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Abstract

Methods which relate the elastic constants of thermodynamic systems to the uctu-

ations of the pressure or the volume are called \uctuation" methods. In this thesis

I derive expressions, within the uctuation method, for determining the elastic con-

stants in systems composed of hard spheres tethered by inextensible bonds. Such

systems are frequently used as athermal models of real physical systems whose ther-

modynamic properties are primarily determined by entropy rather than energy. The

new formalism relates the elastic constants to the probability densities of contacts

between the spheres and the probability densities of having stretched bonds. In

order to demonstrate the validity, e�ciency and accuracy of the method, I present

the results of Monte Carlo simulations which use the new formalism to determine

the elastic properties of hard sphere systems. The numerical results agree well with

analytical predictions.

The new method is also applied to compute the elastic constants of a two-

dimensional net of �xed connectivity. The net (called, the \�sherman's net") is

composed of point-like atoms each of which is tethered to six neighbors by a bond

limiting the distance between them to a certain maximal separation, but having zero

energy at all smaller lengths. I measure the elastic constants for many values of the

ratio  between the maximal and actual extensions of the net. When the net is very

stretched ( � 1), a simple transformation maps the system into a triangular hard

disk solid, and it is shown that the elastic properties of both systems, coincide.

When the �sherman's net becomes looser ( � 3) its elasticity approaches a

behavior resembling that of a network consisting of springs whose energy is propor-

tional to their squared end-to-end distance (E =

1

2

Kr

2

). Such springs are called

\Gaussian" because of the Gaussian form of their statistical weights. An exact

analytical treatment of the elastic properties of Gaussian networks leads to two re-

markable results: (1) The stress tensor of a Gaussian network coincides with the

conductivity tensor of an equivalent resistor network. (2) The elastic constants of

a single Gaussian net vanish. Perturbation theory is used to analyze the elastic

behavior of networks of slightly non-Gaussian springs.

Special focus is given in the thesis to the problem of entropic elasticity of percolat-
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iv ABSTRACT

ing systems, which are frequently used as models for gels. I consider both \phantom"

(without excluded volume interactions) and \self-avoiding" (with excluded volume

interactions) systems. In the phantom case, the results of the Gaussian model leads

to the prediction that the shear modulus of the system has a power law dependence

on the distance from the percolation threshold, � � (p � p

c

)

f

, where the rigidity

exponent f is equal to t, the conductivity exponent in random resistor networks.

The nearly Gaussian model leads to another conclusion that the elastic constants

also have a power law dependence on (p � p

c

) with a critical exponent larger than

the conductivity exponent. Numerical studies of the entropic elasticity of tethered

percolating networks con�rm the the validity of these theoretical predictions.

Self-avoiding percolation systems represent a more realistic model of gels. The

critical elasticity of such systems in not understood, both theoretically and experi-

mentally. In fact, not only that the value of the rigidity exponent f is not known,

but it is also unclear whether the onset of rigidity, in self-avoiding systems, occurs

at the percolation threshold. The results of extensive numerical studies of two- and

three-dimensional systems show that excluded volume interactions have negligible

e�ects both on the value of the exponent f , and on the position of the rigidity

threshold.



Frequently Used Notations and

Abbreviations

Symbol Meaning

a Diameter of hard spheres

a,a

��

Coe�cient of the quartic term in the nearly Gaussian spring energy

b Maximal extension of tethers

b

0

Nearest-neighbor (lattice) spacing

C

ijkl

The tensor of elastic constants

C

11

The Voigt notation for the elastic constant C

xxxx

C

12

The Voigt notation for the elastic constant C

xxyy

C

44

The Voigt notation for the elastic constant

1

2

(C

xyxy

+ C

xyyx

)

d Dimensionality

~

d = ~�a

2

, reduced density of hard disks

E Internal energy

E

0

(E

1

) The quadratic (quartic) term in the energy of a nearly Gaussian network

~

E Electric �eld

E

i

Cartesian component of

~

E

EV Excluded volume

v



vi FREQUENTLY USED NOTATIONS AND ABBREVIATIONS

F Free energy

f Free energy density OR critical exponent of elasticity OR force

~

f

s

The internal force on surface atom s

~

f

s

ext

The external force on surface atom s

fc Free cluster

1

FCC Face-centered cubic

FN Fisherman's net

2

g Critical exponent of elastic constants

h Critical exponent of ��

HD Hard disk

3

J Jacobian

~

j Current density

j

i

Cartesian component of

~

j

K, K

��

Force constants of a Gaussian spring OR conductance of a resistor

k Boltzmann constant

L Linear size of the system

M

ij

Matrix de�ning a linear transformation [Eq.(2.3)]

MC Monte Carlo

N Number of atoms

N

I

Number of internal atoms of a cluster

1

Quantities with the superscript \fc" are related to the free clusters (chapter 3).

2

Quantities with the subscript \FN" are related the �sherman's net (chapter 4).

3

Quantities with the subscript \HD" are related hard disk systems (chapter 4).
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N

0

Number of free clusters

P External pressure

p Fraction of bonds in percolation systems

p

�

R

�

; R

�

�

Probability density of �nding atoms � and � at

~

R

�

and

~

R

�

~p

�

R

�

; R

�

�

= p

�

R

�

; R

�

�

� exp

�

R

��

=kT

�

p

c

Percolation threshold

p

r

Rigidity threshold

PGN Phantom Gaussian network

PN Phantom network

PNGN Phantom nearly Gaussian network

R, R

��

Pair distance in the undeformed system

~

R,

~

R

��

Pair separation in the undeformed system

R

i

(R

��

i

) Cartesian component of

~

R (

~

R

��

)

R

��

0

Pair distance at the ground state of a Gaussian network.

~

R

��

0

Pair separation at the ground state of a Gaussian network

(R

��

0

)

i

Cartesian component of

~

R

��

0

~

R

�

Position of internal atom �

R

�

i

Cartesian component of

~

R

�

~

R

s

Position of surface atom s

R

s

i

Cartesian component of

~

R

s

r, r

��

Pair distance
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~r

�

Position of internal atom � (in the deformed system)

S Entropy

SC Simple cubic

SCB Singly connected bond

spc Spanning cluster

4

T Temperature

t Conductivity exponent

V ,V (f0g) Volume of the undeformed system

V (f�g) Volume of the deformed system

Z Partition function

Z

C

The con�gurational part of Z

 The ratio b=b

0

(chapter 4 only)

�

ij

Kronecker delta

� Dirac �-function OR the ratio b

0

=a (chapter 4 only)

�

��

=

�

�

�

R

��

� a

�

� �

��

�

�

R

��

� b

��

[Eq.(A.3)]

�� = j�

1

� �

2

j

� Size of a bin

�

n

= (n� 1=2)� ; n = 1; 2; : : :

�

ij

Lagrangian strain tensor

4

Quantities with the superscript \spc", are related to the spanning cluster (chapter 3).
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f�g The set of strain variables

5

[�] The matrix with the elements [�]

ij

= �

ij

� Bulk modulus

� Shear modulus of isotropic systems

�

1

= C

44

� P , one of two shear moduli of systems with cubic symmetry

�

2

=

1

2

(C

11

� C

12

)� P , one of two shear moduli of systems with cubic symmetry

� Correlation length exponent

�

��

1, if the pair h��i is tethered; 0, otherwise

� Correlation length

� Volume fraction of hard spheres

�

0

= �=(3

p

2) ' 0:74, volume fraction of hard spheres at the close packing density

~� Number density of hard spheres and hard disks

� The conductivity

�

ij

The conductivity tensor

� The stress � = �P

�

ij

The stress tensor

�

conf

ij

The con�gurational part of the stress tensor

�

kinetic

ij

The kinetic part of the stress tensor

� Relaxation time

�(r) Pair potential

�

0

(r) Derivative of the pair potential

5

The symbol f0g is used to denote the case when all the components of the strain tensor vanish:

�

ij

= 0.



x FREQUENTLY USED NOTATIONS AND ABBREVIATIONS

'

�

('

s

) Electric potential at internal (external) node � (s)




��

Solid angle aperture around

~

R

��

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

h i Thermal average

h i

0

Thermal average with Gaussian weights
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Chapter 1

General Introduction

In this thesis I present a new method for calculating the elastic constants of entropy-

dominated systems like hard spheres and tethered networks. This chapter discusses

subjects related only to the general aspects of the research. An introduction to

the physics of the systems whose properties are investigated in this work is given

in the relevant chapters. Section 1.1 explains the major di�erences between the

elastic features of energy- and entropy-dominated systems. Section 1.2 deals with

purely-entropic systems (such as hard spheres), in which the pair-interactions are

approximated by \hard" (zero-or-in�nity) potentials. The advantages of using such

models to study entropic e�ects in thermodynamic systems are discussed. A brief

summary on elasticity theory of stressed systems is given in section 1.3. Section

1.4 presents the di�erent methods for computing the elastic properties of thermo-

dynamic systems. The discussion focuses on one of the methods, called \uctuation

method", and presents the di�culty in applying this e�cient method to systems

with hard potentials. It is this problem that the study, presented in this thesis,

aims to resolve. The outline of the thesis, including a summary of the main results,

is given in section 1.5.

1.1 Entropic Elasticity and Soft Matter

Solids can be broadly classi�ed into hard matter and soft matter. Hard matter com-

prises most metals, ceramics and minerals, while soft matter refers to materials like

polymers, colloids, membranes and gels. As the titles imply, the distinction between

hard and soft materials is related to their very di�erent mechanical features. Soft

materials (usually) distort more easily, namely in response to smaller forces, than

ordinary crystalline solids. Soft materials are also very exible and can maintain

large strains (tens and even hundreds percents) without failure. Hard materials, on

the other hand, break at very small strains, typically less than one percent.

1



2 CHAPTER 1. GENERAL INTRODUCTION

The restoring force invoked in response to a mechanical deformation is related

to the increase in the free energy of the system. The free energy F is related to

the internal energy E, the entropy S, and the temperature T by F = E � TS.

Generally speaking, in hard materials the contribution of E to F is much more

important than that of S. Hard solids are likely to be found close to their energy

ground states, while thermal uctuations allow only small deviations from these

microscopic con�gurations. When such a system is deformed, a macroscopic number

of atoms are shifted from their equilibrium position, and this involves a large energy

penalty. This is the origin of their highly rigid and non-exible nature. In soft

matter systems, on the other hand, vastly di�erent microscopic con�gurations posses

very similar internal energies. Energy scales related to translations of atoms and

rotations of bonds, in soft materials, are of the order of the thermal energy kT , and

therefore tend to be obscured by thermal uctuations. Strain, applied to such a

system, imposes topological restrictions on the allowed microscopic con�gurations,

thus reducing the entropy, which is essentially the (logarithm of the) number of

microscopic con�gurations. The signi�cant response of such systems to a modest

shear results from the moderate free energy di�erences associated with this entropy

reduction.

1.2 Hard Potentials

The speci�c details of inter-atomic interactions are quite unimportant in entropy-

dominated systems, due to the minor inuence of the internal energy on their ther-

modynamic properties. In real gases, for instance, the pair potential is frequently

sharply repulsive at short distances and weakly attractive at longer separations. If

the system is either very dilute or very dense, the attractive part of the potential is

hardly felt. In polymer physics, the details of the interactions between neighboring

monomers often become irrelevant provided that the molecules are su�ciently long.

Similar considerations apply to gels, in particular close to the gel point. One can,

therefore, use various ways to describe these interactions provided they capture the

essential physical features such as excluded volume (EV) e�ects and chemical bond-

ing. Thus, the pair potential �(r) used to model the interaction between bonded

atoms should increase sharply at r < a and r > b, where a and b (a < b) represent

the typical diameter of atoms and the length of the bonds, respectively. One exam-

ple of such a pair potential (used by Kremer and Grest in Ref. [1]) is depicted by

the solid line in Fig. 1.1. It is a combination of the, so called, purely repulsive 6{12



1.2. HARD POTENTIALS 3

r

φ(
r)

a b

a b

Figure 1.1: Three di�erent potentials used to describe the pair interaction between two bonded

atoms. The solid line is the potential �

LJ

(r) + �

att

(r) [Eqs. (1.1) and (1.2)] used in Ref. [1]. The

dashed line is the hard-spheres-and-tether potential, �

1

(r) + �

2

(r) [Eqs. (1.3) and (1.4)]. The

dot-dashed line is a smooth approximation to the \hard" potential (see last paragraph in section

2.1). Both axes are in arbitrary units. The inset shows an example of a molecule composed of two

spheres of diameter a, bonded by a tether whose maximal length is b.

Lennard-Jones potential,

�

LJ

(r) =

(

4�

0

h

�

a

r

�

12

�

�

a

r

�

6

+

1

4

i

; for r < 2

1=6

a

0; for r � 2

1=6

a

; (1.1)

and the attractive bond potential,

�

att

(r) =

(

�

1

2

kb

2

0

ln

h

1�

�

r

b

�

2

i

; for r < b

1; for r � b

: (1.2)

An alternative way to describe the inter-atomic interactions, is to use \hard"

potentials which take only two values: zero or in�nity. EV interactions can be

described by the hard sphere potential

�

1

(r) =

�

1; for r < a

0; for r � a

: (1.3)

Similarly, real chemical bonds can be replaced by inextensible (\tether") bonds [2]

�

2

(r) =

�

0; for r � b

1; for r > b

; (1.4)

which limit the distance between the bonded atoms to b, but have zero energy at all

permitted distances. The sum of \hard" potentials (1.3) and (1.4), i.e. �

1

(r)+�

2

(r),
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also appears in Fig. 1.1 (dashed line). The similarity of this potential to the other

potentials shown in Fig. 1.1 (as well as to many other \model potentials" used in

other works) is evident and it is, therefore, not surprising that in many cases both

of them can be used to study real systems.

1

When real potentials are modeled by their \hard analogs", the (potential) en-

ergy of all microscopic con�gurations is set to the same value | zero (con�gurations

with in�nite energy are non-physical). Such models are called athermal. Because the

internal con�gurational energy is �xed in an athermal system, the Helmholtz free

energy is given by F = �TS. The physics of athermal systems is exclusively deter-

mined by entropy considerations. (Throughout this work we omit the kinetic part

of the energy since it is independent of deformation and, hence, does not contribute

to the elastic behavior.) Entropy itself does not depend on the temperature, but

is a function of the geometry of the microscopic structure alone. The temperature

dependence of the free energy is, therefore, trivially linear.

1.3 Basic De�nitions in the Theory of Elasticity

The mechanical response of materials to deformations is described in the context

of elasticity theory. In the classical continuum elasticity theory [4, 5, 6], distortions

are described by the displacement �eld of the bulk, ~u = ~x

0

� ~x, where ~x denotes the

location of a certain bulk point which, due to the deformation, is shifted to ~x

0

. Born

and Huang (BH) [7] introduced a modern version of microscopic elasticity theory

that explicitly considers the atomic structure of the system and the inter-particle

interactions. The BH theory \de�nes" an \equilibrium solid" as a solid which has

no stresses in its reference state, and uses the set of quantities f~u

n

g to denote the

deviations of the positions of the atoms from their equilibrium values. The classical

elasticity theory can be derived as the continuum limit of the BH theory.

In the BH theory, the elastic properties of the solid are derived from the changes

in the mechanical elastic energy resulting from various deformations. In order

to characterize the elastic behavior of thermodynamic systems and, in particular,

entropy-dominated systems, one must use a theory based on thermodynamic po-

tentials (e.g., the free energy), rather than on the mechanical elastic energy which

ignores entropy and temperature. Voigt discussed such a theory for the case of in-

�nitesimal strain from a non-stressed con�guration [8]. Using a non-stressed con�g-

uration as a reference state is clearly an approximation since usually in experiments

1

A counter example demonstrating the failure of models with hard potentials to mimic the

behavior of real systems is the gas-liquid phase transition in atomic and colloidal systems. This

transition is not observed in hard sphere systems, but appears only in the presence of additional

attractive interactions [3].
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the sample is under initial stress. For hard crystalline solids it is very often justi�ed

because the e�ect of initial stresses on their elastic properties is usually negligible.

For soft materials it is usually a poor approximation. Their structures and elastic

properties cannot be understood unless the e�ect of initial stresses is taken into

account. It is, therefore, necessary to use a theory for the case of arbitrary initial

stress. Such a thermodynamic elasticity theory is presented in Refs. [9, 10], and is

briey summarized bellow.

When a thermodynamic system is deformed, the distance between two atoms

which prior to the deformation were separated by

~

R, becomes

r = [R

i

R

j

(�

ij

+ 2�

ij

)]

1=2

; (1.5)

where the subscripts denote Cartesian coordinates and summation over repeated

indices is implied. The quantities �

ij

are the components of the Lagrangian strain

tensor

2

, while �

ij

is the Kronecker delta. In some special cases, e.g., crystalline

solids at zero temperature, �

ij

is constant in time and space. In soft matter systems,

however, this is usually not the case since such systems are often inhomogeneous

and, in addition, at a �nite temperature their atoms are subject to thermal motion.

Therefore, it is convenient to apply a deformation with constant (in time and space)

�

ij

to all boundary points, while the positions of the internal atoms are determined

by the laws of statistical mechanics. This constant �

ij

is de�ned as the homogeneous

strain applied to such a system.

The mean free energy density, f = F=V (per original, unstrained, unit volume)

of a system subjected to a small deformation can be expanded in a power series in

the strain variables

f(f�g) = f(f0g) + �

ij

�

ij

+

1

2

C

ijkl

�

ij

�

kl

+ : : : (1.6)

The coe�cients of the linear terms in this expansion are the components of the

stress tensor (also referred to as Cauchy stress tensor), �

ij

, evaluated at the initial

con�guration. The component �

ij

is equal to the mean internal force along the

ith direction per unit surface area perpendicular to j axis. Mechanical stability

requires that internal forces will be balanced by opposite external forces applied on

the boundaries of the system. The coe�cients of the quadratic terms, C

ijkl

, are the

elastic constants of the system (also referred to as the elastic sti�ness tensor). As a

2

In the continuum elasticity theory �

ij

is related to the derivatives of the displacement �eld

~u with respect to undeformed equilibrium coordinates ~x: �

ij

=

1

2

�

@u

i

@x

j

+

@u

j

@x

i

�

+

@u

k

@x

i

@u

k

@x

j

. Note

that the de�nition of �

ij

includes quadratic terms in the derivatives of the displacement �eld. The

theory in the case of a non-stressed reference state often uses the linear strain whose de�nition

misses the quadratic terms.
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fourth rank tensor it has 3

4

= 81 components in three-dimensional space. Because

�

ij

and �

ij

are symmetric second rank tensors, and since

C

ijkl

=

@�

ij

@�

kl

�

�

�

�

f�g=f0g

(1.7)

[see Eq.(1.6)], it follows that the tensor C

ijkl

has the following symmetries

C

ijkl

= C

jikl

= C

ijlk

= C

klij

= : : : :

Due to these inherent symmetries, only 21 elastic constants can be assigned indepen-

dent values. This number is further reduced by symmetries present in the reference

state of the speci�c material. For example, systems whose elastic properties posses

a cubic symmetry under uniform external pressure P , have a diagonal stress tensor

�

ij

= �P�

ij

and only three di�erent non-vanishing elastic constants which in the

Voigt (two-index) notation

3

are de�ned by

C

11

� C

xxxx

= C

yyyy

= C

zzzz

C

12

� C

xxyy

= C

yyzz

= C

zzxx

= : : :

C

44

�

1

2

(C

xyxy

+ C

xyyx

) =

1

2

(C

yzyz

+ C

yzzy

) = : : : :

In isotropic systems, these three elastic constants obey an additional relation:

C

11

� C

12

= 2C

44

; (1.8)

which reduces the number of independent elastic constants of isotropic systems to

two.

It is customary to dispense with the use of C

11

, C

12

, and C

44

in favor of the

elastic moduli �, �

1

and �

2

. The quantity � is called the bulk modulus. It is related

to the elastic constants by

� =

�

(C

11

+ C

12

)=2; for two-dimensional systems

(C

11

+ 2C

12

+ P )=3; for three-dimensional systems

; (1.9)

and describes the response to an isotropic bulk deformation which causes a change in

the volume of the system but no change in its shape [see Fig. 1.2 (a)]. Deformations

which do not change the volume of the system but do modify the shape are called

pure shear deformations. Two pure shears are depicted in Fig. 1.2 (b) and (c). The

response to these pure shears is described by the shear moduli �

1

and �

2

�

1

= C

44

� P; (1.10)

3

Explanation on the Voigt (two{index) notation of elastic constants can be found in any stan-

dard textbook of elasticity, e.g., Refs. [9, 10].
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and

�

2

=

1

2

(C

11

� C

22

)� P; (1.11)

which satisfy �

1

= �

2

in the isotropic case [see relation (1.8)]. When the elastic

moduli are positive, the system is mechanically stable [11].

a

b c

Figure 1.2: A schematic picture of an isotropic bulk deformation (a), and two pure shear defor-

mations (b) and (c). The solid lines show the original (undeformed) shape, while the broken lines

depict the deformed state.

1.4 Methods for Determining Elastic Constants

Computational methods for calculation of elastic constants are classi�ed into strain

methods and uctuation methods. In a strain method calculation, one uses relation

(1.7) between the stress, strain and elastic constants, and evaluates the latter by

performing a numerical di�erentiation, i.e., by measuring the (small) stress varia-

tions in response to small deformations. This method has been used by Runge and

Chester [12], and by Frenkel and Ladd [13], to determine the elastic constants of

hard sphere systems. Other examples for the implementation of the strain method

in studies of elasticity of polymer networks can be found in Refs. [14, 15]. In the

uctuation method [16], on the other hand, formal expressions for the elastic con-

stants are derived, relating them to the mean squared thermal uctuation of the
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corresponding stress components [17]. These expressions, obtained by di�erentiat-

ing twice the free energy with respect to the strain, can be computed directly from

Monte Carlo (MC) or molecular dynamics simulations performed on the unstrained

reference system. The fact that simulations are performed in the reference system,

with no need to deform the simulation cell, is the major advantage of the uctuation

method over the strain method, which makes it a more e�cient and well-controlled

technique. Moreover, unlike the strain method where di�erent deformations must

be applied in order to compute the di�erent elastic constants, in the uctuation

method they are all computed in a single run.

Squire, Holt and Hoover (SHH) who formulated the original version of the uc-

tuation method in Ref. [16], used it to measure the elastic constants of solid argon.

They used the Lennard-Jones potential to model the inter-atomic interactions. Hard

spheres may also be used as a model for systems of noble elements. However, the

method of SHH cannot be applied to hard sphere systems, or to any other system

with pair-wise \hard" potentials. The origin of the problem lies in the expressions

for the elastic constants derived within the uctuation formalism (which will be pre-

sented in Section 2.1). These expressions include the second derivative of the pair

potential �(r), a quantity which does not exist in the case of \hard" potentials. In

the next chapter we derive a uctuation formalism suitable to model systems that

interact via \hard" potentials.

1.5 Outline of the Thesis

In this thesis I present a new method for calculating the elastic constants of systems

composed of hard spheres tethered by inextensible bonds. The method extends the

uctuation method which in its standard form cannot be applied to this family of

systems.

I begin chapter 2 with an introduction to the original uctuation method, and de-

rive the expressions for the stress and elastic constants that include derivatives of the

pair potential. Then, I present the new version of the method for the case of \hard-

spheres-and-tethers" systems. I derive expressions relating the stress and elastic

constants to the probability densities of contacts between spheres and the proba-

bility densities of having stretched tethers. (The chapter includes a short summary

of the derivation, while the detailed mathematical derivation appears in appendix

A.) In order to demonstrate the validity, e�ciency and accuracy of the method,

I present the results of MC simulations which use the new formalism to compute

the elastic properties of three-dimensional (3D) hard sphere systems. Hard spheres

undergo a �rst order uid-solid phase transition upon increasing the density of the
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spheres. In the uid phase I �nd excellent agreement between the numerical results

for the pressure and bulk modulus, and the values predicted by the virial expan-

sion of the equation of state. Moreover, as expected for uids, the computed shear

modulus is vanishingly small. At the solid phase, I measure the elastic constants

near the close-packing density, a regime which was not investigated numerically be-

fore. The numerical results are compared with the asymptotic expressions derived

by the \free-volume" approximation and, again, a very good agreement is found

between the theory and the numerical results. Some important technical aspects of

the simulations are discussed in appendix B.

Chapters 3{5 deal with elasticity of phantom polymeric networks, i.e., networks

without entanglements and EV interactions. In chapter 3 I study the elastic prop-

erties of networks of Gaussian springs. A Gaussian spring is a spring whose energy,

E =

1

2

Kr

2

, is proportional to its squared end-to-end distance, r

2

. I show that Gaus-

sian networks (of arbitrary topology) have a special characteristic feature | their

elastic constants vanish. I also demonstrate that the stress tensor of a Gaussian

network coincides with the conductivity tensor of an equivalent resistor network, in

which each spring with force constant K is replaced by a resistor of conductance

K. (A detailed proof of the equality between the two tensors is given in appendix

C.) Corrections to Gaussian behavior are studied by considering a phantom nearly

Gaussian network, in which the spring's energy includes an additional small term

equal to

1

4

ar

4

. Perturbative analysis is used in order to derive an expression for the

elastic constants of such networks.

In chapter 4 I consider a \toy model" consisting of a two-dimensional (2D) tri-

angular net of point-like atom, each of which is connected to its six neighbors by

tethers. When the net is not very stretched it behaves like a Gaussian net and

has elastic constants that are practically zero. The non-Gaussian nature of the

pair-potential is observed near full extension, when the stress and elastic constants

increase dramatically. I present a transformation which maps the highly-extended

net into a 2D hard sphere (hard disk) solid near close packing. I use this map-

ping and expressions for the elastic constants of hard disk solids, to predict the

elastic constants of the net close to full extension. Numerical results con�rm these

predictions.

Chapter 5 discusses the entropic elasticity of phantom percolation networks, in

which only a fraction p of the neighbors are connected. I address the question

of the critical elastic behavior just above the percolation threshold p

c

, where the

shear modulus behaves as (p � p

c

)

f

. In the Gaussian case, the relation between

the stress of Gaussian networks and the conductivity of resistor networks (discussed

in chapter 3) leads to the conclusion that the rigidity exponent f is equal to the
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conductivity exponent in random resistor networks. In the nearly Gaussian case, I

use the expression for the elastic constants to show that they also have power law

dependence on (p�p

c

). I derive bounds on the value of the critical critical exponent

of the elastic constants. Finally, I present numerical results for tethered percolation

networks and show that they agree with the predictions of the Gaussian and the

nearly Gaussian models.

Entropic elasticity of percolation systems with EV interactions is studied in

chapter 6. The behavior of these systems is not described by the phantom Gaussian

model, and therefore it is not clear if the rigidity and conductivity exponents are

equal. Moreover, in the presence of EV interactions it is not self-evident that the

onset of rigidity occurs at p

c

. The possibility that the rigidity threshold is shifted

below p

c

arises because percolation systems of hard spheres and tethers solidi�es

both as a result of increasing the diameter of the spheres and also by increasing the

fraction of present bonds. In chapter 6 I report the results of an extensive numerical

study of the elastic behavior of 2D and 3D percolation systems. It is shown that over

a broad range of hard spheres diameters a the rigidity threshold is insensitive to a

and indistinguishable from p

c

. Close to p

c

, the shear modulus behaves as (p� p

c

)

f

,

where the exponent f ' 1:3 and f ' 2:0 for 2D and 3D systems, respectively.

These values are similar to the corresponding values of the conductivity exponent

in random resistor networks.

Chapter 7 summarizes the thesis. It also includes a short discussion at other

possible applications of the method.



Chapter 2

The Fluctuation Formalism for

Elasticity of Hard-Spheres-and-

Tethers Systems

This following chapter deals with the uctuation method for calculating the elastic

constants of thermodynamic systems. The major details of the derivation of the

original formalism, which can be applied to systems with smooth potentials only,

are given in section 2.1. The new formalism [18] is presented in section 2.2, where a

short summary of the derivation of the method and the expressions for the stress and

elastic constants are given. The detailed mathematical derivation of the formalism is

relegated to appendix A. A relation is found between the components of the elastic

tensor and the probability densities of contact between spheres and the probability

densities of having stretched bonds. In section 2.3 we demonstrate the validity,

e�ciency and accuracy of the method by using the new formalism in MC simulations

of hard sphere systems [18]. Section 2.4 summarizes the main results in this chapter.

2.1 The Original Formalism

The uctuations of thermodynamic quantities like the energy or magnetization, at

equilibrium, can be related to \generalized susceptibilities" which measure the varia-

tion of these quantities in response to small changes of corresponding external �elds.

In the case of energy uctuations the relevant susceptibility is the heat capacity at

constant volume C

V

, while the appropriate external �eld is the temperature T . The

former, de�ned by C

V

� @E=@T , is related to the equilibrium energy uctuations

by: C

V

= (kT )

2

[hE

2

i � hEi

2

], where h i denotes a thermal average [19]. A similar

relation exists between the uctuation of the magnetization M and the magnetic

susceptibility � � @M=@H: � = kT [hM

2

i � hMi

2

], where H in the de�nition of �

is the external magnetic �eld [19]. Elastic constants describe the stress variation in

11
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response to small strain [see Eq.(1.7)]. Therefore, we should not be surprised to �nd

expressions relating them to stress uctuations. These expressions, however, are

not as simple as the above \uctuation" expressions for C

V

and � and, moreover,

their derivation is less trivial. In the following, we present the major steps in the

derivation of the \uctuation" method for elastic constants, devised by Squire et

al. [16] about thirty years ago.

Consider a classical central force system in which the internal energy is the sum

of pair interactions

E =

X

�6=�

�

�

r

��

�

;

where r

��

is the distance between atoms � and �.

1

The corresponding canonical

partition function is

Z =

(2�mkT )

3N=2

h

3N

Z

V (f�g)

N

Y

=1

d~r



exp

�

�

X

h��i

�

�

r

��

�

=kT

�

=

(2�mkT )

3N=2

h

3N

Z

C

;

(2.1)

where N is the number of atoms, m the mass of an atom, T the temperature, k the

Boltzmann constant and h is the Planck constant. The integration volume, V (f�g),

is the volume in space occupied by the deformed system. The function Z

C

is the

con�gurational part of the partition function. The prefactor is associated with the

momentum degrees of freedom, and since they are una�ected by the deformation

of the system, it will be omitted hereafter. The (elastic part of the) free energy is

related to Z

C

by

F = �kT ln(Z

C

): (2.2)

In a canonical ensemble calculation only the surface of the system, not the en-

tire volume, deforms homogeneously. The surface of the system, S(f�g), de�nes

the boundaries of integration volume, V (f�g). The surface S(f�g) of the strained

volume and the surface S(f0g) of the unstrained one, are related by a linear trans-

formation,

r

i

= M

ij

R

j

; (2.3)

which maps every point

~

R on S(f0g) to its strained spatial position ~r on S(f�g). In

Eq.(2.1) we note that the partition function depends on the strain variables f�g only

through the integration volume, V (f�g), and not through the integrand. The idea

of the uctuation formalism is to change the integration variables from r

i

to R

i

, and

1

The interactions between various pairs of atoms do not have to be identical. Thus, we should

denote the pair potential as �

��

(r

��

). However, for brevity we will omit the subscripts of the

potential and the indices of the argument r

��

will serve as an indicator of the speci�c potential.
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replace the strain-dependence of the boundaries of integration by strain-dependence

of the integrand:

Z

C

= e

�F=kT

=

Z

V (f0g)

N

Y

=1

d

~

R



J(f�g) exp

0

@

�

X

h��i

�

�

h

R

��

i

R

��

j

(�

ij

+ 2�

ij

)

i

1=2

�

=kT

1

A

;

(2.4)

where J is the Jacobian of the linear transformation (2.3). To �nd the dependence

of J on f�g we note that the above linear transformation gives

jrj

2

= r

i

r

i

= R

i

R

j

M

ik

M

jk

= R

i

R

j

M

ik

M

t

kj

;

where M

t

is the transpose of M . When this equation is compared with Eq.(1.5), we

readily see that

[MM

t

]

ij

= 2�

ij

+ �

ij

:

For a system of N particles

J = [det(M)]

N

=

�

[det(M)]

2

	

N=2

= fdet (2[�] + [I])g

N=2

; (2.5)

where [�] is the matrix with the elements [�]

ij

= �

ij

and [I] is the identity matrix.

With this identity, substituted into Eq.(2.4) and then into Eq.(2.2), we have a formal

expression for the free energy as a function of the strain. When we di�erentiate the

free energy with respect to the strain variables, we easily derive the following expres-

sions for the stress tensor �

ij

, and the tensor of elastic constants C

ijkl

(which are the

coe�cients of the free energy density expansion in strain components [Eq.(1.6)]):

�

ij

=

1

V

@F

@�

ij

�

�

�

�

f�g=f0g

=

1

V

*

X

h��i

�

0

�

R

��

�
R

��

i

R

��

j

R

��

+

�

NkT�

ij

V

; (2.6)

and

C

ijkl

=

1

V

@

2

F

@�

ij

@�

kl

�

�

�

�

f�g=f0g

=

1

V kT

8

<

:

*

X

h��i

�

0

�

R

��

�

R

��

i

R

��

j

R

��

+*

X

h��i

�

0

�

R

��

�

R

��

k

R

��

l

R

��

+

�

*

2

4

X

h��i

�

0

�

R

��

�

R

��

i

R

��

j

R

��

3

5

2

4

X

h��i

�

0

�

R

��

�

R

��

k

R

��

l

R

��

3

5

+

9

=

;

+

1

V

*

X

h��i

�

00

�

R

��

�

R

��

i

R

��

j

R

��

k

R

��

l

(R

��

)

2

+

�

1

V

*

X

h��i

�

0

�

R

��

�
R

��

i

R

��

j

R

��

k

R

��

l

(R

��

)

3

+

+

2NkT�

il

�

jk

V

: (2.7)
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In the above expressions summation over all distinct pairs of atoms h��i, is per-

formed. R

��

is the inter-particle distance of the pair under consideration and R

��

i

denotes the i-th Cartesian component of the vector

~

R

��

�

~

R

�

�

~

R

�

. The symbol h i

denotes a thermal average. The term in braces in Eq.(2.7) is the \uctuation term",

while the following two terms form the \Born term". The terms �NkT�

ij

=V and

2NkT�

il

�

jk

=V in Eqs.(2.6) and (2.7), respectively, are the \kinetic" contributions

to the stress and the elastic tensors. They are related to terms appearing when J

[Eq.(2.5)] is di�erentiated with respect to f�g.

The uctuation formalism cannot be trivially used to measure the elastic con-

stants of systems interacting via \hard" potentials, because these potentials are

non-di�erentiable while the derivatives of the pair potential are needed in expres-

sion (2.7). Inserting \hard" potentials directly into the formal expressions for the

elastic constants leads to what looks like in�nite terms or terms involving products of

discontinuous functions with �-functions centered at discontinuity, and many other

ambiguities and divergences. It is, therefore, convenient to use smooth approxima-

tions of these \hard" potentials, �

1

(r) and �

2

(r) [(1.3) and (1.4)], for which the

averages in expression (2.6) and (2.7) can, in principle, be determined. An example

for such a potential, �(r), is sketched in Fig. 1.1. This potential, which resembles

the \hard" potential �

1

(r) + �

2

(r), has the following features:

1. �

�

r

��

�

=kT � 1, for a+ " < r < b� ".

2. �

�

r

��

�

=kT � 1, for r < a� ".

3. If the pair of atoms � and � is tethered then �

�

r

��

�

=kT � 1, for r > b+ ";

otherwise �

�

r

��

�

=kT � 1, for r > b+ ".

4. In the small intervals a � " < r < a + " and b � " < r < b + " between the

above regimes, �

�

r

��

�

=kT increases (or decreases) sharply. Nevertheless, we

assume that along these intervals, �(r) is interpolated in a smooth way.

After de�ning these properties of the potential �(r), we substitute it in expressions

(2.6) and (2.7) for the stress and elastic constants. We then look for what we call

the \athermal limit" of these expressions, namely the limiting expressions obtained

when we set the size of the interpolation interval, ", to zero, while at the same time

the potential di�erence between the regimes r < a and r > a tends to in�nity. In

the \athermal limit", �(r) becomes a \hard" potential. The \athermal limit" of

expressions (2.6) and (2.7) can be regarded as the uctuation expressions of hard-

spheres-and-tethers systems. The \athermal" limit of expression (2.6) for �

ij

is easily
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derived.

2

In the derivation of the \athermal" limit of expression (2.7) for C

ijkl

it

is necessary to consider the sum of the terms appearing in expression (2.7) since

some of the individual terms diverge. The combination of these terms does have

a meaningful limit which does not depend on the exact form of the approximating

potential �(r).

2.2 The New Formalism

In this section we introduce the uctuation expression for the elastic constants of

hard-spheres-and-tethers systems. Since the mathematical derivation of the expres-

sion is rather lengthy, we will not present it here in detail. We leave the detailed

mathematical formulation of the method to appendix A, while here we restrict our-

selves to a short description of the major points in the derivation. We will introduce

the expressions obtained for the stress and elastic constants and discuss shortly their

\physical" meaning. A demonstration of the applicability of the method is found

in the next section, where we present numerical results obtained for hard sphere

systems.

Expression (2.6) for the stress tensor; �

ij

, suggests that the stress is the thermal-

volume average of quantities related to the local forces applied to the atoms. For the

present discussion, let us assume that we deal with a central force system in which

the pair interactions are described by a certain approximating potential, �(R) (see

previous section). For such a potential we note that the force f

��

= ��

0

�

R

��

�

acting between the pair of atoms h��i almost always vanishes, except for very short

instances of time (in a statistical ensemble language | only in a small portion of

the con�gurations phase space), when R

��

� a, or (if the two atoms are tethered)

R

��

� b. Hard-spheres-and-tethers models can be regarded as limiting cases in

which these pair-forces become in�nitely large for time intervals which become van-

ishingly small, keeping the rate of momentum exchange between atoms �xed. From

the mathematical point of view it is important to note that what we actually have

in the integral expressions for �

ij

(2.6) are the derivatives of the Boltzmann factor,

�

exp

�

��

�

R

��

�

=kT

��

0

=

�

��

0

�

R

��

�

=kT

�

exp

�

��

�

R

��

�

=kT

�

. In the \athermal

limit" the Boltzmann factor converges to a step function where the discontinuity

(from zero to unity) occurs at R

��

= a, and an opposite discontinuity (from unity

to zero) occurs at R

��

= b, if the pair h��i is tethered. The derivative of a step

function is just the Dirac �-function. We thus �nd that in order to recover the

2

In fact, slightly di�erent versions of the expression for the stress in systems with \hard"

potentials were known prior to this work, and had been used in simulations of hard sphere systems.

See, e.g., Runge and Chester [12], and Barker and Henderson [20].
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\athermal limit" of �

ij

, we only need to perform the simple transformation

�

0

�

R

��

�

�! �kT�

��

� �kT

�

�

�

R

��

� a

�

� �

��

�

�

R

��

� b

��

; (2.8)

where �

��

, the \topology variable", takes the value 1 if the pair h��i is tethered,

and 0 otherwise. This gives the known result [12, 20]

�

ij

= �

kT

V

8

<

:

X

h��i

*

R

��

i

R

��

j

R

��

�

��

+

+N�

ij

9

=

;

; (2.9)

for the components of the stress tensor. Note that the thermal average of �

��

is

just the di�erence between the probability density of contact between the pair of

spheres h��i, p

�

R

��

= a+

�

, and the probability density, p

�

R

��

= b�

�

, of �nding

the tether connecting them stretched to its maximal length. If a tether between

them does not exist (�

��

= 0), we ignore this second probability density.

3

The above transformation (2.8) is also useful in obtaining the \athermal limit" of

many of the terms appearing in expression (2.7) for the components of the tensor of

elastic constants. More speci�cally, it should be applied in all the terms which con-

tain the �rst derivative, �

0

�

R

��

�

, or the products, �

0

�

R

��

�

�

0

�

R

�

�

, corresponding

to two distinct pair of atoms h��i 6= h�i. [This product should be simply re-

placed by (kT )

2

�

��

�

�

.] This leaves us with only two types of terms, containing

the squares of the �rst derivatives, �

0

2

�

R

��

�

, and the second derivatives, �

00

�

R

��

�

.

Finding the \athermal limit" of both terms is the \missing piece in the puzzle" in

the formulation of the method. When we substitute an approximating potential into

these terms, it is not di�cult to �nd that neither of them has a de�nite \athermal

limit". Only if we combine them into a single term, we do manage to �nd an appro-

priate limit, which can be also expressed in terms of the quantities �

��

. A major

part of the derivation, which appears in appendix A, is devoted to the mathematical

treatment of this combined term. Here we just quote the �nal expression for the

elastic constants:

C

ijkl

=

2NkT

V

�

il

�

jk

+

kT

V

�

(d+ 2)

X

h��i

�

R

��

i

R

��

j

R

��

k

R

��

l

(R

��

)

3

�

��

�

�

1

2

X

h��i

X

 6=�;�

��

R

��

i

R

��

j

R

��

k

R

��

l

(R

��

)

2

�

��

�

~

R

��

�

~

R

�

R

��

R

�

�

�

+

~

R

��

�

~

R

�

R

��

R

�

�

�

���

+

�

X

h��i

�

R

��

i

R

��

j

R

��

�

��

���

X

h��i

�

R

��

k

R

��

l

R

��

�

��

��

3

For the clarity of the discussion we assume that all pair interactions include the hard sphere

part [�

1

(r), Eq.(1.3)]. In later chapters we will also consider systems without EV interactions. For

such systems one should simply de�ne �

��

� kT�

��

�

�

R

��

� b

�

.
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�

X

h��i

X

h�i6=h��i

�

R

��

i

R

��

j

R

�

k

R

�

l

R

��

R

�

�

��

�

�

��

: (2.10)

In the above expression we distinguish between the di�erent sums:

P

h��i

denotes

summation over all pairs h��i,

P

h�i6=h��i

denotes summation over the rest of the

pairs, h�i, while

P

 6=�;�

denotes summation over the rest of the atoms,  (distinct

from � and �). d is the dimensionality of the system.

Expressions (2.9) and (2.10) relate the stress and elastic constants of hard-

spheres-and-tethers systems to the thermal averages of certain geometrical quan-

tities. We see that except for the kinetic terms, originating in the change of the

volume of the system caused by the deformation, contributions to the stress and

elastic constants are due to pairs of atoms touching each other or due to bonds that

are stretched to their maximal length. These are indeed the mechanisms through

which tethered hard spheres exchange momentumwith each other. Alternatively, ex-

pressions (2.9) and (2.10) can be understood as follows: In hard-spheres-and-tethers

systems entropy measures the extent of con�gurations phase space. Changes in

entropy (to which the stress and elastic constants correspond) are related to the

exclusion and inclusion of con�gurations. When an unstrained con�guration is in-

�nitesimally transformed to its deformed correspondent, it may become physically

forbidden (or vice versa, a physically forbidden con�guration may become allowed),

only when there exist at least one pair of spheres in contact or when one bond is

in maximal stretching. The elastic properties of these systems must be, therefore,

related to such events.

2.3 Numerical Example | Hard Spheres

2.3.1 The Phase Behavior of Hard Spheres

Hard sphere systems have been the subject of an intensive research for already sev-

eral decades [21]. They were, in fact, the �rst systems for which Metropolis et al.

performed the �rst MC simulations in 1953 [22]. Hard spheres serve as the simplest

model for real uids, glasses and colloids. Moreover, many perturbation theories use

them as reference systems for more realistic models including attractive interactions

(see earlier, section 1.2). The phase diagram of hard spheres, shown in Fig. 2.1, is

a function of one parameter only | the volume fraction � occupied by the spheres.

The most remarkable feature of this phase diagram is the occurrence of a �rst order

phase transition from low density isotropic uid to a high density crystal. The possi-

bility that systems of particles interacting via repulsive potentials can undergo such

an entropy-driven phase transition had been speculated upon by Kirckwood in 1939
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[23]. This prediction was quite controversial at that time since entropy is usually

associated with disorder. Indeed, the transition from isotropic uid into a periodic

solid involves loss of orientational entropy. However, this entropy loss is compen-

sated by the gain of transitional entropy, i.e., the increase in the volume available

to each sphere. The phase transition in hard sphere systems was �rst observed in

1957 through computer simulations performed by Alder and Wainwright [24] and

Wood and Jacobson [25]. The volume fractions �

freezing

and �

melting

between which

the uid and crystal coexist were determined in 1968 by Hoover and co-workers [26].

They found �

freezing

= 0:494 and �

melting

= 0:545. The solid formed above �

melting

can be further compressed up to the close-packing density �

0

= �=(3

p

2) ' 0:74

into either the face-centered cubic (FCC) or the hexagonal closed-packed crystalline

arrangements. Recent numerical simulations indicated a preference for the FCC

crystals, but the free energy di�erences between the two structures are extremely

small, about 10

�3

kT per particle [27, 28].

glass

.74.63.490

volume fraction 

coexsitence
fluid-solid

FCC crystalfluid

.54 .58

Figure 2.1: The equilibrium phase diagram of hard sphere systems. The \glass" phase is a

metastable state which does not exist under microgravity conditions.

The experimental veri�cation that hard sphere systems follow the above phase

diagram was made by Pusey and van Megen [29] who studied sterically stabilized

PMMA colloidal suspensions. In addition to the uid-crystal transition, they re-

ported the existence of a glassy metastable phase at volume fractions between

� � 0:58 and � � 0:63 corresponding, respectively, to the random loose and random

close packing densities. In the glass regime, the di�usion of spheres is limited by

sedimentation. Chaikin and co-workers demonstrated that glassy samples crystallize

under microgravity conditions [30].

2.3.2 Elasticity of Hard Spheres Systems

In the following section we present numerical results obtained by MC simulations

using the new formalism for elastic constants. Several numerical [12, 13] and ana-
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lytical [31] works were dedicated to elasticity of hard sphere systems. Nevertheless,

the accuracy of the values of the elastic constants still leaves much to be desired.

Therefore, although the main purpose of this section is to demonstrate the validity

and applicability of the formalism, the numerical results have their own physical

usefulness. Before we reach the results, I would like to turn the reader's atten-

tion to a problem arising due to the appearance of Dirac �-functions in expressions

(2.9) and (2.10). The delta function �(R� a) cannot be averaged directly from MC

con�gurations since the measure of the part of the con�gurations phase space at

which R = a, vanish. Therefore, we approximate the delta function �(R� a) by the

distribution function

h

n

(R) =

�

1=�; for a+ (n� 1)� � R < a+ n�

0; otherwise

;

which makes the averages using the con�gurations where the pair separation R is

found inside the small interval (\bin"), a + (n � 1)� � R < a + n�. We perform

a set of such approximations with bins corresponding to n = 1; 2; 3; : : :, and then

extrapolate the set of \bin averages" to n ! 0 in order to obtain our estimates of

the correct averages. This technique, which has been applied in the simulations, is

discussed in more detailed in appendix B.

The simulations were performed on systems consisting of 13500 spheres with

periodic boundary conditions. Subsequent MC con�gurations were not generated

by conventional Metropolis single atom steps, but rather using collective steps of

chains of atoms, as recently suggested by Jaster [32]. The MC time unit is de�ned

as the time (measured in number of MC con�gurations) in which, on the average, we

attempt to start one \chain move" from every particle. The acceptance probability

of these moves was approximately half. The simulations were extended over 9 � 10

5

MC time units. This time is substantially larger than the relaxation time which

was estimated from the auto-correlation function of the amplitude of the longest

wavelength phonon in the system, and which for all densities [that ranged from

the melting density (�=�

0

= 0:736) up to almost the close packing density (�=�

0

=

0:99)] was found to be less than 3000 MC time units. The relevant quantities were

evaluated every 3 MC time units. The error estimates which appear in graphs

presenting the results, represent one standard deviation in the estimates of the

corresponding averages.

The FCC solid has a cubic symmetry, and therefore its elastic properties are

described by the pressure P and three elastic constants C

11

, C

12

, C

44

(see section

1.3). The results for P , the bulk modulus � =

1

3

(C

11

+ 2C

12

+ P ), and for C

12

and C

44

of hard sphere FCC solids, are presented in Figs. 2.2{2.5, respectively

(solid circles). Note that each of the elastic constants was estimated by the average
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0.01 0.10 1.00
(ρ0/ρ)−1 

10

100

1000

P
 [k

T
/a

3 ]

Figure 2.2: The pressure, P , in units of kT=a

3

, as function of the inverse reduced density, �

0

=�.

The circles mark numerical results, while the solid line depicts the free volume approximation for

the pressure [Eq.(2.11)].

of the corresponding three di�erent components of the tensor C

ijkl

[for instance,

C

12

=

1

3

(C

xxyy

+C

yyzz

+C

zzxx

)]. The solid curves in Figs. 2.2{2.5 depict expressions,

suggested by Stillinger and Salsburg [33], for the asymptotic behavior of these quan-

tities, at the limit of the close-packing density, �

0

. These authors have shown that

the free volume approximation gives the correct asymptotic results for the pressure

and bulk modulus:

P =

3

p

2

�

0

=� � 1

kT

a

3

; (2.11)

and

� =

C

11

+ 2C

12

+ P

3

=

3

p

2

(�

0

=� � 1)

2

kT

a

3

: (2.12)

For the elastic constants C

12

and C

44

, it has been conjectured in Ref. [33] that close

to �

0

their density dependencies have also a free volume functional form:

C

12

=

A

1

(�

0

=� � 1)

2

kT

a

3

; (2.13)

and

C

44

=

A

2

(�

0

=� � 1)

2

kT

a

3

; (2.14)

but with constants A

1

and A

2

which have not been accurately determined. Our

numerical results con�rm the validity of these asymptotic expressions. Most of the

data points fall on the solid curves. This shows that the asymptotic expressions

provide rather good estimates for the stress and elastic constants, even for densities
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0.01 0.10 1.00
(ρ0/ρ)−1 
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κ 
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Figure 2.3: The bulk modulus, �, in units of kT=a

3

, as a function of the inverse reduced density,

�

0

=�. The circles mark numerical results, while the solid line depicts the free volume approximation

for the bulk modulus [Eq.(2.12)].
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Figure 2.4: The elastic constant C

12

in units of kT=a

3

, as a function of the inverse reduced

density, �

0

=�. The circles mark numerical results, while the solid line depicts Eq.(2.13) with

A

1

= 1:84.

which are close to the melting density. The curves in Figs. 2.4 and 2.5 correspond

to expressions (2.13) and (2.14) with the coe�cients A

1

= 1:84 � 0:14 and A

2

=

5:86� 0:11. These values were obtained by �tting the numerical results for the four

largest densities (�=�

0

= 0:99; 0:975; 0:95; 0:9) to expressions (2.13) and (2.14).
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Figure 2.5: The elastic constant C

44

in units of kT=a

3

, as a function of the inverse reduced

density, �

0

=�. The circles mark numerical results, while the solid line depicts Eq.(2.14) with

A

2

= 5:86.

The numerical results presented in Figs. 2.2{2.5 improve the existing numerical

data published by Frenkel and Ladd [13]. They used the strain method technique

(see section 1.4) and performed simulations on smaller systems of 108 spheres. At

the smaller densities their results are in a very good agreement with the numerical

results presented in this work. At a larger density (�=�

0

= 0:9), however, there

is a considerable disagreement, where our results seem to be more consistent with

the asymptotic expressions of Stillinger and Salsburg. This inconsistency with the

results in Ref. [13] is partially explained by �nite size e�ects, but partially it is

also due to the di�culties in using the strain method in systems at high pressure.

In such systems, small deformations invoke relatively large pressure changes, and

therefore in order to achieve a good estimate for the numerical derivatives one must

use extremely small strains and measure the stress components with a very high

accuracy. In our uctuation method simulations this problem is not raised.

Finally, we present results obtained for hard sphere uid systems (Fig. 2.6). In

the uid phase the system is isotropic, and therefore characterized by the pressure

and two elastic moduli (section 1.3). The shear modulus vanishes, while the pressure

and the bulk modulus can be accurately calculated from the virial expansion of the

equation of state. (The curves appearing in Fig. 2.6 were derived using the �rst 7

terms of the virial expansion [34].) We measured the elastic moduli at 4 di�erent

volume fractions � = 0.1, 0.2, 0.3 and 0.4. The simulations were performed on

systems of 8000 spheres over a total time of 1:35 � 10

6

MC time units. The rest of
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the technical details are identical to these applied in the solid phase simulations (see

text, earlier in this section). The good agreement of the numerical results with the

analytical predictions is, again, evident.

2.4 Summary

The uctuation formalism for calculations of the elastic constants, originally devised

for conventional potentials, was extended to apply to \hard" potentials. We found

expressions relating the components of the tensor of elastic constants to the (two-,

three- and four-point) probability densities of contact between hard spheres and the

probability densities of stretching tether bonds, which are the mechanisms through

which atoms exchange momentum with each other in such systems. The new formal-

ism is not restricted to certain topologies, but is general to all \hard-spheres-and-

tethers" systems. In this chapter we applied it to hard sphere systems both in the

uid and the solid phases. The numerical results, which agree well with analytical

predictions, demonstrate the e�ciency and accuracy of the method. Implementing

the method in numerical simulations is, generally speaking, quite straightforward.

The only non-trivial point is the fact that Dirac �-functions appear in the expres-

sions for the stress and elastic constants. Therefore, the thermal averages in these

expressions cannot be evaluated directly. The \bins" technique (discussed in details

in appendix B) helps us to overcome this problem.

0.0 0.1 0.2 0.3 0.4
ρ

−5

0

5

10

15

20

[k
T
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3 ]

Pressure
Bulk Modulus
Shear Modulus

Figure 2.6: The pressure and two elastic moduli of a hard sphere system in the uid phase as

function of the volume fraction occupied by the spheres, �. The shear modulus vanishes at the

uid phase. Curves depicting the pressure and the bulk modulus were calculated using the �rst

7 terms of the virial expansion (see Ref. [34]). The circles, triangles and squares mark numerical

results obtained for densities, � = 0:1; 0:2; 0:3;0:4.



Chapter 3

Elasticity of Gaussian and Nearly

Gaussian Phantom Networks

Rubber and gels are macroscopically large polymeric solid networks formed when

polymers or monomers in uid solutions are randomly cross-linked by permanent

bonds. This process is called vulcanization or gelation, when the latter term usu-

ally applies to cross-linking of monomers or very short polymers | gels; while the

former term usually describes the formation of dense networks of long polymers |

rubber. Polymer networks are frequently used in daily life. Simple examples are car

tires, thermosets, coatings, adhesives, plasticized PVC and gelatin puddings. So-

phisticated applications include micro �ltration, controlled drug delivery and plant

growth control. Nature uses polymer networks, as well. The cytoskeleton, for in-

stance, is supported by a network of actin, which is a semi-exible polymer with

globular proteins as monomer units.

The bonds forming a polymer network can be either chemical or physical. Chem-

ical crosslinking is obtained by covalent bonds joining segments in already formed

chains. Active linking agents (such as sulfur or peroxide cures) and ionizing irra-

diation are the most common methods to establish such bonds. Physical crosslink-

ing, on the other hand, involves non-covalent interactions (e.g., Coulombic, van der

Waals, hydrophobic and hydrogen bonds interactions) which lead to the association

between certain parts of di�erent chains. Physical crosslinkings are, in general, not

permanent, and may disappear by applied mechanical deformations or increase in

temperature. Therefore, physical gels are sometimes called thermoreversible. In the

present work we do not consider physical networks, but only chemical ones in which

the connectivity can be assumed to be �xed.

Clearly, the most remarkable feature of rubber and gels is the property of high

elasticity, namely the ability to deform considerably on application of small external

forces and, yet, to remain elastic (i.e, to recover the undeformed size and shape on

release of external load) even in response to deformations increasing their dimensions

24
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far beyond their original, unstrained, size. This elastic behavior is attributed to the

network structure of these materials, and to the fact that the elastic restoring forces

are of entropic, rather than energetic, origin. The simplest theory of rubber elasticity

which captures these essential physical features, is the classical \phantom network"

(PN) theory which was independently introduced in the 1940s by several authors

[35, 36]. The PN model assumes that the con�gurations of the di�erent polymer

chains are independent of each other, and neglects the EV interactions between the

monomers. With these simplifying assumptions one can treat each polymer chain

in the network as an ideal one. By averaging over the positions of the monomers

one �nds that the probability density of �nding chain ends separated by ~r, takes

a Gaussian form � exp

�

�

1

2

Br

2

�

, where B usually depends on the temperature

T . The free energy of the chain is proportional to (minus) the logarithm of this

probability density and, therefore, proportional to r

2

, as if it is a linear spring of

vanishing equilibrium length, which will be calledGaussian spring. In the PN model,

the thermal averages of some quantities can be calculated analytically due to the

Gaussian form of the statistical weights [10], and this makes it an excellent starting

point for more advanced models with EV interactions and entanglements [37].

The problem of gel elasticity introduces an additional complication already at

the level of the PN model. In gels the network strands are very short and do

not necessarily resemble Gaussian springs. Nevertheless, one may still construct

a Gaussian model of gel elasticity, simply by replacing each bond of the gel by

a Gaussian spring. In the absence of EV interactions, the validity of this model is

justi�ed by the fact that even if the elementary pair potential between bonded atoms

is very di�erent from that of a Gaussian spring, the e�ective interaction between

somewhat more distant atoms is, almost always, quadratic. This is a well known

feature of long polymer chains [38], which follows from the central limit theorem. For

topologically simple 2D regular (non-random) nets, this property was demonstrated

by Kantor et al. [2] (see more details in the next chapter of the thesis).

One of the more famous conjectures about the elastic behavior of Gaussian net-

works was made by de Gennes some years ago [39]. He used an analogy between

elasticity of networks of Gaussian springs and conductivity of resistor networks and

argued that rigidity, just like conductivity, appears at the connectivity threshold,

when a macroscopically large network spans the system. He further argued that at

the phase transition the shear modulus and the conductivity should have the same

dependence on the distance of the system from the connectivity threshold. One of

the aims of the present chapter is to prove this equivalence.

This chapter discusses the elastic properties of phantom networks of Gaussian

and nearly Gaussian springs [40]. In section 3.1 we derive exact results for the stress
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and elastic constants of Gaussian networks. We show that the stress tensor of a

Gaussian elastic network is equal to the conductivity tensor of an equivalent resis-

tor network. This equality, whose detailed proof is given in appendix C, quanti�es

the somewhat vague statement of de Gennes about an analogy between elasticity

of Gaussian networks to conductivity of resistor networks. It is also shown that

the elastic constants of a system consisting of a single spanning cluster of Gaussian

springs vanish. We discuss the e�ect of the �nite clusters which model the small

molecules formed in the process of crosslinking and show that they play a crucial

role in stabilizing the system. In section 3.2 we investigate the elastic behavior of

phantom networks of nearly Gaussian springs, whose energy dependence on their

extension includes a small quartic term additional to the quadratic one. A perturba-

tive analysis yields an expression for the elastic constants of such networks. Section

3.3 includes a short summary and discussion of the main results.

3.1 Elasticity of Gaussian Networks | Exact Re-

sults

Consider a d-dimensional system shown schematically in Fig. 3.1. The black circles

in Fig. 3.1 represent atoms while the zigzag lines indicate the bonds, attractive

pair-potentials, which connect them in a certain �xed (quenched) topology. Atoms

which are found inside the volume of the systems are called internal atoms. Surface

atoms have �xed coordinates on the boundaries of the system. The bonds connect

atoms into clusters. Clusters containing only internal atoms are free to move in the

entire volume. Cluster with both internal and surface atoms are non-free. Among

them, one (and, in some cases, several) may extend from one side of the system to

the opposite side. This is the \spanning" cluster.

The system whose elastic properties are studied in this section consists of point-

like atoms connected by Gaussian springs. The energy of each Gaussian spring is

given by

�

��

�

~

R

�

�

~

R

�

�

=

1

2

K

��

�

~

R

�

�

~

R

�

�

2

=

1

2

K

��

�

R

��

�

2

; (3.1)

where

~

R

�

and

~

R

�

denote the positions of atoms � and �, and R

��

is the dis-

tance between these atoms. The spring constant K

��

is assumed to have a �xed,

temperature-independent, value.

1

The total elastic energy is given by the sum over

1

It should be noted that usually the force constants in entropic systems strongly depend on T .

The choice of temperature-independent force constants in this section is made for the purpose of

convenience of the derivation of the mathematical theorems.
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finite free clusters

internal atoms

finite non-free cluster

surface atom

Figure 3.1: A schematic picture of a network of springs. The system includes a spanning elastic

network as well as some �nite clusters. Atoms can be either internal, i.e., free to move inside the

volume, or external, i.e., attached to permanent positions on the boundaries. Non-free clusters

have at least one external atom.

the energies of all the springs

E =

X

h��i

�

��

=

X

h��i

1

2

K

��

�

R

��

�

2

:

The components of the stress tensor of our system are related to the pair-

potentials, �

��

(R

��

), via expression (2.6) which in the case of potential (3.1) reduces

to

�

ij

=

1

V

*

X

h��i

K

��

R

��

i

R

��

j

+

�

NkT

V

�

ij

: (3.2)

In this expression the sum is performed over all the connected pair.

The two terms in the expression (3.2) are called the con�gurational and kinetic

terms, respectively. The con�gurational term can be divided into terms, each one

including the sum over the bonds of one distinct cluster. Since there are no EV

interactions, these terms are independent of each other (the clusters do not interact

with each other), and the contributions of the di�erent clusters to the stress are

additive. We identify the stress applied by each cluster as

�

cluster

ij

=

1

V

*

X

h��i 2 cluster

K

��

R

��

i

R

��

j

+

�

N

I

kT

V

�

ij

; (3.3)

where N

I

is the number of internal atoms of the cluster.
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3.1.1 The Contribution of the Free Clusters

The gas of free clusters is an ideal gas. Since the di�erent clusters do not \feel" each

other, it is intuitively clear that the contribution to the stress of each free cluster

should be as of a point-like atom. To prove this result (which is general to phantom

systems and does not depend on the particular form of the pair-potential), we use the

fact that for a free cluster (fc), one can integrate out d degrees of freedom (of say,

~

R

1

)

in Eq.(3.3), and express the terms appearing in it in the relative coordinates R

�1

i

=

R

�

i

� R

1

i

f� = 2; : : : ; N

I

g. (This statement is correct only in the thermodynamic

limit, when the linear size of the system becomes much larger than the radius of

gyration of the free cluster.) One can easily verify that in the relative coordinates

Eq.(3.3) may also be written in the following way

�

ij

=

1

V

*

N

I

X

�=2

R

�1

i

@E

@R

�1

j

+

�

N

I

kT

V

�

ij

;

which from the equipartition theorem gives �

ij

= �(kT=V )�

ij

. The stress applied

by all the free clusters is simply

�

fc

ij

= �

N

0

kT

V

�

ij

; (3.4)

where N

0

is the total number of free clusters. Similarly, the contribution of the free

clusters to the elastic constants is also as of an ideal gas, given by the kinetic term

[16]

C

fc

ijkl

=

2N

0

kT

V

�

il

�

jk

: (3.5)

3.1.2 Elasticity of the Spanning Cluster

The stress and elastic constants of the spanning network of Gaussian springs with

temperature-independent force constants, are temperature-independent. The free en-

ergy F of the spanning network is a function of the temperature T and the positions

of the surface atoms f

~

R

s

g. If the values of these variables change quasi-statically,

then

dF = �SdT +

X

s

~

f

s

ext

� d

~

R

s

; (3.6)

where S is the entropy,

~

f

s

ext

is the external force which drags the surface atom s, and

summation is made over all the surface atoms. In a quasi-static process, the force

~

f

s

ext

is balanced by the force

~

f

s

applied by the network on atom s, namely

�

~

f

s

ext

=

~

f

s

=

*

X

�

K

�s

�

~

R

�

�

~

R

s

�

+

; (3.7)
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where summation is over all atoms � connected to atom s. The terms appearing in

the thermal average in Eq.(3.7) are linear in the coordinates

~

R

�

. Since the Boltz-

mann weight is a Gaussian, i.e., an exponent of a quadratic form of the coordinates,

these averages coincide with the most probable values, namely their values at the

energetic ground state, and therefore do not depend on the temperature. We thus

conclude that

~

f

s

is a temperature-independent quantity, and from Eqs.(3.6) and

(3.7) we readily �nd that

@

2

F

@T@

~

R

s

= �

@

~

f

s

@T

= 0:

The last result implies that F can be decomposed into two parts

F (T; f

~

R

s

g) = F

1

(T ) + F

2

(f

~

R

s

g):

If we consider homogeneous deformations we may de�ne a reference system and use

the strain variables f�

ij

g, instead of f

~

R

s

g

F = F

1

(T ) + F

2

(f�

ij

g):

The stress and elastic constants are the coe�cients in the f�g-expansion of F

2

[see

Eq.(1.6)]. Therefore, they do not depend on the temperature.

The stress applied by the spanning network is equal to the conductivity of a re-

sistor network with the same topology. The stress of the spanning cluster (spc)

[Eq.(3.3)]

�

spc

ij

=

1

V

*

X

h��i 2 spc

K

��

R

��

i

R

��

j

+

�

N

I

kT

V

�

ij

;

can be rewritten in the form

�

spc

ij

=

1

V

8

<

:

*

N

I

X

�=1

R

�

i

@E

@R

�

j

+

+

*

X

h�si 2 spc

K

�s

R

s

i

R

s�

j

+

9

=

;

�

N

I

kT

V

�

ij

; (3.8)

where the �rst sum is over all the internal atoms, while the second sum is over all the

bonds connecting internal and surface atoms. (The subscripts s and � denote surface

and internal atoms, respectively.) In the thermodynamic limit we deduce from the

equipartition theorem that the �rst and the third (kinetic) terms in Eq.(3.8) cancel

each other. We are thus left only with the second term

�

spc

ij

=

1

V

2

4

X

h�si 2 spc

K

�s

R

s

i




R

s�

j

�

3

5

: (3.9)
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The thermal averages in Eq.(3.9) are of quantities which are linear in the co-

ordinates of the internal atoms and, therefore, may be replaced by the equilibrium

values of these quantities (see earlier in this subsection). The equilibrium values of

~

R

�

minimize the energy of the spanning cluster

E

spc

=

X

h��i 2 spc

1

2

K

��

�

~

R

�

�

~

R

�

�

2

=

d

X

j=1

2

4

X

h��i 2 spc

1

2

K

��

�

R

�

j

�R

�

j

�

2

3

5

�

d

X

j=1

E

spc

j

: (3.10)

The dependence of E

spc

on the components R

�

j

corresponding to one Cartesian

direction, j, is included in the term E

spc

j

. The problem of �nding the equilibrium

values of

~

R

�

decouples into d scalar problems of �nding the equilibrium values of

R

�

j

. In order to calculate these values we need to solve d sets of linear equation (one

set for each Cartesian component):

X

�

K

��

�

R

�

j

�R

�

j

�

= 0; (3.11)

corresponding to the vanishing of the jth component of the force acting on each

internal atom. (For each atom �, summation in the relevant equation is over all

atoms � connected to it.)

Let us de�ne a resistor network with the same connectivity as the elastic network,

in which each spring is replaced by a resistor with conductance K

��

. The values

of the electric potential at the internal nodes, f'

�

g, are obtained by minimization

of the heat power produced in the network, P =

P

h��i

K

��

('

�

� '

�

)

2

. Except

for a prefactor of

1

2

, P is identical with E

spc

j

[Eq.(3.10)], where '

�

plays the role

of R

�

j

. If we replace R

�

j

by '

�

in the force equations (3.11), we obtain the set

of Kircho� equations enforcing the vanishing of the sum of currents entering the

internal nodes of the network. By replacing R

�

j

by '

�

, we de�ne a mapping of the

mechanical problem to an electrostatic one. In fact, we have d di�erent electrostatic

problems corresponding to each Cartesian component of the mechanical problem.

They di�er from each other in their boundary conditions, namely the values of the

electric potential on the surface nodes, f'

s

g. In the jth electrostatic problem, we

set '

s

equal to R

s

j

, i.e., we assume that the electric potential at each boundary point

is equal to the jth Cartesian coordinate of the point.

The interesting question now is what is the analog of the stress tensor in the

electrostatic problem. This appears to be the conductivity tensor �

ij

de�ned by

hj

i

i = �

ij

hE

j

i;
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where h

~

ji and h

~

Ei are the volume averages of the current density and the electric

�eld, respectively. More precisely, if we follow the mapping de�ned above we have

the exact equality

�

ij

= �

ij

: (3.12)

A detailed proof of this equality is given in appendix C. Here we just note that

the proof consists of two steps: The �rst step shows that in the jth electrostatic

problem, because of the choice of boundary conditions, h

~

Ei is a unity electric �eld

pointing in the (�j)th direction. In the presence of such an electric �eld hj

i

i = ��

ij

.

The second step of the proof shows that �hj

i

i, and therefore �

ij

are given by the

electrostatic equivalent of Eq.(3.9)

�

spc

ij

=

1

V

2

4

X

h�si 2 spc

K

�s

R

s

i

('

s

� '

�

)

3

5

; (3.13)

and therefore Eq.(3.12) is valid.

The elastic constants of the spanning network vanish. It has already been shown

that C

ijkl

, the elastic constants of the spanning cluster of Gaussian springs with

temperature-independent force constants, are temperature-independent. Therefore,

we may calculate them at any temperature, and in particular at T = 0. At zero

temperature the free energy coincides with the internal energy, given by Eq.(3.10),

where f

~

R

�

g, the positions of the internal nodes, take their equilibrium values. Sup-

pose now that the system is homogeneously strained. The positions of the surface

nodes, f

~

R

s

g, change according to the linear transformation (2.3), with a constant

matrix M

ij

. In order to �nd the new equilibrium positions of the internal atoms, in

the strained system, we need to solve the set of equation (3.11) with the new bound-

ary conditions. Since both the equations and the transformation of the boundary

conditions are linear, the new solution is given by r

�

i

= M

ij

R

�

j

. The elastic energy

of the strained spanning cluster is given by [see Eqs.(1.5) and (3.10)]

E

spc

=

1

2

X

h��i 2 spc

K

��

(r

��

)

2

=

1

2

X

h��i 2 spc

K

��

h

(M

t

M)

ij

R

��

i

R

��

j

i

=

1

2

X

h��i 2 spc

K

��

h

(2�

ij

+ �

ij

)R

��

i

R

��

j

i

:

This gives the dependence of E on the strain variables, which includes only linear

terms in �

ij

. Since the elastic constants are the coe�cients of the quadratic terms

in the f�g-expansion of the free energy [Eq.(1.6)], we conclude that

C

spc

ijkl

� 0: (3.14)
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3.1.3 The Stability of Systems of Gaussian springs

Stable solid thermodynamic systems have positive bulk and shear moduli, �, �

1

and �

2

[Eqs.(1.9), (1.10) and (1.11)]. In phantom systems, the contributions of the

spanning cluster and the ensemble of free clusters to �, �

1

and �

2

are additive. Due

to the vanishing of the elastic constants of the spanning cluster (3.14), we �nd that

its contribution to the elastic moduli is: �

spc

1

= �

spc

2

= �P

spc

> 0,

2

and �

spc

= 0

(two-dimensions) or �

spc

= P

spc

=3 < 0 (three-dimensions) [P

spc

< 0 is the negative

(stretching) pressure applied by the spanning cluster]. The fact that �

spc

is not

positive means that the spanning cluster alone is not stable against homogeneous

volume uctuations. The contribution of the free clusters to the elastic moduli is as

of an ideal gas, given by: �

fc

1

= �

fc

2

= 0, and �

fc

= N

0

kT=V [see Eqs.(1.9), (1.10),

(1.11) , (3.4) and (3.5)]. The vanishing of the of the shear moduli �

fc

1

and �

fc

2

simply

indicates that the collection of free clusters is a uid. The positive contribution of

the free clusters to the bulk modulus is crucial for the stability of the system. Two-

dimensional Gaussian networks are stabilized in the presence of free clusters since

� = �

spc

+�

fc

= �

fc

> 0. Three-dimensional systems are stabilized provided that the

positive contribution of the free clusters to � overcomes the negative contribution

of the spanning cluster.

In real gels, it is possible to wash out the �nite clusters (or most of them) and

obtain a, so called, dry gel. Within the Gaussian model such a system is expected

to be unstable. This contradicts experimental observations and demonstrates the

importance of EV and entanglements e�ects. In the presence of EV interactions,

the polymer chains forming the network cannot be treated as Gaussian springs.

Therefore, the elastic constants of such networks do not vanish, and consequently,

there is no simple relation between the pressure and the elastic moduli. Moreover,

EV interactions make a positive contribution to the pressure which may, therefore,

be both positive or negative. In dense systems, EV interactions may e�ectively

cancel out [38]. However, dense systems can only be achieved in the presence of

the �nite clusters. In that case the di�erent clusters interact with each other, and

their contributions to the pressure and elastic moduli are not additive. In the

following section we consider a di�erent correction to the Gaussian model: without

EV interactions, but with a non-Gaussian pair potential.

2

Note the remarkable feature that �

1

= �

2

for all Gaussian networks, and not only for isotropic

ones.
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3.2 Elasticity of Nearly Gaussian Networks

The elastic response of phantom polymer chains and polymeric networks is as of

systems of Gaussian springs only in the �rst approximation. It always includes a

non-linear part, which becomes signi�cant when the network is su�ciently stretched,

much beyond its characteristic thermal length [36, 41]. In order to study the nature

of this correction, we consider networks of springs having the spring energies

�

��

�

R

��

�

=

1

2

K

��

�

R

��

�

2

+

1

4

a

��

�

R

��

�

4

: (3.15)

Our choice for the spring energy is inspired by the free energy of a �nite long polymer

chain [36], where the leading correction to the linear relation between the force and

the chain end-to-end vector

~

f = �K

~

R, is a term proportional to R

2

~

R. The elastic

energy of the system is given, again, by the sum of all springs energies

E =

X

h��i

�

��

=

X

h��i

�

1

2

K

��

�

R

��

�

2

+

1

4

a

��

�

R

��

�

4

�

� E

0

+ E

1

: (3.16)

In the following derivation we assume that E

1

� E

0

, and treat the quartic term per-

turbatively. In fact, we will make a more restrictive assumption that for each bond

a

��

�

R

��

�

4

� K

��

�

R

��

�

2

. Since the quadratic term E

0

does not make any contri-

bution to the elastic constants, we will focus on the contribution of the perturbation

term, E

1

, to them.

In the lowest order of a perturbation theory, the elastic constants of the network

[de�ned by Eq.(3.16) with temperature-independent constants K

��

and a

��

] are tem-

perature independent. Substituting the pair potential (3.16) into expression (2.6) for

the stress tensor, and expanding this expression to the �rst order in a

��

, yields

�

ij

= �

0

ij

+

1

V

*

X

h��i

a

��

�

R

��

�

2

R

��

i

R

��

j

+

0

�

1

V kT

*

�

0

@

X

h��i

K

��

R

��

i

R

��

j

1

A

�E

1

+

0

; (3.17)

where �A � A � hAi

0

denotes a thermal uctuation of the quantity A, and h i

0

denotes a thermal average with the (unperturbed) Gaussian Boltzmann weight

exp(�E

0

=kT ). �

0

ij

is the stress tensor of the corresponding Gaussian network (where

a

��

� 0), given by Eq.(3.2), which can be also expressed by its value at T = 0

�

0

ij

=

1

V

X

h��i

�

K

��

�

R

��

0

�

i

�

R

��

0

�

j

�

: (3.18)



34 CHAPTER 3. GAUSSIAN AND NEARLY GAUSSIAN NETWORKS

In the above expression

�

R

��

0

�

i

is the ith Cartesian component of the bond vector

~

R

��

0

, de�ned as the pair separation

~

R

��

at the ground state of the unperturbed

Gaussian network.

The next step is to substitute the pair potential (3.16) into the expression for

the elastic constants [Eq.(2.7)]. By expanding this expression to the �rst order in

fa

��

g, and using the fact that for the Gaussian network C

ijkl

= 0 [Eq.(3.14)], we

�nd that

C

ijkl

=

2

V

*

X

h��i

a

��

R

��

i

R

��

j

R

��

k

R

��

l

+

0

+ hXi

0

;

where X is a combination of terms, each of which includes the thermal uctuations

of some quantities. Since at T = 0 there are no thermal uctuations, that term

vanishes and we readily �nd that

C

ijkl

(T = 0) =

2

V

*

X

h��i

a

��

R

��

i

R

��

j

R

��

k

R

��

l

+

0

=

2

V

X

h��i

�

a

��

�

R

��

0

�

i

�

R

��

0

�

j

�

R

��

0

�

k

�

R

��

0

�

l

�

: (3.19)

The second equality in the above equation is obtained by equating the expression

inside h i

0

to its value at equilibrium (at zero temperature the thermal average

coincides with this value).

At a �nite temperature we may write the elastic constants as the product of

C

ijkl

(T = 0), and a dimensionless function, which may depend only on terms of

the form (kT a

��

)=(K

�

K

��

). Expanding the function into power series in these

variables yields

C

ijkl

= C

ijkl

(T = 0)

�

1 +

�

linear terms in

�

kT a

��

K

�

K

��

��

+ : : :

�

:

Since C

ijkl

(T = 0) is a linear function in the quantities a

��

, and since we are

interested only in the �rst order correction due to the perturbation (namely, in terms

linear in a

��

), we conclude that to the lowest order in a

��

, C

ijkl

are temperature

independent, and therefore given by the above expression (3.19).

3.3 Summary

In this chapter we investigated the elastic properties of phantom Gaussian and nearly

Gaussian networks. For Gaussian networks, the stress and elastic constants were

calculated exactly. A characteristic feature of Gaussian networks is the vanishing
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of their elastic constants. This feature does not depend neither on the temperature

nor on topology of the networks. Another interesting result was a proof for the

equality between the stress tensor of a Gaussian elastic network and the conductiv-

ity tensor of a resistor network, in which the conductance of each resistor is equal

to the corresponding spring constant K

��

. This result quanti�es de Gennes' state-

ment about an analogy between elasticity of Gaussian networks and conductivity of

resistor networks.

We have also investigated the non-linear correction to the elastic behavior, by

studying the properties of networks of springs whose energies include small quartic

terms, additional to the leading quadratic (Gaussian) terms. While the stress tensor

is still dominated by the contribution of the quadratic term, the elastic constants

(which vanish in the Gaussian case) are solely due to the non-Gaussian correction.

The elastic constants of such networks were calculated to the �rst order in pertur-

bation theory.



Chapter 4

The Fisherman's Net Model

The present chapter deals with the entropic elasticity of 2D tethered networks.

Such networks have been investigated as models of polymerized membranes [42].

Membranes are commonly found in biological and physical systems. The human

red blood cell is an example for a biological liquid bilayer membrane of amphiphillic

molecules each with one or more hydrophobic hydrocarbon tails and a polar head

group. This membrane also consists of a \spectrin network" which is attached to

the inner layer through proteins. This protein network (which forms the skeleton of

the red blood cell) is an example of a solid monolayer membrane. Solid membranes

can also be synthesized by cross-polymerization of lipid bilayers [43]. Another group

of relevant systems includes certain, thin, nanostructured C

6

-symmetric sheets [44].

We consider a \toy model" called the �sherman's net (FN), consisting of a 2D

solid triangular network of point-like atoms each of which is connected to six nearest

neighbors by tethers of maximal length b [41]. The FN can be regarded as a 2D

generalization of a phantom polymer chain of tethers. The elastic behavior of the

latter is well understood [36]: When the chain is weakly stretched it behaves as a

Gaussian spring and exhibits a linear relation between the force and the end-to-end

distance. Corrections to the linear force-extension relation become notable when

the end-to-end separation becomes an appreciable fraction of the fully extended

chain's length. The present chapter reveals a similar behavior for 2D nets. Loose

nets are Gaussian and have vanishing elastic constants. Highly stretched nets show

deviation from Gaussian behavior. In the asymptotic limit of full extension, the

elastic properties of the FN coincides with the properties of 2D hard sphere (hard

disk) systems.

The chapter is organized in the following way: The model is presented and the

details of the simulation are discussed in section 4.1. Sections 4.2 and 4.3 deal,

respectively, with the behavior of highly stretched and weakly stretched nets. The

main results are summarized in section 4.4.

36
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4.1 Details of the Model and the Simulations

The FN model consists of a 2D network of point-like atoms, i.e., it is a phantom net

without EV interactions. The topology of the net is such that the mean positions of

the atoms form a regular triangular lattice with lattice spacing b

0

, while each pair of

nearest neighbor atoms is connected by a tether whose maximal extension is b � b

0

.

In the simulations we used nets consisting of 1600 atoms. Periodic boundary condi-

tions, which �xed the volume and prevented the net from collapsing, were applied.

Fig. 4.1 depicts typical equilibrium con�gurations corresponding to two di�erent

values of  � b=b

0

, the ratio between the maximal and actual extensions of the net.

The MC con�gurations were generated using the Jaster scheme [32] for collective

steps of chains of atoms. 1600 move attempts (with acceptance probability � 0:7)

were made at each MC time unit, where at each attempt a new atom was selected

randomly. (On the average, each atom was chosen once in a MC time unit.) Corre-

lations between subsequent con�gurations were estimated from the auto-correlation

function of the amplitude of the longest-wavelength phonon in the systems (both

longitudinal and transverse phonons were checked). For all  values, it was found

that after less than 1000 MC time units, the memory of the initial con�guration is

completely lost. The stress and elastic constants were measured [using expressions

(2.9) and (2.10)] for many values of . For each , the relevant quantities were

averaged over a set of 1:5 � 10

7

con�gurations separated from each other by 3 MC

time units. The standard deviations of the averages were also evaluated. The error

bars appearing in the graphs which present our numerical results correspond to one

standard deviation.

The FN is six-fold symmetric when it is equally stretched along all the spatial

directions. Its elastic properties in this reference state should be as of an isotropic

system (see p.35, discussion on hexagonal systems, in Ref. [6]), namely characterized

by the negative externally applied pressure P (stretching) needed in order to �x the

size of the net (or, equivalently, by the positive stress � = �P ), and by two elastic

moduli or elastic constants.

1

Some of the elastic properties of the system have

been studied by Boal et al. [45]. (Some extensions of that work can be found in

Ref. [46].) In Ref. [45] �xed pressure ensemble has been used, and the elastic moduli

have been extracted from the uctuations of the linear size of a rectangular cell.

The simulations presented in this chapter applies to the �xed volume case, uses

signi�cantly larger systems and a wider range of stresses. Whenever comparison is

possible, our results are in good agreement with Ref. [45].

1

If the net is not con�ned in two dimensions but rather allowed to explore the third dimension,

a third parameter describing bending rigidity comes into play.
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(a)

(b)

Figure 4.1: Con�gurations corresponding to di�erent values of the ratio  between the maximal

and actual extensions of the net: (a)  = 1:1, (b)  = 1:5. Only part of the net is shown in the

�gures.

4.2 The FN Near Full-Extension

When the net is fully extended ( = 1), atoms cannot leave their mean lattice

positions. Entropy, therefore, vanishes, while the stress and elastic constants diverge.

For slightly larger values of , atoms are restricted to small thermal uctuations

around their lattice positions, as in Fig. 4.1 (a). A similar atomic-level picture

appears in hard disk (HD) solids for densities proximal to the close-packing density.

In fact, the FN and the HD solid problems are closely related: In the latter (HD) the

centers of the disks are not allowed to approach their neighbors a distance smaller

than a, the diameter of the disks, while in the former (FN) atoms are not allowed

to depart from their neighbors a distance larger than the maximal extension of the
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bond, b. For HD solids, one can de�ne the ratio � � a=b

0

� 1 between the diameter

of the disks, a, and the mean lattice separation, b

0

. In the limits  ! 1 and � ! 1

(corresponding to the FN and HD problems, respectively), the elastic constants of

both systems coincide, as can be seen from the following argument: Let �

FN

and

�

HD

be phase spaces of allowed con�gurations of a FN with a certain value of 

and of a HD solid with � = 1=, respectively. Each con�guration in one of these

phase spaces can be described by the set fu

i

g of deviations of either the atoms of

the net or the centers of the disks from their mean lattice positions. In the , � � 1

asymptotic regimes, we can assume that the size of each one of the deviations is

much smaller than the lattice spacing, b

0

. One can easily check that if the set fu

i

g

represents an allowedmicroscopic con�guration of the FN, then the set f�u

i

g almost

always corresponds to an allowed con�guration of the HD system. Moreover, by this

transformation we can generate almost all the con�gurations of �

HD

. The measure

of the subgroup of con�gurations for which the mapping fu

i

g  ! f�u

i

g between

the two problems does not apply, diminishes proportionally to hu

i

2

i=b

0

2

. Thus, the

mapping fu

i

g  ! f�u

i

g is asymptotically a one-to-one transformation from �

FN

onto �

HD

. Since for both systems the Helmholtz free energy F is equal to �kT ln j�j,

where j�j is the volume of the 2N -dimensional con�gurations phase space (N is the

number of atoms), and since the Jacobian of the above transformation is unity,

we readily �nd that the free energies F

HD

and F

FN

of the HD and FN systems,

respectively, are related by

F

FN

(N; ) ' F

HD

(N; � = 1=); for  � 1:

Suppose now that both systems are slightly deformed from their reference states.

The displacements of the atoms from their original (undeformed) mean lattice po-

sitions can be divided into the set fu

i

g of thermal uctuations and the set fv

i

g

of small changes in mean lattice positions caused by the deformation. The trans-

formation between �

FN

and �

HD

, in this case, maps both fu

i

g to f�u

i

g and fv

i

g

to f�v

i

g. The fv

i

g mapping is equivalent to the reversal of the strain applied on

the system. We, therefore, �nd that F

HD

and F

FN

will be equally modi�ed, pro-

vided that opposite strains are applied on the FN and HD systems. The following

asymptotic relations between the stress and elastic constants of these systems follow

immediately: �

FN

() ' P

HD

(1=), �

FN

() ' �

HD

(1=) and C

FN

44

() ' C

HD

44

(1=).

These relations are very useful since the asymptotic expressions for P

HD

, �

HD

and

C

HD

44

are available [33], and can be used to �nd the stress and bulk modulus of the

FN. This gives us the exact (asymptotic) expressions

�

FN

() '

4=

p

3

(

2

� 1)

kT

b

2

0

; (4.1)
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and

�

FN

() '

4=

p

3

(

2

� 1)

2

kT

b

2

0

: (4.2)

For the elastic constant C

44

, Ref. [33] �nds only the asymptotic functional form, and

therefore for our problem we have

C

FN

44

() '

A

(

2

� 1)

2

kT

b

2

0

; (4.3)

with an unknown constant A. Our numerical results, presented in Fig. 4.2, con�rm

these relations, which seem to be accurate over quite a large range of  values. In

Eq. (4.3), the value A = 1:80� 0:02 is used. It is obtained by �tting the asymptotic

expression for C

44

to the three data points corresponding to the smallest  values.

Note that while in Eqs. (4.1){(4.3), P

HD

, �

HD

and C

HD

44

are expressed in units of

kT=b

2

0

, in Fig. 4.2 they are given in units of kT=b

2

. In this representation, the stress

and elastic constants of the FN are scaled to depend on the parameter  alone.
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Figure 4.2: Numerical results for the stress � (circles), the bulk modulus � (squares), and the

elastic constant C

44

(triangles), as a function of the ratio  between the maximal and actual

extensions of the net. Results are in kT=b

2

units. The solid, dashed and dotted curves depict the

expressions on the right sides of Eqs. (4.1){(4.3), respectively [with A = 1:80 in Eq. (4.3)].

4.3 Weakly Stretched Fisherman's Nets

Fig. 4.3 shows the dependence of the stress and elastic constants on  for weakly

stretched nets. We observe a spectacular decay of elastic constants to almost zero
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for  � 3, and at the same time we note that the stress becomes independent of

. The same result (for the critical value of  and the -independent pressure) has

been obtained in Ref. [45]. These observations indicate that a \loose" FN can be

approximated by a network of Gaussian springs. The relation between the vanishing

of the elastic constants and Gaussian elasticity has been discussed in detail in section

3.1.2. The decay of the stress to a -independent value (i.e., a value which does not

depend on the extension of the net) can be also explained by the Gaussian model:

The stress � = �P is opposite to the negative pressure needed to apply on the

boundaries in order to balance the forces exerted by the net. In the case of a 2D

Gaussian net, the lengths of the Gaussian springs forming the net and, consequently,

also the network force pulling the boundaries inwards are proportional to length of

the boundaries L. On the other hand, the external force created by the negative

pressure is equal to f = PL. Since the force f should be also proportional to L,

it follows that P must be independent of L. The size-independence of the stress is

the reason for the vanishing of the bulk modulus � of 2D Gaussian networks, and to

the fact that such networks are not stable against homogeneous volume uctuations

(see section 3.1.3).
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Figure 4.3: Numerical results for the stress � (circles), and the elastic constants C

11

(squares),

C

12

(triangles pointing up) and C

44

(triangles pointing down), as a function of the ratio  between

the maximal and actual extensions of the net. Results are in kT=b

2

units. The lines are guides to

the eye.

The similarity between non-stressed tethered and Gaussian one-dimensional (1D)

nets, i.e., linear polymers, is a consequence of central limit theorem [10, 38]. For
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topologically 2D regular (non-random) nets, such similarity was demonstrated by

Kantor et al. [2]: In both tethered and Gaussian 2D nets, the mean squared distance

in the embedding space, r

2

xx

0

= hjr(x)� r(x

0

)j

2

i, between two distant points whose

internal positions in the net (measured in lattice constants) are x and x

0

, grows

proportionally to ln jx� x

0

j. One can de�ne the e�ective spring constant, K

e�

, as

the value of K of a Gaussian network with the same connectivity and statistical

properties as of the tethered network. The value of K

e�

is extracted from the ratio

of the mean squared distance, r

2

xx

0

, between two points x and x

0

on the FN, and the

mean squared distance ~r

2

xx

0

between the same two points on a Gaussian network of

unit spring constants:

K

e�

= ~r

2

xx

0

=r

2

xx

0

: (4.4)

~r

2

xx

0

can be calculated exactly, while the value of the corresponding r

2

xx

0

= hjr(x)�

r(x

0

)j

2

i can be extracted from MC simulations of the FN with free boundaries con-

ditions (i.e., in the absence of external pressure). We simulated a FN of 56

2

= 3136

atoms and measured (using 10

7

di�erent con�gurations) r

2

xx

0

for several pairs of

points x and x

0

at di�erent lattice separations. With these measurements we evalu-

ated the e�ective spring constant [using Eq. (4.4)], and found, as shown in Fig. 4.4,

that for the FN model K

e�

' 1:96 kT=b

2

. In order to support our conclusion about

the crossover into the Gaussian regime, we need to show that the constant value

to which the stress drops in Fig. 4.3, is just the stress applied by a Gaussian net

with spring constants K

e�

calculated for non-stressed FN. For a Gaussian net with

K ' 1:96, one �nds that � =

p

3K � 3:39 kT=b

2

which indeed coincides with the

value of 3:4 kT=b

2

, extracted from Fig. 4.3.

The persistence of the Gaussian regime to intermediate values of  ( � 3) is not

unique for 2D nets, but is also found, for instance, in 1D polymers. For a polymer

chain consisting of N � 1 tethers of maximal length b, the relation between the

force f , stretching the chain, and the end-to-end separation R = Nb

0

� Nb= is

[36]

R

Nb

=

1



=

�

coth

�

fb

kT

�

�

�

kT

fb

��

� L

�

fb

kT

�

; (4.5)

where L is the Langevin function. This relation is plotted in Fig. 4.5, together with

the approximate linear force-extension relation

R

Nb

=

1



=

fb

3kT

: (4.6)

The relative di�erence between the forces predicted by these two relations is about

7 percents for  = 3, while for  > 10 it becomes less than 1 percent. A simple

argument explaining the accuracy of the linear relation (4.6) (which implies that

the chain behaves as a Gaussian spring) for values  & 3 is the following: Gaussian
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Figure 4.4: The e�ective spring constant K

e�

, extracted from MC measurements of r

2

xx

0

=

hjr(x) � r(x

0

)j

2

i [see Eq. (4.4)]. The error bars correspond to one standard deviation in the

estimated value of r

2

xx

0

.

behavior is expected as long as the end-to-end separation R = Nb

0

does not exceed

the order of magnitude of the root mean square size of the chain

l = Nb

0

.

p

Nb: (4.7)

However, the requirement that criterion (4.7) is satis�ed by the whole chain is too

restrictive. Criterion (4.7) should, in fact, be applied to small segments of the chain.

If there exist a certain length scale at which the potential between the atoms becomes

e�ectively quadratic, i.e., can be replaced by a Gaussian spring, then the whole chain

is like a chain of Gaussian springs, and therefore it is itself Gaussian. For a linear

polymer chain, the e�ective potential between non-neighboring atoms is calculated

by integrating out the spatial degrees of freedom of the atoms located between

them. Such calculations are usually done iteratively, where on each \rescaling" step

every second atoms is integrated out. It appears that even elementary potentials

which are very di�erent from parabola, are brought into a quadratic form within a

few \rescaling" steps. For the speci�c potential used in this work, three steps are

su�cient, which means that a segment of N � 10 tethers may be justly considered as

an e�ective Gaussian spring. Similarly to a macroscopically large chain, we expect

that the Gaussian nature of this segment will persist as long as it is stretched to a

length which does not exceed its root mean square size, namely, as long as 10b

0

.

p

10b [see criterion (4.7)]. This relation gives the lower limit,  = b=b

0

&

p

10 � 3,
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0.0 0.2 0.4 0.6 0.8 1.0
1/γ

0

2

4

6

8

10

f [
kT

/b
]

Figure 4.5: The force f (in kT=b units) stretching a 1D long polymer chain of tethers, as a

function of , the ratio between the maximal and the actual extension of the chain. The solid line

depicts the exact relation given by Eq. (4.5), while the dashed line shows the approximate linear

force-extension relation (4.6).

of the Gaussian regime of a 1D chain of tethers. For a 2D regular phantom net, the

e�ective potential becomes approximately quadratic also for a distance of number of

bonds, N � 10 [2]. Root mean square distance between two such points is b

p

lnN .

Thus, in order to observe Gaussian elastic behavior, we require that 10b

0

. b

p

ln 10,

or,  = b=b

0

& 10=

p

ln 10 � 4, which is consistent with the value  � 3, observed in

Fig. 4.3.

4.4 Summary

In this chapter we have investigated the entropic elastic behavior of 2D tethered

triangular networks. The Gaussian nature of entropic elasticity, observed for non-

stressed phantom nets, was also found when stress was applied. It is expressed

by the vanishing of the elastic constants and the size-independence of the stress.

Corrections to Gaussian elasticity are observed when the net becomes very stretched.

As the net approaches its fully extended size, the stress and elastic constants grow

rapidly. In the asymptotic limit of maximal extension, the elastic constants of the

nets can be related to the elastic constants of dense HD solids.

The correspondence between Gaussian and phantom networks is also a central

issue of the next chapter, which deals with the critical elastic behavior of phantom

percolating (bond-diluted) networks. One may expect that since percolating net-
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works are much oppier than �sherman's nets, they would certainly exhibit a Gaus-

sian elastic behavior. On the other hand, the elastic backbone of such networks is

inhomogeneous and includes very tenuous parts where the tension applied on the

network is distributed between very few stands. The presence of such strands may

lead to deviations from Gaussian elasticity. Further complications with the Gaus-

sian model arise from EV interactions which have not been discussed yet in relation

to polymer networks. This will be the main subject of chapter 6.



Chapter 5

Elasticity of Phantom Percolation

Networks

In the gelation process, monomers or short polymers in a uid solution are randomly

cross-linked. At a certain moment during the reaction, a macroscopically large

network, the gel , spans the system. At this point, the system changes from a uid-

like (sol) to a solid-like (gel) phase which has a �nite shear modulus. One of the

models which has been proposed to describe the process of gelation is percolation

[47]. In the percolation model, the sites or the bonds of a lattice are randomly

occupied by, respectively, atoms or bonds, with an occupation probability p. In

the site percolation model, one links every two neighboring occupied sites, while in

the bond percolation model one assumes that all the sites are occupied by atoms

and each pair of neighbors is linked if the bond between the atoms exists. Within

the percolation model, the gel point is identi�ed with the percolation threshold p

c

,

the critical site/bond concentration above which a spanning cluster is formed. The

percolation model predicts that close to p

c

, quantities like the mean cluster mass,

typical cluster linear size, and gel fraction have power-law dependence on (p � p

c

).

The relevant exponents are universal and depend only on the dimensionality of the

system, but not on its atomic-scale features. The values of these exponents have

been measured experimentally for various gel systems [48]. A fairly good agreement

have been found between the measured exponents and their values as predicted by

the percolation model, what proves the applicability of the percolation model to

gelation.

Near the sol-gel transition typical polymer clusters are very large, tenuous and

oppy. Elastic properties of such systems are primarily determined by the entropy,

i.e., distortions of a sample barely modify its energy, but they decrease the available

phase space (decrease entropy) and, thus, increase the free energy. Like geometri-

cal quantities near p

c

, the shear modulus is also expected to follow a power law:

� � (p�p

c

)

f

. De Gennes [39] used an analogy between gel elasticity and conductiv-

46



47

ity of resistor networks, and conjectured that the exponent f should be equal to the

exponent t describing the conductivity � of random resistor networks close to p

c

:

� � (p � p

c

)

t

. There is, however, a di�erent approach based on scaling arguments

which concludes that the elastic moduli of a gel are of the order of kT=�

d

, where � is

the percolation correlation length that diverges as (p�p

c

)

�

, and d is the dimension-

ality. Consequently, the relation f = d� is obtained [49]. An exact calculation of the

critical behavior of �, which takes into account EV interactions and entanglements

e�ects, is not yet available. Experimental measurements (which will be reviewed on

the next chapter, in section 6.1), done on di�erent polymeric systems, do not help

to resolve the problem but rather give scattered results.

Numerical studies of elasticity at vanishing temperature T , showed that the

energetic elastic behavior of percolation systems depends on the details of the in-

teraction: For non-stressed central force networks the rigidity threshold occurs at a

concentration of bonds much larger than p

c

[50]. If bond bending forces are present,

rigidity and percolation thresholds coincide; however the rigidity exponent f , is con-

siderably larger than the conductivity exponent, t, suggesting that the two problems

belong to di�erent universality classes [51, 52]. As the number of models of elasticity

of random systems increased, it became clear that de Gennes' conjecture about the

identity of the rigidity exponent f to the conductivity exponent t can be justi�ed

only within models which \reduce" the thermodynamic behavior of gels to so called

\scalar elasticity" models [53, 54, 55]. Recently, the equality f = t was measured by

Plischke et al. in a numerical study of phantom central force percolation networks

at T 6= 0 [56]. The authors attributed this elastic behavior to the entropic part of

the elastic free energy.

The present chapter deals with the entropic elasticity of phantom percolating

networks [41, 57]. The critical behaviors, near p

c

, of phantom Gaussian networks

(PGNs) and phantom nearly Gaussian networks (PNGNs) are discussed in section

5.1. Numerical results describing the behavior of tethered phantom networks are

presented in section 5.2. These numerical results show that the shear modulus

behaves near p

c

like the conductivity of random resistor networks as predicted by the

PGNmodel, while the elastic sti�ness tensor of the spanning cluster, which according

to the PGN model is supposed to vanish, also exhibits a power law behavior near

p

c

with a signi�cantly larger critical exponent. The last result is a consequence of

the deviation from the Gaussian behavior, and can be understood within the PNGN

model. A short summary of the chapter is included in section 5.3.
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5.1 Gaussian and Nearly Gaussian Networks

In a phantom percolation system the contributions of the di�erent clusters to the

elastic properties of the system are additive. Each �nite cluster, not connected to

the boundaries of the system, contributes as a single atom of an ideal gas. Thus,

N

0

free �nite clusters con�ned within volume V at temperature T , produce stress

equal to � = �P = �

N

0

kT

V

, and elastic constants C

11

=

2N

0

kT

V

, C

12

= 0, and

C

44

=

N

0

kT

V

, where k is the Boltzmann constant (see section 3.1). Although both

the elastic constants and the pressure P are a�ected by the presence of the �nite

clusters, we observe that the (ideal gas) contribution of the �nite clusters cancels

out in the de�nition of � [Eqs.(1.10) and (1.11)]. Since the �nite clusters play such

an unremarkable role in the problem of elasticity, we will disregard them completely,

and in the remainder of this chapter the stress, elastic constants and elastic moduli

will refer to the contribution of the spanning cluster alone.

In the present section we apply the results from sections 3.1 and 3.2 to phantom

percolation networks of identical springs having the energy E =

1

2

KR

2

(Gaussian

network) or E =

1

2

KR

2

+

1

4

aR

4

(nearly Gaussian network). The critical elastic

behavior of such networks is studied in a regime where the correlation length � �

(p � p

c

)

��

is much larger than the characteristic atomic length scale b, but much

smaller then the linear size of the system L. The correlation length is the length

scale below which the spanning cluster has a fractal structure and above which the

system is homogeneous. A quantity that follows a power law � (p � p

c

)

Y

� �

�(Y=�)

when L� �, scales as to L

�(Y=�)

when � � L. (At p

c

the latter power law is always

relevant because � is in�nite.) Since � � b, we expect the structure of the spanning

cluster to \forget" the details of the lattice on which its topology (connectivity)

is de�ned, and have the elastic properties of an isotropic system. In the Gaussian

case, the tensorial equality �

ij

= �

ij

(3.12) becomes a scalar equality�P = �. Also,

because of the vanishing of the elastic constants of Gaussian networks [Eq.(3.14)],

we have for the shear moduli of the spanning cluster that � = �

1

= �

2

= �P = �

[see Eqs.(1.10) and (1.11)]. Close to the percolation threshold, the conductivity

scales as � � (p� p

c

)

t

, and therefore we conclude that for Gaussian networks

� = �P = � � (p� p

c

)

t

; (5.1)

in accordance with de Gennes' argument. This result is not changed if we also include

the �nite clusters, since the latter make no contribution to the shear modulus (just as

they do not contribute to the conductivity of the system). The equality of the shear

modulus and the stress, a signature of Gaussian elasticity, was observed numerically

in Ref. [56].
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In the nearly Gaussian case, we have from Eq.(3.17) that the leading term in the

expression for the stress is the Gaussian term, and therefore we expect the shear

modulus to have the same scaling behavior as in Eq.(5.1). What distinguishes non-

Gaussian networks from purely Gaussian ones is the non-vanishing elastic constants

of the former. For percolation networks it is reasonable to assume that the elastic

constants also follow a power law C � (p � p

c

)

g

. The elastic constants of a nearly

Gaussian network should be \almost" zero, namely much smaller than the network

stress. Therefore, the perturbative analysis in section 3.2 would be self-consistent

only if it yields that the exponent g > f . We can use expression (3.19) for the elastic

constants to derive bounds on the value of the exponent g. Consider a percolation

network of linear size L in d dimensions at p

c

. An upper bound on the exponent g

is obtained by including only a partial set of the bonds of the spanning cluster in

the sum in expression (3.19). We take the set of singly connected bonds (SCBs),

which are such bonds that removal of each one of them disconnects the spanning

cluster. Their number scales as L

1=�

[58]. The force acting on a SCB is the total force

applied on the surface of the system, which is proportional to PL

(d�1)

� L

(�t=�+d�1)

.

The length to which a SCB is stretched, (R

SCB

)

0

, is proportional to the force, and

therefore have the same scaling form

(R

SCB

)

0

� L

(�t=�+d�1)

; (5.2)

and consequently from Eq.(3.19) we get

C � L

�g=�

� L

�d

L

1=�

L

4(�t=�+d�1)

;

which yields the upper bound g � (4t � 1) � �(3d � 4). A lower bound for g is

obtained by noting that for any bond other than the SCBs, (R

bond

)

0

< (R

SCB

)

0

.

That is because the SCBs are the only bonds which experience the total force acting

on the system. We use this fact in expression (3.19) and write that

C � L

�g=�

� [(R

SCB

)

0

]

2

(

1

V

X

bonds

a[(R

bond

)

0

]

2

)

:

The term in braces in the above inequality is, however, proportional to the pressure

[see Eq.(3.18)], which scales like L

�t=�

. This, together with result (5.2), bring us

to the lower bound g � 3t � 2�(d � 1). Using the known values of the exponents

t ' 2:0 [59] and � ' 0:88 [47] in three dimensions, we �nd that 2:48 � g � 2:6

for 3D systems. In six dimensions both bounds coincide to give g = 4. This last

result reects the fact that in six dimensions essentially all the bonds which carry

the force across the network are SCBs. In two dimensions we have t ' 1:31 [60]

and � = 4=3 [47], and consequently 1:26 � g � 1:57. However, we must mention a
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special feature of the 2D case which questions the validity of the nearly Gaussian

model. The model assumes that the contribution of the quartic term to the spring

energy is small compared to the quadratic term [Eq.(3.15)]. This happens only if

the bond length satis�es

R

��

�

�

K

��

=a

��

�

1=2

: (5.3)

The longest bonds in the network are the bonds that inside a cell of size �

d

serve as

SCBs. Close to p

c

, their length scales like

R � �

�t=�+(d�1)

� (p� p

c

)

t��(d�1)

� (p� p

c

)

y

:

In two-dimensions the exponent y < 0, what implies that the length of the SCBs

diverges, and certainly does not satisfy criterion (5.3). The problem is not limited to

the SCBs only, but is relevant to a larger fraction of the bonds including the doubly-

connected bonds, triply-connected bonds, and so on. It is di�cult to predict, a priori,

whether this observation should modify the results of the nearly Gaussian model

from section 3.2. Note that we do not encounter such a problem for dimensionality

larger than two, where the exponent y is positive.

5.2 Elasticity of Tethered Networks{Numerical Re-

sults

In this section we present numerical results describing the critical elastic behavior

of phantom percolation networks consisting of tethers of maximal length b. The

(quenched) topologies of the networks were generated by considering bond percola-

tion problem on 2D triangular (p

c

=

�

9

� 0:349) and 3D FCC (p

c

' 0:12) lattices,

with a fraction p of bonds present. Each present bond was replaced by a tether,

while each site became an \atom" without EV, and the system was allowed to move

in continuum. Fig. 5.1 (a) depicts an initial 2D con�guration of the system, which

equilibrates into a con�guration of the kind depicted in Fig. 5.1 (b). As expected,

�nite clusters and dangling ends of the spanning cluster contract relative to their

linear sizes in the initial quenched construction [54]. The size of the backbone, on

the other hand, is �xed by the boundary conditions, and therefore it looks like a

collection of loops of the size of the percolation correlation length.

The non-interacting character of phantom networks signi�cantly simpli�es the

numerical procedure: (1) Since the (trivial) contribution of the �nite clusters is

not interesting, they were removed from the simulations. (2) Dangling ends of the

spanning cluster do not contribute neither to the stress nor to the elastic constants,

and therefore they can also be removed. Thus, for every quench the backbone



5.2. ELASTICITY OF TETHERED NETWORKS{NUMERICAL RESULTS 51

(a)

(b)

Figure 5.1: Part of initial (a) and equilibrated (b) con�gurations of the 2D system (p = 0:405,

b = 1:05).

was identi�ed (using the \burning" algorithm [61] which was slightly modi�ed to

deal with the periodic boundary conditions applied in our simulations), and its

con�gurations phase space was explored using Jaster updating scheme [32]. At each

MC time unit we made a number of move attempts (with acceptance probability

� 0:5) equal to the number of atoms. In the 2D simulations, we used a 120 � 138

triangular lattice (that has an aspect ratio very close to 1) with nearest-neighbor

spacing b

0

� 1, and a number of quenched topologies that ranged from N

t

= 200 for

p closest to p

c

, down to N

t

= 20 far from p

c

. In the 3D simulations we used systems

of 24

3

cubic unit cells (each containing 4 atoms), i.e., of linear size L = 24

p

2b

0

,

with nearest-neighbor spacing b

0

� 1, and 30 � N

t

� 150. The duration of the MC

run of each individual sample was at least 50 times larger than the relaxation time
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which we estimated from the expression

� = dkTL

2

~�=(�

2

�s

2

); (5.4)

where s is the (average) distance an atom moves in one MC time unit, ~� is the

number density of atoms, and d is the dimensionality of the system.

1

The value

of � in this expression was taken, a posteriori, from the simulations. The stress

and elastic constants were measured using expressions (2.9) and (2.10). The error

estimates are a�ected by the uctuations in the values of the measured quantities

between the di�erent quenches, and to lesser extent by the thermal uncertainties

within each sample. The error bars appearing in the graphs correspond to one

standard deviation of the averages.

0.01 0.10 0.30
p−pc

0.1

1.0

10.0

σ 
, µ

  [
kT

/b
2 ]

σ (b=1.05)
µ (b=1.05)
σ (b=1.25)
µ (b=1.25)

Figure 5.2: Logarithmic plot of the stress � and the shear modulus � as a function of (p� p

c

),

for 2D systems. The slope of the solid line is 1.35. Results are in kT=b

2

units.

In phantom percolation systems we can vary only two non-trivial parameters:

the bonds concentration p, and the maximal tether length b (measured in the units

of the nearest-neighbor spacing b

0

). Fig. 5.2 depicts the results for � and � as

a function of (p � p

c

) for 2D systems with b = 1:05 and b = 1:25. It clearly

demonstrates that close to p

c

, the network becomes Gaussian: First, the di�erence

between � and � decreases as we approach p

c

, which implies that the elastic constant

C

44

= � � � vanishes faster than both quantities. Second, when plotted in kT=b

2

units, the values of � and � in systems with di�erent b converge towards each other.

This is explained by the facts that (1) the stress of a 2D PGN depends only on

1

This expression is a generalization of Eq.(4.7) in Ref. [2].
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the topology of the network and the value of the springs force constant K; and

(2) for the tethered networks, the e�ective K is proportional to kT=b

2

(see chapter

4). Third, the value of f extracted from the the graphs is f = 1:35 � 0:10, very

close to the value of the conductivity exponent t ' 1:31 in two dimensions [60].

Similar result for the exponent f has been obtained by Plischke et al. [56]. They

used central force networks in which both entropy and energy contribute to the

elastic properties and, by examining systems at several temperatures, removed the

energetic component. Close to p

c

the elasticity of central force systems is completely

dominated by entropy, and their result for f reects this fact.
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C44 (b=1.25)
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Figure 5.3: Logarithmic plot of the elastic constants C

11

and C

44

as a function of (p � p

c

), for

2D systems. The slope of the lines is � 2. Results are in kT=b

2

units.

Fig. 5.3 depicts the results for the elastic constants C

11

and C

44

, which are sup-

posed to vanish in the purely Gaussian case. Shorter tethers correspond to larger

values of the elastic constants, since they represent more stretched networks, which

exhibit stronger deviations from Gaussian behavior. Despite almost an order-of-

magnitude di�erence between C

11

and C

44

for the same b, and half an order-of-

magnitude di�erence between the same constants for the di�erent values of b, all

the results can be described by a power law (p � p

c

)

g

, with the same exponent

g = 2:0 � 0:2, which is signi�cantly larger than f . (We do not show the elastic

constant C

12

, which has large statistical uncertainties that prevent exact determina-

tion of the power law. Our results for this elastic constant are, however, consistent

with the power laws for the other constants.) To further ascertain the universality

of g, one would need to increase b to even larger values. This, however, would fur-

ther decrease the values of the elastic constants and, simultaneously, increase the
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Figure 5.4: Logarithmic plot of the stress � and the shear modulus � as a function of (p� p

c

),

for 3D systems with b = 1:05. The slope of the solid line is 1.95. Results are in kT=b

3

units.
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Figure 5.5: Logarithmic plot of the elastic constants C

11

, C

12

, and C

44

as a function of (p� p

c

),

for 3D systems with b = 1:05. The slope of di�erent lines is � 2:65. Results are in kT=b

3

units.

statistical uncertainties and require increase of the simulation length beyond our

computational ability.

Our results for the 3D networks with b = 1:05 are shown in Figs. 5.4 and 5.5.

Again, the validity of the PGN model is supported by the observation that � and

�

2

converge towards each other as we approach p

c

, following a power law with

f = 1:95 � 0:05, which agrees with the conductivity exponent t ' 2:0 in three

2

The shear modulus shown in Fig. 5.4 is �

1

= C

44

� P .
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dimensions [59]. The elastic constants also follow power laws with an exponent g =

2:65� 0:15. This value is, within numerical uncertainty, consistent with the bounds

2:48 � g � 2:6 derived for 3D nearly Gaussian networks (see section 5.1). One should

keep in mind, however, that the PNGN model assumes that the coe�cient of the

quartic perturbation term to the Gaussian spring energy is a constant number, while

for the tethered network model its e�ective value may depend on the mean stress

and, thus, on the position of the bond in the network. Note that our numerical

results for the elastic constants con�rm relation (1.8), C

11

= C

12

+ 2C

44

, which

indicates that close to p

c

, percolating networks behave as isotropic systems. At

p = 1 the system has a lower (cubic) symmetry, and there is a gradual deviation

from relation (1.8) with increasing p beyond the regime shown in Fig. 5.5.

5.3 Summary

In this chapter we investigated the elastic behavior of phantom percolating networks

close to the percolation threshold. The shear modulus of such systems follows the

same power low, � � (p � p

c

)

t

, like the conductivity in random resistor networks.

This result is due to the fact that percolating networks near p

c

are very \oppy"

so that on su�ciently large scales the pair potentials become e�ectively Gaussian.

When the pair potential is not identical to that of a Gaussian spring, as in the

nearly Gaussian or the tethered cases, one �nds a power law dependence of the

elastic constants C � (p � p

c

)

g

. This is an evidence for deviation from Gaussian

elasticity. The critical behavior of the elastic constants is controlled by a critical

exponent signi�cantly larger than the exponent of conductivity. Since g characterizes

a \sub-leading" behavior, a detailed study of a broad class of potentials is needed

to verify its universality.



Chapter 6

Elasticity of Self-Avoiding

Percolation Systems

The present chapter addresses the question of the critical elastic behavior of self-

avoiding percolation systems [62, 63]. In the presence of EV interactions, the strands

forming the network cannot, in principle, be treated as Gaussian springs. Hence,

one cannot map this problem to conductivity of resistor networks and, in partic-

ular, cannot assume an equality between the critical exponents of both problems.

Moreover, in self-avoiding systems the di�erent clusters interact with each other.

Therefore, the shear response cannot be related to the percolating cluster alone as

in the phantom case. These features of the self-avoiding systems complicate the

theoretical treatment of the entropic elasticity problem, and make it unsolvable to

date.

Usually, one cannot neglect EV interactions without strongly modifying the

physics of the system. For instance, the radius of gyration of non-stressed poly-

mer networks is di�erent for phantom and self-avoiding systems [2]. There are,

however, some cases in which EV interactions are screened out, as in dense polymer

melts [38]. The inuence of EV interactions on the critical elastic behavior of gels

has not been understood, yet. It has been suggested that they primarily inuence

the system by introducing osmotic pressure [55]. Thus, the true problem may be

approximated by a mixture of phantom Gaussian network (PGN) and \pressure pro-

ducing uid". This reduces the self-avoiding system to energetic \scalar" elasticity

problem [53, 54, 55], which is equivalent to PGN, and leads to the conclusion that

the critical exponent of elasticity f is equal to the conductivity exponent t. However,

as mentioned at the introduction of the previous chapter, a scaling approach to the

problem leads to the conclusion that the elastic moduli of a gel behave as (p�p

c

)

d�

,

where d is the dimensionality of the system and � the correlation length exponent

[49]. The experimental values of the exponent f , measured for di�erent polymeric

systems, are very scattered. Some experiments support the \scalar" elasticity model,

56
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while others favor the prediction of the \scaling approach".

In this chapter we report the results of the �rst direct numerical measurement

of the critical exponent f in entropy-dominated percolating systems with EV in-

teractions. The simulations were performed for both 2D and 3D systems. In both

cases, the numerically measured value of f was found to be similar to the corre-

sponding value of the conductivity exponent, in agreement with the aforementioned

qualitative theories which treat the system as a PGN with added pressure.

The chapter is organized in following way: Section 6.1 is devoted to a summary

of the many experimental results for the critical exponent f . The numerical results

for 2D and 3D percolating systems are presented in sections 6.2 and 6.3, respectively.

In section 6.4, we summarize and discuss the results.

6.1 Experimental Results of the Critical Expo-

nent

Table 6.1 summarizes various experimental results for the critical exponent f . In

the �rst seven experiments presented in the table ([64]{[70]), the measured exponent

is close to the conductivity exponent t ' 2:0 in three dimensions [59]. In the next

four experiments ([71]{[74]) the exponent varies from 2.4 to 3.2, and seems to agree

with f = d� ' 2:7. The gels formed by the materials in both groups of experiments

are oppy, and the dominance of the entropic contribution to their elastic properties

is fairly expected. Thus, the division of experimental works into these two groups

is based on the values of the measured exponents rather than on the nature of

the investigated materials. The origin of the discrepancy between the experimental

results is not clear, and we can only list several possible reasons: In some cases the

topology of the system does not correspond to the 3D percolation model of gels, but

is somewhere between gel (cross-linking of monomers or short polymeric units) and

rubber (cross-linking of a melt of long polymers).

1

Additional reasons are related

to experimental di�culties, such as the imprecise determination of concentration of

cross-links, or the di�culty to extract the static shear modulus from measurements of

the low frequency behavior of the dynamic complex modulus.

2

A more fundamental

reason for the wide range of experimental results is the energetic contribution to gel

elasticity which mixes with the entropic contribution and inuences the \e�ective"

1

The classical theory of rubber elasticity (see Ref. [37]) gives a di�erent set of critical exponents

than the 3D percolation theory.

2

In most of the experiments listed in Table 6.1, the rheological behavior of the system is studied.

In rheological experiments, the measured quantity is the frequency-dependent complex modulus

G(!). The shear modulus � is de�ned as the static (! ! 0) limit of the real part of G. For more

details about these rheological experiments see, e.g., Refs. [67, 77].
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Material f Ref.

Polyacrylamide + chromium III salt 1:9� 0:1 [64]

Gelatin 1:82 � 0:15 [65]

Pectin (biopolymer) 1:93 � 0:08 [66]

TEOS (Silica gel) 2:0� 0:1 [67]

PDMS 1:9� 0:15 [68]

Piezoelectric ceramics of PZT 2:2� 0:2 [69]

Gelatin 1:9� 0:1 [70]

Polyurethane gels 3:2� 0:5 [71]

TEOS (Silica gel) 2:4� 0:2 [72]

Polyester 3:0� 0:7 [73]

PVC/DOP gels 2:6� 0:1 [74]

Sintered silver powders 3:8� 0:5 [75]

Sintered copper powders 3:6� 0:5 [76]

Table 6.1: Various experimental results for the critical exponent f .

exponent. Energetic bending elasticity is characterized by a much larger exponent,

f ' 3:8 [51, 52]. Such an exponent is measured only when the entropic contribution

to elasticity is negligible, e.g, in the experiments in sintered metallic powders [75,

76]. When both energetic and entropic contributions coexist, we expect the elastic

behavior near the gel point to be dominated by the latter, since the critical exponent

of entropic elasticity (according to both approaches to entropic elasticity) is smaller

than that of bending elasticity. However, the dominance of entropic elasticity near

the transition may be limited to a very narrow regime, in which the shear modulus

is small and di�cult to measure.

In the following two sections we present numerical results describing the entropic

elastic behavior of percolation systems consisting of spheres and tethers. Most of

the di�culties encountered in experiments are avoided in the simulations: There
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is no uncertainty about the correspondence between the topology of the system

and percolation; the static shear modulus is measured directly, and the percolation

threshold is known to a very high precision. The most important feature of the

simulations is the fact that the elastic behavior of the system is purely entropic, and

does not include any energetic contribution.

6.2 2D Systems

The topology of the network was de�ned by considering bond percolation problem

of a triangular lattice (p

c

' 0:349), with a fraction p of bonds present. Each site

of the lattice was replaced by a sphere of diameter a, while each present bond was

replaced by a tether of maximal extension b, where the lattice spacing b

0

� 1.

Once the (quenched) topology was de�ned, the system was allowed to move in a

continuous 2D space. Fig. 6.1 depicts a part of a typical equilibrium con�guration.

In our MC simulations we used a 52 � 60 site lattice (that has an aspect ratio very

close to 1). Periodic boundary conditions were applied in order to �x the area of the

systems. The MC con�gurations were generated using Jaster updating scheme [32].

We made a number of move attempts (with acceptance probability � 0:5) equal to

the number of atoms at each MC time unit. The stress �

ij

and elastic constants C

ijkl

were measured over a broad range of concentrations p above p

c

. As p approached

p

c

, more quenches were needed to be studied because of the increasingly broader

distribution of the values of � between the di�erent samples. For the system closest

to p

c

we used 40 quenches, while for the systems distant from p

c

, 4 quenches su�ced.

Close to p

c

, the relaxation time becomes very large. We used expression (5.4) to

estimate the relaxation time [where the value of � in expression (5.4) was taken, a

posteriori, from the simulations]. For each individual quench, the total duration of

the MC run was at least 30 times larger than � . The increase of the uctuations in

the value of �, and the larger relaxation times close to p

c

, a�ect the error estimates.

The error bars appearing in the graphs correspond to one standard deviation of the

average.

Fig. 6.2 depicts the pressure, bulk and shear modulus for a range of values of p

for a = 0:7 and b = 1:05. The pressure and the bulk modulus do not vanish at p

c

.

The pressure decreases monotonically with p due to the increasingly larger negative

contribution of the tethers to P . At p ' 0:46, the contribution of the tethers to the

pressure overcomes the positive contribution of the hard spheres, and P becomes

negative. The point of vanishing P depends on a and b. The bulk modulus does

not change signi�cantly near p

c

, while at larger values of p it increases rapidly. The

shear modulus becomes extremely small at p

c

, signaling the sol-gel transition. (The
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Figure 6.1: Equilibrium con�guration of the system with a = 0:7, b = 1:05 and p = 0:405. Only

part of the system is shown.
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Figure 6.2: Pressure P (circles), shear modulus � (squares) and bulk modulus � (triangles), as a

function of the bonds concentration p, for percolation networks with a = 0:7 and b = 1:05. Results

are in kT=b

0

units. The vertical dotted line marks p

c

.

elastic constants C

ijkl

do not vanish near p

c

.) In the presence of EV interactions it is

not self evident that the transition from liquid (sol) to solid (gel) behavior appears

at p

c

. In the absence of tethers (p = 0), the behavior of the system depends on the

diameter of the disks a, or rather the reduced density

~

d = ~�a

2

,

3

as indicated near

3

Note that the de�nitions of the reduced densities in 2D hard disk systems (

~

d) and in 3D hard

sphere systems (�=�

0

, see section 2.3.2) are slightly di�erent.
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the vertical axis of Fig. 6.3. The maximal possible packing is

~

d = 2=

p

3 ' 1:15. At

slightly smaller densities the system is a 2D solid with quasi-long-range order. At

~

d ' 0:91 the solid melts into a phase whose nature is controversial. Some numerical

works [78] suggest that it is an hexatic phase with quasi-long-range orientational

order, as predicted by the Kosterlitz{Thouless{Halperin{Nelson{Young (KTHNY)

theory [79]. Other works [80] favor a uid-solid coexisting phase (i.e., the usual �rst

order transition), as proposed, for instance, by Chui [81]. At

~

d ' 0:89, the system

becomes a homogeneous liquid. For the purpose of our work, it is important to

realize that close to

~

d ' 0:89, corresponding to a ' 0:88, �nite size e�ects make it

di�cult to distinguish between the phases, and therefore the largest a used in our

simulations is a = 0:85, as indicated by the full circle in Fig. 6.3. (The open circle in

Fig. 6.3 indicates the smaller density

~

d ' 0:57, corresponding to a = 0:7, used in the

simulations.) In the absence of EV interactions, the onset of rigidity is obviously at

p

c

. One might expect that the line separating the sol and the gel phases should move

towards lower p with increasing a. However, within the accuracy of our simulations

we were unable to distinguish between the rigidity threshold p

r

and p

c

. Thus, the

sol and the gel are separated by essentially a vertical line depicted in Fig.6.3 at p

c

.
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Figure 6.3: The phase diagram of the system. The horizontal and vertical axes represent the

concentration of the tethers and the reduced density of the spheres, respectively.

Fig.6.4 depicts our results for � as a function of (p� p

c

) for the two values of a.

As expected, larger EV interactions correspond to larger values of shear modulus.

However, both graphs exhibit similar power laws with f = 1:3�0:1 for a = 0:7, and
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f = 1:3 � 0:2 for a = 0:85. This value of f is close to the value of the conductivity

exponent t ' 1:31 in 2D [60], which is expected for phantom networks (a = 0)

whose elastic behavior is Gaussian. It is, therefore, reasonable to conclude that f is

independent of a over the entire range a � 0:85. Note that our result is inconsistent

with an indirect estimate f = 2:7� 0:1, which was obtained by Del Gado et al. [82].

Their simulations were performed on a discrete lattice, where the phase diagram

di�ers from the one in Fig. 6.3, and used slightly correlated bond topologies.
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Figure 6.4: Logarithmic plot of the shear modulus � as a function of (p� p

c

), for systems with

a = 0:7 (circles) and a = 0:85 (squares). For both systems b = 1:05.

6.3 3D Systems

The topologies of the networks were de�ned by considering bond percolation prob-

lems on simple cubic (SC) and FCC lattices, with a fraction p of bonds present.

Each site of the lattice was occupied by a sphere of diameter a, while each present

bond was replaced by a tether of maximal extension b, which was larger than the

nearest-neighbor distance b

0

. Once the topology was de�ned, the systems were al-

lowed to move in a continuous 3D space. For both types of topologies the volume

fraction of the spheres was set to � = 0:2 (considerably below � = 0:494, the volume

fraction at which hard sphere uid begins to freeze, see section 2.3.1), and the ratio

b=a � 1:6. The topologies of the SC and the FCC systems are quite di�erent: In

the latter the number of nearest-neighbor lattice sites is larger and, consequently,

the percolation threshold is smaller: p

c

' 0:12 and p

c

' 0:249 for the FCC and
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SC topologies, respectively. Thus, highly connected rigid regions are formed more

rapidly (at lower p) in FCC networks. It has been suggested (see, e.g., Ref. [67])

that in real gels the creation of such rigid blobs tends to enhance the contribu-

tion of energetic bending elasticity and, thus, makes the entropy-dominated regime

near p

c

narrower. Therefore, it seems interesting to compare the SC and the FCC

topologies in a purely entropic model. In the MC simulations we used box sizes

L = 18b

0

and L = 12

p

2b

0

for the SC and FCC topologies, respectively, with peri-

odic boundary conditions. Figure 6.5 depicts a typical equilibrium con�guration of

the FCC system. The stress �

ij

and elastic constants C

ijkl

were measured over a

broad range of concentrations above p

c

. Strictly speaking, the rigidity threshold p

r

is lower than the percolation threshold p

c

due to e�ects of entanglements [83] (and,

perhaps, also due to additional EV e�ects, see discussion in section 6.2). However,

the two thresholds are so extremely close that they are practically indistinguishable

in experiments and numerical studies. Therefore, we treat p

r

and p

c

as identical.

The number of quenched topologies and the length of the MC run of each indi-

vidual topology increased near the percolation threshold. For systems close to p

c

,

the relevant quantities were averaged over 10 di�erent topologies, while far from p

c

,

only 2{3 quenches were needed. Close to p

c

the duration of the MC runs is about

500 times larger than the relaxation time � of the simulations [see the approximate

expression (5.4) for � in section 5.2]. During each MC run the systems were sampled

several million times.

The systems whose elastic properties are discussed in this section posses a cubic

symmetry since their topologies are de�ned on cubic lattices. Therefore, their elastic

behavior is described by two distinct shear moduli rather than one, as in isotropic

systems (see section 1.3). This property does not exist in experiments where the

networks are isotropic because of randomness. Figure 6.6 depicts the two shear

moduli, �

1

and �

2

, as a function of (p � p

c

) for the SC and FCC systems. For

each type of connectivity, its own p

c

is used. The error bars appearing in Figs. 6.6

and 6.7 correspond to one standard deviation of the averaged quantities. For both

systems close to p

c

, �

1

and �

2

are practically indistinguishable, suggesting that the

systems become isotropic. The shear moduli can be approximated by the power laws

�

1

' �

2

� (p� p

c

)

f

with f = 2:0� 0:1 for the SC system, and f = 2:1� 0:1 for the

FCC system. Within numerical uncertainty both values are similar and consistent

with the conductivity exponent in 3D, t ' 2:0 [59]. In the previous section we saw

that f ' t ' 1:3 in two dimensions, and therefore it is expected that f ' t at any

dimension. For phantom percolation networks we have f = t, due to the Gaussian

nature of the elastic response (see chapter 5). Our results in this chapter indicate

that a similar picture may also apply to systems with EV interactions.
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Figure 6.5: A part of an equilibrium con�guration of the FCC bond percolating system with

p = 0:1975. For clarity the spheres are shown as

1

3

of their actual diameter.

In Fig. 6.6 we observe that the values of �

1

and �

2

gradually deviate from each

other far from p

c

because at large p the systems \remember" the lower (cubic)

symmetry of their connectivities. For the FCC connectivity �

1

> �

2

, while for

the SC case �

2

> �

1

. (The de�nitions of the shear moduli �

1

and �

2

depend on

the orientation of the axes of the reference system, which in our simulations were

taken along the edges of the conventional cubic unit cell.) Figure 6.7 shows that

the di�erence �� � j�

1

� �

2

j, follows, in both cases, quite similar power laws

�� � (p�p

c

)

h

with h = 3:95�0:15 for the SC case and h = 4:15�0:15 for the FCC

case. Because of the similarities of the values of h in SC and FCC systems, it is

reasonable to assume that h is a new universal critical exponent which characterizes

deviation from isotropic elastic behavior. While the power law dependence of ��

is not surprising due to the self-similar nature of the large percolation clusters, we

could only support this assumption by numerical data of limited accuracy. The

validity of the power law dependence of �� on (p � p

c

) was veri�ed by attempting

(unsuccessfully) to �t the data to other functional forms.

We already saw that the exponent f (describing the leading critical elastic be-

havior) is very similar for self-avoiding and phantom percolating systems. Therefore,

it is interesting to check whether this similarity applies to the exponent h, as well.

For this purpose we measured �� for a phantom FCC bond percolating network
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Figure 6.6: Logarithmic plot of the shear moduli �

1

(solid symbols) and �

2

(open symbols) as

a function of (p � p

c

), for FCC (circles) and SC (squares) bond percolating systems. For each

topology, its percolation threshold is used (p

c

' 0:12 for FCC, and, p

c

' 0:249 for SC). For both

systems the volume fraction of the spheres is 0.2 and b=a � 1:6.

with the same values of b and b

0

, but with a = 0. Our results of these simulations

are also plotted in Fig. 6.7, revealing a power law with h = 4:15�0:15, as in the self-

avoiding FCC case. The phantom Gaussian model which predicts that f = t, cannot

be used to predict the value of h since it gives �� � 0 at any bond concentration

p [40, 84]. Hence, �� represents deviation from a purely Gaussian behavior which

originates in the non-Gaussian form of the tether potential and (in the self-avoiding

case) EV interactions. The results for the exponent h imply that the similarity be-

tween the critical elasticity of phantom and self-avoiding percolating systems may

not be restricted to the leading Gaussian behavior.

6.4 Summary

In this chapter we analyzed the elastic behavior of purely entropic percolation sys-

tems with EV interactions. The fact that the numerical values of the exponent f ,

found both for 2D and 3D systems, are (within error bars) equal to the correspond-

ing exponents t of the conductivity, lends credibility to qualitative theories which

assume that the �nite clusters (1) do not contribute directly to the shear modulus

(i.e., behave like a uid medium) and (2) e�ectively screen out EV interactions in

the elastic network. However, it must be noted that formal exact identity between
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Figure 6.7: Logarithmic plot of the di�erence between the shear moduli �� as a function of

(p� p

c

), for self-avoiding FCC (solid circles), self-avoiding SC (squares) and phantom FCC (open

circles) bond percolating systems.

the elasticity and conductivity problems cannot exist in the same simple sense as it

exists between the PGN problem and conductivity (see chapter 5). While for 2D

systems one can only suspect that p

r

may be lower than p

c

in dense systems (see

section 6.2), in three dimensions topological entanglements reduce p

r

below p

c

[83].

(Unfortunately, the decrease in p

r

due to topological entanglements is very small and

cannot be investigated in the context of elasticity.) This, and additional possible

EV e�ects, bring p

r

strictly below p

c

, and therefore a simple mapping between the

random resistor model and elasticity problem is impossible (unless it is used in some

generalized sense). The fact that the exponent f is much smaller than the expo-

nent predicted by the energetic bending elasticity model, implies that at �nite T in

the presence of bond-bending forces, su�ciently close to the rigidity threshold, the

elastic behavior will be entropy-dominated. The lack of importance of central-force

energetic elasticity for systems of this kind was already discussed in Ref. [56].

Further support to the heuristic approach which treat the system as a PGN with

added pressure is given by our result for �� which is also described by similar expo-

nents in phantom and self-avoiding systems. The exponent h that characterizes the

decay of �� seems to be universal, namely independent of the lattice on which the

geometry of the system is de�ned, but this point should be established more care-

fully by studying other lattice connectivities, and by measuring h for 2D (phantom

and self-avoiding) percolation systems.



Chapter 7

Summary and Future Prospects

Materials like colloids and gels are characterized by their softness and great exi-

bility. The origin of these features is the entropic nature of their elastic response.

This is also the main reason why the calculation of the elastic constants of such

systems is, usually, highly non-trivial. More di�culties encountered in many theo-

retical studies of soft materials are related to the fact that these materials are often

stressed and disordered, having both quenched and annealed degrees of freedom.

In this thesis we derived expressions for the stress and elastic constants of two

generic models of entropy-dominated systems. One of them, the \phantom Gaus-

sian model" (chapter 3 and appendix C), describes the elastic behavior of systems

without EV interactions (or systems in which EV interactions are screened out).

We found that the elastic behavior of phantoms Gaussian networks is characterized

by the vanishing of their elastic constants. Therefore, the elastic moduli of such

networks (which are related to the criteria of mechanical stability in the elasticity

theory of stressed systems) are proportional to the stress. We showed that the com-

ponents of the stress tensor of a Gaussian network coincide with the components of

the conductivity tensor of an equivalent resistor network. For percolating Gaussian

networks, this last result implies that the rigidity exponent, describing the elasticity

of the system near the percolation threshold, is equal to the conductivity exponent

in random resistor networks.

The other model, of \hard-spheres-and-tethers" systems (chapter 2 and appendix

A), can be used to study the entropic elasticity of systems with EV interactions, as

well as corrections to Gaussian elasticity in phantom systems. The stress and elastic

constants of such purely entropic systems were expressed in terms of the probability

densities of contact between hard spheres, and the probability densities of having

stretched tethers. The major advantages of the new formalism are the facts that the

di�erent components of the sti�ness tensor (elastic constants) are measured directly,

and that the formalism is not restricted to systems with speci�c topologies. This

67
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makes it an e�cient tool for investigating a wide range of problems.

The new expressions for the stress and elastic constants of hard-spheres-and-

tethers systems were used in MC simulations of various systems, leading to many

new interesting results. In chapter 2 we calculated the elastic constants of 3D hard

sphere uids and solids. In particular, we were able to measure the elastic constants

very close to maximal packing, i.e., in a regime which has not been studied by

other, indirect, methods. In chapters 4 and 5 we studied the behavior of regular

and random phantom tethered networks. It has been demonstrated that despite of

the fact that the form of tether potential is very di�erent from that of a Gaussian

spring, the elastic properties of phantom tethered networks are described well by

the Gaussian model. Yet, we were also able to detect deviations from the Gaussian

model, which were manifested by non-vanishing values of the elastic constants.

In chapter 6 we discussed the long-standing question of the value of the critical

rigidity exponent f in self-avoiding percolation systems. We performed simulations

of both two- and three-dimensional systems. In both cases we found that the value

of f is similar to the corresponding value of the conductivity exponent t (which is the

value expected for phantom networks). These important results support qualitative

theories claiming that EV interactions and entanglements are irrelevant as far as

the critical behavior is concerned. However, one must keep in mind that at least for

3D systems we know that entanglements do a�ect the sol-gel transition by shifting

the position of the rigidity threshold below the percolation threshold [83]. Thus,

although the results presented in this thesis greatly improve our understanding of

the problem of entropic elasticity at the sol-gel transition, a rigorous statistical-

mechanical solution is still needed.

Finally, I would like to discuss, very briey, other problems of entropic elasticity,

for which the method and ideas presented in this thesis may be applied:

1. There has been an extensive research on the problem of rubber elasticity for

already more than half a century [35, 36, 37]. Unlike gels, rubber is usually composed

of a dense network of long polymers. Loops and knots should, therefore, play a more

signi�cant role in rubber elasticity than in gel elasticity. Various models of inter-

penetrating networks have been investigated in order to analyze the inuence of such

entanglements on the elastic behavior [85]. The new method which enables accurate

and e�cient calculation of the elastic properties should be helpful in testing di�erent

theoretical predictions.

2. Another subject of active research is the thermodynamic properties of colloidal

suspensions. Even the seemingly simple model of binary hard{sphere mixtures, ex-

hibit a very rich phase behavior which depends on the volume fractions of the large

and the small spheres, and on the ratio of their diameters. Due to the presence
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of the small spheres, the large spheres are e�ectively attracted to each other by an

entropic \depletion force" [86]. The main interest in such mixtures is the existence

of a phase separation and the nature of the di�erent phases [87]. These phase tran-

sitions may be accompanied by changes in the elastic properties. It is, therefore,

interesting to study the elastic behavior of models of this type.

3. The controversy about the order of the melting transition in two{dimensional

hard disks systems has been discussed in section 6.2. Despite the many numerical

works which have been carried out for this problem in recent years [78, 80], the

problem remains open, both due to numerical di�culties (�nite size e�ects, choice

of boundary conditions, etc.) and real physical problems (if a �rst order transition

occurs, it is probably very weak). Investigating the elastic constants at the transition

provides a new approach to this problem. The KTHNY theory [79], suggesting a

continuous second order phase transition, predicts that the shear modulus su�ers

a discontinuity at the solid{hexatic transition. An even stronger prediction of the

KTHNY theory is that the combination of the elastic moduli 4��=(�+�) (measured

in units of kT=b

2

0

, where b

0

is the lattice spacing) takes the universal value of 16�

just before melting (see the papers of Nelson and Halperin in Ref. [79]). These

predictions were tested for Lennard{Jones{type systems [88], but the studies did

not resolve the question about the nature of the transition. Inconclusive results for

hard disk systems, obtained using indirect strain method simulations, were published

recently [89]. Perhaps our new (direct) method for computing the elastic constants

would lead to more accurate results.



Appendix A

Detailed Derivation of the

Formalism

A.1 The Stress Tensor

The starting point of the derivation is the following expression for the stress tensor
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which is easily derived from Eqs.(2.2) and (2.4). The �rst term in the square brackets

on the r.h.s of Eq.(A.1), the con�gurational term, is composed of N(N�1)=2 terms,

each corresponding to one distinct pair. Each of these terms can also be written as
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where

P

h�i6=h��i

represents the sum over all pairs h�i, distinct from the pair h��i.

Note that the limit f�g = f0g, was already taken at this stage.

If we now substitute an approximating potential, �(r), in the Boltzmann factor,

exp

�

��

�

R

��

�

=kT

�

, and take the \athermal limit" (see de�nitions in the last para-

graph of section 2.1), we �nd the Boltzmann factor converging to a step function,

where the discontinuity (from zero to unity) occurs at R

��

= a and an opposite

discontinuity (from unity to zero) occurs at R

��

= b if the pair h��i is tethered.
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The derivative of a step function is just the Dirac �-function. Therefore, in the
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where �

��

= 1 (�

��

= 0) for a tethered (non-tethered) pair. The remaining part of

the integrand,
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is a smooth function, including at R

��

= a or R

��

= b. Since only the values of

this function at R
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= a and (if �
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= 1) R
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= b are relevant, the function might

be replaced by any other function whose values at these points are the same. For
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[Unlike the function ~p
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su�ers a discontinuity at
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= a and (if �
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= 1) R
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= b, and therefore the transition between the two

sides of Eq.(A.5) should be made with some caution. The integral in equation

(A.5) and in the following expressions of this type should be understood as if the

delta functions reproduce the �nite values p(a+) and p(b�). In practice, when we

evaluate expression (A.5) by a numerical computation, this mathematically delicate

point becomes unimportant.] When we sum all N(N � 1)=2 terms corresponding to

all pairs of atoms, we obtain
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The second term in Eq.(A.1) is known as the kinetic term. It appears even when

� � 0, i.e., for an ideal gas, and it contributes the term �NkT�

ij

=V . To obtain this
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contribution we start from Eq.(2.5), from which we �nd that
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When the explicit expression for det(2[�] + [I]) is written down and the derivative
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which when substituted in Eq.(A.1) yields
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If we now combine Eqs.(A.6) and (A.9), we get expression (2.9) for the stress tensor:
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A.2 The Tensor of Elastic Constants

For the tensor elastic constants, we have
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If we use Eq.(2.4), the �rst of the two terms on the r.h.s of Eq.(A.10) splits into four

terms (which for the sake of later reference throughout this derivation we denote by

T

1�1
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The most challenging term in expression (A.11) is, of course, the �rst one, T

1�1

.

If we perform the two derivatives in this term, it yields the following three terms

(which we denote by T

1�1�1

, T

1�1�2

and T

1�1�3

, respectively):
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[Note that in Eq.(A.12) the limit f�g = f0g, at which J = 1, was already taken].

Following the derivation of the con�gurational stress tensor [Eq.(A.5)], it can be

easily shown that in the \athermal limit", the term T

1�1�1

becomes
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A straightforward generalization of this derivation shows that the non-diagonal el-

ements in term T

1�1�3

, i.e. these terms for which h��i 6= h�i, gives
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Note that the non-diagonal terms include both 3-particles terms [h��i; h�i] and

4-particles terms [h��i; h�i].

We were thus left with the T

1�1�2

term and with the diagonal elements of the

T

1�1�3

term, which may be written in the following combined form
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Let us now look at one of these expressions, corresponding to the pair h��i. After

performing the integrations over the rest of the coordinates, f

~

R



j 6= �; �g, we are

left with

�
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~

R

�
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~

R

�
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(A.15)

[~p

�

~

R

�

;

~

R

�

�

is de�ned in Eq.(A.4)]. At this point we change the variables of in-

tegration from d

~

R

�

d

~

R

�

to d

~

R

��

d

~

R

�

, where

~

R

��

=

~

R

�

�

~

R

�

, and then change d

~

R

��



74 APPENDIX A. DETAILED DERIVATION OF THE FORMALISM

to spherical coordinates

�

R

��

�

d�1

dR

��

d


��

, where 


��

is the solid angle aperture

around

~

R

��

and d is the dimensionality of the system. We also note that the

terms

�

R

��

i

R

��

j

R

��

k

R

��

l

�

=

�

R

��

�

2

in Eq.(A.15) can be written as

�

R

��

�

2

f

ijkl

�




��

�

,

where f

ijkl

is a function of the solid angle alone (for instance, for a 2D system,

f

xxxx

= cos

4


, f

yyyy

= sin

4


, f

xyxy

= f

yxyx

= f

xxyy

= f

yyxx

= cos

2


sin

2


, etc.).

Thus, Eq.(A.15) takes the form

�

kT

V

Z

d

~

R

�
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�
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�
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�

~

R

�
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)

2

)

:

When integration by parts is performed over the variable R

��

this expression be-

comes

=

kT

V

Z

d

~

R

�

d
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f

ijkl
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@
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�
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�
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(A.16)

(Integration is taken from 0 to 1 and, therefore, the boundary terms vanish.) The

second expression in Eq.(A.16) is obtained for the \athermal limit" using substitu-

tion (A.3). In order to bring this expression into a more useful form, we perform

the derivative in Eq.(A.16):

@

h

�

R

��

�

d+1

~p

�

~

R

�

; R

��

;


��

�i

@R
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= (d+ 1)

�

R

��

�

d

~p

�

~

R

�

; R

��

;
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�

+

�

R
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�

d+1

@

h

~p

�

~

R

�

; R

��

;


��

�i

@R

��

: (A.17)

After the �rst term on the r.h.s of Eq.(A.17) is substituted in Eq.(A.16), we may

switch back to the original integration variables, d

~

R

�

d

~

R

�

, and again, use substitution

(A.3). In fact, we get an expression which is identical with the expression (A.13),

except for the a prefactor (d+ 1). Thus, their joint contribution is

(d + 2)

kT

V

X

h��i

*

R

��

i

R

��

j

R

��

k

R

��

l

(R

��

)

3

�

��

+

: (A.18)

The task imposed by the second term in Eq.(A.17) is slightly more complicated:

We need to evaluate @

h

~p

�

~

R

�

;

~

R

�

�i

=@R

��

. We remind the reader that ~p

�

~

R

�

;

~

R

�

�

is de�ned in Eq.(A.4). The dependence of ~p on R

��

in this expression comes from

the exponent

X

h�i6=h��i

�

�

R

�

�

; (A.19)
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appearing in (A.4). Instead of the set of variables f

~

R



j  = 1 : : : Ng, we may use the

set of independent variables f

~

R

�

;

~

R



�

~

R

�

=

~

R

�

j  = 1 : : : N;  6= �g, to express

the terms in the exponent (A.19). Since we look for the derivative of ~p

�

~

R

�

;

~

R

�

�

with respect to R

��

(the size of one of the variables,

~

R

��

), we need to �nd which

of the terms in expression (A.19) actually depend on this variable. One can easily

�nd that the terms included in the set

�

�

�

R

�

�

j  = 1 : : : N ;  6= �; �

	

are the

relevant terms.

~

R

�

and

~

R

��

are two of the edges of a triangle whose vertices are

the positions of atoms �, � and . It is not di�cult to show that if the length of

~

R

��

is slightly changed, while the length of

~

R

�

is �xed, then the change in the length

of the third edge,

~

R

�

, obeys

@R

�
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~
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�
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�

:

With this identity, we �nd in a straightforward manner that
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:

In this expression the indices � and � appear in an asymmetrical way. If we inter-

change their roles we obtain the following symmetrical form
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: (A.20)

We now need to substitute this last identity into the integrand of (A.16), switch

back to the original integration variables, d

~

R

�

d

~

R

�

, and use transformation (A.3), to

�nally obtain that the contribution of the second term in (A.17) is
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(A.21)

We still need to treat terms T

1�2

, T

1�3

and T

1�4

in Eq.(A.11) and the second term

in Eq.(A.10). Term T

1�2

is identical to the con�gurational stress term [Eq.(A.6)],

except for the multiplicative term, @J=@�

kl

, which appears in the former. Therefore,

using result (A.8), we �nd that the contribution of this term is

N�

kl

�

conf

ij

: (A.22)

Similarly, the T

1�3

term yields

N�

ij

�

conf

kl

: (A.23)
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The second term in Eq.(A.10) is obviously equal to
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Finally we need to di�erentiate expression (A.7) with respect to �

kl

, in order to

calculate term T

1�4

which is given by
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: (A.25)

When we combine these four terms [(A.22){(A.25)], we �nd that their joint contri-

bution to the expression for the tensor of elastic constants is
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: (A.26)

To this contribution we need to add terms (A.14), (A.18) and (A.21) to obtain the

following �nal expression for the tensor of elastic constants (2.10):
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Appendix B

Computing the Averages of

Quantities with Dirac �-functions

Suppose we perform a MC investigation of a system consisting of N particles, in

which we try to evaluate the thermal average of a certain quantity g(f

~

R

�

g) that

depends on the positions of the particles f

~

R

�

; 1 � � � Ng. The average is

estimated by

hgi �

1

N

c

N

c

X

p=1

g

�

f

~

R

�

p

g

�

;

where

~

R

�

p

is the value of

~

R

�

at the p-th sampled con�guration, and N

c

is the total

number of MC con�gurations used in the simulation. Clearly, this sum does not

lead to the correct mean when the averaged quantities include �-functions, as we

have in expressions (2.9) and (2.10), because such quantities vanish at almost every

con�guration (except for a group of con�gurations whose measure vanishes | at

which their values are not de�ned at all). This is just a restatement of the fact that

in MC simulations we measure probabilities rather than probability densities.

In systems of hard spheres the averages in expressions (2.9) and (2.10) can be

approximated by measuring the relevant quantities every time we detect a pair

of spheres whose separation is smaller than a + � (� � a) and, then, dividing

(normalizing) the sum by the size of �. In a more formal language, this approximation

is obtained by replacing the delta function �(R

��

�a) with a square function of width

� and height 1=�, centered at R

��

= a+�=2. In systems consisting of both spheres and

tethers, we identify bond stretching with tethers whose lengths are larger than b��,

i.e., we approximate the function �

��

�

�

�

�

R

��

� a

�

� �

��

�

�

R

��

� b

��

[Eq.(A.3)]

by the function

~

h

1

(R

��

) =

8

<

:

1=�; for a � R

��

< a+ �

��

��

=�; for b� � < R

��

� b

0; otherwise

; (B.1)
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R

a

b

εb-(n-1)

1/ε

b-n

εa+(n-1)

a+nε

ε

1/

(R)

ε-

h
~

n

Figure B.1: The function

~

h

n

(R) [Eq.(B.2)] (with � = 1) used as an approximation of the function

� � [�(R� a) � �(R� b)].

which (if �

��

= 1) is equal to the di�erence between two square functions centered

at R

��

= a+�=2 and R

��

= b��=2, respectively. If the probability density of �nding

the pair separation equal to R is described by a smooth function, this approximation

would lead to an error which is at most of the order of the small parameter �=a.

Obviously, one would like to set the size of � as small as possible, in order to minimize

this correction. However, there is a limit to the extent to which � can be reduced,

imposed by N

c

, the number of MC con�gurations. As � gets smaller, one needs more

MC samplings in order to count a su�cient number of events at which the distance

between spheres satis�es a � R < a + � (as well as events at which the length of

a tether satis�es b � � < R � b). An elegant way to minimize the error (without

making � smaller) is to make a set of approximations using a set of functions (that

one of them is depicted at Fig. B.1)

~

h

n

(R) =

8

<

:

1=�; for a+ (n� 1)� � R < a+ n�

��=�; for b� n� < R � b� (n� 1)�

0; otherwise

; (B.2)

de�ned similarly to Eq.(B.1), but with the square functions centered at R = a+ �

n
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and R = b� �

n

, where

�

n

� (n� 1=2)�; (B.3)

and n = 1; 2; 3; : : : . When we use the function

~

h

n

(R) in expressions (2.9) and (2.10),

the averages are evaluated using the pairs of spheres whose separations are found

inside the small \bin" interval a + (n � 1)� � R < a + n�, and the tethers whose

lengths are found inside the \bin" b � n� < R � b � (n � 1)�. After evaluating

these averages (which are statistically independent quantities since the \bins" cor-

responding to di�erent values of n do not overlap each other, and therefore each

average is computed using the contributions of di�erent events) we plot the value

of the average as a function of �

n

, the distance of the center of the relevant \bin"

from a and b. We get our �nal estimate for the \correct" average by extrapolating

this function to the limit �

n

! 0. In Fig. B.2 we demonstrate this extrapolation

procedure for MC measurements of the pressure and elastic constants of hard sphere

FCC crystal at a reduced density �=�

0

= 0:8. The curves are the weighted (i.e., each

point was weighted by the reciprocal to its error bar) least squares �ts of the data

to polynomials of the third order in �

n

.
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Figure B.2: The pressure, P , and the three elastic constants, C

11

, C

12

, C

44

, of a hard sphere

crystal at �=�

0

= 0:8, as a function of �

n

[see de�nition in Eq.(B.3)]. �

n

was normalized by a

0

� a,

where a and a

0

are the spheres diameters at � and �

0

, respectively. The curves are the weighted

least squares �ts of the third order polynomials in �

n

to the data.

Expression (2.10) for the elastic constants comprises of two types of terms - those

including a single � function, and terms including the product of two � functions,

corresponding to two distinct pairs. The former represent events of a single spheres'
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contact (or tether stretching), while the latter correspond to events in which two

contacts (or two stretches, or one contact and one stretch) occur simultaneously.

The evaluation of the averages of the \double �" terms is far more di�cult than

that of the \single �" terms since they represent rarer events and, consequently,

their statistics is much noisier. In the simulations described in chapters 2{5, we

used the product

~

h

n

(R

��

)

~

h

n

(R

�

) to approximate the product �

��

�

�

. Thus, the

values of the computed averages depend on a single variable, �

n

[Eq.(B.3)], as shown

in Fig. B.2. In the simulations of self-avoiding percolation systems (chapter 6) we

evaluated the \double �" terms using the products

~

h

n

(R

��

)

~

h

m

(R

�

), with n not

necessarily equal to m. Now, the values of the computed averages should be plotted

as a function of two variables, �

n

and �

m

, and the \correct" average is obtained by

taking the limits �

n

! 0 and �

m

! 0. In Fig. B.3 we show the results for C

�

12

,

de�ned as the sum of all \double �" terms in the expression for the elastic constant

C

12

. The data corresponds to one of the 3D percolation topologies de�ned on an

FCC lattice with fraction of tethers p = 0:1975. The surface represents the linear

(both in �

m

and �

n

) weighted least squares �t of the data.
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Figure B.3: The sum of \double �" terms, C

�

12

, of a 3D percolation system de�ned on an FCC

lattice with p = 0:1975, as a function of �

m

and �

n

. �

m

and �

n

were normalized by b� b

0

, where b

and b

0

are the maximal length of the tether and lattice spacing, respectively. The squares depict

the data points, while the surface represents the linear (in �

m

and �

n

) weighted least squares �t of

the data. For clarity, we draw a vertical line from each data point to the bottom of the grid.

Two important remarks should me made regarding the two variables extrapola-

tion method: (1) The number of MC events used with this method is larger than

that used with the single variable extrapolation. Thus, we greatly improve the accu-
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racy of the results. (2) In the case that m 6= n we computed the averages using the

contributions of all the events in which one of the contacts (or stretches) belongs

to the \bin" a + (n � 1)� � R < a + n� [or, b � n� < R � b � (n � 1)�], while

the other belongs to the \bin" a + (m � 1)� � R < a + m� [or, b � m� < R �

b� (m�1)�]. The sums obtained in this way were eventually divided by 2, to obtain

the correct normalization. Mathematically, this is equivalent to using the function

1=2

h

~

h

n

(R

��

)

~

h

m

(R

�

) +

~

h

m

(R

��

)

~

h

n

(R

�

)

i

.



Appendix C

The Conductivity Tensor of Finite

Resistor Networks

Consider a network whose bonds are resistors of conductance K

��

, where the su-

perscripts � and � label the nodes which the particular resistor connects. The

network is �nite and has an arbitrary topology, i.e., we make no assumption on

the symmetry. We denote by

~

R

�

the position of the node � and by '

�

the electric

potential at the node. The network is placed inside a rectangular box of volume

V = L

1

� L

2

� : : :� L

d

, where L

i

is the length of the box along the ith Cartesian

direction. (The derivation presented here can be easily generalized to systems of

arbitrary shape.) The nodes of the network which are located on the surface of the

system are called surface nodes, and we label them with the superscript s. The rest

of the nodes are called the internal nodes, which we denote with the superscript �.

The superscripts � and  will be used to denote nodes of both types.

The conductivity of an electrical system is a tensor, �

ik

, de�ned by

hj

i

i = �

ik

hE

k

i; (C.1)

where the subscripts denote Cartesian coordinates and summation over repeated

indices is implied, while h

~

ji and h

~

Ei are the volume averages of the current density

and the electric �eld, respectively. This de�nition of �

ik

applies to continuous

electrical systems. It can be generalized to discrete networks, if we de�ne the current

density by a set of Dirac �-functions representing the currents in the bonds. Let us

assume now that the electric potential, ', applied on the surface of the network is

such that on each surface point it is equal to the jth Cartesian coordinate of the

point. Since

~

E = �

~

r', we have

hE

k

i =

1

V

Z

E

k

dV = �

1

V

Z

@'

@x

k

dV =

1

V

�

�

Z

x

k

=L

k

'dS +

Z

x

k

=0

'dS

�

;

where the surface integration is over the boundaries x

k

= 0 and x

k

= L

k

, normal

to the kth direction. However, with our choice for the electric potential on the
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boundaries, ' = x

j

, it is easy to see that hE

k

i = ��

kj

, where �

kj

is the Kronecker

delta.

The mean current density hj

i

i, is given by

hj

i

i =

1

V

Z

j

i

dV: (C.2)

As we have already noted, the above de�nition (C.2) applies to continuous electrical

systems. To make it applicable to resistor networks we need to write the current

density as a sum of Dirac �-functions representing the currents in the \linear" re-

sistors. With this formal representation, the contribution to hj

i

i of each resistor is

given by the line-integral

Z

~

R

�

~

R

�

I

��

dx

i

= K

��

�

'

�

� '

�

�

�

R

�

i

�R

�

i

�

;

where I

��

= K

��

�

'

�

� '

�

�

is the current across the resistor between nodes � and

�. Adding the contributions of all the resistors we �nd that

hj

i

i =

1

V

X

h��i

K

��

�

'

�

� '

�

�

�

R

�

i

�R

�

i

�

:

We may write the last result in a slightly di�erent way

hj

i

i =

1

2V

(

X



X

�

K

�

�

�

�

'



� '

�

�

(�R



i

) +

X



X

�

K

�

�

�

�

'



� '

�

�

R

�

i

)

=

1

V

(

X



(�R



i

)

"

X

�

K

�

�

�

�

'



� '

�

�

#)

;

where the variable �

�

takes the value 1 if the nodes  and � are connected by a

resistor and if at least one of them is an internal node; and the value 0, otherwise.

The sums in square brackets corresponding to internal nodes  = � vanish due to

the Kircho� \junction rule" for the vanishing of the sum of currents entering an

internal node:

X

�

K

��

�

��

�

'

�

� '

�

�

= 0:

We are left with the contribution of the surface nodes  = s only, i.e.,

hj

i

i =

1

V

(

X

s

R

s

i

X

�

K

�s

�

�s

�

'

�

� '

s

�

)

:

This last result can be also represented by summation over all the resistors h�si,

between surface and internal nodes

hj

i

i =

1

V

2

4

X

h�si

K

�s

R

s

i

('

�

� '

s

)

3

5

:
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Finally, since the electric �eld is equal to hE

k

i = ��

kj

, we have from Eq.(C.1) that

�hj

i

i = �

ij

=

1

V

2

4

X

h�si

K

�s

R

s

i

('

s

� '

�

)

3

5

:

We have obtained expression (3.13), which we constructed by mapping expression

(3.9) for �

ij

into the electrostatic problem. This proves that indeed �

ij

= �

ij

. Note

that �

ij

does not depend on the positions of the internal nodes but only on the

details of the conductivity. In large random networks the relation (C.1) su�ces to

de�ne �

ij

without need of a detailed speci�cation of boundary conditions. However,

our exact result is valid also for small networks of arbitrary topology, provided that

the electric �eld

~

E is generated using the very speci�c boundary conditions speci�ed

in this appendix.
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