

(
e−t + t− 1

)
. (3.43)

So the mean and the variance of the distribution are given by

µ =
〈
W
〉

= v2
(
e−t + t− 1

)
, (3.44)

σ2 =
〈
W 2
〉
−
〈
W
〉2

= 2v2
(
e−t + t− 1

)
. (3.45)

We can see again that µ and σ are related in such a way that (2.14) produces ∆F = 0

since µ = 1
2
σ2.

3.2.2 1D polymer

The same Gaussian chain as in subsection 3.1.2 is now moved in a very viscous

fluid. In the reference frame moving with velocity v, the equations of motion in the

dimensionless variables (as defined in the previous sub-section) for 1 ≤ n ≤ N − 1

are

˙̃xn = −2x̃n + x̃n+1 + x̃n−1 +Rn(t)− v, (3.46)

and for n = N

˙̃xn = −x̃n + x̃n−1 +Rn(t)− v, (3.47)

where x̃n = xn−vt is the location of the nth monomer in the moving reference frame,

and Rn(t) is the random force acting on the nth monomer, which satisfies

〈Rn(t)〉 = 0 ; 〈Rn(t)Rm(t′)〉 = 2δn,mδ(t− t′) . (3.48)

Again, the system can be decomposed into N eigenmodes by performing a discrete

sine Fourier transform that fulfills the boundary conditions,where one end of the

polymer is moving with constant velocity x0 = vt, and the other end is free. This way,

the Gaussian chain is simply decomposed into N overdamped harmonic oscillators
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(as shown in Appendix B). Each oscillator has decay time

τq =
1

4
sin−2

(αq
2

)
, (3.49)

and is pulled by an effective velocity

vq =
1

2
Av2 cot

(αq
2

)
, (3.50)

where

A =

√
2

N + 1
2

; αq =
π(q − 1

2
)

N + 1
2

. (3.51)

The work done on the whole polymer is sum of works performed on each one of the

eigenmodes, which are simply dragged oscillators

W =
N∑
q=1

Wq. (3.52)

We have already calculated the distribution of work done on a single oscillator, and

therefore

µq(t) =
1

2
σ2
q = τqv

2
q

(
e
− t
τq +

t

τq
− 1
)
. (3.53)

Since Wq has a Gaussian distribution, W has also a Gaussian distribution with mean

µ =
∑N

q=1 µq and variance σ2(t) =
∑N

q=1 σ
2
q , so that

µ(t) =
1

2
σ2(t) =

N∑
q=1

τqv
2
q

(
e
− t
τq +

t

τq
− 1
)
. (3.54)

We can examine the mean work for short times and long times, where short or

long is relatively to typical time-scales of the system - the relaxation times (3.49).

For q = N (3.49) yields the shortest relaxation time of the system

τmin = τq=N =
1

4
sin−2

[
π
(
N − 1

2

)
2
(
N + 1

2

) ] −−−→
N�1

1

4
. (3.55)

That is to say, that the shortest time-scale τmin of the system is of order unity. The
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Figure 3.5: The mean work µ = 〈W 〉 for v = 1 and for polymer of length (a)
N = 10, and (b) N = 100.

largest time scale τmax of the system can be obtained by taking q = 1 and get

τmax = τq=1 =
1

4
sin−2

(
π

4N + 2

)
−−−→
N�1

4

π2
N2. (3.56)

Thus, the largest time-scale of the system τmax ∼ N2.

For t� τmin, we can expand the exponential in (3.54) to quadratic order to obtain

µ(t) ≈
N∑
q=1

τqv
2
q

(
1− t

τq
+

1

2

( t
τq

)2

+
t

τq
− 1
)

=

(
1

2

N∑
q=1

v2
q

τq

)
t2. (3.57)

By substituting the values of τq from (3.49) and vq from (3.50) we find

N∑
q=1

v2
q

τq
=

N∑
q=1

1

4
v2A2 cot2

(αq
2

)
sin2

(αq
2

)
= v2A2

N∑
q=1

cos2
(αq

2

)
= v2, (3.58)

leading to quadratic behavior

µ(t� τmin) ≈ v2

2
t2. (3.59)

Figure 3.5 shows plots of µ versus time for different Ns. We can see that for short

times µ has a parabolic behavior. Notice, that the expression for µ for short times

has no dependence on N , because the first monomer still “does not know” it is
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connected to a large chain.

For t� τmax we can drop the exponent in (3.54) and get

µ(t) ≈

(
N∑
q=1

v2
q

)
t− G(N), (3.60)

where G(N) =
N∑
q=1

τqv
2
q and

N∑
q=1

v2
q = Nv2. In order to estimate the dependence of

G(N) on N , we can approximate the sum to an integral by taking the limit of N � 1

and defining a new variable ζ = πq
2N

G(N) ≈ v2

8N

N∑
q=1

cot2
(
πq
2N

)
sin2

(
πq
2N

) (3.61)

≈ v2

π
2∫

ζ= π
2N

cot2 ζ

sin2 ζ
dζ (3.62)

≈ v2 cot3
( π

2N

)
. (3.63)

By approximating cot(π/2N) ≈ N we obtain

G(N) ≈ v2N3. (3.64)

Thus, for t� τmax, i.e., t� N2, G(N) can be neglected and µ(t) is given by

µ(t� τmax) ≈ Nv2t, (3.65)

and we get a linear dependence on t for t� τmax, as shown in Figure 3.5.

To find the critical pulling velocity we will focus on the large times regime.

Suppose we drag the chain along distance L = vt ∼
√
N , then using condition

(2.15), we get

µ ≈ N
3
2v < 1, (3.66)

which defines the critical velocity

vc ≈ N−3/2. (3.67)

Again, for N � 1, one can define new relative velocity u = v/vc and relative distance
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` = vt/
√
N such that the distribution of work P (W ) will be independent of the chain

size N for fixed u and `. In these variables, the distribution of work for t� τmax is

simply a Gaussian with mean and variance

µ =
1

2
σ2 ∼ u`. (3.68)

Notice that in this case our ability to reconstruct ∆F correctly also depends on the

pulling length ` (or pulling time). Unlike the Newtonian dynamics case, where µ

and σ were bounded, in this case µ ∼ ` and σ ∼
√
`, which means that they are not

bounded. At some point µ will be large enough so that the Gaussian of P (W ) will

be centered far away from the center of the shifted Gaussian f(W ), and there will

be no appreciate overlap between them. However, if we drag the polymer a distance

which if of order of a few typical polymer sizes (` ∼ 1), the critical velocity defined

in (3.67) is still valid.

Numerical Results

Even though this problem has an analytical solution, we solved the problem numeri-

cally to demonstrate the existence of a critical velocity vc. We performed 103 simula-

tions of dragging a Gaussian chain in free space in the presence of a Gaussian noise.

We chose 103 different initial states from a canonical distribution, while for each

initial state we calculated the work done by dragging the end of the polymer along

a distance L =
√
N with constant velocity v. We built the histogram representing

P (W ), and reconstructed the area under the shifted curve f(W ) = e−WP (W ). More

details on the specific numerical method that we used, can be found in Appendix C.

Figure 3.6 depicts the calculation of the area under f(W ) for different velocities.

Since µ ∼ v2, large velocity means large separation between f(W ) and P (W ). As

we can see, when v > vc the reconstruction is poor. In Figure 3.7 we can see the

numerical calculation of P (W ) for different N while the variables u and ` remain

constant. As derived in (3.68), the distributions are independent of N for fixed u

and `.
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Figure 3.6: The dashed line depicts the theoretical distribution function P (W ).
The red line depicts the shifted function f(W ) = e−WP (W ), which was calculated
numerically using 103 different initial states. The polymer of size N = 100 is being
dragged along distance vt =

√
N . The dotted line depicts the theoretical value

of P (W ), while the red line shows the theoretical curve f(W ). The histogram is a
numerical reconstruction of f(W ). As expected, the reconstruction of the area under
f(W ) is poor when v > vc.
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Figure 3.7: Probability distribution of work for the overdamped Langevin dynamics
case. The polymer is being dragged along distance vt =

√
N with different velocities.

We can see, that for u = v/vc = const., P (W ) is independent N .



Chapter 4

Dragging a Polymer Away from a

Wall

In this chapter we deal with the problem of an ideal polymer which is initially located

near a wall, and is being dragged far away from the wall. We would like to use the

Jarzynski equality to calculate the free energy difference ∆F between the initial

equilibrium state (the polymer near the wall) and the final equilibrium state (the

polymer far away from the wall). This non-equilibrium problem has no analytical

solution. The distribution of work is generally no longer a Gaussian and ∆F is no

longer zero. We find the critical velocities using qualitative arguments, and compare

them with numerical results. We considered both for Newtonian dynamics (ND) and

overdamped Langevin dynamics (OLD) cases.

Figure 4.1: A Gaussian chain near a wall, while its end is dragging away from the
wall with constant velocity v and the other end is free. Notice, that we consider only
1D Gaussian chains, and the second dimension is for illustration only.

29
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4.1 Adiabatic motion of a single oscillator

Consider the single oscillator system described in Sec. 3.1.1 with a wall added at

x = 0, so we have a particle which is initially attached by a spring to a rigid wall.

The oscillator can collide elastically with the wall, which means the wall can change

the momentum of the oscillator but not its energy. Now we start moving away the

point x0, to which the spring is attached, away from the wall. The Hamiltonian of

the system is

H =
1

2
p2

1 +
1

2
(x1 − x0)2 + Vwall(x1), (4.1)

where x0 = vt, and Vwall is the wall potential

Vwall(x1) =

0, x1 > 0,

∞, x1 < 0.
(4.2)

As long as the particle does not touch the wall, its motion is described by

x1(t) = x0
1 cos(t) + (p0

1 − v) sin(t) + vt. (4.3)

When the particle hits the wall, its velocity is reversed. Thus, the particle’s move-

ment will be divided into collisionless segments, separated by the points when the

particle collides the wall, as depicted in Figure 4.2. Each segment is described by

xn(t) = x0n cos(t) + (p0n − v) sin(t) + vt, (4.4)

where tn−1 < t < tn for the nth segment, and (x0n , p0n) are the initial conditions (at

t = 0) of the nth segment. When the trajectory of the oscillator in the phase space

is closed, we can define an adiabatic invariant I [48], which is the area enclosed by

the trajectory in the phase space

I =

∮
p1dx1. (4.5)

Generally, the trajectories of the oscillator in phase space are not closed. However,

if the particle is dragged sufficiently slow, i.e., during one period of the oscillator we

barely change the zero point x0, the trajectories are almost closed, as demonstrated

in Figure 4.3. It can be shown [48], that the lowest order non-vanishing term in the
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Figure 4.2: An example of a path of a particle attached by a linear harmonic spring
to a point initially equilibrated near a wall as it is dragged away from the wall.

change of the adiabatic invariant I is v2, i.e.,

dI
dt
≈ v2. (4.6)

Therefore, for small velocities the change in I is negligible, and I is conserved. Using

the fact that the area enclosed in the phase space trajectory remains constant we

can find the work done on the oscillator. The total energy of the system is

E =
1

2
p2

1 +
1

2
(x1 − vt)2. (4.7)

In the absence of the wall, for constant E and t, this represents a circle of a radius√
2E in (x, p) plane. In the presence of the wall the circles “trimmed” at x = 0. In

particular at t = 0, when the spring is attached to the wall, the trajectory in the

phase space is a semi-circle, with

I1 = πE1, (4.8)

where E1 is the energy of the oscillator at that time. When the oscillator moves

away from the wall, its trajectory becomes a complete circle, and the area becomes

I2 = 2πE2, (4.9)

where E2 is the energy of the oscillator after it was pulled away from the wall. Since

the area is an adiabatic invariant of the system I1 = I2, we find that for small v the
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Figure 4.3: An example of a possible trajectory in the phase space of an oscillator
which is dragged away from the wall with a velocity v = 0.01. When the oscillator is
attached to the wall the trajectory is half a circle, when it is far away from the wall
the trajectory is a complete circle. For an adiabatic movement, each circle is almost
closed, and the area enclosed by the trajectory remains constant.

energies are related as E1 = 2E2. The work done on the oscillator is the difference

between the final and initial energy

W = E2 − E1 = −E1

2
. (4.10)

In terms of the initial state (x0
1, p

0
1) the work is:

W (x0
1, p

0
1) = −1

4

[(
x0

1

)2
+
(
p0

1

)2
]
. (4.11)

In order to find the distribution of work P (W ) we need to calculate the average

〈δ (W −W (x0
1, p

0
1))〉 with respect to the initial Boltzmann distribution of x0

1 and p0
1.

The δ function can be presented as Fourier transform, i.e., δ(y) = 1
2π

∫∞
−∞ e

ikydk,
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which gives

P (W ) =
〈
δ
(
W −W (x0

1, p
0
1)
)〉

=
1

2π

∫ ∞
−∞

eikW 〈e−ikW (x01,p
0
1)〉dk. (4.12)

The thermal average over initial states yields

〈
e−ikW (x01,p

0
1)
〉

=
1

π

∞∫
−∞

∞∫
0

e−
x2

2 (1− ik
2 )e−

p2

2 (1− ik
2 )dxdp

=
2

2− ik
. (4.13)

By substituting (4.13) into (4.12) we find the probability density function of W in

adiabatic process

P (W ) =
1

π

∞∫
−∞

eikW

2− ik
dk

= 2e2W θ(−W ), (4.14)

where θ(x) is the Heaviside step function. From the knowledge of P (W ), we can

reproduce the equilibrium free energy difference of the oscillator. This can be com-

puted with a direct free energy calculation of an oscillator attached to a wall and

oscillator in free space. The partition function Zfree of an oscillator in free space is

twice larger than the partition function Zwall of an oscillator attached to a wall, since

the wall “trimmed” half of the available states in free space. Thus, the free energy

difference ∆F between the initial state, where the spring is attached to the wall, and

final state, where the oscillator is far away from the wall, is given by

∆F = − ln

(
Zfree

Zwall

)
= − ln(2). (4.15)

We can easily check that this distribution indeed reproduces the correct ∆F using

the Jarzynski equality (2.7)

∆F = − ln

 0∫
−∞

2e2W e−WdW

 = − ln(2). (4.16)
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We can also check that P (W ) yields the expected mean value of work (4.10), which

is minus half of the average total energy 〈E1〉 = 〈x2
0/2〉+ 〈p2

0/2〉 = 1

〈W 〉 =

0∫
−∞

2We2WdW = −1

2
= −〈E1〉

2
. (4.17)

Figure 4.4 shows the comparison between the analytical result and the numerical

result.

−3 −2.5 −2 −1.5 −1 −0.5 0
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Numerical results
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Figure 4.4: A numerical reconstruction of P (W ) for v = 0.01 and L = vt = 5. The
red line depicts the analytical distribution function (4.14) for adiabatic motion.
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4.2 Estimation of vc for 1D polymer

4.2.1 Newtonian dynamics

For a reliable reconstruction of the free energy, the polymer should be moved suffi-

ciently slowly. From (1.3) we see that the velocity of the center of mass velocity of

the polymer is

vcm =
1

N

N∑
i=1

Ṙi. (4.18)

For a polymer in free space the average velocity of the center of mass is 〈vcm〉 = 0.

However, the typical, or the r.m.s velocity vcm =
√
〈v2

cm〉 is

vcm =

√√√√ 1

N2

N∑
i,j=1

〈
Ṙi · Ṙj

〉
=

vth√
N
, (4.19)

where vth is the typical (thermal) velocity of a single monomer. In our dimensionless

units vth = 1 and therefore vcm = 1/
√
N . The time t it would take the polymer

to move its own size L =
√
N , would be t = L/v = N . This is also the period

of the slowest eigenmode of a free polymer (3.17) [4]. For a free-polymer this can

be calculated exactly, but even in presence of a wall, the typical time of overall

motion of the polymer would be the same. It is natural to define velocity v of a slow

motion, such that during this time the polymer is not dragged more than its own

size L =
√
N , i.e., we must require v < vcm. In other words, for the ND case the

critical velocity vc coincides with the typical velocity of the center of mass vcm, or

vc ≈
1√
N
, (4.20)

which coincides with the analytical result (3.32) for the critical velocity in free space.

Possible generalization to non-ideal polymers could be that of self-avoiding-walk

(SAW) polymers, where two monomers can no longer occupy the same place in space.

The r.m.s end-to-end distance of such a polymer is described by a different exponent

ν 6= 1
2
, i.e., R ∼ N ν . We can see that eventually, the size of the polymer has no

influence on vcm as well as on the critical velocity vc. Therefore, the same critical

velocity (4.20) will be valid also for SAW polymers.
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4.2.2 Overdamped Langevin dynamics

The center of mass of an N -monomer polymer whose motion is described by Langevin

equation in free space performs diffusion, characterized by diffusion constant D,

which is N times smaller than the diffusion constant D0 of a single monomer. D0 is

of order 1 in our dimensionless units. Therefore, the time t it takes it to diffuse its

own size L =
√
N , is

t ≈ L2

D
=

N

D0/N
≈ N2 (4.21)

This is also the slowest relaxation time of an internal mode of the polymer.

If the polymer is being dragged with a velocity v, we would like it to be sufficiently

small, such that during the same time t, the distance vt that the polymer is dragged

would not exceed its own size L. This means that we need v < N−
3
2 , or

vc ≈ N−
3
2 . (4.22)

which coincides with the analytical result (3.67) for the critical velocity in free space.

The presence of the wall does not significantly modify the natural diffusion of the

polymer or its internal relaxation times. Therefore, this vc is also valid in the presence

of the wall. Note, that (4.22) coincides with the exact result (3.67) in free space.

The generalization to SAW polymers for this case, will take into account the size

of the polymer N ν . By replacing L = N ν , we simply find a general critical velocity

vc ≈ N−ν−1. (4.23)

4.3 Numerical results

We performed a numerical simulation and found the distribution of work as well as

the free energy difference for different velocities and different chain sizes N . The

numerical methods are detailed in Appendix C. From the numerical results we

can deduce properties of such distributions both for Newtonian dynamics (ND) and

overdamped Langevin dynamics (OLD). In order to ensure that the polymer is far

enough from the wall, the polymer has been dragged away from the wall a distance

L which is ` = 5 times the typical size of the polymer
√
N , i.e., L = `

√
N . Notice,

that this is a non-equilibrium process and the average size of the polymer during

the pulling might be grater than
√
N , and that is why we choose L = 5

√
N . We
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repeated this process many times with different initial states, chosen from a canonical

distribution.

Notice, that in this case the free energy difference ∆F is no longer zero. As we

have already seen in (2.2) and (2.4), we can determine the value of ∆F up to a

constant

∆F = −1

2
lnN + C, (4.24)

where the value of the constant C ≈ −0.589 is calculated numerically in Appendix

D. In order to give some quantative measure to the deviation from equilibrium, let

us introduce the dissipative work [38]

Wd = W −∆F. (4.25)

For isothermal quasi-static processes, the mean work is equal to the free energy

difference ∆F . Thus, Wd gives some measure of deviation from quasi-static processes,

i.e., an entropy production term.

Generally, the distribution of work P (W ) depends on the number of monomers

N , since the free energy difference is function of N . After we numerically calculated

the distributions P (W ) for for fixed u = v/vc and ` = L/
√
N , we noticed that if

we subtract the free energy difference from the work, i.e., working with the dissi-

pative work Wd, the distribution P (Wd) of the dissipative work looks like it has no

dependence on N .

Figure 4.5 and 4.6 show the histograms of the distributions of the dissipative work

Wd for ND and OLD cases, respectively. For each case a comparison has been done

between distributions with different polymer sizes N , but the same relative velocity

u = v/vc. As we can see, for N � 1 and fixed u and ` the shape of the distributions

looks the same, no matter what is the size of the chain. This result is observed both

for ND case and OLD case. Possibly, the fact that the distributions collapse into

the same shape, implies of a limiting curve for N → ∞. Since we only deal with

N ≤ 100, we cannot declare this result with a high degree of certainty. Notice, that

a similar result was obtained analytically for a polymer in free space. In that case

of a polymer in free space, the free energy difference was zero. Thus, Wd = W and

P (Wd) = P (W ). For the case of a polymer near a wall we have no analytical solution

to examine. Still, we can give some qualitative arguments to justify the existence of

this property for the case of polymer near the wall:

First, notice that the probability density P (Wd) is generally restricted by two
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constrains:

1. The probability density P (Wd) must be normalized

∞∫
−∞

P (Wd)dWd = 1. (4.26)

2. By dividing (2.6) by e−∆F , we find that the shifted function f(Wd) = e−WdP (Wd)

must also be normalized

∞∫
−∞

e−WdP (Wd)dWd = 1. (4.27)

These two constraints somewhat restrict the shape of the distribution. The second

constraint means that the are Ad under f(Wd) = e−WdP (Wd) is Ad = 1.

For the OLD case we know that for small velocities (quasi-static isothermal

pulling) the work must be equal to the free energy difference. Also we know that

the for large pulling time the polymer can be treated as a polymer in a free space

(since its too far from the wall) and the dominant term of the work grows linearly

with time (3.65). Combining these two facts together, we get

WOLD ≈ Nv2t+ ∆F. (4.28)

In terms of the pulling distance L = vt = `
√
N and the velocity parameter u = v/vc,

we simply get that the dissipative work for the OLD case is independent of N

WOLD −∆F ≈ u`. (4.29)

Another important property of the numerically calculated P (Wd) is the tail of

the distribution. As we can see that in the ND case (Figure 4.5), the distributions

are definitely not symmetric anymore and they have a long tail towards the lower

values of Wd. In the OLD case (Figure 4.6) the long tail is absent. This tail has a

critical influence on our ability to reconstruct the correct ∆F . Figures 4.7 and 4.8

depict the reconstruction of ∆F for various velocities and different polymer sizes.

The theoretical value of ∆F was calculated in Appendix D, and it is depicted by the

black line. In both cases (ND and OLD) we can see that when v < vc the free energy
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differences that calculated using Jarzynski equality are close to the theoretical value,

while for v > vc, the numerical results unable to reproduce the correct values of ∆F .

We can also notice that, since the size of the sample is finite, and the number of

available configurations grows with N , the reconstruction becomes poorer for large

N .

Notice, that the reconstructed free energy for v ≥ vc is smaller than the expected

value for the ND case, and is larger than the expected value for the OLD case. The

reason for that is the long tails of the distributions in the ND case, and the absence

of the tail in the OLD case. Let us denote by Ãd the numerically reconstructed area

under f(Wd). Figures 4.9 and 4.10, depict an illustration of this point, i.e., if our

sample size is finite, we will never be able to calculate the whole tail numerically.

Thus, rare values of work, which are located on the tail of P (Wd), will be very

dominant after multiplying the histogram by e−Wd . Therefore, Ãd will be larger

than the theoretically expected value, i.e., Ãd > 1 (as shown in Figure 4.9). However,

if these rare values of work are absent, the numerically calculated area Ãd will be

smaller than the theoretical expected one, i.e., Ãd < 1 (as shown in Figure 4.10). Let

us denote by ∆F̃ the numerically estimated free energy difference, which is related

to Ãd via (2.7)

∆F̃ −∆F = − ln
(
Ãd

)
. (4.30)

Thus, if Ãd > 1 (as in the ND case) we get ∆F̃ < ∆F , and if Ãd < 1 (as in the OLD

case) we get ∆F̃ > ∆F .
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Figure 4.5: Probability density P (Wd) of the dissipative work Wd for the case of
ND. We picked 103 different initial states for each velocity and polymer size. In all
of the cases the polymer was dragged a relative distance of ` = 5.
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Figure 4.6: Probability density P (Wd) of the dissipative work Wd for the case of
OLD. We picked 500 different initial states for each velocity and polymer size. In all
of the cases the polymer was dragged a relative distance of ` = 5.
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Figure 4.7: Reconstruction of ∆F for different polymer sizes and different velocities
in the ND case. The black line depicts the theoretical line as calculates in Appendix
D, different colors of dots present different pulling velocity. We can see that the
reconstruction becomes poor when v > vc.
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Figure 4.8: Reconstruction of ∆F for different polymer sizes and different velocities
in the OLD case. The black line depicts the theoretical line as calculates in Appendix
D, different colors of dots present different pulling velocity. We can see that the
reconstruction becomes poor when v > vc.
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Figure 4.9: Numerical calculation of P (Wd) and e−WdP (Wd) for the ND case, where
v = vc and N = 100. (a) Histogram of the distribution P (Wd) (b) Histogram of the
shifted function f(Wd) = e−WdP (Wd). The numerical value of the area under f(Wd)
is Ãd ≈ 120 > 1.
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Figure 4.10: Numerical calculation of P (Wd) and f(Wd) = e−WdP (Wd) for the
OLD case, where v = 3vc and N = 100. (a) Histogram of the distribution P (Wd)
(b) Histogram of the shifted function f(Wd) = e−WdP (Wd). The numerical value of
the area under f(Wd) is Ãd ≈ 0.073 < 1.



Chapter 5

Conclusions and Future Prospects

We studied the problem of dragging an ideal polymer, both in free space and in a

vicinity of a wall, and found the critical pulling velocities for which we can reconstruct

the correct ∆F using Jarzynski equality. We saw that the critical velocity is related

to the exponent ν via vc ∼ N−
1
2 for ND case and vc ∼ N−ν−1 for OLD. This result

is valid in free space as well as near the wall. Gaussian polymers could be solved

analytically in the free space but near the wall it becomes an unsolvable problem.

We believe that the same qualitative arguments that lead us to the critical velocities

near the wall, are also valid for the case of SAW polymers. Therefore, the assumption

is that the critical velocities behavior is the same with the appropriate exponent ν.

This could be an interesting research direction since SAW polymer model describes

a more realistic behavior of polymers.

Notice, that we never mentioned the dependence of the critical velocities on

the sample size. We were interested only in the limits of v > vc for which we

cannot practically calculate ∆F , and v � vc when we can reconstruct ∆F correctly.

The reason for that is that around vc the sample size depends exponentialy on the

dissipative work, as shown by Yunger Halpern and Jarzynski [49]. Thus, the sample

size changes very fast around vc, but far from vc it does not play an important role

in reconstruction of ∆F .

The probability distribution of work seems to be independent of N for fixed u

and `. We believe that there is an asymptotic behavior of P (Wd) when N � 1.

Still, we cannot determine that this behavior exists because we studied polymers up

to N = 100 monomers. It can be very interesting to see what happens with longer

polymers.
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Appendix A

Dimensionless Variables

A.1 Newtonian dynamics

Consider a harmonic oscillator with mass m and spring constant k at temperature T .

The natural frequency of the oscillator is ω =
√
k/m. Using these basic quantities,

we define dimensionless variables as detailed in table A.1.

Table A.1: The conversion rules from the dimensionless variables to dimensional
variables, for the case of simple harmonic oscillator.

Quantity Dimensionless With Dimensions

Length x ω−1
√
kBT/mx

Time t ω−1t

Velocity v
√
kBT/mv

Energy E kBTE
Force f ω

√
mkBTf

A.2 Overdamped Langevin dynamics

In the overdamped case, we add the friction coefficient γ and we define the relaxation
time τ = γ/k. Using these basic quantities, we define dimensionless variables as
detailed in table A.2.

Table A.2: The conversion rules from the dimensionless variables to dimensional
variables, for the case of overdamped harmonic oscillator.

Quantity Dimensionless With Dimensions

Length x
√
kBT/kx

Time t τ t

Velocity v
√
τ−1γ−1kBTv

Energy E kBTE

Force f
√
τ−1γkBTf
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Appendix B

Decomposing to Normal Modes

Consider a 1D Gaussian chain with N identical monomers. The positions of the

monomers in the laboratory reference frame are {xn}Nn=1. We define two additional

“ghost” monomers: one is the zeroth monomer which its position is given by x0 = vt,

and the other one is the (N + 1)th monomer xN+1 = xN , that ensures the “free end”

condition, i.e., there is only force acting on the Nth monomer from the (N − 1)th

monomer. This way, equations (3.10) and (3.46) including also the Nth monomer.

We denote by x̃n = xn − vt the position of the nth monomer with respect to a

moving reference frame that moves with the zeroth monomer, i.e., with a constant

velocity v. Working in the moving reference frame, we can perform a discrete sine

Fourier transform that fulfills the boundary conditions (x̃0 = 0 and x̃N+1 = x̃N)

x̃n = A
N∑
q=1

x̃q sin (αqn), (B.1)

where

A =

√
2

N + 1
2

; αq =
π(q − 1

2
)

N + 1
2

. (B.2)

The values of αq were chosen this way to satisfy the boundry conditions. The same

decomposion can be done for the pulling velocity

v = A
N∑
q=1

vq sin (αqn) , (B.3)

where

vq =
1

2
Av cot

(αq
2

)
. (B.4)

Notice, that (B.3) valid only for 1 ≤ n ≤ N . Using the connection between xn and
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x̃n, we can find the relation between xq and x̃q:

xn = x̃n + vt (B.5)

= A
N∑
q=1

x̃q sin (αqn) + A

N∑
q=1

vq sin (αqn) t (B.6)

= A
N∑
q=1

(x̃q + vqt)︸ ︷︷ ︸
xq

sin (αqn) . (B.7)

Thus, we get

xq = x̃q + vqt. (B.8)

B.1 Newtonian dynamics

For the Newtonian dynamics case (as depicted in sub-section 3.1.2), the equations

of motion in the moving reference frame are

¨̃xn = −2x̃n + x̃n+1 + x̃n−1. (B.9)

Substituting (B.1) into (B.9) yields

N∑
q=1

[
¨̃xq + 4 sin2

(αq
2

)
x̃q

]
sin (αqn) = 0. (B.10)

Since the eigenmodes are orthogonal, every coefficient in the sum above must vanish,

and therefore

¨̃xq = −4 sin2
(αq

2

)
x̃q ≡ −ω2

q x̃q, (B.11)

where the frequency ωq is given by

ω2
q = 4 sin2

(
π(q − 1

2
)

2(N + 1
2
)

)
. (B.12)

The solution for the amplitudes xq in the laboratory reference frame is

xq(t) = x0
q cos(ωqt) +

1

ωq

(
p0
q − vq

)
sin(ωqt) + vqt, (B.13)
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where x0
q = xq(t = 0) and p0

q = ẋ0
q = pq(t = 0). The total work done on the polymer

in the laboratory reference frame can be split into sum of works performed on each

eigenmode

W (t) = −v
t∫

0

(x1 − vt′) dt′ = −
N∑
q=1

v sin (αq)

t∫
0

(xq − vqt′) dt′ ≡
N∑
q=1

Wq. (B.14)

For each eigenmode

Wq(t) = −vA sin (αq)

∫ t

0

x̃qdt
′

= −2vA sin
(αq

2

)
cos
(αq

2

)∫ t

0

x̃qdt
′

= −4 sin2
(αq

2

) 1

2
vA cot

(αq
2

)∫ t

0

x̃qdt
′

= −ω2
qvq

∫ t

0

x̃qdt
′. (B.15)

Using (B.13) we get

Wq(x
0
q, p

0
q) = −vq

[
ωqx

0
q sin(ωqt

′)− (p0
q − vq) cos(ωqt

′)
]
. (B.16)

The probability distribution of values W of Wq st time t is given by

Pq(W ) =
〈
δ
(
W −Wq

(
x0
q, p

0
q

))〉
, (B.17)

where the averaging of the δ-function is performed with respect to the initial Boltz-

mann distribution of
{
x0
q

}N
q=1

and
{
p0
q

}N
q=1

. Using the presentation of the δ-function

via Fourier theorem δ(y) = 1
2π

∫∞
−∞ e

ikydk, we get

Pq(W ) =
1

2π

∫ ∞
−∞

eikW
〈
e−ikWq(x0q ,p

0
q)
〉
dk. (B.18)
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Substituting Wq(x
0
q, p

0
q) into (B.18)

〈
e−ikWq(x0q ,p

0
q)
〉

=
ωq
2π
eikv

2
q [cos(ωqt)−1]

∫ ∞
−∞

e
−ω2q (x

0
q)

2

2
+ix0qkωqvq sin(ωqt)dx0

q

×
∫ ∞
−∞

e
−(p0q)

2

2
+ip0qkv[cos(ωqt)−1]dp0

q

= exp
{
v2
q [cos(ωqt)− 1](k2 + ik)

}
. (B.19)

Now we can calculate

Pq(W ) =
1

2π

∫ ∞
−∞

eikW e[v
2
q (cos(ωqt)−1)(k2+ik)]dk

=
1√

2πσq
exp

[
−(W − µq)2

2σ2
q

]
, (B.20)

where

µq =
1

2
σ2
q ≡ 2v2

qsin
2

(
ωqt

2

)
. (B.21)

Now we would like to find the total work distribution P

(
W =

N∑
q=1

Wq

)
for N oscil-

lators, which is given by the convolution

P

(
W =

N∑
q=1

Wq

)
= P1(W1) ∗ P2(W2) ∗ · · · ∗ PN(WN). (B.22)

Applying Fourier transform on the convolution (B.22) yields a multiplication in

Fourier space

P̃ (k) =
N∏
q=1

P̃q(k), (B.23)

where

P̃q(k) =

∫ ∞
−∞

Pq(W )e−ikWdW = exp

(
−
k2σ2

q

2
− ikµq

)
. (B.24)

Thus, the total distribution in Fourier space is

P̃ (k) =
N∏
q=1

exp

(
−
k2σ2

q

2
− ikµq

)
= exp

(
−k

2

2

N∑
q=1

σ2
q − ik

N∑
q=1

µq

)
. (B.25)
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Let us denote

µ(t) ≡
N∑
q=1

µq(t), (B.26)

and

σ2(t) ≡
N∑
q=1

σ2
q (t) = 2

N∑
q=1

µq(t) = 2µ(t). (B.27)

In this notation, we can simply recognize (B.25) as a Fourier transform of a Gaussian,

an therefore

P (W ) =
1√
2πσ

exp

(
−(W − µ)2

2σ2

)
. (B.28)

Notice, that µ = 1
2
σ2, as is expected for the case where ∆F = 0 (2.14).

B.2 Overdamped Langevin dynamics

The same decomposition can be done to Gaussian chain which its dynamics is de-

picted by the overdamped Langevin equation. In this case the eigenmodes called

Rouse modes [6]. The equation of motion of the nth monomer in the moving refer-

ence frame is

˙̃xn = −2x̃n + x̃n+1 + x̃n−1 +Rn(t)− v, (B.29)

where again, we added two “ghost” monomers, (x̃0 = 0 and x̃N+1 = x̃N), and Rn(t)

is the random force that acting on the n’th particle, which satisfies

〈Rn(t)〉 = 0 ; 〈Rn(t)Rm(t′)〉 = 2δn,mδ(t− t′) . (B.30)

The random noise can also be decomposed using discrete sine Fourier transform

Rn = A

N∑
q=1

rq sin (αqn), (B.31)

where αq and A are given by (B.2), rq is the amplitude of the qth mode of the noise,

and the noise correlation in Fourier space is given by

〈
rq(t)

〉
= 0 ;

〈
rq(t)rl(t

′)
〉

= 2δq,lδ(t− t′) . (B.32)
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Substituting (B.1) into (B.29) yields equations for the amplitudes

N∑
q=1

[
˙̃xq + 4 sin2

(αq
2

)
x̃q − rq + vq

]
sin (aqn) = 0, (B.33)

where vq is given by (B.4). Using the orthogonality of the eigenmodes, we get a set

of N independent equations

˙̃xq + 4 sin2
(αq

2

)
x̃q − rq + vq = 0, (B.34)

for q = 1, 2, ..., N . We define the inverse relaxation time of the qth mode

1

τq
≡ 4 sin2

(αq
2

)
. (B.35)

Recall that the elementary relaxation time of a single oscillator is 1. With (B.35),

the Lagevin equation for each x̃q simplifies to

˙̃xq = − 1

τq
x̃q + rq − vq. (B.36)

The solution of this equation is

x̃q(t) = x̃0
qe
− t
τq +

1

τq
e
− t
τq

∫ t

0

(
rq(t

′)− vq
)
e
t′
τq dt′, (B.37)

where x̃0
q = x̃q(t = 0).



Appendix C

Numerical Methods

C.1 Runge-Kutta method

In this thesis we solve either second-order differential equations (Newtonian dynam-

ics case), or first-order differential equations (overdamped Langevin dynamics case).

These differential equations can be solved numerically by time discretization. There

are many numerical methods to solve such difference equations, one of them is the

Runge-Kutta method [50]. The Runge-Kutta algorithm has different orders of ac-

curacy. We will use 4th order Runge-Kutta method, which requires calculation of 4

different approximations to the derivative at each time-step.

Suppose we have the following first-order differential equation

dx(t)

dt
= f(x, t), (C.1)

with some initial condition x(t0) = x0. Now we want to find x(t0+∆t). The first order

approximation (Euler method) is telling us multiply the slope at t = t0 by the step

size ∆t and add it to the initial position x(t0) so that x(t0 +∆t) = x0 +f(x0, t0) ·∆t.
This is actually the first order of Taylor expansion. To be more accurate we use the

4th order Runge-Kutta method which takes a weighted mean of four different slopes:

k1 = f (x(t0), t0) , (C.2)

k2 = f

(
x(t0) + k1

∆t

2
, t0 +

∆t

2

)
, (C.3)

k3 = f

(
x(t0) + k2

∆t

2
, t0 +

∆t

2

)
, (C.4)

k4 = f (x(t0) + k3∆t, t0 + ∆t) , (C.5)

where

• k1 is the slope at the beginning of the time step.

• k2 is the slope at the midpoint t = t0 + ∆t
2

using k1.

• k3 is the slope at the midpoint t = t0 + ∆t
2

using k2.
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0 0 0

1

2

3

4

Figure C.1: Demonstration of Runge-Kutta 4th order method. We use the the
incline k1 at the initial point t0 to make the red step to t0 + ∆t/2, then we calculate
the incline k2 at the midpoint and use it again to make a step (blue) from the initial
point to t0 + ∆t/2, calculating the incline k3 there. Finally, we use k3 to make a big
step (green) ∆t and calculate the incline at t0 + ∆t which gives us k4.

• k4 is the slope at the endpoint t = t0 + ∆t using k3.

The total slope will be a weighted mean k̄ = 1
6

(k1 + 2k2 + 2k3 + k4). In other words,

we take an underestimated and overestimated slopes (k1 and k4) and another pair

of slopes in the middle (k2 and k3). The total step will be

x(t0 + ∆t) = x0 +
1

6
(k1 + 2k2 + 2k3 + k4) ∆t+O(∆t5). (C.6)

For a second-order ordinary differential equation, such as

d2x(t)

dt2
= a(x, t), (C.7)

we can reduce the order of the equation by denoting dx(t)
dt

= v(x, t), and solve two

first-order differential equations.
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C.2 Treatment of noise in Langevin equation near

a wall

In this section we would like to explain the way we choose the thermal noise in a

numerical simulation, which solves the overdamped Langevin equation near a wall.

The overdamped Langevin equation is a first-order differential equation, which is

generally given by
dx

dt
= −dV (x, t)

dx
+R(t), (C.8)

where V (x, t) is some general potential and R(t) is a thermal noise, which satisfies

〈R(t)〉 = 0 ; 〈R(t)R(t′)〉 = 2δ(t− t′) . (C.9)

To demonstrate the treatment of noise, we will use the simplest method to solve

such first-order differential equation, i.e., the Euler method [50]. If we choose the

time-step size to be ∆t, we get the following difference equation

x(t+ ∆t) = x(t)− dV (x, t)

dx
∆t+R(t)∆t+O(∆t2), (C.10)

Usually, when we use time discretization to solve such differential equation, at each

iteration the thermal noise R(t) is chosen from a Gaussian distribution with mean

〈R(t)〉 = 0 and variance 〈R2(t)〉 = 2/∆t. A problem arises, when we want to choose

the noise near a wall. For small enough ∆t, the change in the position over one

iteration is dominated by the thermal noise, i.e., ∆x ≈ R(t)∆t. The value of ∆x is

also chosen from a Gaussian distribution with variance 〈∆x2〉 = 2∆t. In the vicinity

of the wall, there is a probability that the next step will bring the particle to the

forbidden side of the wall, i.e., if the wall is located at x = 0, then x(t + ∆t) < 0.

The term ∆x ≈ R(t)∆t is actually depicts a diffusion. In order to determine the

position of the particle after it collides with the wall, we demand that the current of

the particle into the wall vanishes. This can be done by using the method of images.

Practically, if the particle moves a step ∆x that brings it to the other side of the

wall, we simply move it to the other side by |x(t) + ∆x| (as depicted in Figure C.2).

In other words, we take the absolute value of x(t+ ∆t).
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| + |

| + |

Figure C.2: A particle at x(t) making a finite step ∆x which brings to the other
side of the wall, which is located at x = 0. The new position x(t+ ∆t) = x(t) + ∆x.
The dashed red curve represents the image particle, which ensure that there is no
current on the wall.



Appendix D

Partition Function near a Wall

The partition function of an ideal polymer in free space in dimensionless units is

Zfree ∝
∫ ∞
−∞

e
−
N∑
i=1

p2i
2

N∏
i=1

dpi

∫ ∞
−∞

e
−
N∑
i=1

(xi−xi−1)
2

2

N∏
i=1

dxi (D.1)

=
(∫ ∞
−∞

e−
p2

2 dp
)N(∫ ∞

−∞
e−

x2

2 dx
)N

(D.2)

= (2π)N . (D.3)

The partition function near the wall

Zwall ∝
∫ ∞
−∞

e
−
N∑
i=1

p2i
2

N∏
i=1

dpi

∫ ∞
0

e
−
N∑
i=1

(xi−xi−1)
2

2

N∏
i=1

dxi (D.4)

=
(∫ ∞
−∞

e−
p2

2 dp
)N
I(N) (D.5)

= (2π)N/2I(N), (D.6)

where I(N) is given by

I(N) =

∫ ∞
0

e−
(x1−x0)

2

2

∫ ∞
0

e−
(x2−x1)

2

2 · · ·
∫ ∞

0

e−
(xN−xN−1)

2

2

N∏
i=1

dxi. (D.7)

The wall can be modeled as a potential Vwall(xi) defined as,

Vwall(xi) =

{
0, if {xi} > 0 ,

∞, if at least one xi ≤ 0 .
(D.8)

The total Hamiltonian of the system is

H = H0 + Vwall, (D.9)
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where H0 is the Hamiltonian of a Gaussian chain in free space. The partition func-

tions near the wall can be written as

Zwall = Tre−(H0+Vwall) (D.10)

= Zfree
1

Zfree

Tre−H0e−Vwall (D.11)

= Zfree

〈
e−Vwall

〉
0
, (D.12)

where 〈· · · 〉0 denotes a thermal average with respect to H0, Zfree = Tre−H0 is the

partition function in free space, and

e−Vwall(xi) =

{
1, if {xi} > 0,

0, if at least one xi ≤ 0.
(D.13)

In order to calculate
〈
e−Vwall

〉
0

numerically, we generated n samples of a polymer in

free space, and count only m samples where all the xis are positive. The average〈
e−Vwall

〉
0

= m/n. Thus, the free energy difference is given by

∆F = − ln

(
Zfree

Zwall

)
= ln

(〈
e−Vwall

〉
0

)
= ln

(
m

n

)
. (D.14)

Our numerical results are depicted in Figure D.1, on semi-logarithmic scale. We

know that for large N the free energy difference is ∆F = −0.5 lnN+C. We compare

our numerical evaluations of ∆F with the theoretical curve, and by fitting the results,

find C ≈ −0.589.
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lnN
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∆
F

Figure D.1: The free energy difference ∆F versus logarithm of the number of
monomers N . The blue dots depicts the numerical data, while the dashed line
depict the fit function ∆F = −0.499 lnN − 0.589.
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