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Abstract

We study a two-dimensional lattice model of polymers, subject to a random short-range

interaction between two monomer types (\charges"). The study is performed over a

\canonical" ensemble (i.e. having a constant number of monomers) of polymers, with

quenched randomness. For short polymer chains (up to 16 monomers), data is obtained

by enumerating all spatial conformations and averaging over all possible quenches. For

long chains (up to 100 monomers), we use a Monte Carlo simulation process.

The collapse of such heteropolymers (polymers made of more than one monomer type)

may be related to the subject of protein folding, which is one of the fundamental problems

in biophysical science. We therefore start our work with a short review of protein folding,

including a reference to the issue of simple, low resolution models | such as ours.

Before going into our speci�c model, we review (in chapter 2) some basic ideas and

results regarding a single polymer chain. This includes the ideal chain model, excluded

volume e�ects, the �-transition (a term referring to the collapse of a polymer when tem-

perature is lowered or solvent is made poorer), the e�ects of heteropolymer interactions

and the subject of two-dimensional polymers.

We then (in chapter 3) describe our model system, discuss the issues to be tested, and

brie
y describe the numerical methods we apply.

Chapter 4 details our �ndings regarding the �-transition. We �nd that, like a ho-

mopolymer (a polymer composed of a single species of monomers), a neutral polymer

on a square lattice undergoes a �-transition, which is a tricritical phase transition. The

transition occurs at a temperature T

�

= 0:83� 0:02 (in units of the interaction strength),

with a critical exponent �

�

= 0:60 � 0:02, which seems to be di�erent from the value

for homopolymer collapse. For non-neutral polymers, we observe a decrease in the �-

temperature with increasing excess charge, up-to a critical value of the net-charge fraction

(X

cr

) where the collapse vanishes. To conclude this chapter, we draw the phase diagram

of the polymer in the plane of temperature and excess charge.

Next, we explore (in chapter 5) the ground state and the energy landscape of a neutral

polymer, in an attempt to �nd evidence for the existence of a glass-like freezing transition

for such a polymer. We do not �nd much evidence for this transition, a result which is in

accordance with theoretical predictions.
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The last chapter presents our conclusions and discusses some future prospects, and

the appendix contains additional details of our numerical procedures.
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1 Prologue - Protein Folding

In this work, we study a two-dimensional lattice model of polymers, subject to a random

short-rage interaction between two monomer types. One of the reasons for interest in this

problem, is the possible connection between the collapse of such heteropolymers (polymers

made of more than one monomer type) and the subject of protein folding, which is one of

the fundamental problems in biophysical science. We therefore start with a short review

of protein folding. For a more thorough review of the subject, we refer the reader to the

paper by Chan and Dill [1] and to the book by Creighton [2].

1.1 What Are Proteins?

A protein is a linear polymer molecule, whose monomers are the 20 naturally occurring

amino acids. Di�erent proteins have di�erent sequences of the amino acids. The amino

acid sequence is known as the primary structure of the protein. Proteins may be classi�ed

into three types: Fibrous proteins serve mainly structural roles - in hair, skin and bones.

Membrane proteins reside in cellular membranes, where they mediate the exchange of

molecules and information across cellular boundaries. Enzymes, which are the catalysts

for biochemical reactions in living cells, are globular proteins (on which we will focus from

now on).

The most important state of a globular protein, known as its native or folded state,

is extremely compact and unique. That is, a given protein folds to only one native state.

The so called secondary structure of a globular protein includes hydrogen-bonded �-helices

and �-sheets. The large-scale architecture of a protein | how the helices, sheets and other

secondary structures �t together | is called its tertiary structure.

Proteins are in their native states in aqueous solvents near neutral pH at 20 � 40

o

C;

this is the typical cellular environment. Under some nonphysiological conditions, such as

high temperature, acidic or basic pH, or in some nonaqueous solvents, the unique folded

structure of a protein unfolds or denaturates, often reversibly, through a sharp transition

to an ensemble of more expanded conformations.

1.2 The Folding Problem

Under physiological conditions the native state is marginally more stable than the en-

semble of denaturated conformations. Marginal stability may be necessary for biological
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function, since catalysis and binding properties of proteins must be responsive to the envi-

ronment and to regulatory molecules. Nevertheless, marginal stability poses the problem

of understanding the net e�ect of large and diverse driving forces, and deciding which of

them constitutes the main contribution to the folding, to the formation of the secondary

structure and to the uniqueness and thermodynamic stability of the native structure:

� Some of the amino acids have net charge, which leads to Coulomb interactions,

though screened.

� All amino acids can form hydrogen bonds, which may lead to the formation of the

secondary structure.

� Hydrophobic interactions are viewed as a strong force for folding proteins, but there

is no certainty as to whether they contribute also to the uniqueness and internal

architecture of globular proteins.

� A large contribution to the balance of forces comes from the decrease in conforma-

tional entropy upon folding.

The balance of forces that folds a protein into its unique, compact native structure is

encoded within its amino acid sequence. Solving the folding problemmeans understanding

and predicting the native conformation of a protein from its amino acid sequence.

Why is this important? First, because we wish to know how such remarkable states

of matter arise from the underlying laws of chemistry and physics. Second, solving the

folding problem would unleash considerable new power on biotechnology, in principle

permitting the design of new proteins.

To �nd the stable native state of a protein, ideally we should compute, for every pos-

sible conformation of the chain, the sum of the free energies of the atomic interactions

within the protein and with the solvent, and �nd the conformation with the lowest free

energy. But this is not feasible, because the number of conformations n of a chain molecule

{ each of them with a unique energy value { grows exponentially with the chain length:

n � z

N

where N is the number of monomers and z ' 2 � 6 is the number of rotational

isomers, determined by the types of monomers that make up the polymer. An exhaustive

search is not a practical solution to the folding problem for a computer algorithm. Molec-

ular dynamics techniques, in which we numerically solve the equations of motion using

interaction energies, are also quite useless when trying to �nd the global energy minimum
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for a protein: Supercomputers can currently simulate nanoseconds of real-time protein

dynamics, a scale that doesn't approach the 10

�1

� 10

3

seconds typically required to fold

real proteins.

Heuristic approaches also exist, in which we learn about the relationship between se-

quence and structure by observing patterns in the database of known protein structure [3].

1.3 Simple, Low Resolution Models

The only way by which we can explore the whole conformation and sequence spaces of

proteins is by introducing models which are very simple and of low resolution: Proteins

are modeled as self-avoiding walks on lattices. Speci�c sequences of monomers are studied

in chains short enough that the full conformational space can be enumerated exhaustively.

The simplest model describing compactization of a polymer considers homopolymer

collapse: Homopolymers are polymers composed of a single species of monomers. If

these monomers possess a repulsive interaction with the solvent, leading to an e�ective

attraction between monomers, then two competing terms determine the free energy: The

internal energy, favoring compactization, and the entropy, favoring the expanded states

(since there are fewer compact than expanded conformations). Thus, increasing monomer-

monomer attraction { which depends on solvent conditions as well as on temperature {

leads to a collapse from open to compact con�gurations.

Theories on the collapse of heteropolymers, such as proteins, are in a more primitive

state than theories of homopolymers. It remains a challenge to learn how heteropolymers

can collapse into unique states and how heteropolymer sequences produce the thousands

of unique structures that are native proteins.

An example of a heteropolymer model [4] is the one which describes a protein as

a linear chain of amino acids, each of which can be either of two types: H (nonpolar,

i.e. hydrophobic) or P (polar, i.e. hydrophilic). The monomers are subject to excluded

volume and an HH attraction free energy �.

Another approach is based on spin-glass models, a term describing a magnetic system

where ferromagnetic and anti-ferromagnetic bonds are randomly distributed. The �rst

application of spin glass ideas to the coil-to-globule folding of proteins was done in 1987

by Bryngelson and Wolynes [5], who applied Derrida's random energy model [6] to the

problem. In this model, each of a set of discrete states is given an energy chosen randomly

from a Gaussian distribution. The statistical independence of di�erent nearby states leads
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to an extraordinarily rough energy landscape, in which minima can be surrounded by high

barriers. In addition, the states that \just happen" to have the lowest energy need not re-

semble one another by any measure. This description is thought to be a very good model

for the folding landscape in the conformational space of a heteropolymer with a random

sequence [7]. The model exhibits a phase transition similar to glass transitions observed

in the laboratory. The transition is basically an entropy crisis: The number of thermally

available states decreases so fast at the transition temperature that the system freezes into

one of a small number of states | exactly which ones depends on the randomness of the

landscape and the thermal history. Based on this model, Bryngelson and Wolynes predict

di�erent folding and \freezing" transitions of a heteropolymer: A chain may fold into a

given native structure speci�ed in advance or freeze into a collection of misfolded (non-

native) structures that have extremely slow dynamics of interconversion. Other model

studies suggest that the kinetic accessibility of the native structure is strongly sequence

dependent. Shakhnovich and Gutin developed a heteropolymer model in which the distri-

bution of monomer-pair interaction strengths B

ij

is assumed to be Gaussian [8] [9]. The

width B of the heterogeneity distribution plays the crucial role of determining the number

of lowest-energy states of the model. If the sequences are su�ciently heterogeneous (B

large), they �nd that only a few states dominate the low temperature phase. Thus, they

conclude that unique protein folds can arise simply from sequence heterogeneity.
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2 Single Polymer Chain - a Theoretical Review

Before going into our speci�c model, we give a review of results for a single polymer chain.

A clear discussion of the subject can be found in the books by de Gennes [10] and by

Plischke and Bergerson [11].

2.1 The Ideal Chain

One of the simplest idealizations of a 
exible polymer chain is to replace it by a random

walk on a periodic lattice, as shown in Fig. 1. The walk is a succession of N steps,

Figure 1: A random walk on a square lattice.

starting from one end and reaching an arbitrary end point. At each step, the next jump

may proceed to any of the nearest-neighbor sites. All these possibilities have the same

statistical weight. The length of one step will be denoted a.

The total number of such N steps walks is easily seen to be

n

N

= z

N

; (2.1)

where z is the number of neighbors of each lattice site, also called the coordination number.

The end-to-end vector R

ee

is the sum of N \jump vectors"

R

ee

= a

1

+ a

1

+ : : :a

N

=

X

n

a

n

; (2.2)
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where each of the a terms is a vector of length a with z possible orientations. Based

on the fact that di�erent a vectors have completely independent orientations, we get the

following results:

1. The average square end-to-end distance is linear in N ,

hR

2

ee

i = Na

2

: (2.3)

2. For long walks, the distribution function for R

ee

is Gaussian,

p(R

ee

) � e

�dR

2

ee

=2Na

2

; (2.4)

where d is the dimensionality of the lattice.

Eq. 2.4 gives a formula for the entropy of the chain at a certain elongation

1

:

S(R

ee

) = S(R

ee

= 0)�

dR

2

ee

2Na

2

: (2.5)

It is sometimes convenient to rewrite Eq. 2.5 in terms of the free energy,

F (R

ee

) = E � TS = F (0) +

dTR

2

ee

2Na

2

; (2.6)

giving the \spring constant" of an ideal chain.

Another ideal model, not restricted to a discrete lattice, is the one known as the freely

jointed chain, consisting of N + 1 point particles, separated by bonds of length a that

are free to take any orientation in the d dimensional space. For this model we get, again,

that the average square end-to-end distance is linear in N . We also �nd that the radius

of gyration, de�ned

R

2

g

=

1

N + 1

N

X

i=0

(R

i

�R)

2

(2.7)

(where R

i

are the locations of the particles and R =

1

N+1

P

N

i=0

R

i

) behaves similarly for

long chains:

hR

2

g

i �

Na

2

6

: (2.8)

Furthermore, it is found that restricting the orientation between successive bonds still

leads to ideal behavior, with only a change of the constant, i.e. a is replaced by an e�ective

bond length a.

1

Throughout this work, in all equations involving the temperature we will use units in which k

B

= 1

, i.e. temperature has the units of energy.
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This last statement exempli�es the global (as opposed to local) point of view of polymer

chains | where we omit the details of chain structure as much as possible and extract

simple, universal features which will remain true for a large class of polymers.

The Gaussian chain is a simple model that can be shown to be formally equivalent

to the freely jointed model in the thermodynamic limit (i.e. large N). We assume that

the probability distribution p(r

i

) for the vector r

i

� R

i

�R

i�1

connecting particles i and

i� 1 is given by

p(r

i

) � e

�dr

2

i

=2a

2

(2.9)

for all i. Then, writing formally the joint probability density for the locations of the N+1

particles in con�guration space as a Boltzmann weight (plus a normalization constant)

we can de�ne an e�ective Hamiltonian

H =

dT

2a

2

N

X

i=1

(R

i

�R

i�1

)

2

; (2.10)

which we will also write in a continuum version [11]:

H =

dT

2a

2

Z

N

0

dx (

dR

dx

)

2

; (2.11)

We will use the notation of Eq. 2.11 in the following sections.

2.2 Excluded Volume E�ects

One of the important and subtle aspects of polymer statistics is the fact that real chains

cannot cross or, equivalently, that no two particles can come closer than a minimum hard

core distance. The e�ect of this on polymer conformations is easiest to see in the context

of lattice models. One of the most thoroughly studied models of polymers is the self-

avoiding walk (SAW) on a lattice | a random walk that can never intersect itself (Fig.

2).

For the unrestricted random walk, we have seen above that R

2

g

� R

2

ee

� N . Conversely,

by enumerating SAWs on various two- and three-dimensional lattices, it can be seen that

for large N

hR

2

ee

i � hR

2

g

i � N

2�(d)

; (2.12)

where d is the dimensionality of the lattice, �(2) = 0:75; �(3) � 0:6. Therefore, the

swelling of the randomwalk due to excluded volume is signi�cant: It changes the exponent,

7



Figure 2: A self-avoiding walk on a square lattice.

not merely the amplitude, and has the universal characteristic of critical behavior | �

depends only on d, not on the type of the lattice.

It can also be shown that the total number of N -step SAWs has the property

n

N

� z

N

N


�1

; (2.13)

where z < z is an \e�ective coordination number" that depends on the type of lattice,

and 
 is another universal exponent.

Flory [12] has devised a simple scheme for computing the exponent �, which gives

excellent values for all dimensionalities. It is based on writing two terms of the free

energy: a repulsive energy (due to monomer-monomer excluded volume interaction) and

an elastic (entropic) energy. By minimizing with respect to the polymer size R, one gets:

� =

3

d+ 2

: (2.14)

This result, which actually \bene�ts from a remarkable cancellation of two errors" [10],

is amazingly good.

The same result can be achieved using a continuum model. To the expression 2.11 for

the entropic elasticity we add a simple two-body term, to get

�H = K

Z

N

0

dx (

dR

dx

)

2

+ w

Z

N

0

dx

Z

N

0

dx

;

�

d

(R(x)�R(x

;

)) (2.15)
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(where � = 1=T ). Then, using scaling arguments, we reach Flory's result (Eq. 2.14).

Here is the place to make a note about the dependence of � on dimensionality. From

2.14 we see that � is higher for smaller d, that is, the e�ect of excluded volume is more

pronounced in lower dimensionalities. Moreover, it can be shown [10] that a self-avoiding

chain is ideal for d � 4 | in this regime, repulsion between monomers represents only a

weak perturbation.

2.3 The �-Transition

A single polymer in a solvent is subject to both the hard core repulsion between monomers

and a long range (e.g. van der Waals) attractive interaction. At high temperatures, the

repulsive interactions are dominant, and the polymer size scales like a SAW. As tempera-

ture is lowered, a point is reached (called the �-point), where the repulsive and attractive

interactions e�ectively cancel and the polymer behaves essentially as an ideal random

walk. For T < �, the polymer collapses into a compact object with � = 1=d. The

same e�ect can be achieved by changing the solvent composition: In a \good" solvent,

monomer-solvent interactions are attractive (as compared to monomer-monomer interac-

tions), and the polymer swells. In a \poor" solvent, the polymer collapses in order to

minimize monomer-solvent contacts.

This so called \�-transition" has attracted a great deal of attention, both theoretical

[13]{[15] and experimental [16]. De Gennes [17] has shown the analogy between the

collapse of a polymer chain and a magnetic system near a tricritical point (a term used to

classify a critical phenomenon according to the functional dependence of the free energy on

the system's order parameter)

2

. Based on this analogy, use has been made of the critical

exponents and the expected scaling equations calculated for tricritical phenomena, when

investigating polymers near the �-point [18] [19].

We will just mention that this analogy by de Gennes complements the known connec-

tion between self-avoiding walks and critical phenomena: It has been shown [10] that all

properties of one self-avoiding walk on a lattice can be related to the spin correlation of

a ferromagnet with an n-component magnetization vector, when we formally set n = 0.

2

For an enlightening explanation see [11], and also [19].
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2.4 Random Heteropolymers

The next degree of complexity we introduce into our system is disorder [20]. This disorder

can be external, as in the case where we insert randomness into the lattice on which the

polymer lies [21], or it can be intrinsic, as is the case for random heteropolymers. Below

we will deal with intrinsic disorder only. We must also distinguish between quenched and

annealed disorder, the �rst referring to a sequence of \charges" which is �xed in each

realization of the system, whereas the latter describes charges which are free to move

along the chain. A more precise de�nition (after [20]) would state that in an annealed

(quenched) ensemble, the structure of the disorder, i.e. the charge sequence, relaxes on a

much faster (slower) time-scale than the chain.

To be more speci�c, we describe a short-range interaction Hamiltonian [22]:

H

I

=

1

2

Z

N

0

dx

Z

N

0

dx

;

Q(x)Q(x

;

)�

d

(R(x)�R(x

;

)) (2.16)

(where Q(x) is the quenched charge density along the polymer chain). Do these interac-

tions modify the collapse transition of the polymer? That is, does the randomness change

the critical phenomenon? This question will be of interest to us when we examine our

model. The answer, however, is not clear. Kantor and Kardar [22] note that the relevance

of the interactions is controlled by the sign of a scaling exponent y

I

= 1 � d� , which

means that for � > 1=2 , the interactions are irrelevant at d = 2. In [23] it is claimed

that quenched randomness results in repulsion, and the swelling exponent for d < 2 is

computed.

The most remarkable feature of heteropolymer chains is the possible existence of a

freezing transition at some �nite temperature T

f

[8] [7], below which the con�gurational

entropy per monomer vanishes, and a few conformations with low energy dominate. Ap-

plying a kinetic description, we say that the heteropolymer can fold into its ground state

or, instead, \freeze" into one of a few misfolded states. When describing the phase dia-

gram, we may say that the compact state has split into several new phases: a liquid-like

\molten globule", the native ground state, and a possible collection of misfolded \frozen"

states.

An analytical investigation of random heteropolymers has shown an analogy between

their physics and models of spin glasses. The freezing transition of heteropolymers is

assumed to be analogous to the glass transition in Derrida's random energy model (see

10



Section 1.3), although this analogy is not always valid [24], as will be discussed when

referring to our speci�c model.

2.5 Two-Dimensional Polymers

As will be discussed in the next chapter, our model deals with two-dimensional polymers.

Although they are not, of-course, the common case, the treatment of 2-d polymers can

be justi�ed in a number of ways:

� Having mentioned the relation between polymer collapse and critical phenomena,

there is a point in examining the problem of dimensionalities other than three,

because the critical exponents are de�ned in each dimension, and depend only on d.

Moreover, the two-dimensional case is thought favorable for examining the �-point,

since d = 3 is a marginal case and a logarithmic correction term is involved in the

R

g

(N) dependence [25] [26].

� There is a big computational advantage in using a two-dimensional model over a

3-d one: We recall that for a given chain length N , the total number of SAWs is

proportional (up to power law corrections) to z

N

where z � 2:64 for the square

lattice and z � 4:68 for the simple-cubic lattice [27]. When we later perform a

complete enumeration of all chain conformations, our computer run-time will be

proportional to the number of possible con�gurations. Therefore, for a speci�c

chain length, the computational requirements in 2-d are much lower. On the other

hand, when we use a Monte Carlo simulation to examine the polymers, we �nd that

two-dimensional chains are much more prone to get stuck in conformations which

the simulation fails to get out-of.

� Another argument [4] is that the surface-to-volume ratio, which primarily determines

the physical behavior, is the same for shorter chains in two dimensions and for longer

chains in three dimensions. Therefore, it is favorable to perform a numerical study

| which is limited in the available chain-length | in two dimensions.

� Finally, Vilanove and Rondelez [28] give experimental evidence for the existence

of two-dimensional polymers in Langmuir monolayers [29]. In particular, from the

pressure isotherms they derive the scaling exponent � for both a \good" solvent and

a �-solvent.
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3 The Model System

In this section we describe the model under study, discuss the questions that will be of

interest, and brie
y describe the numerical methods by which we obtain the results. For

an elaborate discussion of numerical aspects, we refer the reader to the appendix.

3.1 Description of the Model

Following Kantor and Kardar [30], we study a \canonical" ensemble (i.e. having a con-

stant number of monomers) of polymers with quenched heterogeneity. The polymers are

modeled as self-avoiding chains on a square lattice. Each polymer chain is formed from

two types of monomers, labeled by q

i

= �1

1

, and subject to a short range interaction,

H

I

=

N

X

i=0

X

j 6=i

q

i

q

j

�(R

i

�R

j

) ; (3.1)

where �(R

i

�R

j

) = 1 ifR

i

and R

j

are adjoining lattice sites (but i and j are not adjacent

in position along the sequence) and �(R

i

�R

j

) = 0 otherwise

2

. The only homogeneous

interaction is the repulsion caused by the constraint of self-avoidance. Our interaction

Hamiltonian, in which like charges repel and opposite ones attract, corresponds to strongly

screened Coulomb interactions. This is in contrast to most two-letter models, i.e. models

consisting on two monomer types [31]{[34], which try to simulate hydrophobic e�ects.

The screened Coulomb case may be relevant to proteins: Three of the 20 natural amino-

acids are positively charged, two are negatively charged, and the rest are neutral [35]. In

addition, the screening length in biological solvents is often quite small.

3.2 Issues to be Tested

How do these heterogeneous interactions a�ect the �-collapse of a polymer? This is the

basic question that we would like to investigate. In particular, we will address the following

issues:

1

The thermodynamical properties of the model system depend only on the ratio q

2

i

=T . We therefore

choose arbitrary units in which q

2

i

= 1, and measure the temperature relative to these units.

2

The interaction between monomers adjacent along the chain adds a constant term to the energy for

all conformations of a certain quench. Discarding this term enables us to use a common energy scale for

all quenches.

12



1. For \neutral" polymers (i.e. with equal number of positive and negative charges),

we shall �nd that the polymer undergoes a \standard" �-transition from a self-

avoiding walk (with �

SAW

= 0:75) to a compact state (�

compact

= 0:5), and explore

its properties | the �-temperature T

�

and the critical exponent �

�

. Our main �nding

is that �

�

seems to be di�erent from its value for homopolymer collapse. In other

words, we �nd that the randomness may be a relevant perturbation at the �-point.

2. For \charged" polymers, we quantify the asymmetry in the amount of positive and

negative charges by X � jN

+

�N

�

j=N (where N is here the number of monomers,

equal to the number of steps plus one). For moderate values of X we shall see that

the �-transition still exists, with the transition temperature T

�

decreasing with X.

However, there is a critical value X

cr

above which there is no collapse | the chains

are SAWs at both high and low temperatures. This is in accordance with results

for the 3-d case [30].

3. We will try to explore the energy landscape of the polymers, in search of a possible

freezing transition. Among the observables measured for this purpose are the x(T )

parameter (de�ned below), which estimates the number of relevant con�gurations

at a given temperature, and Q

��

(likewise), a measure of the similarity between

di�erent con�gurations. We do not obtain conclusive evidence for the existence of

a freezing transition.

3.3 Numerical Methods

The calculation of thermodynamic quantities is achieved as follows:

� For chain lengths of up to 15 steps (16 monomers), we use complete enumeration

of all possible spatial conformations, and average over all possible charge sequences

(quenches) of a given net charge.

� For chain lengths of up to 23 steps, we use complete enumeration of all possible

conformations, and average over a limited number (20-100) of quenches of a given

net charge.

� For chain lengths of up to 99 steps (100 monomers), we use Monte Carlo simulation

and average the results over a limited number of quenches.

13



3.3.1 Complete Enumeration

In the exact enumeration process, we examine all possible spatial conformations of a chain

of a given length. The number of these conformations, as seen from Eq. 2.13, grows expo-

nentially with the chain length N . We take advantage of lattice symmetries to reduce the

number of independent con�gurations. Thus, for a chain of 15 steps (16 monomers) we

have to enumerate over 802,075 di�erent con�gurations (unrelated by symmetry). The

number of quenches of a certain net charge, for a chain of N monomers, is given by

 

N

N

+

!

=

 

N

N

�

!

, giving, for example, 12870 neutral quenches for 16 monomers. For

this case we get a total of roughly 10

10

possibilities. To the best of our knowledge, previ-

ous authors have not performed a complete enumeration of con�gurations and quenches

for this chain length. Some [4] have reached shorter chain lengths, while others have

enumerated a limited number of quenches or a limited part of the conformational space

[8] [31] [34] , restricting their study to compact con�gurations only.

The conformational enumeration process uses a depth-�rst algorithm [4], which seeks

the longest branch of the self-avoiding walk. The algorithm backtracks either when the

full chain of a given length has been generated or there is a dead-end due to an excluded-

volume violation. At each step, the measured quantities (for example, the energy) are

calculated by di�erences, that is, by calculating the change caused by the addition of

a new monomer or the subtraction of one. The values are accumulated in a histogram,

which is used later to calculate thermal averages at any given temperature. These averages

are averaged again | this time over the possible quenches. We refer the reader to the

appendix for further details of the numerical procedure.

3.3.2 Monte Carlo Simulation

In our simulation, we use a dynamic Monte Carlo (MC) method known as the \pivot" al-

gorithm [27] [37] [38], described schematically in Fig. 3: Starting from some con�guration

of a SAW, we randomly select one site of the walk. A symmetry operation of the lattice

(rotation or re
ection) is applied to the part of the walk subsequent to the selected site,

using this site as the origin. The choice of this symmetry operation is random. If the

resulting walk is self-avoiding, it is accepted with a probability given (according to the

14



Metropolis method) by

p =

(

1 for E

new

� E

old

e

(E

old

�E

new

)=T

for E

new

> E

old

:

(3.2)

If the new walk is rejected, the old walk is counted once again. In each such iteration,

Figure 3: A \pivot" move on a self-avoiding chain. In this case, the move is a rotation of 90 degrees.

all observables are calculated and their thermodynamic mean value is obtained by aver-

aging over all con�gurations counted (and later over di�erent quenches). This process is

performed for various temperatures, with the number of attempted moves in the range

10,000{300,000 (depending on temperature and chain length), and with 1 to 100 indepen-

dent \runs" (series of such moves starting from an initial \rod" con�guration) | needed

because the algorithm gets stuck in local minima, at times. In each run, a prede�ned

number of �rst samples is discarded, in order to remove the bias of initial conditions.

In order to verify the validity of the results and to obtain error estimates, we measure

the correlation time | the time (in MC steps) needed for the decay of auto-correlation

functions of the observables. For further details of the numerical procedure, we again

refer the reader to the appendix.
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4 Study of the �-Transition: Results and Discussion

In this section we �nd evidence for a �-transition of a neutral heteropolymer, which is

a tricritical phase transition, and estimate the �-temperature and the critical exponent

�

�

, which seems to have a di�erent value from the homopolymeric case. We then turn

to polymers having some net charge, and examine their collapse. We observe that the

�-transition persists up to some value X

cr

of the excess charge, with the transition tem-

perature decreasing with X. Above X

cr

there is no longer a �-transition.

4.1 Neutral Chains - Evidence of a Collapse

We �rst seek evidence of a collapse. We expect the polymer to be swollen (SAW-like, with

�

SAW

= 0:75) at high temperature, and collapse to a compact shape (�

compact

= 1=d = 0:5)

when we lower the temperature. Such evidence is not hard to �nd. Figs. 4{5 are an

example: They show, respectively, the squared radius of gyration and end-to-end distance,

both divided by the chain length, vs. the temperature, for various chain lengths. When

the polymer is compact, we expect R

2

g

=N � R

2

ee

=N � const, i.e. the value is independent

of chain length N . On the other hand, when the polymer is swollen we should get

R

2

g

=N � R

2

ee

=N � N

0:5

, and the curves for di�erent chain lengths should depart, with

a higher value the higher the chain length. These estimates are evident quite nicely in

Fig. 4, describing R

2

g

=N . Fig. 5 includes a disturbing slight modi�cation: In the collapsed

region, R

2

ee

=N decreases with N , a result that would imply � < 0:5 if we assume an

exponential behavior R

ee

� N

�

. This may be a short-chain feature of the end-to-end

distance, as contemplated in [25], where the same phenomenon was encountered (See also

[47]).

We further show the energy per step E=N and the heat capacity per step C=N

1

. This

is done in Figs. 6{7. The compactization is accompanied by a peak in the heat capacity,

which shifts towards higher T and becomes higher for longer chains. This peak is another

indication of the phase transition.

When comparing our results for R

2

g

, E and C with those for two-dimensional ho-

mopolymers, as seen, for example, in [13], we must note the qualitative similarity in the

behavior of all observables. This further strengthens our expectation to observe in our

1

For the exact enumeration results, C is calculated by numerically di�erentiating the energy:

C = �E=�T , while in the MC simulation C is calculated from the 
uctuations of energy:

C = (




E

2

�

�




E

�

2

)=T

2

.
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model, too, a tricritical phase transition as seen in the homopolymer case [13].

A visualization of the collapse transition is given by viewing two arbitrary conforma-

tions of a 50-monomer neutral polymer, sampled by the MC process, at T = 2 (\high

temperature") and at T = 0:6 (\low temperature"). In Fig. 8 we see that the high

temperature conformation is just a regular self-avoiding walk, whereas Fig. 9 depicts a

conformation at a low temperature, where the polymer is very compact, with almost every

monomer �nding neighbors of the opposite charge.
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Figure 4: Squared radius of gyration, divided by chain length, for neutral polymers. Distances are

measured in lattice constants, temperature is normalized by monomer interaction energy. Curves are for

all quenches (unless stated otherwise) and the following number of monomers (from bottom right) : 6

, 8 , 10 , 12 , 14 , 16 , 18 (100 quenches) , 20 (100 quenches enumeration, 50 quenches MC) , 22 (100

quenches) , 24 (20 quenches) , 26 (50 quenches), 36 (25 quenches) , 50 (10 quenches) , 80 (10 quenches)

, 100 (10 quenches). Solid lines represent results of enumeration, connected circles represent results of

Monte Carlo simulation.
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Figure 5: Squared end-to-end distance, divided by chain length, for neutral polymers. Data is from

enumeration only. Distances are measured in lattice constants, temperature is normalized by monomer

interaction energy. Curves are for all quenches (unless stated otherwise) and the following number of

monomers (from bottom right) : 6 , 8 , 10 , 12 , 14 , 16 , 18 (100 quenches) , 20 (100 quenches) , 22 (100

quenches) , 24 (20 quenches).
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Figure 6: Energy divided by chain length, for neutral polymers. Curves are for all quenches (unless

stated otherwise) and the following number of monomers (from top left) : 6 , 8 , 10 , 12 , 14 , 16 , 18 (100

sequences) , 20 (100 quenches enumeration, 50 quenches MC) , 22 (100 quenches) , 24 (20 quenches) ,

26 (50 quenches), 36 (25 quenches) , 50 (10 quenches) , 80 (10 quenches) , 100 (10 quenches). Solid lines

represent results of enumeration, connected circles represent results of Monte Carlo simulation.
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Figure 7: Heat capacity divided by chain length, for neutral polymers. Curves are for all quenches

(unless stated otherwise) and the following number of monomers (from bottom right) : 6 , 8 , 10 , 12

, 14 , 16 , 18 (100 quenches) , 20 (100 quenches enumeration, 50 quenches MC) , 22 (100 quenches) ,

24 (20 quenches) , 26 (50 quenches), 36 (25 quenches) , 50 (10 quenches) , 80 (10 quenches) , 100 (10

quenches). Solid lines represent results of enumeration, connected circles represent results of Monte Carlo

simulation.
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Figure 8: Conformation of a neutral 50-monomer polymer at T = 2, obtained by MC simulation.

Oppositely charged monomers are denoted by dark and light �lled circles.

Figure 9: Conformation of a neutral 50-monomer polymer at T = 0:6, obtained by MC simulation.

Oppositely charged monomers are denoted by dark and light �lled circles.
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4.2 Parameters of the �-Transition

We now wish to validate the assumption that the collapse observed is indeed a �-transition.

If so, it should behave as a tricritical phase transition, as shown both theoretically [17]

and numerically [13] (See also Section 2.3). We also wish to �nd the parameters of this

transition, in particular the �-temperature T

�

and the critical exponent �

�

which describes

the scaling of the radius of gyration at the �-point.

Our �rst step is to try and estimate the transition temperature. We note that we are

unable here to use the simple method applied in the 3-d case [30], which is to observe

the intersection of the graphs of R

2

g

=N vs. T for di�erent lengths (using the facts that

�

ideal

= �

�

= 0:5 and �

SAW

> �

�

> �

compact

). This is because in the 2-d case, �

compact

=

�

ideal

= 0:5. Moreover, unlike in 3-d, it is believed that for 2-d, �

�

6= �

ideal

, and the 2-d

value of �

�

is not known a-priori.

Thus, we are forced to use other methods, the �rst of which is to identify the transition

temperature T

�

with the position of the heat-capacity maxima (Fig. 7), and look for the

limit of in�nite chain length, which is expected to be the critical temperature. As depicted

in Fig. 10, the N !1 limit seems to exist, but a precise determination of T

�

(1) is quite

impossible. This is possibly due to two reasons:

� The self-averaging of C(T ) over di�erent quenches is quite slow for T � T

�

, leading

to variations in the position of the peak.

� The precision of the MC simulation deteriorates for low temperature and long chains

(see appendix), giving large errors in the estimation of the peak position.

Thus, we give up the attempt to �t our results to the theoretical curve [13]:

T

�

(1)� T

�

(N) �

1

N

�

�

; (4.1)

where �

�

is a crossover exponent. We settle for observing that T

�

probably lies in the

range 0:8� 0:9 and seek another method of estimation.

Such a method for accurately estimating T

�

and �

�

, which at the same time helps

validate the assumption of a tricritical transition, is by using �nite-size scaling analysis of

the observables, e.g. of R

2

g

. In this technique, the expected behavior of a �nite system is

described in terms of a scaling theory involving the critical exponents of the corresponding

in�nite system. Based on the general theory for tricritical phase transitions, it has been
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Figure 10: Location of the heat-capacity peak vs. inverse chain length, for a neutral polymer. Data is

taken from Fig. 7.

shown theoretically [17] [18] and veri�ed numerically for homopolymers [13] [42] [44] that

the radius of gyration for di�erent temperatures and chain lengths can be described using

a single function as follows:

R

2

g

=N

2�

�

= f(N

�

�

� ) ; (4.2)

for N !1; � ! 0, where � � jT � T

�

j=T

�

, �

�

is the correlation length exponent at the

transition temperature T

�

, and �

�

is the crossover exponent. The scaling function f(x)

should have the following limits:

f(x) =

8

>

<

>

:

const for x! 0

x

�

+

for x!1 ; T > � ; �

+

= 2(�

SAW

� �

�

)=�

�

x

�

�

for x!1 ; T < � ; �

�

= 2(�

compact

� �

�

)=�

�

:

(4.3)

It is easily seen that the asymptotes of f(x) at high and low temperatures reconstitute

the behavior of a SAW and of a compact chain, respectively.

Fig. 11 depicts the scaling function R

2

g

=N

2�

�

vs. the scaling variable N

�

�

� , using

data of all chain lengths (7{99) for temperatures satisfying � � 0:25, and choosing the

parameters T

�

, �

�

and �

�

so that the points fall on two converging lines as required. As

seen in the �gure, a very good data collapse is achieved for T

�

= 0:83 , �

�

= 0:60 and

�

�

= 0:64, and the resulting lines also approach the slopes of the theoretical asymptotes.
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Figure 11: Log-log plot of the scaling function R

2

g

=N

2�

�

vs. the scaling variable N

�

�

� , close to the

tricritical temperature. Data from chain lengths 7{99 is used, with values of � up to 0.25. Parameters

used: �

�

= 0:60; T

�

= 0:83; �

�

= 0:64. Plus signs denote enumeration data, circles denote MC data.

Dashed lines show theoretical asymptotes (Eq. 4.3), with amplitude �tted to data.

It should be further pointed out that the scaling behavior is found to be very sensitive

to the value of �

�

, slightly less to the value of T

�

, and quite insensitive to the choice of

�

�

. This is demonstrated in Fig. 12, where we have chosen �

�

= 0:57. It is seen that

the points, which previously lay on two converging lines, now diverge. More generally, we

may state that the scaling behavior worsens as �

�

departs from 0.60 and T

�

departs from

0.83. After examining various �gures of the like of Fig. 12, we evaluate the transition

parameters to be:

T

�

= 0:83 � 0:02

�

�

= 0:60 � 0:02:

where the error bars were set according to the parameter values where data did not

collapse anymore (according to our subjective judgment). We did not evaluate �

�

, due to

the aforementioned insensitivity of the results to its value.

We verify these values by plotting R

2

g

=N

2�

�

vs. T for various chain lengths (Fig. 13).

The curves should intersect at T = T

�

(because �

SAW

> �

�

> �

compact

). This is indeed

what happens, within the estimated errors of the parameters and of the simulated data.

Another veri�cation for the estimation of T

�

and �

�

is achieved by examining the

graph of logR

g

vs. logN at a given temperature. At T = T

�

we expect a straight line,

whose slope is equal to �

�

, whereas for T slightly higher (lower) than T

�

, the slope should
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Figure 12: Log-log plot of the scaling function R

2

g

=N

2�

�

vs. the scaling variable N

�

�

� , close to the

tricritical temperature. Data from chain lengths 7{99 is used, with values of � up to 0.25. Parameters

used: �

�

= 0:57 T

�

= 0:83 �

�

= 0:64. Plus signs denote enumeration data, circles denote MC data.

increase (decrease) with N | recall Fig. 13. Fig. 14 con�rms our assumption of linearity,

with a least-mean-square �t giving � = 0:60 at T = 0:83. In Table 1 (after [42]) we

examine the quality of the linear �tting at the temperature range 0.77{0.85. This is done

by estimating � separately for the lengths 9{25 and 35{99, and also calculating the sum

of squared deviations between data and linear �tting (denoted by �), for the various

temperatures. At T

�

, the estimates of � from the two ranges of chain length should

converge, and deviation from linearity should be minimal. Based on these requirements,

we can estimate T

�

to be in the range 0.79{0.83, and �

�

in the range 0.58{0.61. This

agrees well with our scaling-based estimation, which we take to be our most precise one,

mainly because it is obtained using many data samples at once (this decision is somewhat

tentative, since one might claim that the estimation of parameters using a scaling analysis

depends on our subjective choice of a speci�c plot as giving the \right" behavior, while

others are judged as \wrong").
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Figure 13: R

2

g

=N

2�

�

vs. temperature, for various chain lengths (neutral polymers). The graphs inter-

sect at the �-point. Curves are for all quenches (unless stated otherwise) and the following number of

monomers (from bottom right) : 8 , 10 , 12 , 14 , 16 , 18 (100 sequences) , 20 (100 quenches enumeration,

50 quenches MC) , 22 (100 quenches) , 24 (20 quenches) , 26 (50 quenches), 36 (25 quenches) , 50 (10

quenches) , 80 (10 quenches) , 100 (10 quenches). Solid lines represent results of enumeration, connected

circles represent results of Monte Carlo simulation.
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T 0.77 0.79 0.81 0.83 0.85

�(L = 9 � 25) 0.579 0.588 0.593 0.602 0.608

�(L = 35 � 99) 0.574 0.585 0.596 0.607 0.617

� 4.0 2.59 2.71 2.44 4.69

Table 1: Results of the exponent � for the radius of gyration, based on a linear �tting R

g

� N

�

, near

the suspected critical temperature. Given are the estimates for two di�erent ranges of chain-length, and

also the sum of data deviations (squared) from the linear curve.
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4.3 The E�ect of Excess Charge

What happens to the collapse transition if the charges on the chain are not exactly

balanced (N

+

6= N

�

) ? For such \charged" polymers, we measure the asymmetry in the

amount of positive and negative charges by X � jN

+

�N

�

j=N (where N is the number of

monomers). Following the results for 3-d [30], we expect that for moderate values of X , a

�-transition still exists, with the transition temperature T

�

decreasing with X. However,

there will exist a critical value X

cr

above which no collapse will be seen | the chains will

be SAWs at both high and low temperatures.

We have repeated the procedures of the previous section for the following values of X:

0 (neutral),

1

4

,

1

3

,

2

5

,

1

2

,

3

5

,

2

3

,

4

5

. Figs. 15{18 show R

2

g

=N

2�

�

vs. temperature (various

chain lengths), for four increasing values of X. It can be seen that for X =

1

4

and X =

1

3

,

we get the familiar intersection of curves, as observed for the neutral chains (Fig. 13). This

indicates a �-transition, with the same exponent �

�

= 0:6, but with T

�

decreasing with

X, as predicted. For X =

1

2

the results are rather ambiguous, with their interpretation

relying on how much we trust the Monte Carlo simulation at low temperatures. AtX =

2

3

,

however, there can be no doubt: The curves do not intersect. This means that the chain

does not display �-behavior no matter how much we lower the temperature. It follows,

that the chain does not collapse (� = 0:5) either

2

.

We have estimated the �-temperature for the various X values using the aforemen-

tioned methods | the peak of C(T ), scaling analysis and the intersection of R

2

g

=N

2�

�

curves. An approximate phase diagram in the (X;T ) plane is depicted in Fig. 19. Note

that the estimated error increases with X. This is due to the decrease in T

�

, which a�ects

the quality of the MC simulation, and also possibly due to the transition itself which

changes its nature and \deteriorates" for highly charged chains, before disappearing at

X

cr

� 0:6.

2

For X values that did not yield compactization, we have attempted also to obtain a di�erent value

for �

�

using scaling analysis | but in vain.
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Figure 15: R

2

g

=N

2�

�

vs. temperature for X =

1

4

and various chain lengths. Curves are for all quenches

(unless stated otherwise) and the following number of monomers (from bottom right) : 8 , 16 , 24

(50 quenches) , 32 (25 quenches) , 40 (25 quenches), 56 (10 quenches). Solid lines represent results of

enumeration, connected circles represent results of Monte Carlo simulation.
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Figure 16: R

2

g

=N

2�

�

vs. temperature for X =

1

3

and various chain lengths. Curves are for all quenches

(unless stated otherwise) and the following number of monomers (from bottom right) : 9 , 12 , 15 , 18

(100 quenches) , 21 (100 quenches) , 24 (25 quenches) , 27 (25 quenches), 30 (25 quenches) , 45 (25

quenches) , 60 (25 quenches). Solid lines represent results of enumeration, connected circles represent

results of Monte Carlo simulation.
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Figure 17: R

2

g

=N

2�

�

vs. temperature for X =

1

2

and various chain lengths. Curves are for all quenches

(unless stated otherwise) and the following number of monomers (from bottom right) : 12 , 20 (100

quenches) , 28 (25 quenches) , 36 (25 quenches) , 48 (25 quenches). Solid lines represent results of

enumeration, connected circles represent results of Monte Carlo simulation.
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Figure 18: R

2

g

=N

2�

�

vs. temperature for X =

2

3

and various chain lengths. Curves are for all quenches

(unless stated otherwise) and the following number of monomers (from bottom right) : 12 , 18 , 24

(15 quenches) , 30 (15 quenches) , 36 (15 quenches) , 42 (15 quenches). Solid lines represent results of

enumeration, connected circles represent results of Monte Carlo simulation.
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Figure 19: Phase diagram of a random heteropolymer in the plane of temperature (T) and excess charge

(X). Vertical bars indicate estimated uncertainties in �-temperature. The lighter shaded area indicates

X values where the results are rather ambiguous, see for example Fig. 17.
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4.4 Discussion

We have seen that a neutral polymer on a square lattice undergoes a tricritical �-transition

at a temperature T

�

= 0:83 � 0:02 , with a critical exponent �

�

= 0:60 � 0:02. We take

this value to be di�erent from the homopolymer value. A glance at the various results for

�

homo

�

(see Table 2) may render this observation rather suspicious | the estimates span

a vast range, with a value of 0.6 not unreasonable to be obtained. However, two reasons

make us believe that our value is indeed di�erent: First, of the results quoted in Table

2, the most recent and reliable simulations (to our judgment), e.g. [42], give estimates

in the range 0.55-0.58. Second, we have used our own enumeration and MC procedures

(properly altered, of-course) to simulate homopolymers, and obtained the result that

�

homo

�

= 0:55 � 0:01. Therefore, our conclusion is that �

hetero

�

6= �

homo

�

.

How does this observation withstand theoretical predictions? As discussed in section

2.4, there is no clear answer concerning the relevance of random interactions to the collapse

transition. Kantor and Kardar [22] note that the relevance of the interactions is controlled

by the sign of a scaling exponent y

I

= 1 � d� , which means that for � > 1=2 , the

interactions are irrelevant at d = 2. Stepanow [23] states that quenched randomness

results in repulsion, but computes the swelling exponent for d < 2 only.

While the analytical attempts at the problem are sporadic, the numerical ones are

practically non-existing. A partially related work was done by Victor and Imbert [50]:

They perform a MC simulation of 2-d polymers with an alternating sequence of charges,

interacting through a logarithmic (long range) potential. The alternation of charges leads

to an e�ective short-range (\dipole") interaction, which is similar to our model, though

lacking the randomness. They obtain �

�

= 0:59 � 0:01, a value very close to ours.

For non-neutral polymers, we have observed the decrease in �-temperature with in-

creasing excess charge, up-to a value X

cr

where the collapse vanishes and SAW behavior

prevails at all temperatures. We have drawn the phase diagram in (X;T ) plane and found

it similar to that obtained for 3-d by Kantor and Kardar [30]. A qualitatively similar phase

diagram is obtained by Camacho and Schanke [33] for a 2-letter H-P model.
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source result for �

�

Vilanove & Rondelez [28] 0:56 � 0:01

Ishinabe [25] 0:503 � 0:01

de Gennes [17] 0:505 : : :

Baumgartner [13] 0:51

Meirovitch & Lim [42] 0:5795 � 0:0030

0:574 � 0:006

Roy et al. [43]

7

12

= 0:583 : : :

Barat et al. [44] 0:6� 0:2

Derrida & Saleur [45] 0:55 � 0:01

Kholodenko & Freed [46] 0:55 � 0:01

Privman [47] 0:535 � 0:025

Seno & Stella [48] 0:57 � 0:015

Marqusee & Deutch [19]

2

3

= 0:666 : : :

Table 2: Various estimates of �

�

for homopolymers
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5 Examination of the Energy Landscape: Results

and Discussion

We would now like to investigate in more detail the energy landscape of the (neutral)

polymers, and in particular try to �nd possible evidence of a freezing transition.

5.1 The Ground State

First of all, we examine the ground state of neutral polymers. The mean ground state

energy E

g

(averaged over the di�erent quenches) is shown vs. chain length in Fig. 20. As

would be expected, it decreases monotonically with the increase in number of monomers.

The error bars depict the standard deviations �E

g

, which are of the order of 1 | i.e.

E

g

is highly self-averaging. If we are to give a phenomenological prediction for the N

dependence of E

g

(at least for large N), we would write

E

g

� aN + bN

1=2

; (5.1)

where the �rst term represents \bulk" e�ects and the second one corresponds to a surface

energy. To validate this estimate, we plot E

g

=N vs. N

�1=2

, expecting a straight line

with slope b, intersecting the y axis at a (E

g

=N � a + bN

�1=2

). The results (Fig. 21)

are quite satisfactory: For large N (small N

�1=2

) linearity is observed, and we obtain

a � �0:87 , b � 1:3. The value of a is quite a reasonable one, as the homopolymer case

gives a = �1, while in the random case, the connectivity of the polymer chain does not

allow all monomers to choose optimal (i.e. of opposite sign) neighbors, thus giving rise to

the phenomenon of frustration and yielding a > �1.

Another subject of interest is the degeneracy of the ground state. In other words

| How many native states does a sequence have? Fig. 22 shows the distribution of

degeneracy for all neutral 16-monomer chains. The main feature of the histogram is that

the occurrence of a certain degeneracy tends to decrease when the degeneracy increases.

That is, there are more sequences that have only one or two native structures than have 20

or 50. It would be correct to say that a typical sequence has \a few" native con�gurations.

Similar results were found for the 2-letter H-P model [4] [31] . The degeneracy distribution

is similar for other chain lengths. The average ground state degeneracy seems to increase

slowly with chain length. However, even this observation should be regarded with caution,

due to the large 
uctuations of the values.
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Figure 20: Average ground state energy of a neutral polymer vs. polymer length. Standard deviations

of quenched averages are shown as error bars. For N < 17 , averaging is over all possible neutral quenches.

For N � 17 averaging is over 100 neutral quenches.
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polymer length. Straight line shows linear �tting, when discarding small values of N .
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Figure 22: Distribution of ground state degeneracies for all neutral 16-monomer chains. Non-zero values

are found for degeneracies as high as 720, but only the distribution up to 100 is shown here.
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5.2 The Shape of the Energy Landscape, Search for Evidence

of Freezing

5.2.1 Basic De�nitions

As mentioned in section 2.4, one of the most remarkable features of heteropolymer chains

is the possible existence of a freezing transition at some �nite temperature T

f

[8] [7], below

which the con�gurational entropy per monomer vanishes, and a few conformations with

low energy dominate. Applying a kinetic description, we say that the heteropolymer can

fold into its ground state or, instead, \freeze" into one of a few misfolded states. When

describing the phase diagram, we may say that the compact state has split into several

new phases: a liquid-like \molten globule", the native ground state, and a possible collec-

tion of misfolded \frozen" states. Analytical investigation of random heteropolymers has

shown analogy between their physics and models of spin glasses. The freezing transition

of heteropolymers is assumed to be analogous to the glass transition in Derrida's random

energy model. In this model, each of a set of discrete states is given an energy chosen

randomly from a Gaussian distribution. The statistical independence of di�erent nearby

states leads to an extraordinarily rough energy landscape, in which minima can be sur-

rounded by high barriers. In addition, the states that \just happen" to have the lowest

energy need not resemble one another by any measure. This description is considered a

very good model for the folding landscape in the conformational space of a heteropoly-

mer with a random sequence [7]. The model exhibits a phase transition similar to glass

transitions observed in the laboratory. The transition is basically an entropy crisis: The

number of thermally available states decreases so fast at the transition temperature that

the system freezes into one of a small number of states | exactly which ones depends on

the randomness of the landscape and the thermal history.

To �nd evidence of freezing in a numerical model, we introduce two parameters [8]:

1. To characterize the number of conformations which are thermodynamically relevant

at a given temperature, we use the x parameter, de�ned

x(T ) = 1�

X

k

p

2

k

; (5.2)

where p

k

= e

�E

k

=T

=Z(T ) is the Boltzmann weighted probability for a given confor-

mation k. It can easily be seen that at high temperature when many conformations
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have probabilities of the same order of magnitude, x � 1. In the opposite case,

where only one conformation dominates, we get x � 0. In the case of a freezing

transition at some temperature T

f

, then according to [8], when averaging over all

quenches we should encounter the following behavior:

hx(T )i =

(

1 for T > T

f

T

T

f

for T < T

f

:

(5.3)

2. An important feature of the frozen state of heteropolymers (when it exists) is that

for a given sequence, the states with the lowest energies (and only these states

are relevant in the frozen phase) are structurally di�erent. To test this feature we

measure similarity overlap between two conformations using the parameter

Q

��

=

N

common

(�; �)

N

max

; (5.4)

where N

common

is the number of \contacts" which are the same in conformations

� and � (i.e. monomers i and j are nearest neighbors in both conformations),

and N

max

= max[N

common

(�;�); N

common

(�; �)]. When examining the low-energy

conformations in a frozen phase, we expect to get low similarity between them, i.e.

Q � 0. A value Q � 1 would indicate that the low energy conformations are close

in structure to each other, meaning that the random energy model is not applicable

to the system.

We will just mention, that when an analytical investigation of heteropolymers is made,

in analogy with spin glasses, using the so-called replica technique, then parameters anal-

ogous to both x and Q appear in the calculations. For more details, see e.g. [9].

5.2.2 Should We Expect a Freezing Transition for Our Model ?

Although evidence of freezing, both analytical and numerical, has been found for various

heteropolymer models, it has been shown [24] that the analogy between the energy land-

scape of a heteropolymer and the random energy model is not universal | it depends on

the details of the heteropolymer model studied. In particular, there are a few features of

our speci�c model which cast doubts on our prospects to observe freezing:

1. Lack of strong homopolymer attraction. The presence of an attractive ho-

mopolymer term in the Hamiltonian is assumed in all models which achieve a freez-

ing transition. This attraction leads to the existence of a \molten globule" { a
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compact phase with a large number of relevant conformations. Lowering the tem-

perature then gives rise to heteropolymeric e�ects, and may create freezing [51] [52].

This assumption also allows Shakhnovich [8] to enumerate only compact con�gura-

tions.

2. Lack of su�cient heterogeneity. A 2-letter model may not be heterogeneous

enough to facilitate freezing. It is stated in [51] that the quenched disorder in the

polymeric sequence introduces frustrations, which can lead the system to a frozen

state. However, in the absence of su�cient types of charges, 
exibility may enable

the polymer to avoid frustration, and thus can suppress the freezing transition sig-

ni�cantly. A similar claim is made by others [52]{[54]. The problem of heterogeneity

can also be described from another point of view: To obtain freezing, we must have

an energy spectrum with a continuous part, below which lie a few discrete states,

su�ciently far apart | such is the spectrum resulting from the random energy

model. To obtain such a spectrum (or as similar as possible), most models use more

charge-types (e.g. 20 | the number of amino acids in a protein, as compared to

our 2-charges model) or use randomly distributed interactions between monomers.

3. Working on a two-dimensional lattice. It appears [2] [55] that formation of a

unique structure in heteropolymers in very sensitive to space dimensionality, with

d = 2 being a marginal and nonuniversal case that strongly depends upon the type

of lattice, type of sequence alphabet and so on. This is due to the fact that for d > 2

the majority of contacts are nonlocal, while for d < 2 the majority of contacts are

local.

5.2.3 Results

We �rst examine the x parameter, which gives us indication of the number of thermo-

dynamically relevant states (con�gurations) at each temperature. The value of hx(T )i

averaged over all neutral quenches of a 16-monomer chain, is depicted in Fig. 23. Also

shown are the average radius of gyration and heat capacity. It is seen that x(T ) does

not reach a zero value | this is of-course due to the multiple ground state degeneracy of

many sequences, as noted above. Another feature is that the temperature range where x

decreases overlaps in general the range where the polymer collapse occurs | R

2

g

decreases

and C has a peak. Therefore we cannot establish an estimate for a possible freezing tem-
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perature. A relevant claim is made in [4], that when dealing with the H-P model, folding

is the dominant factor in the decrease in number of relevant states.
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Figure 23: Squared radius of gyration (top), Heat capacity per monomer (middle) and x parameter

(bottom) vs. temperature. Values are averaged over all quenches for neutral 16-monomer chains.

Next, we look at the energy spectrum of one neutral polymer (16-monomers, sequence

chosen at random). Fig. 24 shows the energy levels and their occupation (logarithmic

scale). The spectrum is seen to be very smooth and \continuous" (although it has, of-

course, the inherent discreteness of the lattice model) | We do not obtain a number of

singly-occupied states and a gap between them and the continuous regime, and we do not

expect this energy spectrum to support freezing.

We also examine the similarity between the di�erent ground-state (\native") confor-

mations of a given sequence. Fig. 25 depicts the distribution of the average similarity

between native states of a neutral 16-monomer chain. The averages (hQi) were calculated

for 1000 quenches, and put in the histogram shown. It is seen that the di�erent native

states of a given chain are, on the average, structurally quite di�erent from each other (Q

values centered around Q � 0:5). A similar result has been reported for the 2-letter H-P

model [4] (using a di�erent measure for the distance between con�gurations). A small Q
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value means that the minimum-energy states of the polymer are scattered randomly in

its conformation space, in accordance with the random energy model. However, we �nd

it hard to determine to what degree should a value of Q � 0:5 be regarded as \low".
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Figure 24: Logarithm of occupation of energy levels, for a 16-monomer neutral polymer (sequence

chosen at random).
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Figure 25: Distribution of average similarity between native states of a neutral 16-monomer chain. The
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Q

�

) were calculated for 1000 quenches, and put in the histogram shown.
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5.2.4 Discussion

We have not found much evidence for the existence of a freezing transition. Instead,

results are quite ambiguous:

� On one hand, we have seen that the histogram of ground-state degeneracies is de-

creasing, meaning that many sequences have only a few native states. The average

overlap between these native conformations, described by the Q parameter, is not

high | hQi � 0:5, a value that, if we interpret it as \low", would lead us to believe

that low-energy conformations are structurally di�erent, as is the situation in the

random energy model.

� On the other hand, we have seen that many sequences have a large number of de-

generate ground states. Also, the typical energy spectrum of a neutral polymer

is far from similar to that obtained in the random energy model, and seems most

unprobable to support a freezing transition. Finally, we have not succeeded (using

the x parameter) to �nd a possible location of the freezing temperature T

f

, dis-

tinguishable from the location of the collapse temperature T

�

. These obstacles in

�nding conclusive evidence of freezing are in accordance with theoretical predictions

regarding some particular aspects of our model, as discussed above.

Thus, we are unable to ascertain that our model exhibits a freezing transition. We �nd

it more likely that it does not posses this feature.
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6 Conclusions and Future Prospects

We have investigated a two-dimensional lattice model of polymers, subject to a quenched

random short-range interaction. Our study follows the one done by Kantor and Kardar

[30] in three dimensions. The lower dimension allows us to enumerate longer polymer

chains: We explore all spatial conformations and charge quenches for a neutral polymer

16 monomers long, a procedure we have not seen in the literature to have been previously

performed. We also extend the study to issues they did not investigate | the estimation

of the critical exponent �

�

, and the possible existence of a glass-like freezing transition.

We have seen that a neutral polymer undergoes a tricritical �-transition at a temper-

ature T

�

= 0:83 � 0:02, with a critical exponent �

�

= 0:60 � 0:02. The value of �

�

seems

to be di�erent from its value for homopolymer collapse (for which there is a wide range of

estimates). This conclusion is supported by a simulation we performed of homopolymers.

If indeed �

homo

�

6= �

hetero

�

, this would mean that heterogeneity is a signi�cant perturbation

in this model. We have reviewed several theoretical references of possible relation to this

question, but they do not seem to point at a de�nite answer. This could be a subject for

future analytic study, using, perhaps, renormalization-group methods.

For non-neutral polymers, we have observed a decrease in the �-temperature with

increasing excess charge, up-to a value X

cr

where the collapse vanishes and SAW behavior

prevails at all temperatures. We have drawn the phase diagram in the (X;T ) plane and

found it similar to that obtained for 3-d [30].

We have investigated the ground state and the energy landscape of a neutral polymer,

in attempt to �nd evidence for the existence of a glass-like freezing transition for such a

polymer. We do not �nd much evidence for this transition, a result which is in accordance

with theoretical predictions for this model. Any attempt to observe a freezing phenomenon

would require altering the model. A recommended change to be tested is the addition

of a homopolymer-like attracting term in the Hamiltonian. This would raise the collapse

temperature T

�

and would possibly enable us to observe the freezing transition, should it

occur at some lower temperature (as is contemplated for models incorporating the H-P

interaction [32]).
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A Numerical Aspects of the Simulation Process

We will now discuss in more detail the various aspects of the numerical methods used

in our work: the complete enumeration and the Monte Carlo simulation. The basic

procedures are described in Section 3.3.

A.1 Enumeration of Spatial Con�gurations

In the exact enumeration process, we examine all possible spatial conformations for a chain

of a given length. The conformational enumeration process uses a depth-�rst algorithm

[4], which seeks the longest branch of the self-avoiding walk. The algorithm backtracks

either when the full chain of a given length has been generated or there is a dead-end

due to an excluded-volume violation. In order to reduce the number of mathematical

operations required for each walk, the calculation of the various quantities (E, R

2

g

etc.)

is done by calculating, at each step, certain di�erences, which are the changes caused by

the addition of a new monomer or the subtraction of one. For example, we keep variables

containing the sums of the x and y coordinates of the current walk, as well as their squares

(i.e.

P

i

x

i

;

P

i

y

i

;

P

i

x

i

2

;

P

i

y

i

2

). This enables us to calculate, for each full-length walk,

the radius of gyration thus:

R

2

g

=

1

N + 1

N

X

i=0

(x

2

i

+ y

2

i

)�

1

(N + 1)

2

[(

N

X

i=0

x

i

)

2

+ (

N

X

i=0

y

i

)

2

] : (A.1)

Similarly, we calculate at each step the di�erence in energy caused by the added new

monomer i

dE

i

=

X

j

q

i

q

j

(A.2)

for all monomers j nearest neighbors to i, but not adjacent along the chain. This enables

us to calculate the energy of each completed walk simply by using the current sum of

di�erences dE

i

.

For each walk of the desired length, we put the measured variables in a multi-rowed

histogram, whose columns are the discrete (�E = 1) energy levels. The �rst row of the

histogram contains the number of walks having each energy level (i.e. n(E

i

)), whereas the

other rows contain the summing of the various measured quantities for each energy level:

For example, column i in the second row of the histogram is equal to

P

j

R

2

g

(E

j

= E

i

).

Such histograms are created for each quench of charges, containing data of all possible
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conformations, and than put in a �le. This data is then used to calculate thermal averages

for the desired observables, at any given temperature. For example, to calculate the

average square radius of gyration at a temperature T we use

hR

2

g

i

T

=

1

Z

T

X

E

i

e

�E

i

=T

(

X

j

R

2

g

(E

j

= E

i

)) =

1

Z

T

X

E

i

e

�E

i

=T

hR

2

g

i

E

i

n(E

i

); (A.3)

where Z

T

=

P

E

i

e

�E

i

=T

n(E

i

), and average further over the di�erent quenches.

A.2 Monte Carlo Simulation

A.2.1 Basic De�nitions

Dynamic Monte Carlo methods [27] are based on some stochastic Markov process, where

subsequent con�gurations X

n

of the system are generated from the previous con�guration

fX ! X

;

! X

;;

g with some transition probability W (X ! X

;

). Various methods di�er

by the choice of the elementary step. For the choice of transition probability we require

the principle of detailed balance with the equilibrium distribution P

eq

(X):

P

eq

(X)W (X! X

;

) = P

eq

(X

;

)W (X

;

! X) : (A.4)

In the athermal case (pure SAW problem) each con�guration has exactly the same weight.

Then Eq. A.4 implies that the probability to select a motion X ! X

;

must be the same

as the probability for the inverse transition X

;

! X. If there is an additional energy

E(X) depending on the con�guration X, the equilibrium distribution is P

eq

� e

�E(X)=T

and hence Eq. A.4 leads to the requirement

W (X! X

;

)

W (X

;

! X)

= e

�[E(X

;

)�E(X)]=T

: (A.5)

Following Metropolis et al. [39], it is common practice to take the transition probability

as for the athermal case (which also results for the model in the limit T ! 1) but

multiply it with a factor e

�[E(X

;

)�E(X)]=T

if E(X

;

) � E(X) > 0 and leave it unchanged if

E(X

;

)� E(X) � 0.

In practice, at every step of the algorithm one performs a trial move X ! X

;

. If

W (X ! X

;

) is zero (SAW condition being violated), the old con�guration is counted

once more in the averaging, and the procedure is iterated. If W (X ! X

;

) is unity, the

new con�guration is accepted and counted in the averaging. If 0 < W < 1, we need a
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(pseudo-) random number � uniformly distributed between zero and one. We compare �

with W : if W � � we accept the new con�guration and count it, while if W � � we reject

the trial con�guration and again count once more the old con�guration.

In the limit where the number of con�gurations M generated tends to in�nity, the

states X generated with this procedure are distributed proportional to the equilibrium

distribution P

eq

(X), provided there is no problem with the ergodicity of the algorithm. The

canonical average of any observable A(X) is then approximated by the simple arithmetic

average

hAi � A =

1

M �M

0

M

X

t=M

0

+1

A

t

; (A.6)

which can be interpreted as a time average if we associate a (pseudo-) time variable t

with the label of successively generated con�gurations. Note, that in a dynamic MC

simulation, the starting con�guration is not representative of the equilibrium distribution

(e.g. one may start { as indeed we do { with a completely stretched-out chain). So the

system at the beginning of the simulation needs to be \equilibrated": This is why the

�rst M

0

con�gurations in Eq. A.6 are omitted from the averaging.

The sample mean A has a variance given by [37]:

Var(A) � 2C

AA

(0)

�

M �M

0

; (A.7)

where � is the relaxation time of the autocorrelation function

C

AA

(t) � hA

s

A

t+s

i � hAi

2

; (A.8)

which is typically assumed to decay exponentially.

A.2.2 Simulation of the Polymer Chain

After rather unsuccessful attempts to use two other algorithms, the \Slithering Snake"

method [27] and the relatively new method of Grassberger and Hagger [40]{[41], we have

arrived at using the \pivot" algorithm [27] [37] [38], described schematically in Fig. 3:

Starting from some con�guration of a SAW, we randomly select one site of the walk. A

symmetry operation of the lattice (rotation or re
ection) is applied to the part of the walk

subsequent to the selected site, using this site as the origin. The choice of this symmetry

operation is random.
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Various parameters used in the algorithm must be set correctly in order to overcome

a few speci�c problems:

1. A su�ciently large number of �rst con�gurations must be omitted from averaging,

to allow \equilibration".

2. At low temperatures, chains tend to get \stuck" in local energy minima and cul-

de-sacs (dead-ends). So, a number of independent runs must be performed at each

temperature to decrease the e�ect of this problem.

3. At each run, the number of iterations (attempted moves) must be su�cient for

the number of independent samples to be large enough, taking into account the

correlation between consecutive samples.

Using the various quality indicators described below, and noting that the severeness of

the problems above depends strongly on the chain length N and temperature T , we have

converged to the following values:

� Number of Runs =

A

T

, with A taken between 10 and 30.

� Number of iterations = B

N

2

T

, with B = 30 (For T > 1, the value taken is BN

2

).

� Number of (�rst) samples discarded = 0.2 times the number of iterations.

A.2.3 Quality Indicators

We will now discuss the quality indicators used in conjunction with our MC simulation.

The example used will be of a neutral 30-monomer chain, simulated at two extreme

temperatures: T = 10 and T = 0:4. The high temperature will enable us to compare our

results with the results of Madras and Sokal [37], who deal with the athermal (pure SAW

problem) case. The low temperature, on the other hand, will enable us to demonstrate

some of the problems encountered during the simulation | problems which are more

pronounced the lower the temperature.

The �rst indication we can get about the quality of the simulation is from simply

examining the raw samples obtained in the MC process. These samples are shown in

Figs. 26{29. The samples of energy and radius of gyration at high temperature (Figs.

26{27) are characterized by rapid changes, and seem to cover nicely their range of values:

For example, samples of E as high as +9 and as low as �8 can be observed.
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The situation is drastically di�erent at low temperature (Figs. 28{29). Here it is seen,

that after an initial collapse to some value, this value not only changes just slightly, but

changes occur just once in a few hundred or a few thousand iterations! This may imply,

that the limited number of values observed is not necessarily a reliable representation

of the limited con�guration space at low temperature, but may imply that the simu-

lated chain gets stuck at local minima, and rarely gets out to explore other subspaces of

con�guration space.

Another point arising from examining the samples, at both high and low temperatures,

is that the \equilibration" value taken, i.e. discarding of the �rst 20 percent of the samples,

is very much on the safe side, and no problems should occur regarding that issue.
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Figure 26: MC raw samples of energy, for a 30-monomer neutral chain (one quench), at T = 10.

A more quantitative indication for the quality of our simulation is achieved by exam-

ining the auto-correlation of the various sampled observables. Actually, we examine the

normalized autocorrelation function

�

AA

(t) =

C

AA

(t)

C

AA

(0)

; (A.9)

where C

AA

(t) is de�ned in Eq. A.8. This is shown for R

2

g

in Figs. 30{31. The �gures also

present the forecast made by Madras and Sokal, assuming an exponential decay of the

correlation function and assigning � the value quoted by them [37]:

� � AN

p

; A � 8 ; p � 0:2 (A.10)
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Figure 27: MC raw samples of squared radius of gyration, for a 30-monomer neutral chain (one quench),

at T = 10.

(giving � � 15 for L = 30). It is seen that at high temperature (Fig. 30) the measured

autocorrelation is \in the right ball-park" of the given prediction, with the actual function

decaying faster than the prediction at �rst, and then 
uctuating around zero value. At low

temperature (Fig. 31), on the other hand, correlation decays much slower than predicted

for the athermal case: It reaches 1=e value at a distance of more than 700 samples, and

0:1 at more than 2700. The meaning of this is obvious: At low temperature the samples

are highly correlated, and a much bigger number of samples has to be taken in order to

achieve a desired number of independent con�gurations.
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Figure 28: MC raw samples of energy, for a 30-monomer neutral chain (one quench), at T = 0:4.
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Figure 29: MC raw samples of squared radius of gyration, for a 30-monomer neutral chain (one quench),

at T = 0:4.
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Figure 30: Normalized auto-correlation of R

2

g

, for a 30-monomer neutral chain (one quench), at T = 10.

The theoretical curve follows after Eq. A.10.
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Figure 31: Normalized auto-correlation of R

2

g

, for a 30-monomer neutral chain (one quench), at T = 0:4.

The theoretical curve follows Eq. A.10.
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Additional criterions used are the fraction of accepted moves f and distribution of

this acceptance over the various chain sites f(k) (k being the site along the chain). The

values given in [37] are:

f � N

�p

; p � 0:2 ; (A.11)

f(k) �

n

N

n

k

n

N�k

; (A.12)

where n

M

is the number of M -step SAWs (see Eq. 2.13). For N = 30, the expected

(athermal) acceptance fraction is � 30

�0:2

� 50%. At T = 10, the total number of

accepted moves (after the \equilibration period") was indeed within 5 percent error of

this value. At T = 0:4, however, the number was more than ten times lower | i.e. ten

times as much samples must be taken to reach the same number of di�erent con�gurations.

The severity of the problem is made clearer by examining how the accepted moves

(again, only those after the \equilibration period") were distributed over the di�erent

chain sites. This is done in Figs. 32{34. The �rst of them shows the theoretical estimation

of the distribution (Eq. A.12). The main feature of this �gure is the preference for sites

closer to the chain edge | this is quite obvious, since acting on small chain segments

will less probably lead to violation of self avoidance. This feature is preserved (up to

statistical errors) in the results for T = 10 (Fig. 33). The results at low temperature (Fig.

34), however, are drastically di�erent: The \dislike" of inner-chain moves has turned into

an almost total annihilation of such moves. That is, almost all of the accepted moves after

equilibration are of the outermost chain parts. This further strengthens our suspicion that

at low temperature the process gets stuck at local energy minima and loses ergodicity.

To conclude, when dealing with low temperatures, we must both signi�cantly increase

the number of attempted moves, and perform a considerable number of independent runs,

if we wish to maintain the ergodicity and statistical meaningfulness of the algorithm.

These requirements, after tested for various temperatures and chain lengths, lead to the

values chosen and listed in subsection A.2.2. Still, one has to be careful when examining

results at low temperatures.
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Figure 32: Theoretical acceptance distribution for a 30-monomer chain, after Eq. A.12.
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Figure 33: Acceptance per chain site, for a 30-monomer neutral chain (one quench), at T = 10.
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Figure 34: Acceptance per chain site, for a 30-monomer neutral chain (one quench), at T = 0:4.
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A.3 Comparison of Enumeration and MC Results

For not-too-long chains, we can validate the results of the MC simulation by comparing

the results (for a speci�c quench) with those of the exact enumeration

1

. This is done in

Figs. 35{36, showing the radius of gyration and heat capacity of a 20-monomer neutral

polymer (one quench). The parameters of the MC simulation were, in accordance with

subsection A.2.2:

� Number of independent runs:

30

T

:

� Number of iterations at each run: 30

N

2

T

for T � 1, 30N

2

for T > 1.

� Samples discarded: First 20% of each run.

The results are quite satisfactory: The MC results fall close to the exact ones. Aver-

aging over more than a single quench (as done in the actual simulation) further improves

the situation. However, we can observe that even for a relatively short chain (20), results

become poorer at low temperature: The results for both R

2

g

and C=N depart from the

exact line below T � 0:5� 0:6.
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Figure 35: Squared radius of gyration vs. temperature for a 20-monomer neutral chain. Results of

exact enumeration and Monte Carlo simulation (single quench) are shown.

1

This is also a useful way to �nd \bugs" in the enumeration program . . .
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Figure 36: Heat capacity per monomer vs. temperature for a 20-monomer neutral chain. Results of

exact enumeration and Monte Carlo simulation (single quench) are shown.
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A.4 Hardware and Software Details

The simulations were performed using a Sun SPARC-20 workstation. Programs were

written in C language and compiled using GNU C++ compiler (version 2.7.2). Additional

data analysis and graphics were performed with MATLAB software (version 4.2a).

Maximal running time for a single simulation was 24 hours, for the complete enumer-

ation of the 15 step (16 monomers) neutral polymer | all conformations and quenches.
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