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Abstract

We study the properties of a polymer on a 2-dimensional lattice whose monomers are

charges interacting through a long-range, logarithmic, Coulomb potential (2-dimensional

polyampholyte). We investigate energetic and con�gurational properties of the system

under variations of temperature and charge distribution along the polymer. Di�erent

ensembles of quenched and annealed disorder are studied and compared.

Results are obtained by enumerating all possible con�gurations of a speci�c chain and

calculating exact thermodynamic variables. We study complete ensembles of all possible

charge sequences up to a length of 18 monomers. Partial ensembles of lengths up to 26

monomers were also enumerated. The results are compared to analytic estimations of the

expected behavior.

We study the properties of the ground states of the ensemble. The ground state en-

ergy of the neutral ensemble is shown to be extensive and self-averaging. We �nd the

dependence of the energy spectrum and the typical size on the excess charge of the poly-

mer. Only the strictly neutral ensemble collapses to a compact con�guration. This e�ect

is much more pronounced when we observe the ground state properties of the annealed

ensemble. For a minimal excess charge it expands to a fully extended con�guration.

The crossover from the high-temperature to low-temperature behavior is investigated.

The �rst deviation of the average con�guration from random behavior at high tempera-

tures to a compact or extended typical size is determined by a critical excess charge that

increases with the length of the polymer.

Speci�c quenches are shown to possess interesting properties, di�erent than the aver-

age behavior. A sequence of alternating-sign charges probably undergoes a �-transition,

similar to short-range interacting systems. The homogeneously charged polymer will re-

main in its fully extended ground state at all �nite temperatures.

We also search for indications of a possible low-temperature freezing transition and a

glass-like energy landscape. We apply di�erent criteria to the study of this question. It

seems that the system does not exhibit this phenomenon.

The behavior of our model is very much a�ected by the properties of the Coulomb

interaction in two dimensions. We devote some attention to the discussion of its features

and derive some general results concerning the energy of a system of two dimensional

charges.
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1 Introduction

1.1 Polymers

A polymer is a structure of connected units called monomers, usually of a limited vari-

ety. Polymers of interest usually consist of many such units, forming a relatively exible

macromolecule that has many interesting properties on a macroscopic scale. In real poly-

mers the monomers are connected by covalent bonds, whose energy is much larger than

the typical k

B

T , and can, therefore, be assumed to be unbreakable. The simplest case,

we discuss here, is a linear polymer chain in which N monomers are connected one to

another in a linear sequence.

Polymer systems have been subject to extensive study for several decades ([1, 2, 3]).

The interest in such macromolecules arises from several sources: the most commonly

quoted, is their natural occurrence in biological systems, for example proteins. Arti�cial

polymers are very common in everyday life and are of great commercial and industrial

value. From the theoretical point of view, di�erent random polymer models share many

common features with many physical systems exhibiting randomness or frustration (such

as spin glasses) that have been subject to extensive physical research [4].

Polymers may be classi�ed by the type of building blocks from which they are com-

posed. The simplest case would be that all the monomers are identical. These are called

homopolymers. Polymers in which there are several types of monomers are known as

heteropolymers or copolymers. Biopolymers such as proteins and DNA are members of

this class. If the molecule contains charged links then it is known as a polyelectrolyte.

Usually, the neutrality of the system demands the opposite charge to be in the solvent, or

at some distant \charge bath". However, there are cases when the chain itself will carry

both types of opposite charges. These are known as polyampholytes [5] (PA henceforth),

and they are the subject of the present discussion.

In real polymers there are many types of interactions between the monomers. At short

distances, most of them will be more dominant than the Coulomb interaction. However,

all these die out very quickly and at length scales on the order of magnitude of a real

polymer's size, only the Coulomb interaction prevails, if it is not screened (usually it

is). For this reason we devote our study to it, its e�ect on the energy spectrum and its

governing the spatial arrangement of the polymer.

It is common to consider complex systems of polymers: a single polymer restricted
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to a �nite volume, several co-existing polymers, a system where polymers may connect

with others forming networks or gels and up to the more complex arrangement into two-

dimensional sheets { membranes. The environment in which the polymer is immersed,

the solvent and its pH level, may modify many properties of the system. Di�erent en-

vironments, or polymerization procedures may \charge" the polymer in di�erent ways.

This may lead to di�erent excess charges along the chain, with sequences that are either

quenched (charges are �xed in place) or annealed (they may exchange places along the

chain) [5, 6].

The details of our speci�c model, the di�erent ensembles studied and the interactions

studied are elaborated on separately in Section 3.

1.2 Proteins

Because the relevance to biological proteins is one of the main motivations for the research

in this �eld we now discuss some of their basic concepts and their physical aspects.

Proteins are biological polymers whose monomers are the 20 naturally occurring amino

acids. They are part of many structures appearing in biological systems such as hair,

bone and cellular membranes. They also take part in many of the biological processes in

such organisms, serving as catalysts and regulators for them (enzymes) or transporters of

molecules (ion channels, protein motors, etc.) [7].

Proteins di�er in their internal construct and sequence of the amino acids forming

them. This is known as the primary structure. A protein may arrange itself into more

complex conformational structures such as �-helices (mostly known from the DNA struc-

ture) and �-sheets { called secondary structures. These, may in turn, fold into large scale

structures, �tting together into globular shapes termed tertiary structure. Each globu-

lar protein has a unique tertiary shape, also known as its native state, dependent on its

primary structure. The native state of the protein has a great part in determining its

biological function.

Under normal conditions (body temperature, neutral pH) proteins are found in their

native state. Irregular conditions may \unfold" the protein into an ensemble of more

expanded or denatured states. The process of folding into the native state is a question of

great interest and has been subject to numerous studies ([4, 7, 8] and references therein).

The mechanism by which a protein �nds its native state in the exceptionally large phase

space is still not fully resolved. The main underlying driving forces and their e�ect have,
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yet, to be determined. This is of great importance in understanding the relation between

the amino acid sequence and the protein's function.

Due to the exceptional complexity of this problem, many simpli�ed models have been

suggested in an attempt to reveal the underlying relevant mechanisms governing the

behavior of this system. Many of them model the monomers to units of a simple monomer-

solvent interaction (either solvophobic or solvophylic) or a monomer-monomer interaction

of some basic attraction to allow folding. Most of these models restrict themselves to

short-range interactions.

Under normal physiological conditions several amino acids have an excess charge[9].

Three are basic and are positively charged (Arg, Lys, His) while two are acidic, thus

negative (Asp, Glu). Two others (Cys, Tyr) may become positive under more extreme

conditions. These amino acids are not rare: In an average protein, each of them may

constitute 2�7% of the primary sequence (the other amino acids have a similar frequency

of occurrence) [9]. This means that electrostatic interactions exist in common proteins

and may come into play in the folding process. On short length scales this interaction

would compete with hydrogen or sulfur bonding and hydrophilic/phobic interactions. On

large length scales, characteristic of the protein in its denatured state, it could be assumed

to be dominant (disregarding screening) and may determine the onset of folding.

We study the e�ect of the Coulomb interaction in a simpli�ed system in attempt to

understand the main features of this problem as relying on its electrostatic features.

A question of great interest is the dynamic nature of protein folding. The disorder of

the complex system may give rise to an energy landscape of a \glassy" nature, leading to

a freezing transition to a non-native state. We will address this question in our study, as

well, in the context of the electrostatic interactions.

1.3 Two-Dimensional Systems

We investigate a 2-dimensional (2D) charged system where the Coulomb interaction (also

2D) takes a logarithmic form, whose properties are discussed in the following chapters.

There are no real systems that exhibit these properties. There are systems restricted

to a 2D plane, but, once charged, these are real charges with a 3-dimensional (3D) inter-

action. On the other hand, there are systems that display a two charge-type logarithmic

interaction (spin vortices, crystal dislocations, etc') but there is no case where these

\charges" are polymerized.

3



Still, there are several reasons why the understanding of real, 3D PAs may pro�t by

turning to a 2D model, as we do:

� When studying critical phenomena, it is, in many cases, favorable to study the

problem in general dimensions. Many properties are found to be strictly dimension

dependent, so �nding the general d behavior is helpful to extrapolate or verify

various results.

� It has been stated [10] that many properties of polymer systems are dependent on

the surface to volume ratio of the system { condensation energy, surface tension

and surrounding conditions compete in determining the shape of the polymer. This

ratio is N -dependent. The ratios characteristic of real life 3D polymers (10

2

� 10

5

monomers), that can not be numerically studied, are reached in two dimensions for

polymers of much shorter lengths, nearing those investigated here.

� Computational complexity: Various schemes of numerical investigation, such as the

one employed in this study (exact enumeration) have an exponential complexity

that grows with the dimension. Performing such calculations on lower dimensional

systems allows shorter running time or the investigations of more elaborate systems

(pertaining results are applicable to higher dimensions).

� A similar 3D model has been studied by Kantor and Kardar [11]. Results are not

always conclusive, partially due to the previous argument. In 2 dimensions we might

hope that some features will be more pronounced allowing a better understanding.
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2 Theoretical Review

We now present a theoretical review of topics that are relevant to the understanding

of the system studied. We quote known results and concepts that will allow a physical

perspective of the model and hopefully provide some intuition as to the questions raised

and the results we obtain.

We begin with a discussion of polymer models starting with the basic concepts and

gradually enter more complex e�ects into the problem. Because our main interest is in

the Coulomb interaction, we devote a special section to its behavior in two dimensions

which is not trivial. Results in 3D are not, generally, applicable to 2D.

2.1 Polymer Models

The discussion here relies greatly on the books by de Gennes[2], Grosberg and Khokhlov[3],

and Plischke and Bergerson[12]. See them for a more detailed discussion.

2.1.1 De�nitions

We begin with a set of monomers constructing a polymer chain. The polymer will be

assigned a set of N displacement vectors fa

i

g, designating the distance between two

connected monomers along the chain:

1

a

i

= R

i

�R

i�1

; i = 1; :::; N ; (2:1)

where R

i

is the location of the i'th monomer with respect to some origin.

The simplest means of describing the size of the polymer is the end-to-end vector:

R

ee

� R

N

�R

0

=

N

X

i=1

a

i

: (2:2)

A more robust measure of polymer size is the radius of gyration { R

g

, de�ned by:

R

2

g

�

1

N + 1

N

X

i=0

(R

i

�R

cm

)

2

=

1

(N + 1)

2

X

i<j

�

R

i

�R

j

�

2

; (2:3)

where R

cm

is the location of the center of mass. This is the length one would measure

when performing elastic light-scattering experiments on polymer solutions [3].

1

In accordance with the references given, we will take here the chain to have N +1 monomers, labeled

0; :::; N . Its length is N steps.
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One may obtain a more intricate description of the spatial extent of a speci�c con�g-

uration of the polymer using the shape tensor, de�ned in a 2D space by:

S =

0

B

@

hx

2

i � hxi

2

hxyi � hxi hyi

hxyi � hxi hyi hy

2

i � hyi

2

1

C

A
; (2:4)

where h:::i denote averages taken over the coordinates of all monomers. The two eigen-

values of the shape tensor { �

1

; �

2

, describe the size in the direction of the two principal

axes

2

. Taking �

1

< �

2

, we de�ne the axial ratio � �

1

=�

2

. The axial ratio ranges between

0 (elongated shape) and 1 (non elongated shape). It is easy to show that:

R

2

g

= TrfSg = �

1

+ �

2

: (2:5)

2.1.2 The Ideal and Gaussian Chains

A simple realization of a polymer could be that of equally separated monomers, with

ja

i

j = a, free to turn in any direction at each step { referred to as a freely jointed chain

or an ideal chain. This is practically a random walk progression. Assuming all steps are

independent, the natural random walk result is obtained:

D

R

2

ee

E

= Na

2

: (2:6)

It is also easily shown for the radius of gyration [12]:

D

R

2

g

E

'

Na

2

6

: (2:7)

These results may be stated more generally in the form:

D

R

2

ee

E

�

D

R

2

g

E

� N

2�

: (2:8)

Restricting the walk to a lattice or to limited angle rotations does not change the scal-

ing exponent. In the thermodynamic limit (N ! 1), the chain will have a Gaussian

extension:

p(R

ee

) / N

�d=2

e

�dR

2

ee

=2Na

2

; (2:9)

where d is the space dimension of the lattice.

2

Note that the �s are \squared distances".

6



A similar result may be retrieved using a more generalized and a somewhat more

realistic model of the polymer { the Gaussian chain: Following Eq. 2.9, the set of sepa-

ration vectors a

i

are no longer restricted to a magnitude a but are assigned a Gaussian

probability:

P (a

i

) / e

�da

i

2

=2a

2

: (2:10)

The distribution of R

ee

, which is the product of the probabilities for the individual a

i

,

summed over all possible sets, will match that of Eq. 2.9.

Should we formally write the expression for the probability of a given con�guration,

P (fa

i

g), this could be interpreted as a Boltzmann weight factor with an e�ective Hamil-

tonian:

H =

dk

B

T

2a

2

N

X

i=1

(R

i

�R

i�1

)

2

: (2:11)

For a continuous chain, not one of discrete monomers, a continuous limit for the above

equation may be derived:

H =

dk

B

T

2a

2

Z

N

0

 

dR

ds

!

2

ds; (2:12)

with s being an internal coordinate along the chain.

This Hamiltonian may be interpreted as being of an elastic origin, with an e�ective

\spring constant" expressing the chain's \entropic resistance" to extension or what is

known as entropic elasticity.

Accordingly, following the de�nition of the probability, terms describing the entropy or

free energy of the chain may also be derived. The Hamiltonian written above assumed no

interaction between the monomers and describes only the statistical aspects of a random

walk. In the following sections this Hamiltonian will serve as a basis for extensions when

introducing more elaborate interactions.

Going back to the ideal chain, if it is restricted to a lattice, we may de�ne N (N) as

the number of di�erent walks for an N -step chain. In the case of an ideal random walk

we may easily see that

N

RW

(N) = z

N

; (2:13)

where z is the coordination number of the lattice { the number of di�erent steps the walk

can take from a certain site. For a 2D square lattice z = 4.
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2.1.3 Excluded Volume E�ects { Self-Avoiding Walks

The next step in trying to model a real system is to introduce excluded volume e�ects.

A real polymer cannot self intersect. There is a hard-core repulsion that prevents two

particles from coming closer than a minimum hard-core radius.

The Gaussian-model Hamiltonian (Eq. 2.12) may be generalized to describe this by

adding a two-body exclusion term:

�H = K

Z

N

0

ds

 

dR(s)

ds

!

2

+ !

Z

N

0

ds

Z

N

0

ds

0

�

d

(R(s)�R(s

0

)) ; (2:14)

where s is an internal coordinate along the chain.

A polymer with excluded volume is modeled by the concept of a self-avoiding walk

(SAW), where a natural scheme would be that of a SAW on a lattice. This reduces,

inevitably, the number of walks a polymer chain may assume and its spatial extent is, on

the other hand, increased.

The total number of SAWs for an N -step long chain is asymptotically [2]:

N

SAW

(N) / z

N

N

�1

; (2:15)

where z is the e�ective coordination number of the lattice and  is a dimension-dependent

exponent. For a hypercubic lattice [13]: z

2D

= 2:64 ; z

3D

= 4:68. This may be compared

with the ideal result (Eq. 2.13): z

2D

= 4 ; z

3D

= 6. For two dimensions  ' 4=3 [2].

For such a chain, with no other interactions besides the restricted volume, the end-to-end

distance, as the radius of gyration, has a mean square average that scales like:

D

R

2

ee

E

�

D

R

2

g

E

� N

2�

; (2:16)

where � is another universal scaling exponent [2]:

�(1D) = 1 ; �

F

(2) =

3

4

; �(3D) ' 0:588 : (2:17)

These results may be derived, to a very good accuracy, using the Flory approximation [1].

2.1.4 The �-Transition

A real polymer system is subject to other interactions on top of those mentioned above.

Usually we expect some longer range interaction of a van der Waals type between monomers.
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This interaction will usually be mediated by the solvent surroundings. Solvents are cat-

egorized as good solvents, in which the attraction between the monomers and solvent

is stronger than that between the monomers themselves, causing an expansion, and bad

solvents, in which the intra-monomer attraction is more dominant, leading to contraction.

Temperature, solvent conditions and interaction strength could mediate a net attrac-

tive interaction between monomers which rivals the excluded volume restriction. We can

distinguish between two regimes: At high temperatures most interactions become irrele-

vant, except for the excluded volume and we expect a SAW behavior, as described in the

previous section. At very low temperatures, the attractive forces may dominate and the

polymer collapses into a dense, compact con�guration with a spatial extent of R

g

� N

1=d

.

Between these two regimes, there is a transition at a temperature denoted as the � tem-

perature and, hence, the term �-transition. At the transition point itself there is an

e�ective cancelation of the two competing interactions which leads to the disappearance

of the second virial coe�cient. In three dimensions this results in an ideal random-walk

at the �-point with R

g

� N

1=2

.

This transition has been subject to extensive study and it is understood to be a

tricritical phase transition [12, 14]. For polyampholytes it has been shown [15] that below

4 dimensions, electrostatic interactions are a relevant parameter. PAs in 2D belong to

a di�erent universality class and will not undergo a �-transition. There is, however, a

collapse phenomenon of a di�erent nature, which is described in the following chapter.

2.1.5 Polyampholytes

Electrostatic charges may be added to the monomers, which become subject to long-range

Coulomb interactions. The treatment of such polyampholytes is much more complicated

than polymers with neutral, short-range interacting monomers. The application of many

theoretical methods is complicated.

Edwards et al.[16] and later Higgs and Joanny [17] stated that the charge uctuations

along a neutral PA create a weak net attraction. Upon lowering the temperature, the

PA should collapse into a dilute globular state, with a density much lower than that of a

closed packed con�guration. They assume that in this dilute state the PA can be treated

like an electrolyte solution as described by the Debye-H�uckel formalism [18]. The chain is

at thermal equilibrium and can easily change its con�guration. There is enough freedom

for the polymer to re-arrange its charge distribution so the electrostatic interaction is

9



screened thus lowering the energy in the collapsed state. A su�ciently long neutral PA

will be collapsed at all temperatures.

The resulting picture can be described as a chain of \blobs": For short parts of the

chain the charge uctuations and the related electrostatic energy are small. They will

be temperature-dominated and their statistics will be of a SAW. These segments form

dilute blobs with a typical size of the Debye-H�uckel screening length { this is the size

above which the electrostatic energy dominates over the thermal. These blobs can be

considered as the new renormalized charges or monomers. Between them there will be

a screened electrostatic interaction, so they will form a close packed arrangement. The

collapse is not a sharp phase-transition. As temperature decreases, the Debye-H�uckel

screening length shortens creating smaller blobs and a more compact globule.

Victor and Imbert [19] claim on the basis of numerical simulations that a PA with a

sequence of alternating sign charges, which is locally neutral, will behave like an overall

neutral polymer in a poor solvent with a short-range attractive interaction. This leads

to the regular �-transition and is in disagreement with the prediction of the collapse

thru the Debye-H�uckel theory. A theoretical discussion by Wittmer et al. [20], based on

the random phase approximation, resolves the contradiction by introducing the charge

correlations along the chain as an important parameter in determining the properties of

the PA. This allows the recovering of both results for the random and correlated sequences.

A di�erent view has been taken by Kantor, Kardar and Li [11, 21, 15, 22, 23] that

study the problem of a randomly charged PA both theoretically and numerically. Gener-

alizing the Hamiltonian of an excluded volume polymer (Eq.2.14) to include the Coulomb

interaction, we get:

�H = K

Z

N

0

ds

 

dR(s)

ds

!

2

+

Z

N

0

ds

Z

N

0

ds

0

"

!�

d

(R(s)�R(s

0

)) +

�

2

q(s)q(s

0

)

jR(s)�R(s

0

)j

d�2

#

:

(2:18)

Applying scaling relations, Kantor et al. [15] conclude that � = 1=(d � 2). That is,

in 3 dimensions the PA is fully stretched. This does not contradict Higgs and Joanny

[17], whose treatment within the Debye-H�uckel formalism requires absolute neutrality of

the system, but points to the importance of the ensemble or preparation of the system.

Numerical studies of this system [11, 22] support these statements.

A PA is de�ned to have an excess charge Q = (N

+

� N

�

)q

0

, where N

+

(N

�

) is the

number of positive (negative) charges of magnitude q

0

. The properties of a PA should
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depend on this parameter. A randomly charged PA will have a typical excess charge of

Q ' q

0

p

N .

The e�ect of excess charge may be such that we can de�ne a critical charge that sepa-

rates di�erent regimes of behavior. Actually, the full description of a PA compacti�cation

requires the de�nition of two such charges:

� High Temperature Critical Charge { Q

H

c

At very high temperatures the PA is a SAW. Upon lowering the temperature, the

Coulomb interaction comes into play, �rst as a small perturbation, causing the

chain to contract or expand. Most states are still thermodynamically relevant and

a minimization of the free energy is required.

A simple high temperature analysis (see section 4.2) shows that for any space di-

mension Q

H

c

= q

0

p

N . This is also the typical excess charge of a random chain.

Chains with an excess charge above this value will expand while those with a lower

excess charge will contract.

This critical charge de�nes the lowest order behavior in the high temperature limit.

Further lowering of the temperature introduces higher order terms that come into

play. The process is not monotonic expansion or contraction all the way down to

zero temperature.

� Low Temperature Critical Charge { Q

L

c

At very low temperatures, the PA will settle into the most energetically favorable

con�guration, regardless of entropy considerations. The critical charge in this case

is not the same as in high temperatures.

The critical excess charge for this case was calculated by Kantor and Kardar [22] by

analogy to Rayleigh's charged drop model: We assume a condensed spherical shape,

with the excess charge evenly distributed in the drop. Above a certain excess charge,

the \Rayleigh charge" { Q

R

, the outward pressure of the Coulomb repulsion exceeds

the inward pressure of the surface tension. This will create a local instability of the

drop to elongation. For general dimensions

�p = 0) Q = Q

R

� N

1�3=2d

; (2:19)

where �p is the pressure di�erence at the surface of the drop. The derivation of the

2D case is presented in section 4.1.1.
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Even before the drop becomes locally unstable, a global instability may appear { it

may be energetically favorable for the charged drop to split up into smaller distant

droplets. The critical charge will then, generally, be Q

L

c

=

p

�Q

R

. In 3D � = 0:293

[22].

Chains with an excess charge beneath the critical value will have a compact ground

state (analogous to a condensated drop). Higher excess charge will lead to an

expanded ground state (analogous to the disintegration of the drop into smaller

droplets). The arising picture is described as the necklace model [22]: Because a real

chain cannot break up into disconnected, distant droplets, segments with Q < Q

R

form compact beads connected by highly charged, extended strands. The shape is

overall extended. The competition between the gain in energy by breaking up into

beads and the cost in surface tension of the strands connecting them, determines

the rate of expansion.

Only in three dimensions do Q

L

c

and Q

H

c

scale the same with N . Generally, at inter-

mediate temperatures, R

g

does not change monotonously.

Gutin and Shakhnovich [24] also describe an expansion when lowering temperature due

to a large excess charge. However, in their view the globule, still composed of thermal

blobs, becomes more elongated. Dobrynin and Rubinstein [25] apply a modi�ed Flory

theory to include the Coulomb interactions. They discriminate between three temperature

regimes: (1) A high temperature unperturbed regime. (2) An intermediate temperature

polyelectrolyte regime dominated by the excess charge. The chain may expand or collapse

when reducing temperature. (3) A low temperature polyampholyte regime where charge

uctuations always cause a reduction in size. The excess charge determines the aspect

ratio of the globule. A highly charged chain will still compactify at low temperatures, but

with an elongated aspect ratio.

Levin and Barbosa [26] suggest that there exists an even lower temperature phase,

resembling an a�ne network or a microgel, more expanded than the dilute globule, with

� = 2=5 in three dimensions. This will, upon raising the temperature, collapse into the

dilute globule state. They also speculate that the system may undergo a glass transition at

these low temperatures and get trapped inside some metastable energy minima. Victor

and Imbert [19] also suggest that there might exist a critical degree of disorder of the

charge sequence along the PA: Below it the transition is merely a � point, above it they

12



expect a glass transition.

2.1.6 The Freezing Transition

Heteropolymers, as many other disordered systems, may exhibit a freezing phenomenon.

A dynamic description of such a transition would mean that the system relaxes into a state

other than its ground state. For a random system, apart from the low energy unlocalized

excitations (such as phonons), other low energy excitations may exist in con�gurations

that are \far away" in the energy landscape from the ground state and may have high

energy barriers separating them. Once caught in such a state, a local energy minima, the

system will have a very low probability of escaping it and �nding the global minimum,

thus freezing.

Thermodynamically viewed, this transition may be described as an entropy crisis:

Below a certain temperature, the number of states accessible to the system drastically falls

o� from a macroscopic value to some very small number of deep minima con�gurations,

each with very little entropy. The system will freeze into one of these meta-stable states,

depending on the \cooling history", very much like a glass.

The freezing transition is frequently described in the terms of the random energy model

(REM) applied by Derrida to spin glasses [27, 4]. One of the model's main requirements

is a statistical independence of states. A very rough energy landscape is generated by

assigning each state a random energy by some Gaussian distribution function. As a

result, \nearby" states do not have similar energies and vice-versa. Moreover, the low

energy tail of the energy distribution falls o� dramatically so as to cause the entropy

crisis at some low temperature. A system obeying the REM conditions is expected to

exhibit the freezing transition.

The random energy landscape is very much a result of the disorder of the system which

leads to frustration. The heterogeneity of the system, the number of monomer types and

their sequence in a polymer system for example, may contribute to this frustration and

a�ect the appearance of a freezing transition.

Most studies concerning the existence of a freezing transition in heteropolymers con-

sidered short-range interacting models [28, 29, 30, 31, 32, 33, 34]. In some cases they do

�nd evidence of a frozen state at low temperatures. These references verify the existence

of a freezing transition by studying several thermodynamic variables that try to measure

the relevant properties characterizing a system that undergoes freezing. In section 4.6 we
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study these indicators, adapted for the long-range Coulomb interaction to investigate the

possibility of such a transition in the present context.

Short-range interacting systems seem to be likely candidates for a freezing transition.

Simple changes in their con�guration may change their energy drastically, as expected by

REM. Long-range interacting systems seem less so. The system cannot \hide" charges

from others and energies are likely to be correlated, in violation of REM [35]. However, as

noted when discussing PAs, some authors do speculate that they might undergo a freezing

transition at low temperatures [19, 26].

2.2 Two-Dimensional Electrostatics

2.2.1 The Coulomb Interaction

The Coulomb potential is the solution of the Poisson equation: r

2

� = �


d

�, where 


d

is the solid angle of a d-dimensional hyper-sphere. When solving for a general dimension

d, the potential created by charge q at a distance r is:

�

d6=2

(r) =

q

r

d�2

: (2:20)

The 2D space (which can be described as in�nitely long, parallel wires with a constant

charge density along them in real space) has a di�erent solution:

�

d=2

(r) = �q ln

r

r

0

; (2:21)

where r

0

is a constant de�ning the reference point (we return to this point, in greater

detail, later on in this chapter).

The logarithmic behavior gives rise to many peculiar results. The interaction diverges

logarithmically with no �nite bound. When discussing the energy of a system of charges,

one cannot de�ne it as the energy required to assemble the system by bringing the charges

from an in�nite distance | energies will diverge. In our study this manifests itself in the

questions regarding the de�nition of the energy of the system. Because the interaction

changes slowly with the distance, slower than the

1

r

behavior in three dimensions, it is not

obvious that energies converge in the thermodynamic limit, when the size of the system

is taken to in�nity. The interactions are certainly not local, making the results very much

susceptible to long-range e�ects like the surface conditions.

Similarly, excess charge will have a pronounced e�ect on the system. Unlike in a 3D

system, where \like-charges" can gain only a �nite energy by separating themselves as far
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away from each other as possible, in 2D they can gain an in�nite energy. This inevitably

a�ects the spatial extent of the polymers studied here and their critical charge.

Throughout this work we will tackle some of the problems mentioned here that are

pertinent to understanding the results obtained using simulations for �nite systems and

their applicability to the thermodynamic limit. In this case, the logarithmic behavior

poses a special di�culty. The slow variation of the energy makes the leading behaviors

and divergences, if they occur, evident only over several orders of magnitude.

2.2.2 The Two-Dimensional Coulomb Gas

We study a polymer, i.e. charges are connected together in a exible chain. However, all

possible con�gurations of the chain are a subset of the con�gurations accessible to free

charges. At certain conditions the chain may exhibit behavior similar to that of the gas.

A chain long enough, whatever the speci�c sequence of charges along its backbone, might

be able to assume any charge-space con�guration with statistics like that of the gas. This

is the assumption that allows the description of the dilute globular PA (section 2.1.5)

as an electrolyte uid. Understanding the behavior of the 2D Coulomb gas may help to

point out what type of behavior to expect for our polymer system.

A 3D gas of charged hard spheres is known to undergo a gas-liquid phase transition.

At certain conditions it is noted by a discontinuity in the density of the \uid" [36].

The critical behavior of this transition has not been, yet, fully determined. A possible

crossover to the asymptotic critical behavior appears unusually close to the critical point.

It has been speculated that d = 2 is a marginal dimension for this system [37].

Much work has been devoted to the study of the 2D Coulomb gas ([36, 38, 39, 40, 18, 41]

are a few starting points). We will concentrate on the relevant results for a neutral gas.

High Temperature Limiting Behavior: For a neutral uid of point-like ions, scaling

relations allow an exact derivation of an equation of state [42]:

p

�k

B

T

= 1 �

T

0

T

; (2:22)

where T

0

=

q

2

4k

B

is the Kosterlitz-Thouless temperature (see below), p is the pressure and

� is the particle density. This equation is valid for T >

q

2

2k

B

. Although no proof has been

provided, this result is reasonable for hard-core particles as well, in the low density limit

[42].
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At the in�nite temperature limit the interaction energy is irrelevant and all possible

states are equally probable. The Coulomb gas will then behave as an ideal gas, possibly

with hard-core repulsion. A polymer does not have the freedom of the gas particles and

at such temperatures it will have a SAW behavior instead.

For the Coulomb gas, the �rst correction, when lowering the temperature, is calculated

within the framework of the Debye-H�uckel approximation. The calculation, assuming a

self-consistent re-distribution of charges in space under the inuence of the interaction,

results in a screened potential: At large distances from a certain charge, the potential

dies out exponentially with a characteristic length scale. In two dimensions we get [18]:

�(r) �

q

q

r=b

� e

�r=b

; (2:23)

where

b

2

�

k

B

T

4��q

2

: (2:24)

A neutral PA, as described in section 2.1.5, collapses into a dilute globular state. If

in this compact but dilute phase, the chain has enough freedom to re-arrange its charge

distribution its features may be described in the terms of a Debye-H�uckel screened liquid.

Low Temperature Limiting Behavior: At very low temperatures the 2D neutral

Coulomb gas undergoes the known Kosterlitz-Thouless transition [38]. Pairs of opposite

charges condense into neutral dipole pairs, behaving as an insulating gas of weakly inter-

acting dipoles with a �nite dielectric constant. Above the transition temperature T

0

the

pairs will start breaking up into separate charges and the conducting, screened phase will

appear

3

.

For a discrete system with charges restricted to a lattice, Lee and Teitel [43] presented

the full phase diagram that has two low temperature phases: At low densities there is a

gas phase of neutral bound pairs. As density increases there is a �rst order transition to

an insulating \checkerboard" state (which we will refer to as a salt crystal).

For the polymer system, the collapsed compact globule at low temperatures may

correspond to the high density limit

4

. Of course, the polymer bonds prevent folding

3

By \screening" we mean an exponential dying of the potential which is possible only for the free

charges. This is opposed to the low temperature state where the dipoles can only create a �nite dielectric

constant.

4

There is no direct correspondence to the model of Lee and Teitel [43] which is for an ensemble de�ned

by an average number of particles, unlike our constant length chain.
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exactly into the salt crystal state, but, there are some conclusions to be drawn: Since the

states accessible by the polymer are a subset of those accessible to the gas, we can see

the salt crystal state as a lower bound of our system's energy. We can also expect the

alternating charge quench and the annealed ensemble to assume such a ground state since

they can access it as well.

The Energy of a System of Charges: If we measure the distances between charges,

denoted by l

ij

, in units of a basic length a, then the energy of a system of charges may

be written as:

E = �

X

<ij>

q

i

q

j

ln

l

ij

r

0

= �

X

<ij>

q

i

q

j

ln r

ij

a

r

0

; (2:25)

where r

ij

is now dimensionless and hiji denotes a summation over all charge pairs (i; j).

The energy may then be written as the sum of two terms:

E = �

X

<ij>

q

i

q

j

ln r

ij

�

X

<ij>

q

i

q

j

ln

a

r

0

: (2:26)

If all charges are of the size �q

0

, then for a given excess charge Q the energy may be

re-written as:

E = �

X

<ij>

q

i

q

j

ln r

ij

�

1

2

�

Q

2

� q

2

0

N

�

ln

a

r

0

: (2:27)

The �rst term on the right hand side depends on the charges' space con�guration and

sign. The second term is a constant, independent of the charge con�guration (or sequence

along the polymer), and is a function only of the excess charge. Throughout this work

we take r

0

= a so the second term falls o� and calculate only the �rst term, calling it the

\energy". Within an ensemble of the same excess charge, this has no e�ect since we are

interested only in energy-di�erences. However, it must be kept in mind that for di�erent

excess charges the choice of r

0

sets a di�erent reference point, that scales as N and may

change sign.

2.2.3 The 2D salt crystal

This study deals in a large part with low temperature characteristics of the system. The

behavior of the 2D gas in this limit, speci�cally its ground state is of great interest. As

mentioned above, the ground state con�guration of the 2D coulomb gas on a lattice is

that of a salt crystal.
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We focus on the energy of the ground state, namely on its being extensive with surface

correction terms. In a phenomenological form we would like to express the energy as:

E = ��

c

V + S ; (2:28)

where �

c

is the condensation energy and  is the surface tension. For a 2D system in a

compact state, V / Na

2

(�

c

has units of

q

2

0

a

2

) and S / a

p

N ( has units of

q

2

0

a

). We can,

therefore, describe the energy as:

E

q

2

0

= �A

1

N +A

2

p

N : (2:29)

In Appendix A we carry out the detailed proof that there exists an extensive energy for

this con�guration of charges and the above equations are valid.

The basic problems this derivation deals with are the divergence of the logarithmic

interaction and the mathematical complexity of summing up the discrete contributions.

The general scheme we apply is to divide the plane into small, repeating, neutral subunits

whose interaction is then much weaker (multipole-multipole) and falls of fast enough with

distance. At large distances we are able to integrate over a continuous spread of such

units enabling the overall calculation.

The total energy of the salt crystal is comprised of several contributions. There is a

bulk term, to which we add corrections arising from the boundary e�ects. These contri-

butions are explained and calculated in Appendix A.

In all, we �nd that the energy of the ground state of the 2D salt crystal can be

considered extensive with surface corrections. However, as pointed out in Appendix A

some pathological cases violate this. A \relaxed construction" of such a crystal must be

assumed to prevent these cases.

Later on (section 4.1.2) we address this problem numerically, accounting for the whole

ensemble of neutral, quenched polymers, not only those that collapse into a salt-crystal

like con�guration and try to �nd an extensive description for their energy as well.
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3 The Model

3.1 The Two-Dimensional Model Polyampholyte

We study a model of a discrete monomer chain on a 2D square lattice. The distance

between connected monomers is restricted to one lattice spacing. The chain is not allowed

to intersect or overlap itself, behaving like a self-avoiding walk.

Each monomer has an integer charge of q

i

= �q

0

. Charges and space are also 2D, so

the pair interaction is the usual logarithmic one:

E

i;j

= �q

i

q

j

ln

jr

i

� r

j

j

r

0

: (3:1)

The Hamiltonian describing this system is:

Hfq

i

; r

i

g =

X

fi;jg

�q

i

q

j

ln

jr

i

� r

j

j

r

0

: (3:2)

As discussed previously, we de�ne r

0

� one lattice spacing �

0

1

0

. We neglect the contri-

bution due to excess charge that enters by setting the reference point. We will measure

temperature in units of the interaction { q

2

0

, so q

2

0

=T is dimensionless and k

B

= 1.

Energy terms related to the polymerization, hard-core and self-avoiding potential, are

left out since we consider only con�gurations that comply with these restrictions (they

could be de�ned as contributing zero energy in the allowed con�gurations and an in�nite

energy in the restricted ones). We assume the polymer is in a very dilute solvent and

neglect any e�ect it may have in a real system.

When discussing real polymers, an important length scale that comes into play is the

persistence length or Kuhn segment. This is a measure of the chain's sti�ness, the segment

over which the directions of the individual bonds are still correlated. This can range from

single bonds in certain synthetic polymers up to approximately 150 in DNA molecules

[3]. It is important to note that in our model the chain is free to bend in any direction

at each bond (within the lattice and excluded volume restrictions). So, in some aspects,

every \monomer" in our problem represents a much longer segment in a real system. This

is important due to the rather short chain lengths we examine in this study.

The three dimensional equivalent of this model has been studied by Kantor and Kar-

dar, using both Monte Carlo [22] and enumeration [11] methods. This study is intended

to extend their investigations to longer chains and address some questions they did not.
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In two dimensions most studies are limited to short-range interactions. Victor and Im-

bert [19] studied a Coulomb model restricted to the alternating charge sequence. Golding

and Kantor [44] study a short-range model of a \very highly screened" Coulomb potential.

Throughout this work we investigate the behavior of several di�erent ensembles. For

each, we were interested in speci�c questions and values that dictated the method em-

ployed. The di�erent cases studied were:

� Quenched Disorder { Charges are �xed in place along the polymer. Thermal av-

erages are calculated for all spatial con�gurations of a speci�c charged sequence.

Thermodynamic quantities are then averaged over all quenches of the same excess

charge. Di�erent excess charges are treated as separate ensembles.

� Alternating and Fully Charged Quenches { These two speci�c quenches were also

studied separately due to special interest in their behavior.

� The Annealed Ensemble { Charges are free to interchange positions along the chain

but, still, with an overall constraint on the excess charge. For this ensemble we

studied the details of the ground state only, which is simply the lowest of all ground

states of all quenches with the same length and excess charge.

For such ensembles our control parameters are the excess charge on the chain { Q

measured in units of q

0

(whose notation we omit at times) and the temperature { T .

Their inuence on the various properties (energetic and spatial) of the polymer were

studied. We vary the total number of monomers/charges in order to extrapolate the

behavior at the thermodynamic limit.

We studied polymers of up to 26 monomers long. Up to length 18 the enumeration was

exhaustive of all possible charge sequences. Above this, random samples were investigated.

For each quench, all spatial con�gurations were enumerated and thermal averages of the

relevant thermodynamic variables were taken. 1000 temperatures were considered between

0.01 - 10 in 0.01 steps.

3.2 The Numerical Method

Enumeration

For the model investigated we chose to use the scheme of exact enumeration, i.e. creat-

ing and calculating rigorously values for all possible realizations of the ensemble under
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question. This way the exact partition function could be evaluated and, hence, all the

thermodynamic variables related to it.

The enumeration method used a recursive depth �rst algorithm: From the origin we

advance along the lattice in single, discrete steps forming a path. Whenever the required

extent of the chain is reached, or advance is blocked by the chain self-intersecting (thus

violating the SAW restriction), the path retraces itself to the closest possible lattice-node

along its course and tries to advance in a new direction. This goes on until all possible

options are exhausted, ensuring that all possible SAWs of a required length are created.

Each time a path of the full required length is obtained (N monomers, N � 1 steps) that

con�guration's relevant values are calculated and added to the statistical averages.

Derivation of exact values through exhaustive search is most important when investi-

gating low temperature behavior and the ground states of a system. Monte Carlo tech-

niques fail to equilibrate and produce correct results at these conditions. Since this

research deals with many low temperature e�ects (the shape transition, possible freezing

and ground state structure) the enumeration technique is the most appropriate.

The main drawback of such a method arises from complexity considerations. The

number of SAWs on a 2D square lattice grows asymptotically as 2:64

N

(see Eq. 2.15).

The total number of quenches for a given length grows as 2

N

. In all, this de�nes an

exponentially growing complexity for the complete enumeration.

Reection and rotation symmetries allow actual enumeration of about

1

8

of all SAWs

for a given length. Charge conjugation and sequence reversal symmetries enable the

enumeration of only about

1

4

of all quenches of a given length. See Appendix B for the

exact considerations and actual numbers of quenches and con�gurations enumerated.

Due to the long-range Coulomb interaction, calculation of the energy for a given

sequence and con�guration is of N

2

complexity. This is the main computational di�erence

from short-range interactions.

All these restrict the investigation to relatively short lengths compared to natural

polymers and to those obtained using Monte Carlo methods. For comparison we might

note that the longest sequence enumerated here was 26 monomers long, while using MC

techniques for a 2D Coulomb interaction model Victor and Imbert [19] studied a single,

200 monomer long, sequence.

Thermal averaging of all di�erent con�gurations adds the number of di�erent temper-

atures evaluated as a multiplicative factor in the complexity. Basically the temperature-
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step was such that all features of the di�erent curves could be examined accurately, mainly

the low temperature e�ects. It was not changed in the di�erent simulations, but similar

calculations for longer chains (where lattice discreteness is less pronounced) might require

�ner temperature detail.

Calculation of Values

While enumerating all con�gurations of a certain quench, the values of certain variables

of interest were calculated for each con�guration. These were added to histograms whose

cells correspond to the energy value of the speci�c con�guration. The histograms served

for calculating the partition function and the di�erent thermal averages at the requested

temperatures.

The histogram method reduced the thermal averaging calculations to the number of

cells in each histogram (C=8192) instead of the total number of con�gurations (� 2:6

N

).

For example, the thermal average of a variable X was calculated like this:

Z =

conf

X

i=1

e

��E

i

; (3.3)

hXi =

1

Z
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e

��E

j

: (3.4)

As mentioned earlier, �nal results, concerning ensembles of several quenches, were

obtained by algebraically averaging these calculations over all quenches in the ensemble.

The interaction energy is continuous and does not have any characteristic energy scale.

Therefore, the determination of the minimal bin size in the histogram was not obvious.

For the lengths fully enumerated, the minimal and maximal energies for each quench were

�rst found and histogram bounds were set accordingly to ensure optimal exploitation of all

bins. The number of bins (8192) was set, after studying the low energy tail of the energy

distribution for various quenches, so we could distinguish well between the discrete states

there. This was important due to our interest in low temperature behavior. The minimal

temperature and increment size were also set to 0.01 according to this reasoning.

While scanning all con�gurations, details of the ground state were also obtained, for

each quench. These were used separately for the relevant calculations and are exact (as

opposed to histogram-related calculations).
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4 Theoretical and Numerical Results

4.1 Low-Temperature Properties

We begin the investigation of the system with a study of its ground state properties {

its shape and energy features. This is the state to which the polymer relaxes at low

temperatures and is important in setting a reference point with which high temperature

properties may be compared.

If the ground state is compact then we would like to express its energy in a phenomeno-

logical form (generalizing Eq. 2.28) consisting of condensation energy, surface tension and

electrostatic energy terms:

E = ��

c

V + S �Q

2

lnR ; (4:1)

where Q is the excess charge and R is a characteristic measure of the size.

In the following section we study the shape of the ground state to see if and in what

cases it is compact and the above form could be applied. As a consequence, we apply this

description to neutral quenches (that do not have an overall electrostatic term). We then

check the e�ect on this picture of introducing excess charge.

4.1.1 Critical Charge

The discussion of PAs (section 2.1.5) led to a de�nition of a low temperature critical

charge { Q

L

c

, that describes the chain's low temperature state: expanded or contracted.

We now follow the analogy to the Rayleigh drop model by Kantor and Kardar [11, 22] and

derive the value for two dimensions: Assuming a conducting charged drop has a circular

shape of radius R, we model the non-extensive contribution to the energy as

E = 2�R �

1

2

Q

2

lnR ; (4:2)

At some critical excess charge the drop will become unstable due to the electrostatic

pressure. Di�erentiating the energy with respect to R, we �nd the pressure di�erence at

he surface of the drop:

�p =

1

2�R

 

2� �

Q

2

2R

!

: (4:3)

At the Rayleigh charge the pressure di�erence vanishes, thus we get

�p = 0) Q

2

R

= 4�R ) Q

R

� N

1=4

: (4:4)
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At this point the drop is locally unstable to elongation. However, the energy gain by

breaking up the drop into two separate droplets may create a global instability at a lower

excess charge. The 2D logarithmic interaction creates an anomaly. Because it has no

asymptotic �nite boundary, for any minute excess charge it is always favorable to break

up into distant droplets. This is analogous to the polymer expanding. Thus, the low

temperature critical charge in two dimensions is Q

L

c

! 0.

Another argument is that opposite charges pair together into weakly interacting dipoles.

A single excess charge, that does not pair up, will not cause repulsion, but any excess

charge above that will. This leads to a critical charge of q

0

. Both arguments imply an N -

independent critical charge, but seem to be more applicable to a uid than to a quenched

polymer. We now check how our model system behaves.

All quenches of lengths of 6{18 monomers were investigated. First, for clarity, we

display in Figure 1 the temperature dependence of R

2

g

for all ensembles of di�erent excess

charges (speci�cally for an 18 monomer long chain). Two types of behavior are evident:

At high enough temperatures all chains approach the SAW limiting behavior. Upon

lowering temperatures, excess charge decides between expansion or contraction. At zero

temperature it is the low temperature critical charge { Q

L

c

that separates between the

ensembles that settle to a compact ground state (the lower curves in the graph) or an

extended one (the upper curves).
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Figure 1: R

2

g

vs. Temperature for a 18 monomer long chain. Excess charge is Q = 0; 2; 4; :::;18 from

bottom to top.

We see in Fig. 1 that for Q � 4 the ground state is more compact than the high-
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temperature SAW. Above this value it expands. This behavior, with this speci�c value,

repeated itself for all the lengths examined. This might suggest that there is a constant

critical charge Q

L

c

= 4q

0

.

However, a compact shape is de�ned by its scaling with respect to N , not by its actual

size. For a compact shape, we expect R

2

g

� N . An expanded shape is de�ned by R

g

� N

and the axial ratio �

1

=�

2

= 0. Figure 2 depicts di�erent low temperature (T = 0:01)

spatial properties of the polymer for di�erent lengths as a function of excess charge. We

display R

2

g

=N which should be an N -independent constant up to the critical charge and

the axial ratio that should drop to zero at the critical charge.
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Figure 2: Left: R

2

g

=N vs. Q. Curves are for di�erent lengths (N=6,7,..,17,18 from bottom to top). Note

the collapse of the curves at low Q and their deviation as Q is increased. Right: �

1

=�

2

(axial ratio) vs.

Q for di�erent lengths (N=6,7,..,17,18 from left to right). Axial ratio decreases drastically at Q

L

c

' 4. In

both �gures, values are for T = 0:01.

The most striking feature of Fig. 2 is that all the curves of R

2

g

=N for di�erent N values

collapse on to the same curve. This curve describes a monotonously rising function {

f(Q). The PAs expand with the addition of any excess charge, but with a compact

scaling. As Q increases the di�erent curves break o�, one by one, from this asymptotic

function. This occurs when for each speci�c N it becomes \saturated" { the chain has

reached its maximal extent.

The axial ratio decreases as Q is increased, which is consistent with expansion and

elongation. However, as length increases, this elongation becomes less sharp: For the

same Q longer chains have a higher axial ratio. This, again, indicates that when keeping

Q constant the expansion is in a compact form { The con�guration \inates", but does
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not elongate.

If we do not keep the excess charge constant but increase it as we increase the length of

the chain, the size (radius of gyration) will grow \faster" that the compact scaling we have

just described. Generally, if Q � N

�

then size will be R

g

� N

�(�)

. The interesting limit

is when the scaling is \extended", that is R

g

� N . Fig. 3 displays R

g

=N as a function

of Q=N

0:75

. We see that the di�erent curves for di�erent lengths collapse on to the

same curve. This curve describes a monotonously rising function g(Q=N

0:75

). Repeating

the same plot for di�erent values of the exponent, we get a good collapse for the range

� = 0:7�0:8. This means that R

g

of chains of di�erent lengths, for which Q = xN

0:75�0:05

will scale in an extended fashion with N .

g

N
R

0 0.5 1 1.5 2 2.5
0.1
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0.75Q

Figure 3: R

g

=N vs. Q=N

0:75

Curves are for di�erent lengths (N=6,7,..,17,18 from top to bottom at the

left). Note the collapse of the curves, \improving" as N increases. Data is for T=0.01.

To summarize we suggest the following conclusions:

1. For any excess charge Q > 0 the ground state expands from the most compact and

dense con�guration. In this sense, Q

L

c

= 0.

2. For a given excess charge Q, R

g

for PAs of di�erent lengths scales in a compact

fashion. That is:

R

2

g

(N

1

; Q)

R

2

g

(N

2

; Q)

=

N

1

N

2

()

R

2

g

N

= f(Q) ; (4:5)

provided N > N

0

(Q) above which the PA has not saturated yet.
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3. For Q � N

0:75�0:05

, R

g

for PAs of di�erent lengths has an extended scaling:

R

g

(N

1

; Q = xN

0:75

1

)

R

g

(N

2

; Q = xN

0:75

2

)

=

N

1

N

2

()

R

g

N

= g

 

Q

q

0

N

0:75

!

: (4:6)

4. An increase of excess charge, for a given length, always increases R

g

of the ground

state { f and g are monotonously increasing functions.

Only for small (practically zero) excess charge there is a compact and dense ground

state so Eq. 4.1 can describe the energy behavior. For larger excess charges, there is no

condensation, the ground state is dilute and Eq. 4.1 does not apply.

27



4.1.2 Neutral Quenches { Energy Spectrum

We found that neutral quenches have a compact ground state. Now, we try to see if an

extensive description applies well to describe their energy (Eq. 4.1). Apart from enabling

a phenomenological description of the ground state energy, the extensiveness of energy

in this model is of great importance. Should this not be the case or if the �rst order

correction is not a surface term, all further discussions will be hampered. Many results

for a �nite system will not be applicable in the thermodynamic limit.

For all neutral, even-lengthed quenches of 6{18 monomers and partial samples for

lengths of 18{26

5

, all con�gurations were calculated and ground state energies were ob-

tained.

Fig. 4 depicts the energy per monomer in the ground state for di�erent chain lengths.

For all neutral quenches of a certain length, the mean, maximal spread and the standard

deviation of the ground state energy per monomer are speci�ed. An extensive behavior

means that as N ! 1 we expect E=N ! const. We chose the horizontal axis to be

1=

p

N { if the correction is indeed a surface term, E=N should be linear in such a scale.

Viewing the graph, it seems that these are reasonable conclusions.

As discussed previously (section 2.2.3) the energy of a 2D salt crystal is extensive and

bounds from below any other con�guration of the neutral polymer. The energies obtained

for a simulation of a salt-crystal are also displayed in Fig. 4. They can be seen to converge

and �t rather well with an extensive description of the energy, E = A

1

N +A

2

p

N . They

are also, evidently, a lower bound for all neutral quenches. We can, thus, set an extensive

limit to the energy, but we would like our results for the quenches to support it.

For the quenched ensemble results are not quite as conclusive. Fitting the mean energy

of the ensemble in an extensive, convergent form, results in:

E

q

2

0

= (�0:133 � 0:005)N + (0:30 � 0:02)

p

N : (4:7)

Should the energy diverge, we expect it to be a weak logarithmic divergence, owing to

the nature of the interaction. We might try modeling it by E = B

1

N lnN + B

2

N . We

have applied this non-extensive form to our data with the result: E=q

2

0

= (�0:042 �

0:002)N lnN + (0:056 � 0:005)N . Alas, over the range of N in our simulations (6{26)

these two functions separate less than the errors of the results. We can not, therefore,

5

For lengths 20, 22, 24 and 26 monomers we enumerated 1000, 500, 100 and 50 random neutral

quenches respectively.
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Figure 4: Ground state energy per monomer for sequences of lengths 6{26 monomers. Crosses on the

error bars represent (going from the innermost outward): mean value (connected horizontally), statistical

error of the mean, standard deviation and min/max values (for lengths 18{26, the error bar is not

bounded, the min/max values are only of the partial ensemble of quenches taken, not global values).

Results for the alternatingly charged quench are denoted by open circles. Simulation of a salt plane is

denoted by dots. Horizontal axis is

1

p

N

to show linear behavior according to the expected scaling of

energy.

distinguish between the two and assert the limiting behavior. We believe, though, that

regarding the salt crystal as an extensive boundary is a valid assumption and the energy

can be considered extensive.

Assuming a convergent form and plugging in the condensation energy obtained by

Eq. 4.7, we try to �nd the correction to the bulk term in the energy. We �t our results to

the form E=q

2

0

= AN + BN

�

. For this we get � = 0:50 � 0:02. This is within the range

expected for a surface correction term, but, again, this does not enable distinguishing

between other possible logarithmic scalings (the surface correction may scale as

p

N lnN

for example).

Naturally enough, the quench that assumes the lowest ground state energy is the one

with alternating charges along the backbone, which was also studied separately (results
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are also depicted in Fig. 4 and studied in section 4.4.1 below). It is the only quench that

can create a con�guration similar to the salt crystal which is the ground state of the 2D

Coulomb gas, of which our polymers are a subset (see section 2.2.3).

The distribution of ground state energies within the ranges noted in Fig. 4 may be

observed better in Fig. 5 where we display histograms showing the detailed distribution

of the ground-state energy. We show these for chain lengths of 16, 18 and 20 monomers.
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Figure 5: Distribution of ground state energy per monomer for all enumerated neutral quenches of

lengths 16, 18 and 20 (only a partial sample of quenches for length 20). Crosses indicate location of mean

and �� limits.

It is hard to tell from the histograms the type of the distribution and if it can be

modeled in some form, especially since above 18 monomers the enumeration is partial.

However an important feature we would like to check is if the ground state energy (per

monomer) is a self-averaging quantity. This means that at the thermodynamic limit,

a typical quench could be described by the average behavior. The extensiveness of the

energy we have shown above is valid for the mean value, but does not necessarily represent

the behavior of a randomly chosen quench { this will be true if the ensemble is self-

averaging.

In Fig. 6 we plot the standard deviation of the ground state energy per monomer for the

di�erent lengths we studied (this is the standard deviation plotted previously in Fig. 4).

Self-averaging requires that the standard deviation of the distribution, not only go to zero

as the size of the system increases, but it must do so at a rate faster than 1=

p

N . The
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inset of Fig. 6 displays the same values plotted as a function of 1=

p

N . We see that the

behavior can be described very well as linear and reaching zero at the N !1 limit. This

implies that the ground state energy per monomer for the neutral PAs is a self-averaging

quantity.
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Figure 6: Standard deviation of the ground state energy per monomer { �, as a function of 1=N , where

N , the chain length, is 6,8,...,26. Inset: The same standard deviation, but as a function of 1=

p

N .

An important consequence of the self-averaging is that when joining together two

neutral PAs of a certain length the energy of the new polymer is the sum of their separate

energies (when discussing the con�guration dependent contribution only, neglecting the

di�erent reference points of PAs of di�erent lengths).

Although we argue the ground state energy is a self-averaging quantity, when averaging

over all di�erent quenches, charge sequence is an important parameter determining the

behavior of the polymer. Later on we will see how this quench dependence manifests itself

by inuencing the type of collapse the chain undergoes and the possibility of a freezing

transition.
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4.1.3 Charged Quenches { Energy Spectrum

We now study the case when the chain has an excess charge Q = q

0

(N

+

�N

�

). Thus far

we have shown that a very small excess charge su�ces for the electrostatic repulsion to

dominate and the ground state will be extended. The energy cannot be modeled like a

condensated drop as suggested by Eq. 4.1.

The ground state energies of all quenches and all possible excess charges are depicted

in Fig. 7. We present the results for a length of 18 { it has the widest range of values for

excess charge.

As seen in section 4.1.2 for neutral quenches, all quenches of the same excess charge

have a large variance of the ground state energy. However, we can also see that the ground

state spectrum reveals somewhat of a band structure with di�erent bands corresponding

to di�erent excess charges. That is, the variance of the energies for a given excess charge

does not exceed the separation between the di�erent excess charges.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−250

−200

−150

−100

−50

0

Arbitrary Order of Quenches

G
ro

un
d 

S
ta

te
 E

ne
rg

y

Q=0 Q=2

Q=4
Q=6

Q=8

Q=10

Q=12

Q=14

Q=16

Q=18

−50 −40 −30 −20 −10 0 10
0

2000

4000

6000

8000

10000

12000

Ground state Energy

N
um

be
r 

of
 q

ue
nc

he
s

Q=8

Q=6

Q=4

Q=2 Q=0

Figure 7: Left: The ground state energies of all quenches of 18 monomers. The abscissa's scale is an

arbitrary order of quenches. Annotations denote the excess charge of the bands into which the energies

group. Right: A histogram plot of the same energy distribution (only Q = 0; 2; 4; 6;8 bands). Notice the

overlap between the �rst few bands.

The band structure of Fig. 7 displays an irregular decrease of the energy with increasing

excess charge. For a 3D system, similar plots [11] show an increase of the energy of the

bands with increasing excess charge. This is quite natural as it requires some energy

to charge the system. The energy displayed here is only the con�guration-dependent

contribution, as explained in section 2.2.2. It does not take into account the contribution

of an excess charge dependent term, whose sign and magnitude depend on the arbitrary

selection of the reference point. It can not be claimed that the energy of the quenches
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with a higher excess charge have a lower overall energy than the less charged quenches.

The band structure is not de�nite. The histogram plot of the energy distribution in

Fig. 7 displays an overlap of the least charged bands. The energy bands themselves do

not have any apparent internal structure, as can be seen in the histograms for Q = 0 in

Fig. 5, or if we focus on one of the band as seen in Fig. 8.
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Figure 8: A closeup view into the structure of the Q = 2 energy band for an 18 monomer long chain.

The abscissa's scale is an arbitrary order of quenches.

The appearance of a band structure indicates that the typical energy related to the

excess charge is much more dominant than the uctuations caused by charge sequence.

This (and following the statements at the beginning of this section) lead us to roughly

express the typical long-range part of the energy of the charged polymer as:

E(Q) ' �Q

2

lnR ' �Q

2

lnN ; (4:8)

where for an extended ground state, typical of most excess charges, the typical polymer

size R ' R

g

� N .

We expect the energy to scale linearly with Q

2

for a constant chain length { N .

Fig. 9 shows the ground state energy as a function of excess charge, for the ensemble

of 18-monomer long polymers. When scaled properly, displayed as a function of Q

2

, the

dependence of the energy is linear as expected. We can also see in Fig. 9 that this behavior

breaks down for low excess charges: The uctuations in the extensive condensation energy

term dominate over the excess charge contribution and the above argument is not valid.
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Figure 9: Left: E

g:s:

vs. Q. Right: E

g:s:

vs. Q

2

, shows the expected scaling for the \more charged"

quenches (Eq. 4.8). Error bars denote the full width of energy bands.
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4.2 High-Temperature Properties

Opposed to the previously discussed low temperature properties of the system, we now

study the other limit of very high temperatures.

At in�nitely high temperatures the Coulomb interactions are irrelevant and the chain

behaves like a SAW. Its spatial extent obeys: R

g

� N

�

, with � = 0:75 in two dimen-

sions. Upon lowering the temperatures, the interactions start inuencing the shape of the

polymer. The volume of the PA may either expand or compress depending on the excess

charge on it, the critical value being the high temperature critical charge { Q

H

c

de�ned

in section 2.1.5. This critical charge was calculated by Kantor and Kardar [22], whose

derivation for a 2D system is as follows: At the in�nite temperature limit the typical

electrostatic energy of such a system is:

hUi ' �

X

hi;ji

q

i

q

j

hln jr

i

� r

j

ji ' �

1

2

(Q

2

� q

2

0

N) lnR

g

; (4:9)

where we assume a typical inter-particle separation on the order of R

g

. h:::i and � � � denote

averages taken over all con�gurations and quenches respectively. It can be easily shown

[22] that q

i

q

j

= (Q

2

� q

2

0

N)=(N

2

�N) for all pairs i 6= j.

We see that the interaction energy changes sign at Q

H

c

= q

0

p

N , which we de�ne as the

high temperature critical charge. Excess charges above this value will cause the system

to expand upon lowering the temperature, while excess charges below it will cause a

contraction. In other words, for low enough excess charges there is an e�ective attraction

between the uctuations in the charge distribution. We can see that for a randomly

charged chain the typical excess charge is the critical one and we need higher order

expansion terms to determine the behavior. This result applies for all space dimensions.

This is only the lowest order approximation, describing only the �rst deviation from

a SAW. This is the behavior at the high temperature end of the R

g

vs: T curve (Fig. 1).

This behavior is not expected to follow through, all the way down to zero temperature.

For this reason we de�ned separately a low temperature excess charge. This also explains

why the result given here does not comply with that of Ejtehadi and Rouhani [45] that

estimate the critical charge to be � N .

Studying all chains of length 6{18, averaging over all quenches of the same length

and excess charge, we examined the �rst deviation from the asymptotic value for R

g

at

high temperatures for all the R

g

vs: T curves. We de�ned the critical charge by the
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two values of excess charge between which the polymer changed its behavior (expansion

and contraction). Figure 10 shows the di�erent critical charges for all chain lengths

enumerated. The charges are integer, so the relative errors are quite large. This and

the limited lengths examined prevent the veri�cation of the exact scaling law involved.

However, the basic behavior, a slow growth of the critical charge with respect to N , is

evident. Figure 10 also displays a

p

N curve according to the theoretical prediction. We

can see that it �ts reasonably well the numerical results.
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Figure 10: The high temperature critical charge (Q

H

c

) for polymers of di�erent lengths (N ). Error bars

are �1 in size, due to the integer charges and the parity of excess charge. The dotted line represents the

theoretically expected Q

H

c

= q

0

p

N behavior.

Although we cannot assert the functional behavior of Q

H

c

(N), by comparing it to the

results obtained for Q

L

c

(N), we can state that generally:

Q

H

c

(N) 6= Q

L

c

(N) : (4:10)

It is important to acknowledge the existence of the two critical charges and their e�ect at

the di�erent limits. It seems to have been a source of confusion in some references.
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4.3 Neutral Quenches { Transition Details

We now turn to the intermediate temperature regime to study the collapse from a SAW

to a compact state as was described by Edwards et al. [16], and Higgs and Joanny [17]

(see section 2.1.5). The collapse will occur only for quenches with an excess charge lower

than the critical one. We investigate the features of the neutral quenched ensemble.

All neutral quenches of lengths of 6{18 monomers were studied over a temperature

range of 0.01 to 10. As can be seen in Fig. 1 depicting the temperature dependence of R

2

g

for the 18 monomer long chain, on the average, the neutral quenches undergo a transition

from an expanded random coil state at high temperatures to a compact one upon cooling.

The transition is \smooth" and does not have the characteristics of a phase transition.

This can be seen when studying the temperature dependence of the heat capacity { Fig. 11.

The graph shows the heat capacity per degree of freedom averaged over all neutral quenches

for a given length (we take 2N � 3 degrees of freedom) for the range of temperatures

studied. Previously, in section 4.1.2, we saw that the ground state energies (per monomer)

converge and at low temperatures, as we see in Fig. 11, the curves seem to converge. At

high temperatures the behavior is not obvious. We will argue that there is actually a

logarithmic divergence with no limiting curve.
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Figure 11: C=(2N � 3) vs. T for neutral quenches of di�erent lengths: N=6, 8, 10, 12, 14, 16 and 18

from bottom to top.

The temperature of the peak in the heat capacity curve seems to be constant at
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T

0

' 0:33 � 0:03 and might seem to indicate a transition temperature. However, the

neutral ensemble (as do the others) shows a very diverse behavior for di�erent quenches.

The average curves seen here are not representative of the typical curve of a single quench.

For example, the average heat-capacity peak temperature for chains of length 18 is 0:34,

but, with a standard deviation of 0:18. We discuss this diversity further when we deal

with freezing (Sec. 4.6).

The heat-capacity peak can probably be attributed to the �nite sizes we examine

together with the discreteness of the lattice. It is possible that for a continuous system

this feature will disappear and the heat capacity will reach its classical non-zero value

at zero temperature. A �nite discrete system, at low enough temperatures, will always

become a two-level-model with the heat capacity dropping to zero, creating a peak at

some intermediate temperature (Schottky anomaly [46]). The broadening of the peak for

longer chains may be another indication that this is not a real transition, although we do

not put it in quantitative terms.

The divergence of the curves in Fig. 11 and the non-extensiveness of the energy at high

temperatures may be quanti�ed by studying the area beneath the heat-capacity curve,

which may be described as follows: The area is actually the di�erence in quench averaged

energies at in�nite and zero temperatures. At zero temperature the energy is that of the

ground state which is lower bounded extensively (relying on previous discussions). At an

in�nite temperature all con�gurations have the same probability and averaging is simple

algebraic. We can change the order of averaging, beginning with a single con�guration,

averaging over all quenches:

E

avg

conf

= �

X

fi;jg

q

i

q

j

ln r

ij

(4.11)

= �
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q
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ij
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=
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: (4.13)

We now average over all di�erent con�gurations:

E
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=
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The last step can be justi�ed by the behavior of the logarithmic function and the distri-

38



bution of R

g

(see [2]). Assuming a scaling of R

g

� N

�

we continue:

E

avg

�

1

N

�N

2

lnN

�

� N lnN : (4:15)

Since the heat capacity is divided by (2N � 3) degrees of freedom, we �nally get that the

area { A, is:

A =

E

avg

(T =1)� E(T = 0)

2N � 3

� lnN : (4:16)

Figure 12 depicts the area beneath the C vs: T curves for di�erent chain lengths. (The

area is the theoretical value as de�ned above, not numeric integration.) It seems plausible

that the calculated scaling is correct. By di�erentiating Eq. 4.16 with respect to N , we

see that for large N ,

dA

dN

should scale linearly with respect to

1

N

. This can be seen in the

inset to �gure 12.
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Figure 12: Area (A) vs. N . Inset: dA=dN vs. 1=N , an attempt to linearize the graph under the

assumed scaling. In both cases area is divided by (2N � 3) degrees of freedom.

Generally, for an extensive system we would expect this area to be constant. The

results indicate this is not the case here. There is a continuous crossover between di�erent

temperature regimes in which di�erent e�ects dominate. This is a result of the long-range

interaction, unlike, as described earlier, short-range interacting systems that undergo the

�-transition. Kantor and Kardar [15] show that, for a random sequence of charges, above

four dimensions the Coulomb interaction ceases to be a relevant parameter and we might

expect a �-transition.
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4.4 Speci�c Quenches { Transition Details

In several cases earlier we have stated the importance of charge sequence in determining

the polymer's behavior. We now focus our attention on two speci�c quenches: The

alternating charge sequence, which, as it turns out, has a some interesting properties not

common to other neutral quenches. We also study the homogeneously charged polymer,

that as the extreme case of excess charge exhibits interesting behavior as well.

4.4.1 Alternating Charge Quench

Victor and Imbert [19] claimed that an alternating charge quench (+ { + { ...) is sig-

ni�cantly di�erent from other neutral ones. Its collapsed globular state does not create

a screened phase of a \liquid" nature as proposed by Edwards et al. [16], and Higgs and

Joanny [17]. Rather a dielectric, dense phase should appear. In this case its behavior

should follow that of short-range interacting systems, with an e�ective attraction. We

should, therefore, observe the regular �-transition.

To check this claim, the neutral alternating charge sequences of lengths 6{26 monomers

were studied separately from the general neutral ensemble. The results we present here

do not contradict Victor and Imbert's claim. However, the short lengths involved here

prevent con�rmation of an actual phase transition.

The critical temperature we found (identi�ed as the peak in the heat capacity curve,

Fig. 13 below) is T

c

= 0:16�0:01. This is similar to the result in [19]: T

c

' 0:1. However,

this relatively low temperature is very near the freezing to the ground state, a region

that in our case displays some irregular, discretization dependent behavior and should,

therefore, be regarded with caution.

We do not observe a divergence in the height of the heat capacity peak at the critical

temperature as we increase the chain's length. However, the area beneath the curve,

per degree of freedom, displayed in Fig. 14, seems to remain constant for di�erent chain

lengths. This is consistent with a possible phase transition.

If we assume that there is indeed such a phase transition we would expect a scaling

behavior of the following form as we approach the peak temperature T

c

:

D

R

2

g

(N;T

c

(N))

E

� N

2�

c

: (4:17)

We were not able to perform a �nite size scaling analysis for the lengths we examined,

however, should this be the case we expect all

D

R

2

g

(N)

E

=N

2�

c

vs: T curves to intersect at
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Figure 13: C (per degree of freedom) vs. T, for alternating charge sequences of lengths 6,8,...,26.
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Figure 14: Area beneath heat capacity curve vs. N . The area is normalized to (2N � 3) degrees of

freedom.

the critical temperature. Victor and Imbert [19] �nd �

c

= 0:59�0:01. Various authors [44]

studied short-range interacting homopolymers with results in the range �

SR

c

= 0:5 � 0:6.

Golding and Kantor [44] �nd for a short-range interacting heteropolymer �

c

= 0:60�0:02.

Fig. 15 shows these curves for di�erent values of �. We can see that almost all curves

coincide at the critical temperature of the heat capacity (' 0:16) for 2� ' 1:1 � 1:2,

similar to the short-range interaction critical exponent.

The top graph in Fig. 15 demonstrates an interesting zero temperature peculiarity.

The ground state is not the most compact { R

2

g

increases a bit when approaching zero

temperature. The system prefers a con�guration that can be divided up into aligned
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dipoles so interactions die out much faster. It seems that as a result of the long-range

interaction, for the �nite and rather small systems studied, the surface tension becomes

relatively negligible. A local perturbation, unpaired charges or non aligned dipoles, has

a great e�ect on the energy. A chain of 16 monomers can fold to an exact square shape

making it, naturally, the most favorable. A chain of 18 monomers, on the other hand,

prefers a 9 � 2 rectangular array con�guration over the more compact 6 � 3 rectangular

array con�guration. This is displayed graphically is section 4.5, discussing the annealed

ensemble. When comparing all possible compact, rectangular con�gurations for longer

chains, it seems this irregularity dies out and the most compact is energetically favorable.
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4.4.2 The Fully Charged Quench

Another interesting case is the fully charged quench. All monomers are positive (or

negative) so they all repel each other. This is of special interest as an extreme case of the

system we study. It is also similar to that of polyelectrolytes where all charges have the

same sign, a model that has been subject to extensive study.

Unlike the neutral quenches, in this case the ground state is the fully extended, rod-like

con�guration. Higher energy con�gurations allow contraction into less extended states.

We will now argue that in this case for all �nite temperatures only the ground state

exists, all higher energy excitation states are forbidden. The lowest excitation above the

ground state would be that of a single \stair" like step (Fig. 16).

M             ... j ...       2      1

0      1      2       ... i ...               L

ground state:

first excitation:
. . . . .

. . . . . 

. . . . . . . . . . . . . . . . 

Figure 16: Ground state and �rst excitation of a positive only chain of length N = L+M + 1.

We now estimate the energy required for such an excitation. The change in energy of

the charge i relative to the ground state is:
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+O(1) : (4.21)

The sum can be calculated by integration using the Euler-Maclaurin formula [47], where
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the highest order correction is still O(1).
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Again, using the Euler-Maclaurin formula, this results in:

�E

q

2

0

= (L+M + 2) ln(L+M + 2) � (M + 1) ln(M + 1)

� (L + 2) ln(L+ 2) +O(N) :

(4:23)

We de�ne � as the fraction of the chain on one side of the bend: N = L+M + 1 ; M =

�N ; L+ 1 = (1 � �)N . Inserting these relations into the expression above, we get:

�E

q
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= �N ln
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N � �N + 1
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�

� (N + 1) ln
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�

+O(N) : (4:24)

We see that the energy associated with the lowest possible excitation scales as N . (For

a �nite number of con�gurations, when the \stair" is near the edges, the change in energy

scales as lnN .) On the other hand, there are � N such possible excitations (wherever we

choose to make the \step" within the chain), so the entropy scales as lnN .

If we examine the free energy F = U�TS, we see that in the thermodynamic limit, at

every �nite temperature, energy considerations always win over the entropic ones. This

means that the system will always remain in its ground state with no transitions to other,

less extended, states.

We enumerated all con�gurations for this quench of lengths 6{26 monomers. Our

simulations, exhibit a divergence of the \transition temperature" (de�ned as the peak in

the heat capacity) with respect to N . This is consistent with an absence of any transition

at the thermodynamic limit. Fig. 17 depicts the heat capacity of the chain at di�erent

temperatures for various lengths. The divergence of the transition temperature is evident.

An interesting phenomenon is the dying-out of the peak, possibly another indication of

the disappearance of excitations at the thermodynamic limit.

Although we claim that there is no transition, we attempt to quantify the behavior

of the peak in the heat capacity curve for our �nite system. At high temperatures, the

behavior of the chain is that of a SAW, with a characteristic separation between charges

of R

g

� N

�

SAW

. The characteristic energy of such a state, with respect to the ground

state will then be:

�E � �N

2

lnR

g

� E

gs

� N

2

lnN ; (4:25)
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Figure 17: C vs. T. Results for polymers of lengths 6{26 charges are displayed, with the peaks moving

to higher temperatures and lowering down for longer lengths. It must be remembered that the transition

here is to an expanded state (not a collapse).

where the energy of the ground state E

gs

also scales as �N

2

lnN but with a larger

prefactor because the typical distance is larger. The crossover will occur when the thermal

energy of all modes will be on this scale:

N

2

lnN � Nk

B

T

c

) T

c

� N lnN : (4:26)

Fig. 18 displays T

c

, the heat capacity peak temperature, for the di�erent lengths

examined. Fig. 18 also shows an attempt to linearize the graph according to the expected

scaling behavior (we manipulated the axes to bring the dependence of Eq. 4.26 to a linear

form for large N). Results in this case can be seen to be inconclusive.

We attempted to �t the T

c

vs.N curve (Fig.18) to a functional form of T

c

= AN

�

.

For the whole graph this results in � = 1:55. The interesting procedure, though, is to

apply this form to consecutive, overlapping, 9-point segments of the graph, in search of

the limiting behavior for the exponent. Results, presented in Fig. 19, show this exponent

for di�erent parts of the curve in Fig. 18.

We see that, as chain length (N) increases, the exponent � decreases towards 1. This

could indeed be an indication of an N lnN dependence (which is actually N to a power

slightly larger than one).

The question remains if this transition is a feature of a real continuous system or a

lattice discreteness e�ect. The fact that the peak dies out as N increases may indicate

that it is a lattice e�ect. For long enough chains, the short-ranged lattice step may become
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Figure 19: The scaling exponent � of T
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for di�erent 9-point segments of Fig. 18. Each segment is

represented by its middle value of N .

irrelevant. For a continuous system there will be a continuous spectrum of excitations.

The reasoning we applied concerning the discrete lattice will not hold and we might

observe a di�erent behavior of the heat capacity.
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4.5 The Annealed Ensemble

In the annealed ensemble charges are free to move along the backbone, with a restriction

on the total excess charge. Only a single charge may occupy each monomer. At zero

temperature, they naturally fall into the sequence and con�guration that have the lowest

possible energy.

We searched for the ground state of every sequence with all di�erent lengths of 6{18

monomers and all possible excess charges. The charge sequence with the lowest ground

state energy was selected. The ground states for each annealed ensemble are shown in

Figs. 20, 21, 22 for chain lengths of 16, 17 and 18 monomers respectively.

For the lowest possible excess charge (0 for even lengths, 1 for odd), the selected

sequence is the alternating charge sequence, which has a compact ground state. This is

expected since this ordering of charges allows a ground state most similar to the salt-

crystal con�guration, which we have identi�ed earlier as the global lower bound for this

system. All other excess charges (Q > 1) have a fully extended, rod-like shaped, ground

state. Hence, Q

L

c

= 0; q

0

(for even/odd lengths).

Q=0 Q=2 Q=4

Q=6 Q=8 Q=10

Q=12 Q=14 Q=16

Figure 20: Ground state con�gurations for annealed sequences of length 16, with an overall excess

charge Q.
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Q=7 Q=9 Q=11

Q=13 Q=15 Q=17

Figure 21: Ground state con�gurations for annealed sequences of length 17, with an overall excess

charge Q.

The ground state of the neutral, 18 monomer long chain displays an interesting pe-

culiarity. The sensitivity to the charge is such that an elongated but symmetric shape is

preferred over a more compact one. We saw similar behavior when studying the alternat-

ing sequence, which is the same case. This is probably a result of the limited length { for

longer, neutral chains a compact ground state is energetically favorable.

The �nite lengths examined do not exhibit a de�nite behavior of the charge sequence

the ground state realizes. If we consider the excess charge as being distributed on a �nite

neutral rod, then a simple calculation shows that being evenly spaced along the rod is

energetically favorable over concentrating half of the excess charge at each edge of the

rod. This does not prove the optimal distribution of the charge which we believe will tend

to be constant along the rod, with an increase in density near the edges.

For a 3D system it has been speculated by Kantor and Kardar [22, 23] that for annealed

PAs, with high enough excess charge, the ground state should be a compact, neutral shape

with a \�nger" carrying the excess charge protruding away from it. We can see here that

for two dimensions the behavior is quite di�eren. The long-range e�ects of the logarithmic
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Q=8 Q=10 Q=12 Q=14

Q=16 Q=18

Figure 22: Ground state con�gurations for annealed sequences of length 18, with an overall excess

charge Q.

Coulomb interaction are so pronounced that any minute deviation from neutrality will

cause an e�ective global repulsion and expansion of the polymer. This is in agreement with

the theoretical predictions we made in section 4.1.1, when discussing the Rayleigh drop

model. The numerical results for the critical charge of the quenched ensemble have shown

that Q

L

c

= 0 but a highly extended ground state appears only if the excess charge grows

like: Q � N

0:75

. The annealed ensemble is much more sensitive, maximally expanding for

a minimal excess charge.

A word of caution must be entered to this discussion: As stated by Kantor and Kardar

[11], the e�ects of lattice discreteness are much more pronounced for annealed PAs. Con-

trary to the quenched ensemble, where the ground state is averaged over many quenches,

thus smoothing out lattice e�ects, the annealed ensemble's ground state corresponds to

a single con�guration of a single sequence. The chains studied might not be long enough

to overcome this problem.

49



4.6 Investigation of Freezing

Thus far we did not consider the exact nature of the transition to the low energy states.

In all previous sections we calculated exact thermodynamic values describing the system.

These values are relevant and present a good description of the system's behavior if it

is in thermal equilibrium. One result of such an assumption is that the system will

minimize its free energy at all temperatures and will be found in its global energy minimum

con�guration at zero temperature.

However, for this type of system we may not rule out the possibility that it exhibits

a freezing transition. As discussed in section 2.1.6, disordered systems that tend to be

frustrated might, upon cooling, get caught in a local energy minima state { not the global

one. The probability of escaping and �nding the ground state may be, depending on the

features of energy landscape, exceptionally small. The system will remain in this meta-

stable state, violating the minimization of the free energy principle. Such a transition

could be attributed to the degree of disorder in the system and independence of states.

One straight-forward way to check for the appearance of such a transition is to re-

peatedly evolve a system in time and check if it relaxes into di�erent states of di�erent

energies each time it is cooled down (simulated annealing). We will adopt a di�erent

approach { studying thermodynamic aspects of the system that may be indicative of such

a transition. The speci�c observables we study are de�ned to point out properties of the

system that are considered as inducing freezing. These observables have been de�ned for

the study of di�erent systems such as spin glasses or short-range interacting polymers.

Here we apply them to our system.

The previous results have shown that only neutral quenches have compact ground

states. It is likely that freezing will occur in a compact shape, where drastic maneuvers

of the polymer between di�erent states are restricted and the energy gradient is larger.

We studied 20 random neutral quenches, 18 monomers long. The results, as we will

present, indicate the absence of a freezing transition. One of the most apparent features

(although not rigorously examined) is that many properties of this ensemble seem to be

non-self-averaging. Di�erent quenches show a great diversity in their behavior.

Results will be presented as follows: We will explain the di�erent measures taken

in search of freezing. For each, we will display the results for 4 representative quenches,

designated (a){(d) in �gures 23, 24, 25 and 26 and draw the conclusions regarding freezing.
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At the same time we will see how the di�erences between the di�erent quenches manifest

themselves in the di�erent parameters studied.

A natural starting point is to consider the heat capacity. We do not expect a di-

vergence of the heat capacity for this transition, but, irregular features of the curve at

low temperatures may point toward some phenomenon. Moreover, the freezing transition

is related to a drastic reduction in the number of states { the entropy crisis, the heat

capacity which is a measure of energy uctuations may express this.

Figure 23 displays the heat capacity (C) of the four representative quenches as a

function of temperature. For each, there is a maximum at a certain temperature, but the

peaks are each of a very di�erent nature: The peak temperature and the slopes of the

curves when approaching it vary widely. We do not see any feature that may imply a

phase transition.

In section 4.3 we saw that there is a peak in the heat capacity curve that is possibly a

lattice e�ect or a result of the normal compactifying of a neutral polymer to the globular

state. We will, therefore, also look at another parameter that may be also important:

As stated earlier, a freezing transition is characterized by a drastic reduction in the

number of states thermodynamically accessible to the system. A measure for this number

of states is given by the parameter:

X = 1�

conf

X

k=1

p

2

k

; (4:27)

where p

k

= (1=Z)e

�E

k

=k

B

T

{ the canonical probability for a certain con�guration.

It can be seen that at high enough temperatures, when all states have the same

probability X ! 1. The deviation from the asymptotic value will behave as X ' 1�1=S,

where S is the number of states. On the other hand, nearing zero temperature, only one

con�guration will dominate: X ! 0

6

.

In a system following the REM de�nition, X should change linearly between the two

limiting values, when averaged over all quenches (or all realizations of disorder, in general)

between the temperatures 0{T

f

, where T

f

is the freezing temperature [32].

In �gure 23 we display the X parameter on the same temperature scale as the heat

capacity. We expect a rise in X to occur together with the heat capacity peak. Indeed,

6

In our model, reection symmetry causes each non-rod state to be counted twice. For this reason

X goes to a lower limit of 0:5 instead of zero. Since the two states are degenerate this still represents a

single ground state.
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this is roughly the behavior. Quenches (b) and (c) exhibit an interesting feature. The

heat capacity shows a \hump" or a minor peak when rising. The \transition" in X occurs

at that temperature, of the minor peak. We might interpret this in the following manner:

Upon lowering the temperature, there is a �rst transition from a SAW to a collapsed

dilute globular state. This transition manifests itself only in the heat capacity because

there is still a large number of states accessible to the system. At a lower temperature

there is a second collapse or, maybe, freezing which is pronounced in the minor peak in

the heat capacity and the rapid decrease in X.

There is another feature we should note: We can see that X drops o� towards 0:5

(equivalent to zero in the theoretical de�nition) at low temperatures. However, only for

quenches (a) and (b) it actually reaches 0:5. That is, at �nite temperatures, there is only

one dominant con�guration { the ground state. For the other two, even at low tempera-

tures X 6= 0:5, meaning there are a few (2-3) thermodynamically relevant con�gurations

{ \more" indicative of a possible glass phase.

We now try to understand the nature of these suspected transitions. Freezing, de-

scribed by REM as resulting from an entropy crisis at low temperatures, depends on the

sharp decrease in the density of states at low energies. We examine the low energy tail

of the energy distribution for the di�erent quenches in Fig. 24. We see the distribution

of the 100 lowest energy con�gurations. Again the di�erent quenches display a varying

spectrum. Generally the distribution falls o� at lower energies but at di�erent rates. A

freezing transition would be indicated by a few near low energy states.

We can see that for quenches (a) and (b) there is one isolated ground state. Hence,

there is a good chance the system will relax to the global minimum energy con�guration.

These are also the two quenches for which X dropped to zero in Fig. 23 which is consistent

with the de�nition of X. The other two quenches, (c) and (d), have a few near low energy

states (they even seem to be have some degeneracy, though actually they don't). They

would be more likely to undergo a freezing transition, should it occur. The probability

of occupying one of the low energy states is not negligible compared to the ground states

even at low temperatures. This is not enough to prove freezing, it remains to be seen

that the transition from the low energy states to the ground state is \di�cult", otherwise,

they will gradually fold into it.
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Figure 23: Four di�erent neutral charge sequences. For each C vs. T (top) and X vs. T (bottom)

are displayed on the same temperature scale. (a)-(d) are four di�erent quenches appearing also in the

following graphs. '1'/'0' in sequence denote +/- charges.
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Figure 24: Distribution of the 100 lowest energy con�gurations for four di�erent neutral charge se-

quences. Sequence notations follow �gure 23.
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We would now like to see if these low energy states are distant in the \con�guration-

energy landscape". For freezing to occur they must be \distant" so transition between

them will be less likely { more barriers to overcome. In Fig. 25 we draw the con�gurations

of the 9 lowest energy states, for each of the four quenches. Careful observation reveals

that the di�erent con�gurations have many similar elements, in some cases they are almost

identical. This may imply that there is no freezing transition. The similarity of states

allows easy relaxation to the real ground state at low temperatures and the system does

not freeze into meta-stable states.

E=−1.504 E=−0.9592 E=−0.9292

E=−0.8269 E=−0.7819 E=−0.7445

E=−0.7123 E=−0.6984 E=−0.6949

E=−1.459 E=−1.348 E=−1.348
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Figure 25: Paths of the 9 lowest energy con�gurations for the same four di�erent neutral quenches as

in the previous �gures.

55



The previous \visual" argument is now put in more quantitative terms. One would

expect two di�erent states in the glass phase to have similar energies, but to be structurally

di�erent. A local minima con�guration will have a low probability of relaxing to the global

minimum if they are distant in the con�guration space. For short-range interactions,

this \distance" is measured by the number of common contacts in the 2 con�gurations.

Because each contact contributes to the energy, this also is a measure of how much the

energies are similar and also measures structural similarity. (For normalization, the ratio

to the maximum number of possible common contacts is taken.) Such a measure, which

can be considered as the overlap of the two states, will range between 0 (di�erent states)

and 1 (similar).

PA systems with long-range interactions require a more complex treatment. In this

case di�erent structural changes have di�erent energy costs (in the short-range case they

were the same). This must be taken into account when measuring \distance" between

states. Pande et al.[35] who have studied the freezing transition for PAs, suggest a modi-

�cation of the short-range parameter for the long-range interaction. For every pair of two

con�gurations: � and �, we de�ne Q

��

7

as:

Q

��

=

X

i 6=j

f(r

�

i

� r

�

j

)f(r

�

i

� r

�

j

) ; (4:28)

where r

�

i

is the position of the i'th monomer in con�guration �. f(r) is the dependence

of the interaction on distance. For the Coulomb potential:

f

d6=2

(r) =

1

jrj

d�2

; f

d=2

(r) = ln

jrj

r

0

: (4:29)

Q

��

is divided by max[Q

��

; Q

��

], so it will range between 0 (distant con�gurations) and

1 (similar con�gurations). The Q

��

parameter is also directly connected to the statistical

dependence of states [35]: Large Q

��

values point towards a high correlation between the

states, thus violating the REM assumption.

Following Shakhnovich et al.[29], we observe the similarity (or overlap) only between

the relevant states at every temperature. Each pair of states h��i is assigned a probability

which is the product of their separate Boltzmann factors.:

P

��

(T ) =

e

�(E

�

+E

�

)=k

B

T

(

P

�

e

�E

�

=k

B

T

)

2

: (4:30)

7

This is not to be confused with excess charge, which is zero throughout this section.
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The distribution of the Q

��

parameter is studied with respect to this probability, in the

following fashion:

P (Q

��

; T ) =

X

�

0

�

0

P

�

0

�

0

(T )�(Q

�

0

�

0

�Q

��

) ; (4:31)

where we sum over all con�guration pairs. This means we �nd which con�guration-pairs

contribute to each value of Q

��

, each pair with its respective probability.

If a system freezes to a glassy phase we would expect to have some pairs of states

with a mutual Q

��

that tends to zero (meaning they are di�erent). Their probabilities

are expected to be signi�cant at low temperatures, so the distribution of Q

��

will be

dominated by these pairs.

For di�erent temperatures we calculated the distribution function of Q

��

as displayed

in Fig. 26. Due to the complexity of this calculation, we limited ourselves to the 100

lowest energy conformations of each quench. This is justi�ed when studying �gures 23-25

and seeing they are the only relevant states.

We can see that at very low temperatures only the ground state is relevant. Obviously,

the ground state is similar to itself so we get Q

��

= 1. As temperature is increased more

states become thermodynamically relevant. However, they are all similar, as expressed

by their high mutual Q

��

values that appear in the histogram. Even at the in�nite

temperature limit, when all states have the same probability, all of them are similar, no

Q

��

< 0:5 is obtained

8

. This is to say that all the low energy con�gurations are \close"

one to the other in con�guration space and the chances of being trapped are low.

The quenches we previously suspected as having a freezing transition, (c) and (d),

do indeed have relatively low Q

��

values at low temperatures, but even these are high

enough to reect a similarity, or high correlation of states. For a short-range interacting

system (or other systems exhibiting freezing in the REM sense) this distribution tends to

be peaked near zero when approaching the thermodynamic limit.

All of the di�erent criteria we studied seem to point towards the absence of a freezing

transition. Even when there are some low energy states (as opposed to a single isolated

one) they have similar con�gurations. The system will not freeze into one of several meta-

stable states but will always be able to �nd the real energy minima { it will not become

a glass.

8

This is not the real in�nite temperature limit, since we consider only the lowest 100 states, but we

assign them equal probabilities.
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It would only be fair to state that the conclusions must be regarded with caution. We

are dealing with the low temperature behavior of the system. In this region, especially

when the lengths involved are relatively short, the model's discreteness plays a great role.

The apparent energy gap between the low energy states (Fig. 24) will probably decrease

in a continuous system.

It can also be seen that some quenches have a \tendency" to a glass { their properties

are nearer to it than others. Making the chains longer may enhance their behavior in this

direction. We see that in the presence of long-range interactions, the speci�c sequence

of monomers is of great importance. The alternating sequence, for instance, has a large

ground state degeneracy unlike the sequences displayed here. Maybe the natural selection

of amino acid sequences, allowing their \correct" folding, is a�ected by this feature as well.
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Figure 26: The distribution of Q

��

at di�erent temperatures for four di�erent neutral quenches. ��

are all pairings of the 100 lowest energy states. Sequence notations follow �gure 23.
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5 Conclusions

We studied the properties of a polymer with positive and negative charges along its back-

bone { a polyampholyte. The study was of a 2-dimensional lattice model, mainly using

numeric methods (enumeration) along with some analytic estimations. The properties in-

vestigated were of energetic (energy spectrum, heat capacity) and conformational (spatial

extent, shape transition) nature.

The logarithmic 2-dimensional Coulomb potential turned out to be a key factor in

the system's behavior. Many basic features, such as convergence of energy had to be

given special attention. This must be taken into account when trying to apply our results

to higher dimensions, especially since one of the main motivations for this model was a

better understanding of phenomena encountered in similar models for three dimensions.

We �nd that the neutral polyampholytes collapse from their high temperature random

behavior to compact states with an extensive energy in their ground state. This collapse

does not display the characteristics of a phase transition. It appears that only strict

neutrality allows collapse into a compact dense shape. The long-range potential makes

the system very \vulnerable" to any excess charge { on the average, any excess charge

will cause the system to relax to an expanded state.

Several properties of the quenched ensembles seem to be non-self-averaging and charge

sequence plays a major role in their behavior. An extreme case of the alternating charge

seems to behave like a short-range interacting polymer, featuring the �-transition. Others

di�er vastly in their \transition temperature", energy landscape and radius of gyration

at di�erent temperatures.

The investigation the possibility of a freezing transition is not conclusive, but it seems

the system does not undergo such a transition. The low energy states are highly correlated,

thus violating REM.

Many phenomena we encounter, especially at low temperatures, are suspected as lat-

tice discreteness e�ects. This may also be true for real polymer systems, but certainly

requires further study of longer chains or analytic continuous models.

The complexity of the enumeration method is such that major improvement of com-

puter speed is needed to increase the lengths studied signi�cantly. Understanding the low

temperature behavior of this system requires some rigorous analytic study.
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A Energy of a Two-Dimensional Salt Crystal

We present the full derivation of the energy of a �nite 2-dimensional salt crystal: An

overall neutral con�guration of positive and negative charges of equal magnitude, q

0

,

on a 2D square lattice. The charges occupy the nodes in an alternating sign order {

\checkerboard" con�guration.

The general question, the stability of a many charge system, has been addressed

previously in several articles (for example [48]), but the results do not apply to potentials

of the logarithmic type we encounter here. The proof we provide here is restricted only

to a very speci�c con�guration of such charges.

We are interested in the type of energy function, that is we would like to show it is

extensive with the �rst order corrections being a surface term:

E = ��

c

V + S =

�

A

1

N +A

2

p

N

�

q

2

0

; (A:1)

where in a 2D system V � N and S �

p

N . We do not calculate the values for the

condensation energy { �

c

, or the surface tension { , but prove their existence. For clarity,

we drop the q

2

0

factor in the rest of this section.

The basic problems this derivation deals with are the divergence of the logarithmic

interaction and the mathematical complexity of summing up the discrete contributions.

The general scheme we apply is to divide the plane into small, repeating, neutral subunits

whose interaction is then much weaker (multipole-multipole) and falls of fast enough with

distance. At large distances we are able to integrate over a continuous spread of such

units enabling the overall calculation.

For a �nite system we will have to take into account �nite size and discretization

corrections. The total energy can be considered as a sum of the idealized con�guration

with several contributions, or corrections. We will deal separately with each of them in

the following sections.

Condensation energy for an in�nite plane

We choose to divide the plane into be \quadrupole" units (Fig. 27), for the reasons stated

above. We calculate the energy of a quadrupole, at the coordinate center, interacting

with all others. If the total interaction, for the in�nite plane converges, then there is a

�nite condensation energy (neglecting surface e�ects).
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Figure 27: Two interacting quadrupoles in a plane.

We now calculate the quadrupole pair energy, where one is centered at (0; 0) and

the other at (r; �) (Fig. 27). We �nd it more convenient to perform the calculations in

complex coordinates where z = r cos� + i sin� and E = ln jzj = <(ln z) (for clarity, we

omit the < notation below). The energy is comprised of 16 pair interactions:

E

1a

= E

2b

= E

3c

= E

4d

= � ln z

E

1b

= E

3d

= ln(z + 1) E

1c

= E

2d

= ln(z � i)

E

2a

= E

4c

= ln(z � 1) E

3a

= E

4b

= ln(z + i)

E

1d

= � ln(z + 1� i) E

2c

= � ln(z � 1� i)

E

3b

= � ln(z + 1 + i) E

4a

= � ln(z � 1 + i) :

(A.2)

Summing up all the above contributions and extracting ln z from all parts, the pair energy

is:

E

qq

= 2 ln

�

1 +

1

z

�

+ 2 ln

�

1 +

i

z

�

+ 2 ln

�

1�

1
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�

:

(A.3)

Allowing for a constant energy term of interaction with quadrupoles up to a distance

jz

0

j = r

0

� 1, we calculate the correction, the interaction with quadrupoles beyond this

region. We approximate ln(1+ z) ' z� z

2

=2+ z

3

=3� z

4

=4. All terms relating to the �rst

three orders cancel out. We remain with:

E

qq

' <

�

�

6

z

4

�

= <

 

�

6e

�4i�

R

4

!

= �

6 cos 4�

R

4

: (A:4)

At these large distances the quadrupole surface density can be considered constant.

We can then integrate over the whole plane, (r; �) ; r > r

0

. This integral converges with

the angular integration going to zero. Of course, all higher order terms will converge as

well. We conclude that for an in�nite plane of the 2D salt crystal the energy per charge

is has a �nite constant limit.
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Correction for surface quadrupoles

In a �nite plane, quadrupoles close to the boundaries don't see the same surroundings as in

the in�nite plane that was calculated above. When the plane is large enough we can locally

approximate the surface boundary to be a straight line. Thus, the di�erence in energy

between a quadrupole near the surface and that of one in the center is the interaction

with the \missing outside half-plane" { Fig. 28. This correction should be added up for

all charges on the line normal to the surface, leading inward. Its convergence means

a constant energy correction for every surface element, thus ensuring a total correction

proportional to the surface size.

R

r

θ

surface

"missing" area

of integration

Figure 28: The con�guration for the calculation of the surface energy.

The interaction energy of a quadrupole at a distance R from the surface with the

\missing" half plane is:

E

q

surf

(R) =

Z

1

R

Z

�

��

E

qq

(r; �)d� rdr

'

Z

1

R

Z

�

��

6

r

4

cos(4�)d� rdr ; (A.5)

where cos � =

R

r

. Again, we neglect a constant surface contribution at short distances and

�nd the correction at large distances. The angular integration will at most be between

(��; �) (depending on r) so it can be bounded by some �nite constant. The radial

integration converges as well, so:

jE

q

surf

(R)j <

Const

R

2

: (A:6)
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Integration of this correction (as a function of R) from the surface inward converges, thus,

insuring a �nite surface energy correction from each surface element. The result is that

the total contribution of this correction will then grow as the size of the surface.

Interaction of single charges on the boundary with the bulk

The residual charges on the surface must also be accounted for. Due to the shape of the

�nite plane, not all charges necessarily group up into the quadrupole units.

Here we calculate the energy associated with the interaction of these residual charges

with the bulk that is made up of quadrupoles. For every such charge, we must integrate

the charge-quadrupole interaction, where the integration is only on half a plane since the

excess charges reside on the boundary.

The procedure is similar to the quadrupole-quadrupole calculation performed above,

using complex coordinates. Let us calculate the charge-quadrupole interaction, assuming

a positive charge at a distance z from the nearest charge in the quadrupole, also positive:

E

cq

(z) = < (ln(z) + ln(z + 1 + i) + ln(z + 1) + ln(z + i)) (A.7)

= <

�

ln

i+ 1

z

+ ln

1

z

+ ln

i

z

�

:

Allowing for a �nite constant contribution from the near vicinity, we can expand for large

z:

E

cq

(z) ' <

�

i� 1

z

3

�

(A.8)

=

sin 3� � cos 3�

R

3

:

This converges when integrated over the whole half plane. Hence each such charge con-

tributes a �nite correction to the energy and since there are �

p

N such charges, the total

contribution here grows with the size of the boundary.

Mutual interaction of single charges on the boundary

The residual charges also interact among themselves, an interaction we now calculate.

Since the whole system is neutral and the bulk was de�ned as made neutral of quadrupoles

then all excess charges on the boundary also have total zero charge. In all there are

M �

p

N such charges, so there are � N pair interactions. Restricted to \checkerboard"

placements they will typically be locally alternating in sign, or group up into multipoles.
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Any charge-multipole interaction falls of fast enough (as can be seen in the previous

calculations), so their total contribution to the energy will at most be a surface term.

We should mention that there are pathological cases where one charge type is con-

centrated on one side of the area with a typical spread of r �

p

N , distanced typically

R �

p

N from the opposite type (r < R) without violating the salt crystal lattice for-

mation. Such a con�guration will contribute a term that grows as � N and violate the

extensiveness. This contribution is positive, so constructing the crystal, at low tempera-

ture such that it relaxes to its preferable state will not create such con�gurations.

In all we managed to demonstrate that the total energy of a �nite 2D salt crystal

arrangement of charges is extensive with a lowest order surface correction term.
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B Enumeration Details

We generated all SAWs for every quench studied so as to calculate the exact thermody-

namic quantities. Actually, taking advantage of certain symmetries allowed us to generate

less the the total number, thus reducing computation time.

There is a four-fold symmetry about the �rst step taken. This allows accounting only

for walks that start, for example, in the positive x direction. There is another two-fold

symmetry about the �rst step in the perpendicular direction, so we can consider only

those that their �rst turn is in the positive y direction. The straight rod con�guration

does not have this last degeneracy, a fact that was taken into account.

In all, we were able to reduce the total number of con�guration by a factor of almost

1

8

. Table 1 presents the actual number of SAWs generated for calculating a chain of N

monomers.

N Con�gurations

6 36

7 98

8 272

9 740

10 2,034

11 5,513

12 15,037

13 40,617

14 110,188

15 296,806

16 802,075

17 2,155,667

18 5,808,335

19 15,582,342

20 41,889,578

21 112,212,146

22 301,100,754

23 805,570,061

24 2,158,326,727

25 5,768,299,665

26 15,435,169,364

Table 1: Number of di�erent SAWs enumerated for each length.

When enumerating all quenches, as for the con�gurations, certain symmetries allowed
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generating only part of all the possible charge sequences.

A trivial symmetry was charge-conjugation of the whole sequence. The Hamiltonian

is symmetric under negation of all charges. This allows the study of only the neutral and

positively-charged quenches.

Because we generate all possible spatial con�gurations, there is also a start-end reversal

symmetry. For every speci�c sequence and con�guration, the reversed sequence will also

have another con�guration that results in the same state. This allows another reduction

by a factor of almost

1

2

. Symmetric charge sequences do not have this degeneracy.

Table 2 presents the actual number of quenches generated for the lengths and excess

charges, for which full enumeration was done.

N Excess Charge { Q

0/1 2/3 4/5 6/7 8/9 10/11 12/13 14/15 16/17 18

6 10 9 3 1

7 19 12 4 1

8 38 28 16 4 1

9 66 44 20 5 1

10 126 110 60 25 5 1

11 236 170 85 30 6 1

12 472 396 255 110 36 6 1

13 868 651 365 146 42 7 1

14 1716 1519 1001 511 182 49 7 1

15 3235 2520 1512 693 231 56 8 1

16 6470 5720 4032 2184 924 280 64 8 1

17 12910 9752 6216 3108 1204 344 72 9 1

18 24310 21942 15912 9324 4284 1548 408 81 9 1

Table 2: Number of di�erent quenches enumerated for each length fully enumerated

(double headers refer to even/odd lengths).
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