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Abstract

Eigenstates of Maxwell's equations are �elds which can exist in a medium spon-
taneously. Such eigenstates can be de�ned for a homogeneous medium and for
a two-constituent medium, where a physical parameter that enables their exis-
tence is the eigenvalue. Their importance is two-fold: when their eigenvalues are
approached with a physical parameter there is a strong response of the system
and they can be used to expand the �eld generated as a response to an applied
�eld. They can be used both in classical physics and in quantum physics, where
the sources and the interactions are treated quantum mechanically.

It was suggested long ago to expand the electric �eld of a two-constituent
setup as a response to an external �eld using eigenpermittivity eigenstates. The
goals of the PhD were to introduce external sources such as charges and currents
into the eigenpermittivity formalism and to exploit properties of the eigenstates
to investigate physical phenomena such as imaging and Purcell e�ect.

During the PhD, the electric �eld of a source in a setup of a slab in a host
medium was expanded using the eigenpermittivity eigenstates in the quasistatic
and electrodynamic regimes. This setup was used to investigate Veselago lens
imaging in which a �at lens with a refractive index with the opposite sign of
this of the medium is used for imaging, resulting in enhanced resolution. It was
shown that the optimal imaging location is at the interface between the slab and
the host medium. In addition, the eigenpermittivity formalism was generalized
to treat volume current sources. Then, the quasistatic �eld of a point charge in
a setup of a sphere in a host medium was expanded using the sphere eigenstates.
This setup was used to analyze phenomena such as enhancement of spontaneous
emission of a molecule in proximity to an antenna, near-�eld imaging, and �eld
behavior inside a conductor. It was shown that the �eld of a point source can
be greatly enhanced throughout the whole nano conducting sphere for realistic
physical permittivities even though it is in the quasistatic regime. Finally, the
spherical analog of a phased array was introduced by observing properties of
homogeneous medium eigenstates. Such a spherical layer of sources can be used
to generate a focal spot eight times smaller compared to the one generated by
a conventional lens and a combination of such sources can generate isotropic
radiation.
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1 Introduction

Eigenstates of Maxwell's equations are electromagnetic �elds which can exist in
the system without a source. For a homogeneous medium, the eigenstates can
be expressed in cartesian, cylindrical, and spherical coordinates as plane waves,
vector cylindrical harmonics, and vector spherical harmonics, respectively [1].
When the medium has more than one constituent, eigenstates can exist for a
given eigenvalue which is usually a permittivity value of one of the constituents
[2, 3, 4] or a frequency [5]. Such eigenvalues usually necessitate gain and com-
plex frequencies, respectively, to support the existence of the eigenstate. These
eigenstates are also used in quantum mechanics calculations, where the �eld is
treated classically and the sources are treated quantum mechanically.

Calculating an electric �eld in a two-constituent setup is fundamental and
can be used to analyze many physical phenomena. These include nanoparticle
resonance, which can be used in biomedical imaging and nano devices, enhance-
ment of Raman scattering [6, 7], Purcell e�ect [8], near �eld imaging [9], van
der Waals interactions, Forester resonance [10], and nonlinear optics.

The electric �eld of a plane wave impinging on an inclusion can be calcu-
lated by multiple scattering using Fresnel's equations [1]. While this is simple
for planar geometries, it is rather complicated for other geometries and when lo-
calized sources generate the �eld, which is usually complex. Another possibility
to calculate the electric �eld in such a medium is to calculate Green's function
or Green's tensor for the setup [11]. However, this can involve lengthy analytic
calculations, especially in electrodynamics. Alternatively, the electric �eld can
be written as a sum of solutions of homogeneous and inhomogeneous Maxwell's
equations, where the �rst can be expanded using the homogeneous-medium
eigenstates in each constituent. Then, boundary conditions are imposed and
a solution can be obtained [12, 13]. This calculation can be simple in some
cases but when varying the source location, boundary conditions need to be
reimposed and the expansion coe�cients are redetermined.

Two-constituent eigenstates can be used to expand the electric �eld of such
a medium with an external �eld. The physical �eld is comprised of the external
�eld in a homogeneous medium and the scattered �eld resulting from the exis-
tence of the scatterer, which can be expanded using the two-constituent eigen-
states. The poles of this expansion are the eigenvalues and when the physical
parameters approach them there is a large contribution of the associated eigen-
mode, which can correspond to �eld enhancement. This expansion circumvents
multiple scattering calculations and is especially advantageous for nonplanar
geometries [2, 3, 4, 14].

Two-constituent eigenstates have been de�ned using eigenpermittivities of
one of the constituents by considering a monochromatic external �eld [2, 3, 4].
Such permittivity eigenvalues are real in statics and have gain in electrodynamics
since �eld is radiated. The physical meaning of such eigenvalues are permittiv-
ity values, which when approached with the physical permittivity, result in �eld
enhancement. Later on, eigenstates have been de�ned by using eigenfrequencies
in electrodynamics, which usually have an imaginary part. Under this de�ni-
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tion, the constituent materials are �xed and the expression for the electric �eld
depends on the frequency [5]. In this case, the electric �eld is enhanced when
the external �eld frequency is close to an eigenfrequency.

While from the physics point of view each of the approaches to expand the
�eld in the basis of the eigenstates scan a di�erent physical parameter and can
lead to better understanding from its perspective, the calculations di�er consid-
erably. In the eigenfrequency formalism several implementation and calculation
issues arise. First, in order to calculate the eigenfunction equations a nonlinear
eigenvalue equation needs to be solved. Second, the eigenstates diverge at in-
�nity and require ad-hoc normalization procedures. Third, the electric �eld is
calculated only inside the inclusion and for a source inside the inclusion volume
[5, 15].

In the eigenpermittivity formalism on the contrary, a linear di�erential eigen-
value equation needs to be solved. In addition, the eigenstates do not diverge
at in�nity and they are normalized over the inclusion volume, which can greatly
facilitate calculations. Moreover, the electric �eld is calculated everywhere in
the system. Fourth, the formalism can be applied both in statics and elec-
trodynamics and treats simple geometries such as a sphere, slab, and cylinder
analytically [2, 3, 4, 16, 17, 18, 19].

The goal of the PhD projects is two-fold: to introduce localized sources
into the eigenpermittivity formalism and to investigate physical phenomena us-
ing homogeneous medium and two-constituent medium eigenfunctions. The
eigenpermittivity formalism is an appealing alternative to the successful eigen-
frequency formalism due to its aforementioned advantages. The generalization
of the formalism to treat localized and volume sources developed during the
PhD holds promise also to treat complex phenomena associated with volume
currents and polarization analytically. Throughout the projects we also inves-
tigated physical phenomena such as imaging, electric �eld enhancement inside
nanoconductors in the quasistatic (QS) regime, enhancement of spontaneous
emission of a molecule by an antenna, and e�ects of very small permittivity
values [20]. Imaging was analyzed in several contexts: high-resolution imaging
using a Veselago lens [21, 22], near-�eld imaging [9], and focusing of far-�eld
light into a small focal spot [23], which can be used as the illumination source
in imaging. In addition, the eigenstate formalism enabled us to gain insights in
selective light-matter interaction associated with both permittivity values and
external �eld distributions [16, 17, 24, 18]. Finally, we generalized the eigenper-
mittivity formalism to sources, which can be located anywhere in the system,
i.e., inside any of the constituents [25].

The PhD projects included the analysis of setups of an inclusion in a host
medium and a source both in the quasiststic and electrodynamic regimes. In
addition, it has been shown that oscillating currents can generate homogeneous
medium eigenstates in spherical coordinates. In the �rst project, we expanded
the quasistatic electric �eld of a point charge in a setup of a slab in a host
medium using the slab eigenfunctions. We used this setup to analyze Veselago
lens imaging in the QS regime [26, 16]. The second project was a generalization
of the Veselago lens analysis to the electrodynamic regime with an oscillating
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dipole source. In this project volume current sources were introduced to the
eigenpermittivity formalism [17]. In the third project the spherical analog of
a planar phased array was presented, with implications in imaging and light-
matter interaction [24]. In the fourth project we expanded the quasistatic �eld
of a point charge in proximity to a spherical inclusion and the eigenpermittivity
formalism was generalized to treat a charge distribution [18].

In the �rst PhD project, we considered a setup of an ε1 slab in an ε2 host
medium and a point charge source. The electric potential of a point charge in
such a setup had been expanded in the structure eigenstates in Ref. [26]. That
work also considered the ε1 = −ε2 limit, which corresponds to the condition for
a Veselago lens in the QS regime. The goals of the �rst PhD project were to
calculate the electric �eld for realistic physical permittivity values that have a
positive imaginary part and are close to the ε1 = −ε2 condition and to analyze
Veselago lens imaging in the QS regime [16]. We calculated the electric �eld
for permittivity values according to a PMMA-silver-photoresist setup [27] and
a point charge. The host medium permittivity in our analysis was the average
of the PMMA and photoresist permittivities, which are close, and the slab per-
mittivity was of silver. The thickness of the slab was 35nm and the permittivity
values were for a vacuum wavelength of 365nm [27]. We varied the point charge
location between 3/8 to 8/7 of the slab thickness away from the slab interface,
so that the typical lengths will be much smaller than the wavelength and the QS
regime will be valid [16]. We revealed that the optimal imaging of a point charge
is at the interface between the slab and the medium both in terms of resolution
and intensity. The resolution was enhanced for these permittivity values and
varied between 63nm and 72nm for a charge distanced 3/8 and 3/4 of the slab
thickness from the slab surface, respectively. We also provided guidelines for
achieving enhanced resolution and showed that gain of one of the constituents
can compensate for the loss of the other and result in enhanced resolution [16].

In the second PhD project, we considered the same setup of a slab in a host
medium in the full electrodynamic analysis and an oscillating dipole source.
We calculated the eigenfunctions, which satisfy Maxwell's equations without
a source. Then, in order to expand the electric �eld we had to calculate the
volume integral of products of the eigenstates and the external �eld over the
inclusion volume. This calculation is very complex due to the oscillating dipole
�eld distribution. Therefore, a procedure to circumvent this calculation was
developed. In this procedure the external �eld is expressed in terms of Green's
tensor, the order of integration is interchanged, and Green's tensor operating on
an eigenstate is replaced by an eigenvalue multiplying the eigenstate, according
to the de�nition of the eigenvalue equation. We thus obtained a volume integral
of the scalar product of the current distribution and the eigenstates, which can
also be performed for volume current sources [17]. In addition, we showed that
for a dipole situated close to the slab the optimal image is formed at the interface
between the slab and the medium [17] in agreement with the QS analysis [16].

In the third PhD project the spherical analog of a phased array was intro-
duced. A planar phased array consists of antennas modulated according to a
plane wave variation in that plane and generate the same plane wave according
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to the refraction index of the medium. A plane wave is a homogeneous-medium
eigenstate in cartesian coordinates. In analogy it has been suggested, that os-
cillating currents occupying a spherical layer volume and modulated according
to a vector spherical harmonic (VSH), which is a homogeneous medium eigen-
state in spherical coordinates, will generate the corresponding VSH in all space
[24]. This was derived analytically for all TE and TM vector spherical harmon-
ics [24]. Interestingly, a generated TM l = 1 VSH �eld is concentrated at the
origin with a full width at half maximum of ∼ 0.5λ, which occupies a volume
eight times smaller than the one generated by conventional lenses. Similarly,
a current distribution occupying a spherical volume at the origin modulated
by a VSH distribution also generates the corresponding VSH �eld in all space.
A spherical layer can couple to a multipole source since the oscillation of the
electrons in the layer due to the multipole �eld generates the same multipole
�eld in all space, which can drive the multipole source currents. A sphere or
a spherical layer couples to another concentric sphere or spherical layer since
polarizing them according to a VSH distribution will result in the generation
of the corresponding VSH �eld in space, which in turn will polarize the other
sphere or spherical layer according to the same VSH distribution etc. [24].

In the fourth PhD project the quasistatic �eld of a point charge in prox-
imity to a sphere was expanded using the sphere eigenstates. Such a setup
has relevance for enhancing spontaneous emission of a molecule by an antenna,
near-�eld imaging, sensing, and Raman spectroscopy. In this project the treat-
ment of a charge density was introduced into the eigenpermittivity formalism.
The electric �eld was shown to be signi�cantly enhanced inside a sphere with a
realistic metal in the QS regime close to a resonance. One could expect that the
electric �eld produced by the surface charges would totally screen the applied
�eld, similarly to the situation in statics. However, the inclusion permittivity
value had the same order of magnitude as that of the host medium (but with
a di�erent sign) and the electric �eld could penetrate into the inclusion volume
since the normal electric displacement �eld is continuous at the interface. This
is not the case at low frequencies since Im (ε) = σ

ω and Im (ε) becomes very large
and as a result the electric �eld is screened. Moreover, the permittivity values
were very close to a resonance, which resulted in a large �eld enhancement.
Such permittivity values can enhance �elds from distant objects, whose near
�eld components usually do not reach the detector that can be de�ned as the
sphere surface in our setup. In addition, it was shown that when the permittiv-
ity ratio is below or above all the eigenvalues, the modes interfere constructively
and generate a strong signal at an angular direction equal to that of the source.
When the permittivity ratio is between two eigenvalues, the modes interfere
constructively at the re�ected direction with respect to the spherical surface.
To allow three dimensional near �eld imaging of a point source, a procedure to
retrieve the point charge location based on the spectral content of the electric
�eld was developed [18].

The procedure to treat current sources analytically in a two-constituent
medium developed during the PhD has been applied in two projects by a group
at Ben Gurion University. Their �rst project is an implementation for a cylin-
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der inclusion in a host medium and a current source [28]. Their second project
is a COMSOL implementation for a current source in a setup with a general
inclusion geometry [15]. This project is of particular importance for better un-
derstanding design principles of nanostructures and is an appealing alternative
to the existing tools. The set of articles [2, 3, 4, 17, 18, 15] represents the
developments in the eigenpermittivity formalism throughout the years.

The articles are arranged as follows. First, we append the article on the
analysis of a Veselago Lens in the quasistatic regime. Second, we proceed with
the article on the analysis of a Veselago lens in the electrodynamic regime,
which includes a procedure to treat current sources. Third, we present the
article on generating a VSH �eld by oscillating currents. Fourth, we present
the article on the eigenstate expansion of the quasistatic electric �eld of a point
charge in a spherical inclusion structure. We then discuss the future directions
for generalizing the formalism and applying it to analyze interesting physical
phenomena.
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Analysis of a Veselago lens in the quasistatic regime

Asaf Farhi* and David J. Bergman†

Raymond and Beverly Sackler School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, IL-6997801, Tel Aviv, Israel
(Received 26 April 2014; published 8 July 2014)

The resolution of conventional optical lenses is limited by the wavelength. Materials with a negative refractive
index have been shown to enable the generation of an enhanced resolution image where both propagating
and nonpropagating waves are employed. We analyze such a Veselago lens by exploiting some exact one-
dimensional integral expressions for the quasistatic electric potential of a point charge in that system. These were
recently obtained by expanding that potential in the quasistatic eigenfunctions of a three-flat-slabs composite
structure. Numerical evaluations of those integrals, using realistic values for physical parameters like the electric
permittivities of the constituent slabs and their thickness, reveal some surprising effects: For example, the
maximum concentration of the electric field occurs not at the geometric optics foci but at the interfaces between
the negative permittivity slab and the positive permittivity slabs. The analysis provides simple computational
guides for designing such structures to achieve enhanced resolution of an optical image.

DOI: 10.1103/PhysRevA.90.013806 PACS number(s): 42.79.−e, 78.20.Bh, 42.70.−a

I. INTRODUCTION

The resolution limit in conventional optical imaging is
known to be inversely proportional to the wavelength of the
light. In 1967, a theoretical analysis by Veselago, based upon
geometric optics, suggested that a flat slab with a negative
refractive index can focus at a point the radiation from a
point source [1]. At that time, materials possessing a negative
refractive index did not exist, but recent developments in
metamaterials have made the production of such materials
possible [2–4]. In 2000, another important analysis by Pendry
showed that materials with a negative refractive index can
amplify evanescent waves, and thus enable the generation
of an image by both propagating and nonpropagating waves,
theoretically leading to unlimited resolution [5].

In the quasistatic regime, when the typical length scales
are much smaller than the wavelength, Maxwell’s equations
reduce to static equations in which the electric and the
magnetic fields are decoupled. Hence, the optical constant
of relevance in this regime is the electric permittivity rather
than the refractive index. The imaging of an electric point
charge was recently analyzed by expanding the local electric
potential in a series of the quasistatic eigenfunctions of
a three-flat-slabs composite structure. This analysis yielded
exact one-dimensional integral expressions for the quasistatic
electric potential of a point charge in that system [6,7].

In this paper we first derive exact expressions for the
electric field in a two-constituent three-flat-slabs composite
structure in the form of one-dimensional integrals. These are
obtained from the classical Maxwell equations in a continuous
medium. The electromagnetic properties of that medium are
characterized by a position and frequency-dependent but
k-vector-independent electric permittivity. We further assume
that this permittivity has a constant value in each constituent
and changes discontinuously at any interface.

We then perform numerical computations for such a setup
using realistic values for the physical parameters like the

*asaffarhi@post.tau.ac.il
†bergman@post.tau.ac.il

electric permittivities and the thickness of the intermediate
slab. In these computations we vary both the location of the
point charge and the constituent permittivities of the medium.
These computations reveal surprising results among which is
that the best imaging is obtained at the interfaces between the
intermediate slab and the surrounding medium rather than at
the geometric optics foci.

The structure of the paper is as follows. In Sec. II we present
a summary of the basic theory for the analysis of such a setup.
In Sec. III we derive exact expressions for the local electric
field and validate our results. In Sec. IV we present results
of the numerical computations for various charge locations
and for various permittivity values. In Sec. V we discuss our
results.

II. SUMMARY OF THE BASIC THEORY

In this section we describe the derivation of the exact results
for the local electric potential field ψ(r) in the quasistatic limit
for the case of a point electric charge q in a two-constituent
composite medium [6,7]. In these references a two-constituent
composite structure, composed of three infinitely wide parallel
slabs, is considered. The intermediate slab, with an electric
permittivity ε1, is placed between two slabs with an electric
permittivity ε2 (see Fig. 1).

In the static limit Maxwell’s equations reduce to Poisson’s
equation for ψ(r):

−4πρ(r) = ∇ · (ε1θ1 + ε2θ2)∇ψ, (1)

which can be rewritten as

∇2ψ = −4πρ(r)/ε2 + u∇ · (θ1∇ψ), (2)

θ1(r) ≡ 1 − θ2(r) =
{

1 if ε(r) = ε1,

0 if ε(r) = ε2,

}
, u ≡ 1 − ε1

ε2
,

where θ1 and θ2 ≡ 1 − θ1 are step functions that characterize
the microstructure of the composite medium. The function ρ(r)
which appears in these equations represents a charge density
distribution, including the possibility that ρ(r) = qδ3(r − r0),
i.e., a point charge at r0. The capacitor plates at z = −L2 and
z = L′

2 are included in order that the appropriate boundary

1050-2947/2014/90(1)/013806(10) 013806-1 ©2014 American Physical Society
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FIG. 1. A three-parallel-slabs microstructure that fills the entire
volume of a large parallel-plate capacitor. The upper layer (Region
III), where ε = ε2, includes a point charge q located at r0 = (0,0,z0).
In the left part z0 < L1/2 while in the right part z0 > L1, where L1 is
the thickness of the intermediate ε1 layer (Region II). Even when all
the other linear sizes of this structure tend to ∞, this configuration
is still unsolvable in any simple fashion. The diagonal dashed lines
show how a geometric optics or light rays description would lead to
a focusing of the original point charge in Region III at new points
in Regions I and II when ε2 = −ε1. The vertical dot-dashed line
indicates the regions where ψ(r) then diverges in the case shown on
the left side, while the vertical solid line shows where the dissipation
rate diverges (after Ref. [6]).

conditions may be imposed there so as to result in a unique
solution for ψ(r). At the end of the calculation we will take
the limits L2 → ∞ and L′

2 → ∞.
We reformulate Eq. (2) as an integrodifferential equation

for ψ(r) [8]

ψ(r) = ψ0(r) + u�̂ψ,
(3)

�̂ψ ≡
∫

dV ′θ1(r′)∇′G0(r,r′) · ∇′ψ(r′),

where G0(r,r′) is Green’s function for Laplace’s equation with
zero boundary conditions defined as follows:

∇2G0(r,r′) = −δ3(r − r′),

G0(r,r′) = 0 for z = −L2 and z = L′
2,

and ψ0(r) is the solution of Poisson’s equation in a uniform
medium with a permittivity ε2.

In the case of no charges and vanishing boundary condi-
tions, Eq. (3) reduces to

sψ(r) = �̂ψ, s ≡ 1

u
.

Defining the scalar product of two scalar functions ψ(r),φ(r)
by

〈ψ |φ〉 ≡
∫

d3rθ1∇ψ∗ · ∇φ

makes �̂ a Hermitian operator [8]. Therefore it has a complete
set of eigenfunctions φn and eigenvalues sn

snφn(r) = �̂φn.

By using the expansion of the unity operator Î in Eq. (3),
we can expand the potential in a series of the eigenfunctions
φn

Î =
∑

n

|φn〉〈φn|

=⇒ ψ(r) = ψ0(r) +
∑

n

sn

s − sn

〈φn|ψ0〉φn(r). (4)

We now set the charge distribution to be that of a point charge
located at r0 = (0,0,z0). This means that

ψ0(r) = q/ε2

|r − r0| . (5)

The eigenfunctions that satisfy Laplace’s equation with van-
ishing boundary conditions are

φ±
k (r)

= eik·ρ ·

⎧⎪⎨
⎪⎩

A±
k sinh[k(z + L2)], z ∈ I,

B±
k sinh(kz) + B ′±

k sinh[k(z + L1)], z ∈ II,

C±
k sinh[k(z − L′

2)], z ∈ III.

(6)

One might think that these eigenfunctions cease to be valid
when |k|L1, |k|L2, |k|L′

2 are not very small. That is not so: In
fact, it is only necessary that Maxwell’s equations for the local
physical field E(r) be reducible, approximately, to Poisson’s
equation for the local electric potential field ψ(r) [Eq. (1)]. The
subsequent calculation of the eigenstates of the homogeneous
version of that equation is a purely mathematical exercise and
the resulting expansion of Eq. (4) for that approximate qua-
sistatic physical potential field is exact. By imposing continuity
of the potential and the perpendicular component of D, we get
the eigenvalues and the coefficients in these expressions

s±
k = 1 ∓ e−kL1

2
, A±

k = −B±
k

sinh(kL1)

sinh[k(L2 − L1)]
,

B ′±
k = ∓B±

k , C±
k = ±B±

k
sinh(kL1)

sinh(kL′
2)

.

Note that in the above expression for s±
k we already

took the limits L′
2,L2 → ∞. The normalization condition

〈φ±
k |φ±

k 〉 = 1 leads to

1 = 2kLxLy |B±
k |2 sinh(kL1)[cosh(kL1) ∓ 1].

The eigenvalues have a single accumulation point at s = 1/2
which is therefore a very singular point of Eq. (4). That equa-
tion leads to the following expressions for the electric potential
in the three regions in the form of one-dimensional integrals [6]

ψ = 4s(1 − s)q

ε2

∫ ∞

0
dk J0(kρ)

e−k(z0−z)

e−2kL1 − (2s − 1)2

= 4qε1

∫ ∞

0
dk J0(kρ)

e−k(z0−z)

(ε2 − ε1)2e−2kL1 − (ε2 + ε1)2
in I,

(7)

013806-2
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ψ = 2sq

ε2

∫ ∞

0
dk J0(kρ) e−k(z0−z) e

−2k(z+L1) − 2s + 1

e−2kL1 − (2s − 1)2

= 2q

∫ ∞

0
dk J0(kρ) e−k(z0−z)

× (ε2 − ε1)e−2k(z+L1) − (ε2 + ε1)

(ε2 − ε1)2e−2kL1 − (ε2 + ε1)2
in II, (8)

ψ = ψ0 + q(2s − 1)/ε2√
ρ2 + (z + z0)2

− 4s(1 − s)(2s − 1)q

ε2

×
∫ ∞

0
dk J0(kρ)

e−k(z0+z)

e−2kL1 − (2s − 1)2

= q/ε2√
ρ2 + (z − z0)2

+ ε2 + ε1

ε2 − ε1

q/ε2√
ρ2 + (z + z0)2

+ 4qε1
ε2 + ε1

ε2 − ε1

×
∫ ∞

0
dk J0(kρ)

e−k(z0+z)

(ε2 − ε1)2e−2kL1 − (ε2 + ε1)2
in III.

(9)

These expressions for the potential, as well as the local
dissipation rate, defined by Im(ε) |E|2 /8π , were analyzed
for the case of s = 1/2 (i.e., ε1 = −ε2) [6]. This analysis
showed that the potential diverges in the range of positions
z0 − 2L1 < z < −z0. Moreover, when the location of the point
charge satisfies z0 < L1/2, the local dissipation rate diverges
for z in the range [z0 − 3L1/2, − z0 − L1/2] (see Fig. 1).

When s = 1/2 these expressions for the potential take the
following exact closed forms in those regions of z where it is
nondiverging

ψ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q/ε2√
ρ2+(z−z0+2L1)2

, r ∈ I,
q/ε2√

ρ2+(z+z0)2
, r ∈ II,

q/ε2√
ρ2+(z−z0)2

, r ∈ III.

This means that the potential above the top geometric optics
image at r = (0,0,−z0) and below the bottom geometric
optics image at r = (0,0,z0 − 2L1), is that of a point charge
located at these points. In the intermediate z values between
these expected images, the potential diverges (see Fig. 1).
Since there are no point charges located at these points, the
surface integration over the electric field perpendicular to an
arbitrary envelope surrounding one of these points gives zero
according to Gauss’ law. This is fulfilled since the contribution
to the surface integral from where the potential diverges
cancels out with the contribution from where the potential
is finite (for a spherical surface centered around one of these
points, the first and second contributions give −q/2 and q/2,
respectively).

III. EXACT EXPRESSIONS FOR THE ELECTRIC FIELD
AND VERIFICATION OF THE RESULTS

We calculated exact expressions for the electric fields by
differentiating the expressions for the potentials derived in
Ref. [6] and reproduced in Eqs. (7) to (9) with respect to ρ

and z. The expressions for the z and ρ components of E are as
follows, where we substituted s ≡ 1/2 + 
s:

Region I

EI ρ = C1

∫ ∞

0
dkkJ1(kρ)

e−k(z0−z)

e−2kL1 − 4(
s)2
, (10)

EI z = −C1

∫ ∞

0
dkkJ0(kρ)

e−k(z0−z)

e−2kL1 − 4(
s)2
, (11)

where

C1 ≡ q[1 − 4(
s)2]

ε2
.

Region II

EII ρ = C2

∫ ∞

0
dkkJ1(kρ)ek(z−z0) e

−2k(z+L1) − 2
s

e−2kL1 − 4(
s)2
, (12)

EII z = C2

∫ ∞

0
dkkJ0(kρ)ek(z−z0) e

−2k(z+L1) + 2
s

e−2kL1 − 4(
s)2
, (13)

where

C2 ≡ (1 + 2
s) q

ε2
.

Region III

EIII ρ = q

ε2

ρ

[ρ2 + (z − z0)2]3/2
+ 2q
s

ε2

ρ

[ρ2 + (z + z0)2]3/2

− 2C1
s

∫ ∞

0
dkkJ1(kρ)

e−k(z0+z)

e−2kL1 − 4(
s)2
, (14)

EIII z = q

ε2

(z − z0)

[ρ2 + (z − z0)2]3/2
+ 2q
s

ε2

(z + z0)

[ρ2 + (z + z0)2]3/2

− 2C1
s

∫ ∞

0
dkkJ0(kρ)

e−k(z0+z)

e−2kL1 − 4(
s)2
. (15)

To verify the expressions for the potential and the electric
field we checked the continuity of the potential and the
perpendicular component of D at the interfaces. This was done
by substituting z = −L1 in the expressions for Regions I and
II and z = 0 in the expressions for Regions II and III, yielding
the same expressions in both cases (see the Appendix for more
details).

IV. NUMERICAL COMPUTATIONS

We computed the one-dimensional integrals in the expres-
sions for the potential and the electric field using MATLAB. We
verified the computations of these integrals by checking the
continuity of the potential and the perpendicular component
of D at the interfaces for a set of ρ values (numerical values
were compared). In addition, we calculated the field intensity
I (r) as well as the dissipation rate W (r) in the three regions
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using the following definitions:

I (r) ≡ |Eρ(r)|2 + |Ez(r)|2, (16)

W (r) ≡ Im[ε(r)](|Eρ(r)|2 + |Ez(r)|2). (17)

These are in fact the expressions for the intensity and the
dissipation in which c/8π and ω/8π were not included,
respectively, for simplicity.

We then placed another charge horizontally shifted from
the original charge to find the charge separation that is needed
for resolution of the images. We varied that separation until
the field intensity at the midpoint between the two images was
1/e1/2 of the intensity at the images. We defined this distance
as the separation distance needed to resolve the two images. To
estimate the resolution in each horizontal layer we normalized
the local intensity in Region I by dividing it by the intensity
at the horizontal coordinates of the images in that layer (see
Figs. 4, 7, 10, 13, 16).

Throughout the computations we used q = e, where e is
the electron charge. We present the results for ψ, I , and W

without specifying units. Thus, in order for those results to
be in units of statV, erg/(s cm2), and erg/(s cm3), one has to
multiply them by q/e, q2c/8πe2, and q2ω/8πe2, respectively.

A. Polymethyl methacrylate-silver-photoresist setup
for different vertical charge locations

We modeled a polymethyl methacrylate (PMMA)-silver-
photoresist setup that is similar to the one used by the authors
of Ref. [9] by a two constituents setup in which the two external
slabs have the average permittivity value of PMMA and the
photoresist, and the permittivity of the intermediate slab is
that of metallic silver. We used the values for the permittivities
suitable for a free-space wavelength of 365 nm [9]

εsilver = −2.55 + 0.24i,

εPMMA = 2.25 + 0.12i,

εPR = 2.886 + 0.059i,

which lead in the two constituents setup to the following
permittivity values:

ε1 = −2.55 + 0.24i, ε2 = 2.57 + 0.0896i.

The silver slab thickness was set to L1 = 35 nm as in Ref. [9]
and the external slabs in the calculation are assumed to have
infinite thickness. We performed the computations for several
locations of the point charge object on the vertical axis. The
first location was z0 = 40 nm = 8L1/7 which agrees with the
setup in Ref. [9]. We then placed the charge closer to the top
interface at z = 3L1/4 and z = 3L1/8.

1. Charge located at z0 = 40 nm = 8L1/7

We first placed the charge at z0 = 40 nm = 8L1/7 as in
Ref. [9]. In Fig. 2 we present the real and imaginary parts of
the potential in all the regions. The potential is of course time
dependent according to

Re(ψeiωt ) = Re(ψ) cos(ωt) − Im(ψ) sin(ωt).
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FIG. 2. (Color online) Real and imaginary parts of the potential
for a charge located at z0 = 40 nm = 8L1/7.

The white circle denotes the object and, where applicable
in the subsequent figures, the image expected according to
geometrical optics. It can be seen that Re(ψ) has high values
at the z = −L1 interface and that Im(ψ) has high (absolute)
values at the z = 0 interface. In this figure, as well as in
subsequent figures that display all the regions, we used a linear
color scale. To present an informative figure we mapped all
the values higher than a certain value to this value. Thus, in
all the locations which exhibit the highest value, the actual
values are often much higher than the apparent value. In Fig. 3
we present the intensity and the dissipation in all the regions.
It can be seen that the intensity is high at the interfaces and
has a higher value at the bottom interface. The dissipation in
Region II is higher than in Region I due to the fact that the
imaginary part of the permittivity is higher in Region II. Note
that the amplification of the electric field and the intensity
starts even before the top interface. This adds to the picture
described by the author of Ref. [5], where the amplification of
the evanescent waves only in the silver slab was discussed.

In Fig. 4 we show the intensity and the horizontally
normalized intensity in Region I for two horizontally displaced
charges. It can be seen that the maximal resolution is at the
interface z = −L1. The distance between the charges that
enables the images to be resolved as previously explained
is 82.4 nm, which is in good agreement with the results found
in Ref. [9] [see Fig. 4(d) there].
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FIG. 3. (Color online) Intensity and dissipation for a charge
located at z0 = 40 nm = 8L1/7.

2. Charge located at z0 = 26.25 nm = 3L1/4

In Fig. 5 we present the real and imaginary parts of the
potential in all regions for a charge located at z0 = 26.25 nm =
3L1/4. Here also Re(ψ) and Im(ψ) (in absolute value) peak
at the bottom and top interface, respectively.

In Fig. 6 we present the intensity and the dissipation in all
regions. Here we originally expected that the intensity would
have high values at the geometric optics foci z = −3L1/4
and at z = z0 − 2L1. However, the intensity is actually
concentrated at the z = 0 and z = −L1 interfaces. In this case
the peak intensity is higher at the top interface. The intensity
in Region I is almost one order of magnitude higher than in
the previous case.

In Fig. 7 the intensity and the horizontally normalized
field intensity in Region I for two horizontally displaced
charges are presented. The white circles denote the focal
points. The separation exhibited is the smallest for which the
images are still resolved as previously defined. Surprisingly,
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FIG. 4. (Color online) Intensity and horizontally normalized in-
tensity in Region I for two charges located at z0 = 40 nm = 8L1/7,
x1 = 0, x2 = 82.4 nm.

the separation of the images is best not at the expected focal
plane but at the interface. Thus, both in terms of intensity
and resolution the image formed at the interface z = −L1 is
optimal. In addition it can be seen that the separation distance
in this case is 72 nm, which is better than the previous one.
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FIG. 5. (Color online) Real and imaginary parts of the potential
for a charge located at z0 = 26.25 nm = 3L1/4.
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FIG. 6. (Color online) Intensity and dissipation for a charge
located at z0 = 26.25 nm = 3L1/4.

3. Charge located at z0 = 13.125 nm = 3L1/8

Here we calculate the potential, intensity and dissipation
for a setup with a charge located at z0 = 3L1/8. In this case if
s were equal to half the dissipation rate should have diverged
in the range z0 − 3L1/2 < z < −z0 − L1/2. However, since
s �= 1/2 we expect that the dissipation rate will increase in that
range compared to the previous case where z0 = 3L1/4.

In Fig. 8 we present the real and imaginary parts of the
potential for a charge located at z0 = 13.125 nm = 3L1/8.
Here again Re(ψ) and Im(ψ) peak at the bottom and top
interfaces, respectively.

In Fig. 9 we present the intensity and dissipation in the three
regions. Here also the intensity is maximal at the interfaces
rather than at the geometric optics foci. It can be clearly seen
that the intensity is higher at the top interface. The intensity and
the dissipation at the bottom interface in this case are almost
one order of magnitude higher than in the previous case.
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FIG. 7. (Color online) Intensity and horizontally normalized in-
tensity in Region I for two charges located at z0 = 26.25 nm = 3L1/4,
x1 = 0,x2 = 72 nm.

In Fig. 10 we present the intensity and the horizontally
normalized intensity in Region I for two horizontally separated
charges. It can be seen that the separation distance in this case
is 63.2 nm which is better than in the previous cases.

It can be concluded that for the three object locations, the
best images are formed at the interfaces. As we moved the

z
(n

m
)

Re(ψ)

−100

−80

−60

−40

−20

0

20

1

2

3

4

x 10
−4

ρ (nm)

z
nm

)

Im(ψ)

0 50 100
−100

−80

−60

−40

−20

0

20

−6

−4

−2

0

x 10
−4

(

FIG. 8. (Color online) Real and imaginary parts of the potential
for a charge located at z0 = 13.125 nm = 3L1/8.
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FIG. 9. (Color online) Intensity and dissipation for a charge
located at z0 = 13.125 nm = 3L1/8.

point charge closer to the z = 0 interface, the image formed at
the z = −L1 interface became better in terms of both intensity
and resolution.

B. Computations for other permittivities

We repeated our computations for other values of s for a
charge located at z = 3L1/4. First, we performed computa-
tions with a setup in which the real part of 
s remained the
same as in Sec. IV A and the imaginary part was divided by
100. Then, we performed a computation in which both the real
and imaginary parts of 
s were divided by 100.

1. �s with Im (�s) divided by 100

In Fig. 11 Re(ψ) and Im(ψ) are presented. It can be seen
that the potential now has an alternating sign as argued by the
authors of Ref. [7]. In Fig. 12 the intensity and the dissipation
are presented. The intensity at both interfaces is higher than in
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FIG. 10. (Color online) Intensity and horizontally normalized
intensity in Region I for two charges located at z0 = 13.125 nm =
3L1/8, x1 = 0,x2 = 63.2 nm.

the PMMA-silver-photoresist setup. In addition the intensity
here is higher at the bottom interface as opposed to the previous
setup with z0 = 3L1/4, where it was higher at the top interface.
The same is true regarding the local dissipation rates, despite
the fact that Im(
s) is smaller (which can be satisfied when
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FIG. 11. (Color online) Real and imaginary part of the potential
z0 = 3L1/4, 
s = 0.0014 + 0.00032i.
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FIG. 12. (Color online) Intensity and dissipation for z0 =
3L1/4, 
s = 0.0014 + 0.00032i.

the imaginary part of the permittivity is small everywhere in
the system). This is due to the fact that ψ and E tend to ∞ as

s → 0 only at the lower interface.

In Fig. 13 the intensity and the horizontally normalized
intensity for two charges in Region I are presented. In this
case the minimum separation distance between two objects
for resolution of the images is 44.8 nm, which is significantly
better than when Im(
s) was not decreased by a factor of 100.

2. �s with both Re (�s) and Im (�s) divided by 100

In Fig. 14 Re(ψ) and Im(ψ) are presented. They peak (in
absolute value) at the bottom and top interfaces, respectively,
and they have alternating signs. In Fig. 15 the intensity and
dissipation for all the regions are presented. It can be seen
that I and W at the bottom interface are higher compared to
the case when we decreased just the imaginary part of 
s. In
Fig. 16 the intensity and the horizontally normalized intensity
in Region I for two separated charge objects are displayed.
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FIG. 13. (Color online) Intensity and horizontally normalized
intensity for 2 charges z0 = 3L1/4, x1 = 0, x2 = 44.8 nm.

The minimum separation distance for this 
s value is 32 nm.
It can be seen that when we also decrease Re(
s) we have
better separation between the images.

We can conclude that when the value of 
s is lowered,
the optimal image locations are also at the interfaces. As we
decrease the real and imaginary parts of 
s both the intensity
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FIG. 14. (Color online) Real and imaginary part of the potential
z0 = 3L1/4, 
s = 0.000014 + 0.00032i.
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FIG. 15. (Color online) Intensity and dissipation for z0 =
3L1/4, 
s = 0.000014 + 0.00032i.

and the resolution become better for imaging. The analysis
suggests that in the quasistatic regime for a setup with a
small value of 
s, very high intensity and resolution can be
reached (this occurs when ε1 ≈ −ε2). It would be interesting
to investigate whether such a pair of materials exists or can be
engineered.

C. Analysis for a definite value of k

The expressions for the potential and the electric field can
be easily decomposed into their k components. Thus, in Region
II, the component associated with a specific k = |k| is simply
the integrand in Eqs. (8), (12), and (13). Using this, we can
easily calculate the contribution of each k component to the
potential and the electric field.

It was interesting, in the case where 
s → 0, to calculate
the amplitude of the electric field for given ρ and k values
at the top interface and compare it to the same quantity
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FIG. 16. (Color online) Intensity and horizontally normalized
intensity in Region I for 2 charges z0 = 3L1/4,x1 = 0,x2 =
32 nm ,
s = 0.000014 + 0.00032i

at the bottom interface. To that end we substituted z =
0 and z = −L1 in the integrands of Eqs. (12) and (13)
and took the limit 
s → 0. This leads to the following
results:

lim
s→0EII ρ(z = −L1)

lim
s→0EII ρ(z = 0)
= C2kJ1(kρ)e−z0keL1k

C2kJ1(kρ)e−z0k
= eL1k,

lim
s→0EII z(z = −L1)

lim
s→0EII z(z = 0)
= C2kJ0(kρ)e−z0keL1k

C2kJ0(kρ)e−z0k
= eL1k.

These k-dependent ratios are the same as the transmission
coefficient of the slab derived from the multiple scattering
calculation in Ref. [5]. This is another confirmation of the
validity of our results.

V. DISCUSSION

We analyzed a two-constituents setup of three dielectric
slabs, in which an electric point charge is located in the top
slab. We first derived exact expressions for the local electric
field in the form of one-dimensional integrals and verified
our results. We then performed numerical computations of
the electric potential, intensity, and dissipation for a setup
that was previously tested in experiments. We calculated these
quantities of interest for several charge locations and several
permittivity values. Finally, we showed that our results agree
with previous analytic results.

The computations reveal several important effects. The best
images are formed at the interfaces between the slab and the
surrounding medium rather than at the geometric optics foci.
This optimality is in terms of both intensity and resolution. In
addition the computations confirm previous analysis in which
it was stated that the dissipation rate diverges when ε1 = −ε2.
This can occur either when this quantity is real, in which case
the constituents are free of any dissipation, or when they have
imaginary parts with opposite signs. In the latter case one of the
constituents exhibits dissipation while the other exhibits gain.
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As was explained in that analysis, this counterintuitive effect
originates from the fact that s = 1/2 is the accumulation point
of all the eigenvalues and is therefore a very singular point
of Maxwell’s equations [6,7]. The computations for several

charge locations show that when the object is closer to the
interface with the intermediate slab, the imaging is better. The
computations for several permittivity values show that as ε1 →
−ε2 the imaging becomes better.

APPENDIX: VERIFICATION OF THE ANALYTIC RESULTS

Calculations of ψ(r) and D(r) at the two interfaces lead to

ψI(z = −L1) = ψII(z = −L1) = 4qs(1 − s)

ε2

∫
ek(−L1−z0)

[
1

e−2kL1 − (1 − 2s)2

]
J0(kρ)dk, (A1)

ψII(z = 0) = ψIII(z = 0) = q(2
s + 1)

ε2

∫ ∞

0
dkJ0(kρ)e−k(z0) e−2kL1 − 2(
s)

e−2kL1 − 4(
s)2
, (A2)

ε1EIIz (z = −L1) = ε2EIz (z = −L1) = ε1
4q

(
1
2 + 
s

)2

ε2

∫ ∞

0
dkkJ0(kρ)ek(−L1−z0) 1

e−2kL1 − 4(
s)2
, (A3)

ε1EIIz (z = 0) = ε2EIIIz (z = 0) = ε1
(1 + 2
s)q

ε2

∫ ∞

0
dkkJ0(kρ)e−kz0

e−2kL1 + 2
s

e−2kL1 − 4(
s)2
, (A4)

where we used ε1
ε2−ε1

= ε1
ε2

( 1
2 + 
s) = −( 1

2 − 
s) from the definition of s.
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Electromagnetic eigenstates and the field of an oscillating point electric dipole in a flat-slab
composite structure
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An exact calculation of the local electric field E(r) is described for the case of a time-dependent point electric
dipole pe−iωt in the top layer of an ε2, ε1, ε2 three parallel slabs composite structure, where the ε1 layer has a
finite thickness 2d but the ε2 layers are infinitely thick. For this purpose we first calculate all the eigenstates of the
full Maxwell equations for the case where μ = 1 everywhere in the system. The eigenvalues appear as special,
nonphysical values of ε1 when ε2 is given. These eigenstates are then used to develop an exact expansion for the
physical values of E(r) in the system characterized by physical values of ε1(ω) and ε2(ω). Results are compared
with those of a previous calculation of the local field of a time-dependent point charge in the quasistatic regime.
Numerical results are shown for the local electric field in practically important configurations where attaining an
optical image with subwavelength resolution has practical significance.

DOI: 10.1103/PhysRevA.93.063844

I. INTRODUCTION

In order to have a physical electromagnetic (EM) field in
some system volume it is usually necessary to have either
a field incident from outside of the system volume or a
nonvanishing charge density and current density inside the
system. However, when the material in the system has certain
special values of its material parameters, a field can arise in
the system spontaneously. Such a state is an EM eigenstate
and the special parameters are the appropriate eigenvalues.
While such eigenstates can never be realized in a passive
physical system, because the necessary values of its material
parameters are unachievable in a real material, these states are
often useful in particular circumstances. Thus a real material
can have parameters that approach some of the eigenvalues, in
which case the EM response of such a material can become
anomalously strong. Furthermore, the EM field of a real
physical system can be expanded in a series of the eigenstates,
leading to an alternative approach to the calculation of that
field and its consequences. Such an approach was used in the
past to describe the scattering of EM radiation by a collection
of spheres [1]. Such an approach was also applied, in the
past, to calculate the macroscopic response of a collection of
spheres in the quasistatic regime, i.e., the macroscopic electric
permittivity εe of such a material [2,3]. More recently, such
an approach was used to compute the local electric field in
a special structure, known as the Veselago Lens [4], where
it had been claimed that an EM image was achievable with
unrestricted resolution [5]. By exploiting an expansion of the
local electric field in the exact quasistatic eigenstates for the
case of a point charge, a much more detailed analysis of
this system became possible [6,7]. In previous discussions
the asymptotic expression for the potential at the interface
between the lens and the medium when ε1 = −ε2, both real,
was shown to diverge [8–10]. In Refs. [6,7] an exact expression
for the potential (in all space) in the form of a one-dimensional
(1D) integral was derived for general complex permittivity

*asaffarhi@post.tau.ac.il
†bergman@post.tau.ac.il

values and it was shown that the imaging, in terms of both
intensity and resolution, is optimal at the interface. In recent
works a 2D setup of a coated cylinder with an external line
source was analyzed using the full Maxwell equations and
the asymptotic expression for the electric field at the interface
when ε1 = −ε2, both real, was shown to diverge [10,11]. In
this article we attempt to extend the approach of Refs. [6,7] to
expand the electric field (in all space) in the exact eigenstates
of the full Maxwell equations for complex permittivity values
and a general 3D current distribution. This will be used to
extend the discussion of a Veselago Lens to the nonquasistatic
regime. The formalism enables to calculate the electric field
also for current sources in a simple manner, avoiding the
complex calculation of the scattering of the electric field of
these sources.

The general theory for this is developed in Sec. II. In Sec. III
the eigenstates are calculated in closed form for the special
structure of a flat slab, which is also the structure of the
Veselago Lens. In Sec. IV these eigenstates are used to expand
the local EM field produced in such a lens by an oscillating
point electric dipole source directed parallel and perpendicular
to the slab. Section V includes a summary of our main results
and a discussion of possible future extensions of the approach
developed here.

We note that our entire discussion assumes that all the
interfaces are mathematically smooth and that the electric per-
mitivity is local and jumps discontinuously at these interfaces.
These are obviously idealizations. A less idealized picture of
those interfaces would require a different type of theoretical
approach which is beyond the scope of this article.

II. THEORY OF THE EIGENSTATES OF MAXWELL’S
EQUATIONS IN A TWO-CONSTITUENT COMPOSITE

MEDIUM WHERE μ = 1

We assume that all physical quantities are monochromatic
functions of time, namely that they are proportional to e−iωt .
We confine ourselves to the case where μ = 1 everywhere,
but the position dependent electric permittivity ε(r) has two
different values corresponding to a two-constituent composite

2469-9926/2016/93(6)/063844(16) 063844-1 ©2016 American Physical Society
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medium:

ε(r) = ε1θ1(r) + ε2θ2(r), (2.1)

where θi(r), i = 1,2 is a step function equal to 1 when r is
inside the εi constituent and equal to zero elsewhere. Note that
εi is usually complex and includes any electrical conductivity
that the constituents may have. Assuming that all the EM
fields are monochromatic and a general current distribution,
Maxwell’s equations become, in Gaussian units,

∇ · (εE) = 0, ∇ × E = iω

c
H,

(2.2)

∇ · H = 0, ∇ × H = − iω

c
εE + 4π

c
J.

From these we can obtain the following equation for the local
electric field E(r):

− ∇ × (∇ × E) + k2
2E = uk2

2θ1E − 4πiω

c2
J, (2.3)

u ≡ 1 − ε1

ε2
, k2

2 ≡ ε2
ω2

c2
. (2.4)

The last differential equation can be transformed into an in-
tegral equation by using a tensor Green function Gαβ(r,r′,k2),
defined by

−∇ × (∇× ↔
G) + k2

2

↔
G = k2

21δ
3(r − r′) (2.5)

and by appropriate outgoing boundary conditions at large
distances |r − r′|. Noting that Gαβ (r,r′,k) will depend on those
position vectors only through their difference R ≡ r − r′, we
first apply a spatial Fourier transformation to this equation.
This results in a linear algebraic equation for the Fourier
transform of Gαβ(r − r′,k) which is easily solved, leading to
the following expression for that Fourier transform:

Gαβ(q,k) = qαqβ − k2δαβ

q2 − k2
. (2.6)

The inverse Fourier transform of this, with the boundary
condition of an outgoing or evanescent wave at large distances,
is found by first integrating over the direction of the three-
dimensional vector q, leading to the remaining integral over
the magnitude of q (q ≡ |q|):

Gαβ(R,k) = (k2δαβ + ∇α∇β)
i

(2π )2|R|
∫

q dq
eiqR

q2 − k2

= −(k2δαβ + ∇α∇β)
eikR

4πR
. (2.7)

The last integration here was carried out by adding to the real
axis of q an infinite radius semicircle in the upper complex
plane of q and then using Cauchy’s theorem to evaluate the
integral over the resulting closed contour. This closed form

expression for
↔
G (r − r′,k) was obtained many years ago in

Ref. [1].

Using
↔
G (r − r′,k2) we can now “solve” Eq. (2.3) by

treating its right-hand side (RHS) as if it were known. In
this way we get the following integral equation for the local

electric field E(r):

E = E0 + u	̂E, (2.8)

	̂E ≡
∫

dV ′θ1(r′)
↔
G (r − r′,k2) · E(r′), (2.9)

where E0 is the the electric field generated by the external
sources J(r) in a uniform ε2 medium.

The scalar product of two vector fields F(r), E(r) is now
defined by

〈F|E〉 ≡
∫

dV θ1(r)F∗(r) · E(r). (2.10)

Under this definition 	̂ is a symmetric operator, as defined
in Appendix A, because Gαβ(R,k) = Gβα(−R,k), but it is

non-Hermitian because
↔
G (r − r′,k2) is complex valued. Thus

the left eigenstates of 	̂ ,〈Ẽn| are just the dual states of its right
eigenstates and the left and right eigenvalues are the same:

〈Ẽn|	̂|r〉 ≡
∫

dV ′θ1(r′)En(r′)· ↔
G (r′ − r,k)

=
∫

dV ′θ1(r′)
↔
G (r − r′,k) · En(r′) = 〈r|	̂|En〉

=⇒ sn|En〉 = 	̂|En〉, sn〈Ẽn| = 〈Ẽn|	̂, (2.11)

where 〈Ẽn|r〉 = 〈r|Ẽn〉∗ ≡ 〈r|En〉 ≡ En(r).
Because 	̂ is a symmetric operator it therefore has the

following property for any two states |E〉 and |F〉:
〈F̃|	̂|E〉 = 〈Ẽ|	̂|F〉.

From this it is now easy to show that the eigenstates and their
duals satisfy

〈Ẽn|Em〉 = 0 (2.12)

if sn 
= sm.
The scalar product of a left eigenstate and a right eigenstate

of 	̂ can be written as follows:

〈F̃n|Em〉 =
∫

dV θ1(r)Fn(r) · Em(r). (2.13)

This differs from Eq. (2.10) because the dual eigenfunction
〈r|F̃n〉 is not equal to the eigenfunction 〈r|Fn〉 but rather to its
complex conjugate 〈r|Fn〉∗. Clearly, in the general case where
these eigenfunctions are complex valued this scalar product is
not assured to be real or positive and could vanish even when
the states |Em〉 and |Fn〉 are the same, because the integrand
is θ1(r)[En(r)]2 and not θ1(r)|En(r)|2. Thus the question of
normalizability of the eigenstates must be investigated for
each of them separately. We will nevertheless assume that
they are normalizable in our case and that they therefore form
a complete set. Thus, from the pair of equations (2.11) we
conclude that the unit operator can be expanded in terms of
those states and their duals |Ẽn〉 as

1 =
∑

n

|En〉〈Ẽn|
〈Ẽn|En〉

. (2.14)
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We can now write the following formal solution of Eq. (2.8):

|E〉 = 1

1 − u	̂
|E0〉 = |E0〉 + 	̂

s − 	̂
|E0〉, (2.15)

s ≡ 1

u
≡ ε2

ε2 − ε1
, (2.16)

and insert the unit operator of Eq. (2.14) to obtain

〈r|E〉 − 〈r|E0〉 =
∑

n

sn

s − sn

〈r|En〉 〈Ẽn|E0〉
〈Ẽn|En〉

, (2.17)

where sn ≡ ε2/(ε2 − ε1,n) and ε1,n is the eigenvalue which
corresponds to sn.

Since the last equation constitutes an expansion of the
function 〈r|E〉 − 〈r|E0〉 in a basis of Hilbert space, therefore it
always converges, even where θ1(r) has a discontinuous jump
and consequently ∇θ1(r) has a δ-function singularity.

It is now useful to recall that the eigenstates of 	̂ fall into
two classes [1].

(1) Longitudinal eigenstates E(r) = ∇φ(r). For these states
the eigenvalue will always be s = 1 and E(r) must vanish
outside the ε1 volume. Inside that volume φ(r) is almost
arbitrary and the differential equation (2.3) is satisfied in a
trivial fashion. The only restriction on φ(r) is due to the fact
that the tangential component of E(r) must be continuous at
the ε1, ε2 interface. Since its tangential component must vanish
there, therefore φ(r) must be constant over every connected
piece of that interface. Obviously, the magnetic field H(r)
vanishes everywhere for these states.

(2) All the eigenstates for which s 
= 1 (these are transverse
fields). From Eq. (2.3) it follows that ∇ · E = 0 inside both the
ε1 and the ε2 regions, though not at their interface. These states
must obey Eq. (2.3) in a nontrivial fashion.

Although the Class 1 eigenstates are difficult to catalog,
since they have a degenerate eigenvalue, it turns out that
they are not needed for expanding any physical solutions
of Eq. (2.3). That is because they are orthogonal to any
solution E(r) of Maxwell’s equations. To see this, we denote
by E1(r) ≡ ∇φ1 any longitudinal eigenstate and write

〈Ẽ1|E〉 =
∫

dV θ1E1 · E =
∫

V1

dV [∇ · (φ1E) − φ1∇ · E],

where V1 is the ε1 subvolume. The second term under the last
integral vanishes because the field E(r) is a transverse field
inside V1 as long as ε1 
= 0—see Eq. (2.2). (Note that in a real
physical material ε1 can never vanish: it must always have a
nonzero imaginary part which represents dissipation.) The first
term can be transformed into a surface integral over the ε1, ε2

interface, where φ1 is a constant, denoted by φ1i , over every
connected portion of that interface. Transforming the surface
integral back to a sum of volume integrals over the different
connected pieces Vi of V1, where φ1 is replaced by φ1i which
is constant over any connected volume piece Vi , each of those
integrals can be written as

φ1i

∫
Vi

dV ∇ · E = 0.

We have thus shown that 〈Ẽ1|E〉 = 0 for u 
= 1.

The physical significance of the Class 2 eigenstates is that at
special values of ε1/ε2 (the eigenvalues) a wave can arise in the
system spontaneously, i.e., without the presence of an incident
wave or any source of radiation. Since the fields are periodic in
time, the local energy density must be constant when averaged
over one period. However, if the eigenfunction is an outgoing
propagating wave at large distances then it constantly radiates
energy out to infinity. In order to preserve the local energy
density the system must therefore create energy. For this to
happen then at least one of the two constituent permittivities
must have an imaginary part with the “wrong sign.” Thus, if
ε2, which is where the outgoing wave must propagate, has
a physically admissible value with an imaginary part that
has the right sign, then ε1 will have to have an imaginary
part with the wrong sign. This means, of course, that the
system can never actually be at a resonance, but can only
approach it if the magnitude of the wrong signed eigenvalue
Im ε1, is small. On the other hand, if the eigenfunction
decays exponentially at large distances, and thus no energy is
radiated, then the special values of ε1/ε2 and s ≡ ε2/(ε2 − ε1)
can be real.

If all the eigenvalues sn are nondegenerate then the above
analysis often suffices to fix the states |En〉 as a basis of
Hilbert space, subject to their normalizability. However, if
the system has some symmetries, which are represented by
Hermitian or unitary operators P̂i that commute with 	̂, then
that complicates the situation: we usually try to characterize
the eigenstates of 	̂ by requiring them to also be eigenstates
of those symmetry operators. However, since the operator
	̂ is symmetric we defined 〈Ẽn|r〉 ≡ 〈r|En〉, whereas the
requirement for the eigenstates of Hermitian operators is that
〈ψ |r〉 = 〈r|ψ〉∗. An example of a symmetry generator is the
infinitesimal spatial translation operator −i∇, where

−i∇ eiq·r = q eiq·r,

which is relevant for any microstructure that has translational
symmetry along certain directions. Clearly, the complex
conjugate of any such eigenfunction will have the different
eigenvalue −q. This problem can be overcome as follows:
in the subspace of the complex conjugates of all the right
eigenfunctions 〈r|Fn〉 of 	̂ with the same eigenvalue sn as
〈r|En〉 we choose one such that 〈r|Fn〉∗ is a right eigenfunction
of −i∇ with the same eigenvalue as 〈r|En〉. This is done
in Sec. III below for the particular case of a flat-slab
microstructure.

III. EIGENSTATES OF A FLAT-SLAB MICROSTRUCTURE

Consider a medium with electric permittivity ε2 in which
there is a flat slab, of thickness 2d, with a different electric
permittivity ε1 (see Fig. 1). The magnetic permeabilty is
everywhere equal to 1, as in the vacuum [here and throughout
this article we use Gaussian units for all electromagnetic (EM)
quantities]. This is also the structure of a Veselago Lens, which
will be discussed in Sec. IV below.

This microstructure is uniform in all x,y planes; therefore,
all the eigenstates can have the form

〈r|En〉 = eik·ρf(z),
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FIG. 1. Illustration of the setup of an ε1 slab in an ε2 medium. The
object and images according to geometrical optics are represented by
circles.

where k is a real 2D wave vector in the x,y plane, while ρ

is a 2D position vector in that plane. It is easy to show that
f(z) satisfies the following ordinary second order differential
equation: (

d2

dz2
+ k2

2z

)
f = uk2

2θ1(r)f,

where θ1(r) = 1 for |z| < d and vanishes elsewhere. In each
region of z this is a one-dimensional Helmholtz equation, the
solution of which is a linear combination of sine and cosine
functions with coefficients that must satisfy ∇ · E = 0 in each
region. They must also satisfy the outgoing wave condition for
|z| > d and continuity requirements on Ex and Ey and Dz ≡
εEz, as well as on all components of the magnetic field, at the
ε1, ε2 interfaces. The microstructure is also invariant under
the reflection z → −z. These symmetries are not violated
by complex conjugation of the eigenfunctions. Therefore, the
eigenfunctions can be characterized as transverse electric (TE)
or transverse magnetic (TM), and also as even (+) or odd (−)
under z → −z.

In the following subsections we will first find closed form
expressions for the eigenstates and closed form expressions for
the nonlinear equation whose solutions are the eigenvalues. In
order to discuss qualitatively the properties of the eigenvalues
we will restrict our considerations to the case where ε2 is real
and positive. In that case, when |k| < k2, k2z =

√
k2

2 − |k|2 is
real and the mode propagates out of the slab. However, when
|k| > k2, k2z =

√
k2

2 − |k|2 is imaginary and the mode decays
away from the slab. We refer to these modes, respectively, as
propagating and evanescent modes. When |k| = k2, k2z = 0
and the mode propagates parallel to the slab without any decay
or radiation away from the slab.

In Sec. III C we will describe numerical calculations of the
eigenvalues for the general nonquasistatic cases [Eqs. (3.1)
and (3.3)] and their consequences. When the physical value of
ε1 is very close to one of the eigenvalues the contribution of
this eigenstate to the physical electric field can become very
large, greatly exceeding the field in the absence of the ε1 layer
(Region II). When the physical ε2 ≈ −ε1 then s ≈ 1/2 and
sk/(s − sk) becomes very large for many of the TM eigenstates

when k is large. This may lead to a large contribution of
the large |k| modes to the expansion of the electric field in
Eq. (2.17), as already found earlier in the quasistatic regime
[6,7].

A. TM modes

Those are

E+
k = eik·ρ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−ik2zzA+
k

(
ez

k
k2z

+ ek
)
, r ∈ I,

B+
k

(−ez
ik

k+
1z

sin
(
k+

1zz
)+ ek cos

(
k+

1zz
))

, r ∈ II,

eik2zzA+
k

(− ez
k

k2z
+ ek

)
, r ∈ III,

E−
k = eik·ρ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−ik2zzA−
k

(
ez

k
k2z

+ ek
)
, r ∈ I,

B−
k

(
ez

ik

k−
1z

cos
(
k−

1zz
)+ ek sin

(
k−

1zz
))

, r ∈ II,

eik2zzA−
k

(
ez

k
k2z

− ek
)
, r ∈ III,

where ek ≡ k/|k|,k±
1z ≡

√
(k±

1 )2 − k2, k2z ≡
√

(k2)2 − k2,

k±
1 ≡

√
ε±

1 ω/c, k2 ≡ √
ε2ω/c, and where ∇ · E = 0 is al-

ready satisfied in Regions I, II, and III. Note that E+
z (i.e.,

the z component of E+
k ) changes sign under the reflection

z → −z. Thus E+
z (−z) = −E+

z (z) but E+
k (−z) = E+

k (z) (this
is the x,y-plane component of E+

k ) in the even modes while
E−

z (−z) = E−
z (z) but E−

k (−z) = −E−
k (z) in the odd modes.

For k = 0 ek is not defined and we can replace it by ex.

The A and B coefficients are determined by the continuity
requirements on the tangential components of E and the normal
component of D ≡ εE at the two interfaces z = ±d. We thus
get

B±
k

{
cos(k+

1zd)

− sin(k−
1zd)

}
= A±

k eik2zd ,

iε±
1 B±

k

k±
1z

{
sin(k+

1zd)

cos(k−
1zd)

}
= ε2A

±
k

eik2zd

k2z

.

From these two homogeneous linear equations for A±
k and B±

k

we get the following nonlinear equation for the eigenvalues of
ε±

1k which also depend upon k ≡ |k| but not on the direction
of k:

ε2

ε±
1k

= ik2z

k±
1z

{
tan
(
dk+

1z

)
− cot

(
dk−

1z

)
}

. (3.1)

From this equation it follows that the eigenvalues of k±
1z and

ε±
1k depend only on the magnitude k of the 2D wave vector

k. The eigenfunctions depend on the direction of that vector
only through the eik·ρ factor. When ε2 is real and positive and
k > k2 then k2z is imaginary and the eigenstate is evanescent
and nonradiating. Also, we can write k2z ≡ iκ2z, leading to the
following form for the eigenvalue equation:

− ε2

ε±
1k

= κ2z

k±
1z

{
tan
(
dk+

1z

)
− cot

(
dk−

1z

)
}

.
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From the above remark it follows that the solutions for ε±
1k and

s±
k are real and involve no dissipation and no creation of energy.

Many of those ε±
1k eigenvalues are negative and therefore the

appropriate values of s±
k lie between 0 and 1, as we found in

the past for all the s±
k eigenvalues in the quasistatic limit [6].

When k is less than k2 then k2z is real and the eigenstates
will be radiating energy away from the ε1 slab. In that case
the eigenvalues k±

1z will be complex and usually have real and
imaginary parts, as can be seen from Eq. (3.1). In this case ε±

1
must have an imaginary part with the “wrong sign” so as to
create energy that compensates for the radiation losses.

When k is much larger than both k±
1 and k2 we get κ±

1z ≈ −k,
κ2z ≈ −k, and consequently the eigenvalue equation becomes

ε2

ε±
1k

= −
{

tanh (dk)

coth (dk)

}
.

This agrees with results previously found in the quasistatic
limit for all values of k [6,7]. Clearly, when dk → ∞
we get ε2/ε

±
1k → −1 or s±

k → 1/2, which is therefore an
accumulation point of the TM eigenvalues.

The eigenfunction Ẽ∓
k (r), which is dual to E∓

k (r), is now
chosen as

〈r|E∓
k 〉 = E∓

k (r), 〈r|Ẽ∓
k 〉 = [E∓

−k(r)]∗, 〈Ẽ∓
k |r〉 = 〈r|E∓

−k〉.
It follows that any eigenstate is orthogonal to any dual
eigenstate with a different value of the 2D wave vector k.

Even though |E−
k 〉 and 〈Ẽ+

k | are assured to be orthogonal
because they usually have different eigenvalues, we also
verified this by a direct calculation:

〈Ẽ+
k |E−

k 〉 =
∫

|z|<d

dV E+
−k(r) · E−

k (r) = 0.

A similar direct calculation leads to 〈Ẽ−
k |E+

k 〉 = 0.

The inner product of a TM mode and its dual leads to the
following normalization integral (Lx , Ly are the system sizes
in the x,y plane):

〈Ẽ±
k |E±

k 〉
LxLy

= (B±
k )2

k±2
1z

[−(k±
1 )2d ± ((k2−k±2

1z

)
sin(2k±

1zd)/2k±
1z

)]
.

(3.2)

B. TE modes

Those are

E+
k = eik·ρ

⎧⎪⎨
⎪⎩

e⊥A+
⊥e−ik2zz, r ∈ I,

e⊥B+
⊥ cos(k+

1zz), r ∈ II,

e⊥A+
⊥eik2zz, r ∈ III,

E−
k = eik·ρ

⎧⎪⎨
⎪⎩

−e⊥A−
⊥e−ik2zz, r ∈ I,

e⊥B−
⊥ sin(k−

1zz), r ∈ II,

e⊥A−
⊥eik2zz, r ∈ III,

where e⊥ ≡ ek × ez. Note that E⊥ is parallel to the slab and
therefore does not change sign under the reflection z → −z.
Here ∇ · E = 0 and ∇ · B = 0 are satisfied automatically in

the various regions. However, we need to impose the continuity
of E ‖ e⊥ and B. This leads to

A±
⊥eik2zd = B±

⊥

{
cos(k+

1zd)

sin(k−
1zd)

}
,

∓ik2zA
±
⊥eik2zd = k±

1zB
±
⊥

{
sin(k+

1zd)

cos(k−
1zd)

}
,

and hence to the following equation for the TE eigenvalues:

ik2z

k±
1z

=
{− tan(k+

1zd)

cot(k−
1zd)

}
. (3.3)

If k < k2 then k2z is real and the eigenstates will be radiating
states. Solutions of Eq. (3.3) for k±

1z will therefore have a real
part and an imaginary part and the eigenvalues ε±

1k will have
an imaginary part with the wrong sign.

If k > k2, then k2z = iκ2z is imaginary and the eigen-
states will be evanescent nonradiating states. Therefore,
the ε±

1k and s±
k eigenvalues are real and involve no dis-

sipation and no creation of energy. Equation (3.3) then
becomes

−κ2z

k±
1z

=
{− tan(dk+

1z)

cot(dk−
1z)

}
.

Some consideration leads to the conclusion that all the
solutions of this equation for k±

1z will be either pure real, in
which case ε±

1k > ε2 and s±
k < 0, or else pure imaginary. In

the quasistatic limit, when k2/k → 0+, the numerical calcu-
lations show that ε2/ε

±
1 → 0− and therefore also s±

k → 0−.
Consequently, these states do not contribute to the expansion
of Eq. (2.17) for the local physical field.

The normalization integral of the TE modes is

〈Ẽ±
k |E±

k 〉
LxLy

= (B±
⊥ )2

{∫ d

−d
dz cos2(k+

1zz)∫ d

−d
dz sin2(k−

1zz)

}

= (B±
⊥ )2

2k±
1z

[
2k±

1zd ± sin
(
2k±

1zd
)] 
= 0.

C. Calculation of the eigenvalues

The permittivity values and the slab thickness in the
following calculations correspond to the values in the exper-
iment with the PMMA-silver-photoresist setup described in
Ref. [12], where in our case ε1 is the silver permittivity and
ε2 is the average permittivity of PMMA and the photoresist.
These permittivity values are appropriate for a free-space
wavelength of 365 nm. We calculated the eigenvalues of the
even and odd TM and TE modes according to Eqs. (3.1)
and (3.3), respectively, for 2d = 35 nm,λ = 365 nm, and
ε2 = 2.57 + 0.09i. For any choice of k ≡ |k| there is an infinite
number of solutions to the eigenvalue equations. Fortunately,
for modes with high eigenvalues ε1k , sk/(s − sk) → 0 and
these modes give a negligible contribution to the expansion
of the electric field [see Eq. (2.17)]. We define these modes as
the high order modes and associate low mode index numbers
to the modes with low ε1k values.
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FIG. 2. Eigenvalues for the first even (a) and odd (b) TM modes
as functions of |k|.

1. Eigenvalues of the TM modes

In Fig. 2 we present the eigenvalues of the first even
and odd TM modes as functions of |k|. It can be seen that
in the limit |k| → ∞ the eigenvalues ε1k tend to −ε2 and
hence sk ≈ 1/2. Thus, when the physical ε2 ≈ −ε1, s ≈ 1/2
and sk/(s − sk) → ∞. Thus the evanescent eigenstates which
have spatial frequencies |k| > k2 play an important role in
the imaging and can lead to an enhanced resolution image as
argued in Ref. [5].

In Fig. 3 we present the eigenvalues of the second even and
odd TM modes as functions of |k|. The second even mode
has high values of Re(ε1k) which means that sk/(s − sk) ≈ 0
and the contribution of this mode to the expansion is very
small. Interestingly, the second odd mode, even though for
large values of |k| has high values of Re(ε1k), in the range
where |k| ≈ 0 has ε1k ≈ 0 which means that sk/(s − sk) is not
negligible for our physical ε1 and can become large for ε1 ≈ 0.

Since the eigenstates do not decay in magnitude with
time, one should expect that there should be constructive
interference inside the slab. To verify this we calculated for
the k = 0 eigenstates of the first two even and odd TM modes
the phase accumulated due to the propagation in the z and
−z directions inside the slab and the double reflection from
the interfaces. The total phases for the roundtrips inside the
slab which were calculated were all integer multiples of 2π as
expected.
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FIG. 3. Eigenvalues for the second even (a) and odd (b) TM
modes as functions of |k|.
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FIG. 4. Eigenvalues for the first even (a) and odd (b) TE modes
as functions of |k|.
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FIG. 5. Eigenvalues for the second even (a) and odd (b) TE modes
as functions of |k|.

2. Eigenvalues of the TE modes

In Fig. 4 we present the eigenvalues of the first even and odd
TE modes as functions of |k|. It can be seen that in the limit
|k| → ∞ the eigenvalues ε1k tend to infinity. When |k| = 0 the
modes propagate perpendicular to the slab and can therefore
be defined both as TM and TE. This is apparent in the equality
of the TM and TE eigenvalues at |k| = 0.

In Fig. 5 we present the eigenvalues of the second even and
odd TE modes as functions of |k|. Here, too, the eigenvalues
at |k| = 0 are the same as those of the TM modes. It can also
be seen that the first even and second odd TE modes at |k| ≈ 0
can give a small and a significant contribution to the expansion
of E(r), respectively, since their ε1k values are not far from
physical values of ε1. On the other hand, the first odd and
second even TE modes should give a negligible contribution
to the expansion since their ε1k values are far from physical
values of ε1. Interestingly, the eigenvalues of the second odd
TE mode have a small imaginary part and are close to physical
ε1 values which are realizable in experiments.

IV. USING THE EIGENSTATE EXPANSION TO
CALCULATE THE ELECTRIC FIELD OF A POINT
ELECTRIC DIPOLE IN A FLAT-SLAB STRUCTURE

We now use the eigenfunctions derived in Sec. III to expand
the resulting electric field. Figure 1 shows this structure, where
the object and images according to geometrical optics are
represented by circles. We will consider oscillating electric

point dipoles in Region III directed along z and x axes as the
source of the EM field.

A. Dipole object directed along z

We consider an oscillating electric point dipole at r =
(0,0,z0) ≡ z0 in Region III directed along z as the source of
the EM field. The current distribution of the dipole at z0 can
be written as Jdip = −iezωpδ3(r − z0), where p is the electric
dipole moment.

The electric field of this dipole in a uniform ε2 medium is

E0(r) = 1

ε2
eik2r

{[
k2

2(n × p) × n
]

1

r

+
[

3n(n · p) − p
](

1

r3
− ik2

r2

)}
, (4.1)

where r ≡ |r − z0|,n ≡ r−z0
|r−z0| . This differs from the expres-

sion for the electric field of an electric point dipole in vacuum
[13] by the ε2 factor in the denominator and by the appearance
of k2 ≡ √

ε2ω/c instead of just ω/c.
Because the expression for E0(r) can be obtained by using

Green’s function of Eq. (2.7) and Jdip defined above, therefore
the scalar product 〈Ẽ±

k |E0〉, which appears in Eq. (2.17), can
be written as

〈Ẽ±
k |E0〉 = − 4πi

ε2ω

∫
dV ′θ1

(
r′)E±

−k(r′)

×
∫

dV
←→
G (r′,r) · Jdip(r)

= −4πi

ε2ω
s±
k

∫
dV E±

−k(r) · Jdip(r) (4.2)

= −4πp

ε2
s±
k E±

−kz(z0). (4.3)

It can be seen that an oscillating electric dipole introduces in
〈Ẽ±

k |E0〉 an additional factor sk which leads to a singularity
when ε1k = ε2. This differs from the ε1k = ε1 singularity
which arises from sk/(s − sk). The inner product vanishes for
all of the TE modes, but for each of the TM modes we get
〈
Ẽ±

k TM|E0
〉

LxLy

= B±
k

{
cos(dk+

1z)

sin(dk−
1z)

}
4πps±

k k eik2z(z0−d)

ε2k2z

. (4.4)

Equation (2.17) now becomes

E(r) − E0(r) =
∑

TM, α=±

∫
d2k

(2π )2

sα
k

s − sα
k

〈Ẽα
k |E0〉

〈Ẽα
k |Eα

k〉Eα
k(r),

(4.5)

where
∑

TM, α=± means that one should sum over all the TM
(+) and TM (−) eigenstates. Since the only dependence on the
direction of k comes from the unit vector ek and the factor eik·ρ
which are in Eα

k(r), therefore the integration over the azimuth
angle ϕ between k and ρ can be carried out analytically, as we
show in Sec. IV A 1 below. This leaves only a 1D integration
over k ≡ |k| to be calculated numerically. Those integrals are
shown below.
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One can see from Eq. (4.2) that when the source is located
far from the slab, the evanescent eigenstates give only a small
contribution to Eq. (4.5) since they have a small amplitude at
that location. This is apparent from the exponential factor in
Eq. (4.4) which expresses this evanescent behavior.

1. Analytic integration with respect to ϕ

We notice that in the eigenstate expansion the only
expression which depends on the 2D orientation of k is |E±

k 〉.
Therefore, the integration over the azimuthal angle ϕ can be
performed analytically,

∫
E±

k dϕ = 2πB±
k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−ik2z(z+d)

{
cos(k+

1zd)

sin(k−
1zd)

}(± ezJ0(kρ) k
k2z

± ieρJ1(kρ)
)
, r ∈ I,

ez
ik

k±
1z

{− sin(k+
1zz)

cos(k−
1zz)

}
J0(kρ) + eρ iJ1(kρ)

{
cos(k+

1zz)

sin(k−
1zz)

}
, r ∈ II,

eik2z(z−d)

{
cos(k+

1zd)

sin(k−
1zd)

}(−ezJ0(kρ) k
k2z

+ eρ iJ1(kρ)
)
, r ∈ III,

(4.6)

where J0(x) is a Bessel function of the first kind. Equation
(4.5) now reads

|E〉 − |E0〉 =
∑
TM

∑
+,−

∫
dk

(2π )2

sk

s − sk

〈Ẽk|E0〉
〈Ẽk|Ek〉

(∫
|Ek〉dϕ

)
k

≡
∑
TM

∑
+,−

∫
dk F(r,k), (4.7)

where (
∫ |Ek〉dϕ) is given by Eq. (4.6).

2. Calculation of the integrands as functions of |k|
We calculated the integrands in Eq. (4.7) for the first two

even and odd TM modes for the coordinates z = −d,ρ =
0. This was performed by simply substituting the physical
parameters and the eigenvalues in sk/(s − sk) and in Eqs. (3.2),
(4.4), and (4.6), where in the last expression we also substituted
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FIG. 6. Integrands of Eq. (4.7) for the first two even and odd TM
modes at ρ = 0,z = −d.

the coordinates. In Fig. 6 we present the integrands as functions
of |k|. It can be seen that the modes with the dominant
contribution to the expansion are the first even and odd modes.
The second even and odd modes give a negligible contribution
and a very small contribution to the expansion, respectively
(very small values of the integrand of the second even mode
which cannot be seen in the figure). This validates our analysis
in the previous subsection.

3. Calculation of the electric field

(a) A setup with ε2 = 2.57 + 0.09i, ε1 = −2.55 + 0.24i.
We calculated the electric field in the three regions by
numerically integrating Eq. (4.7) with respect to |k|. In Fig. 7
we present |E|2 in the three regions for a dipole located at
z = d + 7 · (2d)/8 and permittivity values of ε1 = −2.55 +
0.24i, ε2 = 2.57 + 0.09i. The white circles denote the object
and the image expected according to geometrical optics. In this
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FIG. 7. |E|2 in the three regions for a dipole located at ρ = 0,

z = d + 7 · (2d)/8 and ε1 = −2.55 + 0.24i,ε2 = 2.57 + 0.09i.
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FIG. 8. Horizontally normalized |E|2 in Region I for two oscil-
lating dipoles located at z = d + 7 · (2d)/8 and ε1 = −2.55 + 0.24i,

ε2 = 2.57 + 0.09i.

figure, as well as in Fig. 9 that display all the regions, we used a
linear color scale. In order to present an informative figure we
mapped all the values higher than a certain value to this value.
Thus, in all the locations which exhibit the highest value, the
actual values are often much higher than the apparent value.
It can be seen that the maximal intensity is at the interfaces
between the slab and the surrounding medium.

The numerical expansion of Eq. (4.7) for the local electric
field E(r) is well converged even at the interface, where E(r)
undergoes a discontinuous jump. This is due to the fact,
mentioned after Eq. (2.17), that the expansion is in terms of a
basis in Hilbert space.

At this point it is worth mentioning that exploiting the
eigenstates of the previous section to calculate the physical
electric field E(r) is justified as long as 1/k is larger, say by
a factor of 10, than the scale of interface roughness and the
nonlocality of ε(r).

In Fig. 8 we present |E|2, normalized by the maximal
horizontal intensity, in Region I for two horizontally distanced
electric dipole sources. The location of the second dipole
was set to be such that the field intensity at the midpoint
between the two images is e−1/2 times the intensity at the
image maximum. We define this distance as the separation
distance needed to resolve the two images. It can be seen
that the optimal resolution is at the interface between the slab
and the medium. Thus the optimal imaging is at the interface
between the slab and Region I in terms of both intensity and
resolution. These results are in agreement with our quasistatic
analysis in Ref. [7].

(b) A setup in which s − 1/2 is divided by 1000. We divided
�s ≡ s − 1

2 by 1000 and calculated the electric field in the
three regions. This setup, in which ε1 is much closer to −ε2,
was expected to achieve better resolution according to the
explanation in Sec. III C. In Fig. 9 we present |E|2 in the three
regions for a dipole located at z = d + 7 · (2d)/8 (top region)
and �s divided by 1000. It can be seen that the intensity here
is higher by more than an order of magnitude compared to the
previous case.

In Fig. 10 we present the horizontally normalized |E|2 in
Region I for two horizontally distanced dipoles. Here, too,
the optimal resolution is at the interface between the slab and
Region I.
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FIG. 9. |E|2 in the three regions for a dipole located at z = d +
7 · (2d)/8 and �s divided by 1000.

In conclusion, when we decrease �s, ε1 becomes closer
to ε1k for the evanescent modes. Thus there is a stronger
amplification of these modes and the resolution is further
enhanced since modes with higher |k| values are exploited in
the imaging. It should be noted that �s ≈ 0 can be achieved
also when the imaginary parts of ε1 and ε2 have opposite signs,
in which case one of the constituents exhibits dissipation, while
the other exhibits gain.

B. Dipole object directed along x

We consider an oscillating electric point dipole at r =
(0,0,z0) ≡ z0 in Region III directed along x as the source
of the EM field. The current distribution of the dipole at z0

can be written as Jdip = −iexωpδ3(r − z0), where p is the
electric dipole moment. The electric field of this dipole in a
uniform ε2 medium is given by the expression in Eq. (4.1),
where p = pex.
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FIG. 10. Horizontally normalized |E|2 in Region I for two
oscillating dipoles located at z = d + 7 · (2d)/8 and �s divided by
1000.
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1. Contribution of the TM modes

We define ϕk as the azimuthal angle of k relative to ex and project ek onto the x and y axes. We substitute (ek · ex) =
cos ϕk, (ek · ey) = sin ϕk and write the TM eigenfunctions as follows:

E±
k = B±

k eik·ρ

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

±e−ik2z(z+d)

{
cos(k+

1 d)

− sin(k−
1 d)

}(
ez

k
k2z

+ ex cos ϕk + ey sin ϕk
)
, r ∈ I,

∓ez
ik

k±
1z

{
sin(k+

1 z)

cos(k−
1 z)

}
+ (ex cos ϕk + ey sin ϕk)

{
cos(k+

1 z)

sin(k−
1 z)

}
, r ∈ II,

eik2z(z−d)

{
cos(k+

1 d)

sin(k−
1 d)

}(−ez
k

k2z
+ ex cos ϕk + ey sin ϕk

)
, r ∈ III.

(4.8)

The scalar product 〈Ẽ±
k TM|E0〉 can be written according to Eq. (4.2) as

〈Ẽ±
k TM|E0〉
LxLy

= 4πps±
k

ε2
B±

k eik2z(z0−d)

{
cos(k+

1zd)

sin(k−
1zd)

}
cos (ϕk). (4.9)

Here both 〈Ẽ±
k TM|E0〉 and E±

k depend upon ϕk. We change the integration variables d2k = k dϕkdk and integrate 〈Ẽ±
k TM|E0〉
LxLy

E±
k

analytically with respect to the azimuthal angle ϕk,
∫ 〈

Ẽ±
k TM|E0

〉
LxLy

E±
k dϕk = 4πps±

k

ε2
eik2z(z0−d)

{
cos(k+

1zd)

sin(k−
1zd)

}
2π (B±

k )2

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−ik2z(z+d)

{
cos(k+

1zd)

− sin(k−
1zd)

}(
ez

k
k2z

i cos(ϕρ)J1(kρ) + ex

[
cos2(ϕρ)J0(kρ) − cos (2ϕρ)J1(kρ)

kρ

]
− ey

sin (2ϕρ)
2 J2(kρ)

)
,

ez
k

k±
1z

{
sin(k+

1zz)

− cos(k−
1zz)

}
cos(ϕρ)J1(kρ) +

(
ex

[
cos2(ϕρ)J0(kρ) − cos (2ϕρ)J1(kρ)

kρ

]
− ey

sin (2ϕρ)
2 J2(kρ)

){cos(k+
1zz)

sin(k−
1zz)

}
,

eik2z(z−d)

{
cos(k+

1zd)

sin(k−
1zd)

}(
−ez

k
k2z

i cos(ϕρ)J1(kρ) + ex

[
cos2(ϕρ)J0(kρ) − cos (2ϕρ)J1(kρ)

kρ

]
− ey

sin (2ϕρ)
2 J2(kρ)

)
,

(4.10)

where the upper, middle, and bottom lines are for Regions I, II, and III, respectively. ϕρ denotes the angle of ρ with respect to ex.

For ρ = 0 we obtain

∫ 〈
Ẽ±

k TM|E0
〉

LxLy

E±
k dϕk = 4πps±

k

ε2
eik2z(z0−d)

{
cos(k+

1zd)

sin(k−
1zd)

}
π (B±

k )2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−ik2z(z+d)

{
cos(k+

1zd)

− sin(k−
1zd)

}
ex, r ∈ I,

{
cos(k+

1zz)

sin(k−
1zz)

}
ex, r ∈ II,

eik2z(z−d)

{
cos(k+

1zd)

sin(k−
1zd)

}
ex, r ∈ III.

(4.11)

2. Contribution of the TE modes

By substituting e⊥ = sin (ϕk)ex − cos (ϕk)ey we arrive at the following expression for the TE eigenfunctions:

E±
k = eik·ρ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
sin (ϕk)ex − cos (ϕk)ey

)
B±

⊥

{
cos(k+

1zd)

− sin(k−
1zd)

}
e−ik2z(z+d), r ∈ I,

(sin (ϕk)ex − cos (ϕk)ey)B±
⊥

{
cos(k+

1zz)

sin(k−
1zz)

}
, r ∈ II,

(sin (ϕk)ex − cos (ϕk)ey)B±
⊥

{
cos(k+

1zd)

sin(k−
1zd)

}
eik2z(z−d), r ∈ III.

The scalar product 〈Ẽ±
k TE|E0〉 can be written as

〈
Ẽ±

k TE|E0
〉

LxLy

= 4πps±
k

ε2
B+

⊥

{
cos(k+

1zd)

sin(k−
1zd)

}
eik2z(z0−d) sin (ϕk).
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Integrating 〈Ẽ±
k TE|E0〉
LxLy

E±
k with respect to ϕk we obtain

∫ 〈Ẽ±
k TE|E0〉
LxLy

E±
k dϕk = 4πps±

k

ε2
(B±

⊥ )2

{
cos(k+

1 d)

sin(k−
1 d)

}
eik2z(z0−d)

×2π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
sin2(ϕρ)J0(kρ) + cos (2ϕρ)J1(kρ)

kρ

)
ex + 1

2 sin(2ϕρ)J2(kρ)ey

]{ cos(k+
1zd)

− sin(k−
1zd)

}
e−ik2z(z+d), r ∈ I,

[(
sin2(ϕρ)J0(kρ) + cos (2ϕρ)J1(kρ)

kρ

)
ex + 1

2 sin(2ϕρ)J2(kρ)ey

]{cos(k+
1zz)

sin(k−
1zz)

}
, r ∈ II,

[(
sin2(ϕρ)J0(kρ) + cos (2ϕρ)J1(kρ)

kρ

)
ex + 1

2 sin(2ϕρ)J2(kρ)ey

]{cos(k+
1zd)

sin(k−
1zd)

}
eik2z(z−d), r ∈ III.

(4.12)

For ρ = 0 we obtain

∫ 〈Ẽ±
k TE|E0〉
LxLy

E±
k dϕk = 4πps±

k

ε2
(B±

⊥ )2

{
cos(k+

1 d)

sin(k−
1 d)

}
eik2z(z0−d)π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ex

{
cos(k+

1zd)

− sin(k−
1zd)

}
e−ik2z(z+d), r ∈ I,

ex

{
cos(k+

1zz)

sin(k−
1zz)

}
, r ∈ II,

ex

{
cos(k+

1zd)

sin(k−
1zd)

}
eik2z(z−d), r ∈ III.

(4.13)

When k ≈ 0 for the second odd TE mode in which ε−
1 ≈ 0 we get that k−

1z =
√

k2
0ε

−
1 − k2 ≈ 0 and 〈Ẽ−

k |E−
k 〉 ≈ 0. To avoid

numerical inaccuracies we approximate 〈Ẽ−
k |E−

k 〉 for k−
1z � 0 as follows:

〈Ẽ−
k |E−

k 〉
LxLy(B−

⊥ )2
= d − sin(2k−

1zd)/2k−
1z

� d − (2k−
1zd) − (2k−

1zd)3

3

2k−
1z

= 4

3
(k−

1z)
2d3.

Equation (2.17) now reads

|E〉 − |E0〉 =
∑

TM,TE

∑
+,−

∫
dk

(2π )2

sk

s − sk

(∫ 〈Ẽk|E0〉|Ek〉dϕk
)

〈Ẽk|Ek〉
k

≡
∑

TM,TE

∑
+,−

∫
dk F(r,k), (4.14)

where
∫ 〈Ẽk|E0〉|Ek〉dϕk is given by Eqs. (4.10), (4.11), (4.12), and (4.13) and the expressions for sk and 〈Ẽk|Ek〉 are given in

Sec. III.

3. Calculation of the integrands as functions of k

We calculated the integrands in Eq. (4.14) for the first
two even and odd TM and TE modes for the coordinates
z = −d,ρ = 0. In Fig. 11 we present the absolute value of
the integrands as functions of |k|. It can be seen that the
modes with the dominant contribution to the expansion are
the first even and odd TM modes and the second odd TE
mode. While the contribution of the first even and odd TM
modes originates from sk/(s − sk) since ε1k ≈ ε1 for k > k2,

the contribution of the second odd TE mode originates from sk

which appears when there are current sources since ε1k ≈ ε2

for k ≈ k2.

4. Calculation of the electric field

We calculated the electric field in the three regions by
numerically integrating Eq. (4.14) with respect to k. In Fig. 12
we present the intensity at the y = 0 plane for a dipole directed
along x axis located at z = d + 7 · (2d)/8 and permittivity
values of ε1 = −2.55 + 0.24i, ε2 = 2.57 + 0.09i. It can be
seen that the intensity peaks at the top interface at x = 0 and
at the bottom interface there are two peaks at x = −23 nm and
x = 23 nm. In Fig. 13 we present the intensity for the dipole
at the x = 0 plane. It can be seen that intensity peaks at the top
and bottom interfaces at y = 0 and that the horizontal width
of the intensity is smaller compared to the previous case.
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FIG. 11. Integrands of Eq. (4.14) for the first two even and odd
TM and TE modes at ρ = 0,z = −d.

In Fig. 14 we present the horizontally normalized |E|2 in
Region I for two dipole objects shifted in the y axis. The white
circles denote the images expected according to geometric
optics. It can be seen that the optimal separation between the
images is at the interface. In Fig. 15 we present the horizontally
normalized |E|2 in Region I for two dipole objects shifted in
the x axis. Since each image is approximately composed of a
sum of two Gaussians we regarded the separation between the
images as the separation between the two internal Gaussians
(higher intensity due to constructive interference). Here, too,
the optimal separation between the images is at the interface.
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FIG. 12. |E|2 in the three regions for a dipole directed along x

located at ρ = 0,z = d + 7 · (2d)/8 and ε1 = −2.55 + 0.24i, ε2 =
2.57 + 0.09i.
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FIG. 13. |E|2 in the three regions for a dipole directed along x

located at ρ = 0,z = d + 7 · (2d)/8 and ε1 = −2.55 + 0.24i, ε2 =
2.57 + 0.09i.

C. Verification of the results

To verify our results we checked the continuity of the
physical Dz at the interfaces. This continuity is not trivially
satisfied as the continuity of Dz of each eigenmode is satisfied
for the eigenvalue ε1k and not for the physical value of ε1. In
fact each term in Eq. (2.17) usually violates the continuity of
Dz at the interfaces for the physical permittivity values. We
calculated Dz throughout the interfaces and it was found to be
continuous to a very high precision for the perpendicular and
parallel dipole calculations.

V. DISCUSSION

We presented an exact calculation of the local electric field
E(r) for a setup of an ε1 slab in an ε2 medium and a time-
dependent electric point dipole pe−iωt situated in the medium
and directed parallel and perpendicular to the slab. For this
purpose we first reformulated the differential equation which
follows from Maxwell’s equations as an integro-differential
equation and expressed E(r) in terms of the eigenfunctions of
the setup. We constructed all the TE and TM modes for the
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FIG. 14. Horizontally normalized |E|2 in Region I for two
oscillating dipoles shifted in the y axis located at z = d + 7 · (2d)/8
and ε1 = −2.55 + 0.24i,ε2 = 2.57 + 0.09i.

063844-12

30



ELECTROMAGNETIC EIGENSTATES AND THE FIELD OF . . . PHYSICAL REVIEW A 93, 063844 (2016)

Horizontally normalized |E|2

x (nm)

z 
(n

m
)

−100 −50 0 50 100

−30

−25

−20

0.2

0.4

0.6

0.8

1

FIG. 15. Horizontally normalized |E|2 in Region I for two
oscillating dipoles shifted in the x axis located at z = d + 7 · (2d)/8
and ε1 = −2.55 + 0.24i,ε2 = 2.57 + 0.09i.

setup using its symmetry properties. We then simplified the
calculation of 〈Ẽn|E0〉 for external current sources in order
to enable that calculation to be performed analytically. We
calculated the eigenvalues of the even and odd TM and TE
modes as functions of |k|. Finally, we calculated |E|2 and the
horizontal resolution for permittivity values which match the
PMMA-silver-photoresist experiment [12] and for a setup in
which �s is divided by 1000.

The set of eigenvalues ε1k are nonphysical values which
are determined by the values of ε2, λ, and d. When the
physical value of ε1(ω) of the slab becomes closer to ε1k,

the incoming EM wave with the same |k| will experience
amplification. Since the eigenvalues ε1k sometimes tend to
−ε2 when |k| → ∞, a slab with ε1 ≈ −ε2 will amplify the
evanescent waves, resulting in enhanced resolution. When
ε1 further approaches −ε2, modes with higher |k| will also
be employed in the imaging, resulting in further enhanced
resolution. In this connection it is useful to recall that the
value ε1 = −ε2 is an accumulation point of the eigenvalues
and therefore a very singular point of Maxwell’s equations.
When ε1 → −ε2, the physical electric field diverges in parts
of the system, doing that most rapidly at the interfaces [6,7].
The optimal imaging, as in our quasistatic analysis, was found
to be not at the geometric optics foci but at the interface
between the slab and Region I [6,7]. In addition, when there are
current sources an additional sk factor is introduced, resulting
in another singularity when ε1k ≈ ε2. Interestingly, the second
odd TM and TE modes in the range where |k| ≈ 0 have
ε−

1k ≈ 0. The second odd TE mode in the range |k| < k2 has
ε−

1k which are close to real. These ranges of ε1k are not far
from ε1 values which are realizable in experiments and may
have implications in optical devices where amplification of
optical signals is important. In addition, since for the second
odd TE mode ε1k ≈ ε2 for k ≈ k2 there is an enhancement
of the electric field due to the additional sk factor which is
introduced when there are current sources.

The formalism enables one to calculate the electric field
of oscillating current sources in a simple and well convergent
manner, avoiding the complex calculation of the scattering of
the electric field emanating from these sources. Since current
sources are used to represent polarized media and objects in
imaging, the formalism can find use in many applications.

The propagating and evanescent eigenstates are related to
the incoming propagating and evanescent waves, respectively,
through 〈E∓

−k|E0〉. Since 〈E∓
−k1

|E∓
k2

〉 ∝ δ2(k2 − k1), when the

incoming EM waves include waves with a given k as the 2D
vector, the eigenmodes with the same k will contribute to
the expansion. Thus, if the object is far from the slab and the
evanescent waves reach the slab with low amplitude, the scalar
product 〈E∓

−k|E0 k〉 (where |E0 k〉 denotes the k component of
the source) will be small and the evanescent modes will have
a low contribution to the expansion of the electric field.

The evanescent modes have 2D spatial frequencies k > k2

and make a dominant contribution to the expansion of the
electric field in enhanced resolution imaging. These modes in
the ε2 medium decay away from the slab (maximal intensity
at the interface) and do not accumulate phase along the z axis
(for real k2). Similarly, the evanescent waves emanating from
the object decay along the z axis, except inside the slab in
which they experience amplification [5]. Therefore, it is not
surprising that the intensity of the electric field associated with
these waves peaks at the interfaces between the slab and the
medium.

ACKNOWLEDGMENT

Y. Sivan is acknowledged for useful comments.

APPENDIX A: LEFT AND RIGHT EIGENSTATES OF A
SYMMETRIC OPERATOR AS A BIORTHOGONAL BASIS

IN HILBERT SPACE

This Appendix is based upon material covered in Sec. II of
Ref. [1].

For any state |ψ〉 in Hilbert space we define the “dual
state” |ψ̃〉 by citing the following relation for its wave function
representation 〈r|ψ̃〉:

〈r|ψ̃〉 ≡ 〈r|ψ〉∗ = 〈ψ |r〉. (A1)

An operator 	̂ will be called symmetric if it satisfies

〈φ̃|	̂|ψ〉 = 〈ψ̃ |	̂|φ〉
for any two states |φ〉, |ψ〉 in Hilbert space. Using the wave
function representation for these states we can write their scalar
product 〈φ̃|ψ〉 in the following explicit form as an integral over
space:

〈φ̃|ψ〉 =
∫

d3r〈φ̃|r〉〈r|ψ〉 =
∫

d3r〈r|φ〉〈r|ψ〉 = 〈ψ̃ |φ〉.
(A2)

If |ψn〉 is a right eigenstate of the symmetric operator 	̂

	̂|ψn〉 = sn|ψn〉,
then 〈ψ̃n| is a left eigenstate of 	̂ with same eigenvalue sn

since the following holds for any state |ψ〉 in Hilbert space:

〈ψ̃n|	̂|ψ〉 = 〈ψ̃ |	̂|ψn〉 = sn〈ψ̃ |ψn〉 = sn〈ψ̃n|ψ〉,
therefore

〈ψ̃n|	̂ = sn〈ψ̃n|. (A3)

By considering a pair of right and left eigenstates we get that

〈ψ̃m|	̂|ψn〉 = sm〈ψ̃m|ψn〉 = sn〈ψ̃m|ψn〉.
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Thus, if sm 
= sn then these two states must be mutually
orthogonal, i.e., 〈ψ̃m|ψn〉 = 〈ψ̃n|ψm〉 = 0. Such a set of states
is called a biorthogonal set. From Eq. (A2) it follows that the
scalar product of any state |ψ〉 and its dual |ψ̃〉 becomes

〈ψ̃ |ψ〉 =
∫

d3r〈r|ψ〉2. (A4)

Because the integrand is not necessarily positive nor even real,
this integral could possibly vanish. In order for the set of
right eigenstates of 	̂ to be a complete set in Hilbert space,
i.e., a basis, the scalar product of any eigenstate |ψn〉 and
its dual must be nonzero. This needs to be verified for all
the eigenstates. If this requirement is satisfied then the unit
operator can be written as

1 =
∑

n

|ψn〉〈ψ̃n|
〈ψ̃n|ψn〉

(A5)

and the state |ψ〉 can be expanded in a series of the right
eigenstates |ψn〉,

|ψ〉 =
∑

n

|ψn〉 〈ψ̃n|ψ〉
〈ψ̃n|ψn〉

. (A6)

These eigenstates are called a “biorthogonal basis” of Hibert
space.

A complication arises when eigenstates of 	̂ are degenerate
due to the existence of symmetry operators. Those are one or
more Hermitian or unitary operators P̂ that commute with 	̂.
In that case we often like to select eigenstates of 	̂ that are
also eigenstates of P̂ . A difficulty occurs when the complex
conjugation that leads to the dual eigenstate of 	̂ results in
a state which is not an eigenstate of P̂ or is an eigenstate of
P̂ with a different eigenvalue. Such a situation occurs in the
case of a spherical inclusion and also in the case of a flat-slab
microstructure. The first case was discussed in Ref. [1], while
the second case is discussed in Sec. III of the current article.

APPENDIX B: QUASISTATIC RESULTS

1. Flat-slab modes

By taking the quasistatic limit k0 → 0 we obtain the following results for the TM modes which are associated with electrostatics:

E+
k = eik·ρ

⎧⎪⎨
⎪⎩

ekzA+
k (−iez + ek), r ∈ I,

B+
k (−ezi sinh (kz) + ek cosh (kz)), r ∈ II,

e−kzA+
k (iez + ek), r ∈ III,

(B1)

E−
k = eik·ρ

⎧⎪⎨
⎪⎩

ekzA−
k (−iez + ek), r ∈ I,

B−
k (ez cosh (kz) + eki sinh (kz)), r ∈ II,

e−kzA−
k (−iez − ek), r ∈ III,

(B2)

〈Ẽ±
k |E±

k 〉
LxLy

= ∓ (B±
k )2

k
sinh(2kd). (B3)

2. Results for a point dipole in Region III directed along z

We calculated 〈Ẽ±
k |E0〉 in the quasistatic limit and obtained

〈Ẽ±
k TM|E0〉
LxLy

= B±
k

{−i cosh(dk)

sinh(dk)

}
4πps±

k e−k(z0−d)

ε2
.

We performed the analytic integration with respect to ϕ in the quasistatic limit,

∫
E±

k dϕ = 2πB±
k

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

±ek(z+d)

{
i cosh (kd)
− sinh (kd)

}(−ezJ0(kρ) + eρJ1(kρ)
)
, r ∈ I,

ez

{−i sinh (kz)
cosh (kz)

}
J0(kρ) + eρ iJ1(kρ)

{
cosh (kz)
i sinh (kz)

}
, r ∈ II,

e−k(z−d)

{
i cosh (kd)
− sinh (kd)

}(
ezJ0(kρ) + eρJ1(kρ)

)
, r ∈ III.

a. Region I

The integrand in Region I is

∑
α=±

sα
k

s−sα
k
〈Eα

−k|E0〉
∫

Eα
k,I(r)k dϕ

(2π )2〈Ẽα
k |Eα

k〉 = k2p(e4dk − 1)ek(z−z0)

ε2(4�s2e4dk − 1)
[−J0(kρ)ẑ + J1(kρ)ρ̂].
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For �s = 0 we get

∑
α=±

sα
k

s−sα
k
〈Eα

−k|E0〉
∫

Eα
k,I(r)k dϕ

(2π )2〈Ẽα
k |Eα

k〉

∣∣∣∣∣∣
�s=0

= k2p(e4dk − 1)J0(kρ)ek(z−z0)

ε2
ẑ − k2p(e4dk − 1)J1(kρ)ek(z−z0)

ε2
ρ̂. (B4)

The integral with respect to |k| diverges for z > z0 − 4d, which is above the geometric optics image (see Fig. 1). We integrate
analytically with respect to |k| for z < z0 − 4d, where the integral converges

∫ ∑
α=±

⎛
⎝

sα
k

s−sα
k
〈Eα

−k|E0〉
∫

Eα
k,I(r)k dϕ

(2π )2〈Ẽα
k |Eα

k〉

∣∣∣∣∣∣
�s=0

⎞
⎠dk

= p

ε2

{[
3(4d + z − z0)2

((4d + z − z0)2 + ρ2)5/2
− 1

((4d + z − z0)2 + ρ2)3/2
−
(

3(z − z0)2

(ρ2 + (z − z0)2)5/2
− 1

(ρ2 + (z − z0)2)3/2

)]
ẑ

+
[

3ρ(4d + z − z0)

(ρ2 + (4d + z − z0)2)5/2
− 3ρ(z − z0)

(ρ2 + (z − z0)2)5/2

]
ρ̂

}
.

Adding to this expression

E0 = p

ε2

1

(ρ2 + (z − z0)2)3/2

{[
3(z − z0)2

ρ2 + (z − z0)2 − 1

]
ẑ + 3

ρ(z − z0)

ρ2 + (z − z0)2 ρ̂

}
,

we obtain

EI|�s=0 = p

ε2

{[
3[z − (z0 − 4d)]2

([z − (z0 − 4d)]2 + ρ2)5/2
− 1

([z − (z0 − 4d)]2 + ρ2)3/2

]
ẑ +

[
3ρ[z − (z0 − 4d)]

(ρ2 + [z − (z0 − 4d)]2)5/2

]
ρ̂

}
,

which is the electric field of an electric point dipole located at z = z0 − 4d, oriented along the z axis.

b. Region II

The integrand in Region II is

∑
α=±

sα
k

s−sα
k
〈Eα

−k|E0〉
∫

Eα
k,II(r)k dϕ

(2π )2〈Ẽα
k |Eα

k〉 = k2p ek(d−z0) cosh(dk)csch(2dk)J0(kρ)
[ (e2dk−1)2

sinh(kz)
2�s e4dk+e2dk + 2 sinh(2dk) cosh(kz)

2�s e2dk−1

]
ε2

ẑ

− k2pJ1(kρ)
{
e2dk

[
2�s

(
e2k(d+z) − 1

)− 1
]+ e2kz

}
e−k(z+z0)

ε2(4�s2e4dk − 1)
ρ̂. (B5)

For �s = 0 we obtain

∑
α=±

sα
k

s−sα
k
〈Eα

−k|E0〉
∫

Eα
k,II(r)k dϕ

(2π )2〈Ẽα
k |Eα

k〉

∣∣∣∣∣∣
�s=0

= − p

ε2

{
k2J0(kρ)]

[
ek(2d−z−z0) + ek(z−z0)

]
ẑ + k2J1(kρ)

[
ek(2d−z−z0) − ek(z−z0)

]
ρ̂
}
. (B6)

We add to this expression E0 and integrate analytically with respect to |k|. This integral diverges for z < 2d − z0, which is
below the geometric optics image. For z > 2d − z0, where the integral converges, we obtain

EII|�s=0 = − p

ε2

{[
[3z − (2d − z0)]2

([z − (2d − z0)]2 + ρ2)5/2
− 1

([z − (2d − z0)]2 + ρ2)3/2

]
ẑ +

[
3ρ[z − (2d − z0)]

([z − (2d − z0)]2 + ρ2)5/2

]
ρ̂

}
,

which is the electric field of an electric point dipole located at z = 2d − z0, directed in −ẑ direction.

c. Region III

The integrand in Region III is

∑
α=±

sα
k

s−sα
k
〈Eα

−k|E0〉
∫

Eα
k,III(r)k dϕ

(2π )2〈Ẽα
k |Eα

k〉 = −4p�s sinh (2kd)e4dkk2e−k(z+z0)

ε2(4�s2e4dk − 1)
[J0(kρ)ẑ + J1(kρ)ρ̂].

For �s = 0 we get

∑
α=±

sα
k

s−sα
k

〈
Eα

−k|E0
〉 ∫

Eα
k,III(r)k dϕ

(2π )2〈Ẽα
k |Eα

k〉

∣∣∣∣∣∣
�s=0

= 0.
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Therefore, the electric field for �s = 0 is

EIII|�s=0 = E0 = p

ε2

1

(ρ2 + (z − z0)2)3/2

{[
3(z − z0)2

(ρ2 + (z − z0)2)
− 1

]
ẑ + 3

ρ(z − z0)

(ρ2 + (z − z0)2)
ρ̂

}
,

which is the electric field of the electric point dipole located at z = z0, oriented along the z axis.
For �s = 0 the regions where the electric field diverges are between the images expected according to geometric optics in

Regions I and II. This is in agreement with the conclusions in Ref. [6] where a point charge object was considered. For �s = 0
the electric field (where it does not diverge) in Regions I, II, and III is equal to the electric field of point dipoles located at the
geometric image foci directed in the ẑ, − ẑ, and ẑ directions, respectively. This is in agreement with the results in Ref. [6] in
which the electric field of a point charge object and �s = 0, in Regions I, II, and III is equal to the electric field of point charges
located at the geometric image foci.
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Generating an electromagnetic multipole by oscillating currents
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Based on the relation between a plane phased array and plane waves we show that a spherical current layer or
a current sphere proportional to a multipole electric field and situated in a uniform medium generates the same
multipole field in all space. We calculate TE and TM multipoles inside and outside the spherical layer. The
l = 1 TM multipoles are localized at the origin with a focal spot with full width at half maximum of 0.4λ in the
lateral axes and 0.58λ in the vertical axis. The multipole fields near the origin are prescriptions for the current
distributions required to generate those multipole fields. A spherical layer can couple to a multipole source since
the oscillation of the electrons in the layer due to the multipole field generates the multipole field in all space,
which in turn can drive the multipole currents. Exciting a multipole in a polarizable sphere or spherical layer can
couple it to another polarizable sphere or spherical layer.

DOI: 10.1103/PhysRevA.96.023857

I. INTRODUCTION

Scattering eigenstates of Maxwell’s equations for a two-
constituent composite medium are fields that can exist in the
system without an external source for a given permittivity value
(eigenvalue) of one of the constituents, which will be called
the inclusion. When the outgoing waves are propagating the
system radiates and that permittivity should have gain. When
the outgoing waves are evanescent and the system does not
radiate, that permittivity value is real.

By defining θ1 to be 1 inside the inclusion volume and
zero otherwise, one can arrive from Maxwell’s equations at
the following equation for E(r) in Gaussian units [1]:

− ∇ × (∇ × E) + k2
2E = uk2

2θ1E − 4πiω

c2
J,

u ≡ 1 − ε1

ε2
, k2

2 ≡ ε2
ω2

c2
, (1.1)

where ε1,k1 are the permittivity and the wave vector of the
inclusion, respectively, and ε2,k2 are the permittivity and
wave vector of the host medium. The eigenstates satisfy the
following equation:

− ∇ × (∇ × En) + k2
2En = unk

2
2θ1En,

un ≡ 1 − ε1n

ε2
, (1.2)

where En has to satisfy the electric field continuity conditions
at the interface characterized by θ1.

Since θ1En in Eq. (1.2) plays the role of current sources, an
external current proportional to an eigenstate in the inclusion
volume situated in a homogeneous medium, denoted by Jext,

will generate the two-constituent eigenstate, namely

−∇ × (∇ × En) + k2
2En = unk

2
2θ1Jext. (1.3)

In this equation the inclusion geometry is not specified and this
statement is therefore applicable to any inclusion geometry and
in particular for a flat slab, a cylinder, and a sphere [1–3].

*asaffarhi@post.tau.ac.il
†bergman@post.tau.ac.il

The electromagnetic eigenstates for a flat slab −a < z < a

in a host medium are of the form [2]

E+
k TE = eik·ρ

⎧⎨
⎩

e⊥A+
⊥e−ik2zz z > a

e⊥B+
⊥ cos(k+

1zz) −a < z < a

e⊥A+
⊥eik2zz z < −a

,

where an even (+) TE eigenstate is presented, x̂,ŷ, and ẑ
are parallel and perpendicular to the slab, respectively, k+

1z ≡√
(k+

1 )2−k2, k2z ≡
√

(k2)2 − k2, k+
1 ≡√

ε+
1kω/c, k2 ≡ √

ε2ω/c,

e⊥ = ek × ez, ek ≡ k/|k|, k is a real two-dimensional (2D)
wave vector in a direction parallel to the slab, ρ is a 2D
position vector in that plane, and ε+

1k is the k-dependent slab
permittivity eigenvalue. Thus, Jext ∝ θ1e

ik·ρe⊥B+
⊥ cos (k+

1zz) in
a homogeneous medium will generate this eigenstate in all
space.

Phased arrays are arrays of antennas with predetermined
phases, which generate a desired electromagnetic wave,
usually a plane wave propagating in a given direction. Optical
antenna arrays are based on the polarization of a material due
to an applied electric field and act as current sources at optical
frequencies [4].

To understand how a plane-phased array can generate a
plane wave we can operate with the free-space Green’s tensor
on a continuous current sheet Jext = e⊥e−ik·ρδ(z) to obtain
←→
G ∗[e⊥e−ik·ρδ(z)] ∝ e⊥[θ (z)e−ik·ρ+ik2zz+θ (−z)e−ik·ρ−ik2zz],

(1.4)

where Green’s tensor is defined by the following equation:

−∇ × ∇ × ←→
G + k2

2
←→
G = k2

2Iδ3(r − r′)

and is an outgoing wave at large distances. Here θ (z) is the
usual step function, k is a 2D wave vector parallel to the plane,
and ρ is a 2D position vector in that plane. Thus, a current
sheet, which is proportional to a plane wave modulated by
e−ik·ρ, generates outgoing plane waves away from the current
sheet with the same 2D phase modulation.

In the discussion above on the flat-slab eigenstates and the
phased array we have presented volume and surface current
sources modulated by a uniform medium eigenstate in the
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parallel directions, which generate the same uniform medium
eigenstate outside the source. It will be therefore interesting to
check if the same applies for sphere (and cylinder) geometries.
Light usually comprises a variety of multipoles [5] and our
goal is to generate only a given multipole. Vector spherical
harmonics with the electric field continuity conditions are
the eigenstates of a spherical inclusion [1]. Standard vector
spherical harmonics are the eigenstates of a uniform medium
similarly to plane waves. The analog of a planar phased array
is therefore a spherical current layer modulated by a vector
spherical harmonic.

Light can be localized in free space by focusing a laser beam
using a circular lens. The size of the focal spot is related to the
imaging resolution since the scattered light can be collected
from the focal spot, enabling us to resolve features with the
size of the focal spot. Smaller focal spots can thus enable us to
image or sense objects with a better resolution. A laser beam
with a uniform distribution passing through a circular lens has
a focal spot with a full width at half maximum (FWHM) of
1.03λ f/D in the lateral axes, where f is the focal length and
D is the lens diameter (commercially available lenses have
f/D � 1). Setups of molecules coupled to optical cavities
have attracted much attention recently. In the weak-coupling
regime the emission of the molecule can be enhanced and in
the strong-coupling regime the system has hybrid eigenstates
[6,7]. The electric field of an oscillating dipole in a setup
of a sphere in a host medium has been calculated in the
electrodynamic regime [8,9]. Radiation emission rates for
a molecule in a dielectric sphere which also accounts for
electrostatic spherical and spheroidal cavity effects have also
been calculated [10]. The field outside a sphere of a spherically
symmetric electrostatic multipole density has been shown to
be the multipole field [11].

Here we show that a spherical current layer or a sphere
modulated by a vector spherical harmonic can generate the
corresponding vector spherical harmonic field both inside and
outside the current layer or sphere. In addition, a spherical
current layer proportional to an l = 1 TM mode can focus
light at the origin with a focal spot with a FWHM of 0.4λ in
the lateral axes and 0.58λ in the vertical axis. Such currents
at optical frequencies can be effectively generated by optical
antennas. Moreover, we show that a polarizable spherical layer
can couple to a multipole source. In Sec. II we present the
theory. In Sec. III we calculate multipole fields and present
results near the origin and in the far field. In Sec. IV we
discuss our results.

II. THEORY

The electric field can be expanded in the multipoles as
follows:

E =
∑
l,m

[i/kaE(l,m)∇ × fl(kr)Xlm + aM (l,m)gl(kr)Xlm],

(2.1)

where aE, aM are the multipole strengths, fl(kr), gl(kr) are
linear combinations of radial Hankel functions h

(1)
l ,h

(2)
l , and

gl(kr)Xlm,∇ × fl(kr)Xlm are the normalized forms of the TE
and TM electric field multipoles E(M)

lm and E(E)
lm (the vector

spherical harmonics) given by

E(M)
lm = gl(kr)LYlm(θ,φ), L ≡ 1

i
(r × ∇),

E(E)
lm = i

k
∇ × H(E)

lm , H(E)
lm ≡ fl(kr)LYlm(θ,φ), (2.2)

where Ylm(θ,φ) are the scalar spherical harmonics.
The multipole strengths αM (l,m),αE(l,m) can be written as

follows:

αM (l,m)gl(kr) = k√
l(l + 1)

∫
Y ∗

lm(r · H)d
,

αE(l,m)fl(kr) = − k√
l(l + 1)

∫
Y ∗

lm(r · E)d
. (2.3)

Denoting the intrinsic magnetization (caused by circular
currents) by M(x) the following scalar wave equation for
r · H, r · E′, where E′ is the divergence-free field defined by
E′ = E + i

ωε0
J (note that ∇ · E = ρ/ε0, ∇ · J = iωρ), can be

written as

(∇2 + k2)(r · H) = −iL · (J + ∇ × M),

(∇2 + k2)(r · E′) = kL ·
(

M + 1

k2
∇ × J

)
(2.4)

from which one can write [12]

r · H = i

4π

∫
eik|x−x′|

|x − x′|L′ · [J(x′) + ∇ × M(x′)]d3x ′,

r · E′ = − k

4π

∫
eik|x−x′ |

|x − x′|L′ ·
(

M(x′) + 1

k2
∇ × J(x′)

)
d3x ′,

(2.5)

where in the region outside the sources E′ reduces to E.

Now αM (l,m),αE(l,m) read [12]

αM (l,m)gl(kr) = i

4π

k√
l(l + 1)

∫
Y ∗

lm

∫
eik|x−x′ |

|x − x′|L′

· [J(x′) + ∇ × M(x′)]d3x ′d
,

αE(l,m)fl(kr) = 1

4π

k2

√
l(l + 1)

∫
Y ∗

lm

∫
eik|x−x′ |

|x − x′|L′

·
[

M(x′) + 1

k2
∇ × J(x′)

]
d3x ′d
.

(2.6)

We substitute eik|x−x′ |
4π |x−x′ | ≡ ∑

l,m Gl(r,r ′)Y ∗
l,m(θ ′,φ′)Yl,m(θ,φ),

where Gl(r,r ′) = ikjl(kr<)h(1)
l (kr>), r<(r>) is the smaller

(larger) of r and r ′. Note that gl(kr) = fl(kr) = h
(1)
l (kr)

outside the current layer (r > r ′), and gl(kr) = fl(kr) =
jl(kr) inside (r < r ′) so one of the functions in Gl(r,r ′) cancels
out with gl(kr) or fl(kr) on the left-hand side of Eq. (2.6).
Consequently αM (l,m),αE(l,m) inside and outside take the
form

α
inside/outside
M (l,m) = − k2

√
l(l + 1)

∫ {
h

(1)
l (kr)
jl(kr)

}
Y ∗

lm(θ,φ)L

· [J(x) + ∇ × M(x)]d3x,
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α
inside/outside
E (l,m) = ik3

√
l(l + 1)

∫ {
h

(1)
l (kr)
jl(kr)

}
Y ∗

lm(θ,φ)L

·
[

M(x) + 1

k2
∇ × J(x)

]
d3x, (2.7)

where “inside” and “outside” correspond to h
(1)
l (kr) and jl(kr),

respectively. Note that in the calculations after Eq. (2.6) we
have extended the discussion in Ref. [12] to the field inside the
current layer.

We consider a spherical current layer situated in free space
with an inner radius r1 and a thickness d where for the case
of a surface current d � r1. The current is proportional to
a TE multipole in its θ,φ dependence in the spherical layer
J = J0θ1(r)wl′(kr)LYl′m′(θ,φ) where θ1 is equal to 1 when
r is inside the current layer and is equal to zero elsewhere.

However, the function wl′(kr) in general is not a spherical
Bessel function. We assume M(x) = 0 from here on and obtain

α
inside/outside
M (lm,l′m′) = −k2

√
l(l + 1)J0 δll′δmm′

×
∫ r1+d

r1

{
h

(1)
l (kr)
jl(kr)

}
wl′(kr)r2dr.

(2.8)

It can be seen that such a surface current source generates only
the same TE multipole.

From here on we will consider r that is inside and the cal-
culations for r outside readily follow, namely h

(1)
l (kr) should

be replaced by jl(kr) in the expressions for the multipole
strengths. To prove that TM multipoles are not generated by TE
surface currents we perform several mathematical operations
and arrive from Eq. (2.7) at

ainside
E (lm,l′m′) = k2

i
√

l(1 + 1)

∫
Y ∗

lm

[
cρ

∂

∂r

[
rh

(1)
l (kr)

] + ik(r · J)h(1)
l (kr)

]
drd


= k2

i
√

l(1 + 1)

c

iω

[∫ ∫ r1+ dr
2

r1− dr
2

{
∇ ·

[
Y ∗

lm

∂

∂r

[
rh

(1)
l (kr)

]
J
]

− J · ∇
[
Y ∗

lm

∂

∂r

[
rh

(1)
l (kr)

]]}
r2drd


+
∫ ∫ r1+d+ dr

2

r1+d− dr
2

{
∇ ·

[
Y ∗

lm

∂

∂r

[
rh

(1)
l (kr)

]
J
]

− J · ∇
[
Y ∗

lm

∂

∂r

[
rh

(1)
l (kr)

]]}
r2drd


]

= − ck2

ω
√

l(1 + 1)

∫
Y ∗

lm

[
Jabove upper · r̂

[
∂

∂r

(
rh

(1)
l (kr)

)]
r1+d

(r1+d)2 − J below upper · r̂
[

∂

∂r

(
rh

(1)
l (kr)

)]
r1+d

(r1+d)2

+ Jabove lower · r̂
[

∂

∂r

(
rh

(1)
l (kr)

)]
r1

r2
1 − Jbelow lower · r̂

[
∂

∂r

(
rh

(1)
l (kr)

)]
r1

r2
1

]
d
 = 0, (2.9)

where r̂ = r/|r|, r · J ∝ r·E(M)
l′m′ = 0, ρ = ∇·J

iω
, inside the volume ∇ · J = 0 since J ∝ θ1(r)E(M)

l′m′ , ψ∇ · J = ∇ · (ψJ) −
J · ∇ψ, ψ ≡ Y ∗

lm
∂
∂r

[rh(1)
l (kr)], the volume integrals over the interfaces transform to surface integrals using divergence

theorem. “Upper” and “lower” denote the upper and lower interface, respectively, “above” and “below” stand for above
and below an interface, Jabove upper = Jbelow lower = 0, and Jbelow upper · r̂ = Jabove lower · r̂ = 0. Also, the contribution of the
J · ∇[Y ∗

lm
∂
∂r

[rh(1)
l (kr)]] terms in the volume integration over the interfaces is negligible since the interface thickness is infinitesimal

and the function is finite there.
We define J̃θ = Jθ

wl′ (kr) ,J̃φ = Jφ

wl′ (kr) and since Jr = 0 we express ∇ · J inside the volume as follows:

∇ · J = 1

r sin θ

[
∂

∂θ
(sin θJθ ) + ∂Jφ

∂φ

]
= wl′(kr)

r sin θ

[
∂

∂θ
(sin θJ̃θ ) + ∂J̃φ

∂φ

]
= 0. (2.10)

We get that since ∂
∂θ

(sin θJ̃θ ) + ∂J̃φ

∂φ
= 0, the current satisfies ∇ · J = 0 independently of the form of wl′(kr). Here, too, wl′(kr)

is not required to be a spherical Bessel function.
Similarly, substituting a spherical layer source proportional to a TM multipole

J = i

k
J0θ1(r)∇ × fl′(kr)LYl′m′(θ,φ) ∝ θ1(r)E(E)

l′m′ ∝ θ1(r)
i

k
∇ × H(E)

l′m′ , (2.11)

we obtain

ainside
E (lm,l′m′) = k2

i
√

l(1 + 1)

∫
Y ∗

lm

[
cρ

∂

∂r

[
rh

(1)
l (kr)

] + iJ0l
′(l′ + 1)fl′ (kr)Yl′m′h

(1)
l (kr)d3x

]

= k2

i
√

l(1 + 1)

∫
Y ∗

lm

{
− c

iω
J(r1 + d,θ,φ) · r̂

[
∂

∂r

(
rh

(1)
l (kr)

)]
r1+d

(r1 + d)2

+ c

iω
J(r1,θ,φ) · r̂

[
∂

∂r

(
rh

(1)
l (kr)

)]
r1

r2
1 + iJ0l

′(l′ + 1)fl′(kr)Yl′m′h
(1)
l (kr)r2dr

}
d
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= J0k
√

l(1 + 1)δll′δmm′

{
c

ω

fl′ (k(r1 + d))

(r1 + d)

[
∂

∂r

(
rh

(1)
l (kr)

)]
r1+d

(r1 + d)2

− c

ω

fl′ (kr1)

r1

[
∂

∂r

(
rh

(1)
l (kr)

)]
r1

r2
1 + k

∫ r1+d

r1

fl′(kr)h(1)
l (kr)r2dr

}
, (2.12)

where we have used r · J = J0
l′(l′+1)

k
fl′ (kr)Yl′m′ ∝ r · E(E)

l′m′ for
r · J, J(r1 + d,θ,φ) · r̂, and J(r1,θ,φ) · r̂, the orthogonality
property of the Ylms, and ∇ · J = 0 inside the current volume
since J ∝ E(E)

l′m′ . Since for every vector ∇ · ∇ × A = 0, it is
easy to see from the definition of the TM multipole that we
can replace fl′ (kr) with any r-dependent function and the
derivation above still holds.

To prove that a TM surface current does not generate TE
multipoles we write

αinside
M (lm,l′m′) = −k2

√
l(1+1)

∫
h

(1)
l (kr)Y ∗

lm(θ,φ)L

· i
k
J0θ1(r)∇ × [fl′ (kr)LYl′m′(θ,φ)]d3x = 0,

(2.13)

where we have used

L = 1

i
(r × ∇),

(r × ∇) · ∇ × [fl′(kr)LYl′m′(θ,φ)]

= r · ∇ × {∇ × [fl′ (kr)LYl′m′(θ,φ)]}
= −r · [k2fl′(kr)LYl′m′(θ,φ)] = 0,

since ∇ · E(E)
l′m′ = 0,∇2E(E)

l′m′ = −k2E(E)
l′m′ , and since L does not

operate on r. Here, too, a surface current source that is propor-
tional to a TM multipole generates only the same multipole.
Clearly, the results for the strengths of the multipoles are also
valid for a spherical current layer that is thick and for a sphere,
where we are interested in αoutside

M (l,m),αoutside
E (l,m).

III. MULTIPOLE FIELDS NEAR THE ORIGIN
AND IN THE FAR FIELD

We calculated the l = 1,m = 0 and the l = 2,m = 0 TM
and TE multipole fields which can be generated by the
corresponding spherical current layers. We first calculated the
l = 1,m = 0, and the l = 2,m = 0 TM multipole fields with
fl(kr) ≡ jl(kr) using the following relations [12]

∇ × L = r∇2 − ∇, Lx = 1
2 (L+ + L−),

Ly = 1

2i
(L+ − L−), Lz = mYlm,

L+Yl,m =
√

(l − m)(l + m + 1)Yl,m+1,

L−Yl,m =
√

(l + m)(l − m + 1)Yl,m−1. (3.1)

In Fig. 1 we present |E|2 of the l = 1,m = 0 TM multipole
as a function of y and z near the origin. The electric field of this
multipole is concentrated at the origin and has a FWHM of 0.4λ

in the y axis (and in the x axis) and 0.58λ in the z axis. Note
that while to first order jl=1(kr) � (kr)/3, upon operating
with ∇× on jl=1(kr)LYlm in the calculation of E(E)

l=1,m, the

field does not vanish at the origin. In Fig. 2 we present |E|2 of
the l = 2,m = 0 TM multipole. This multipole has two focal
spots at z = ±0.4λ with focal width of approximately 0.4λ.

We then calculated |E|2 of the l = 1,m = 0 and l = 2,m =
0 TE multipoles with gl(kr) ≡ jl(kr) by using the relation
L2 = l(1 + 1) and obtained

|ETE 1,0|2 = 3

8π
[j1(kr)]2 sin2 θ,

|ETE 2,0|2 = 15

8π
[j2(kr)]2 sin2 θ cos2 θ. (3.2)

In Fig. 3 we present |E|2 of the l = 1,m = 0 TE multipole
as a function of y and z near the origin. The intensity of
this multipole is concentrated in a toruslike shape. In Fig. 4 we
present |E|2 of the l = 2,m = 0 TE multipole. The intensity of
this multipole is concentrated in two toruslike shapes situated
at z = ±0.4λ.

From the derivations in Sec. II it is clear that placing
currents that are modulated according to the l = 1,m = 0 TE
and TM multipoles inside a sphere near the origin generates
the electric field of these modes in space. Thus, electric
fields whose intensities are presented in Figs. 1 and 3, are
prescriptions for the current distributions required to generate
the l = 1,m = 0 TM and TE multipoles respectively. The
l = 1,m = 0 TM multipole field in a very small sphere
corresponds to an oscillating point dipole. In addition, the
focal spot of this mode is similar to the current distribution
of a λ/2 antenna, which has a dominant l = 1,m = 0 TM
component in its radiation field pattern. The l = 1,m = 0 TE
multipole field is similar to a current loop distribution.

In addition, a multipole current source at the origin and
a spherical layer centered at the origin can be coupled. The
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FIG. 1. |E|2 of a TM l = 1,m = 0 multipole.
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FIG. 2. |E|2 of a TM l = 2,m = 0 multipole.

radiation emitted from the multipole source impinges on
the spherical layer, which in turn is polarized and emits
radiation both inside and outside that layer. The radiation
inside impinges on the current source and can reexcite the
same radiation pattern, etc. The polarizable spherical layer is
characterized by an ε value and can be either a dielectric or a
metal. The polarization pattern in the spherical layer originates
from the radiation field pattern of the current source and there
is no need to design an optical antenna distribution inside
the layer. This can be analyzed quantitatively by expanding
the field generated by an electromagnetic multipole using the
spherical layer eigenstates. Since the overlap integrals will
be nonzero only for the corresponding multipole eigenstates,
only this term will be employed in the expansion and the
combined field can be readily calculated. The magnitude of
the scattered field becomes larger as s ≡ 1/u approaches
the multipole eigenvalue sn ≡ 1/un (see Refs. [1,2]). In the
quasistatic expansion the permittivity eigenvalues are real and
can be approached with realizable materials. In the elec-
tromagnetic expansion the permittivity eigenvalues usually
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FIG. 3. |E|2 of a TE l = 1,m = 0 multipole.

y/λ

z/
λ

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

2

4

6

8

10

12

14
x 10

−3

FIG. 4. |E|2 of a TE l = 2,m = 0 multipole.

have gain but in some cases they are also close to real [2].
Similarly if a polarizable spherical layer or a sphere is excited
with a given multipole it will couple to another sphere or
spherical layer centered at the origin for the reason mentioned
above.

In the radiation zone we can write E(M)
lm = H(M)

lm × n. For a
source that consists of a complete set of TE multipoles with the
order l all having the same strength aM (l), the time-averaged
power radiated per solid angle is

dP

d

= 1

2k2
|aM (l)|2

∣∣∣∣
∑
m

(−1)i+1Xlm

∣∣∣∣
2

, (3.3)

which becomes for incoherent sources [12]

dP

d

= 1

2k2
|aM (l)|2 2l + 1

4π
. (3.4)

Thus, generating such a set of incoherent TE multipoles will
result in isotropic radiation, where the simplest configuration
comprises the multipoles X10,X1,−1,X1,1.

IV. DISCUSSION

We showed that a spherical layer or a sphere with currents
that are proportional to an electromagnetic multipole field can
generate the same multipole field. We calculated the first TE
and TM multipole fields and presented results near the origin
and in the far field. The intensity of the l = 1,m = 0 TM
multipole peaks at the origin with FWHM of 0.4λ in the
lateral axes and 0.58λ in the vertical axis and the intensity
of the l = 1,m = 0 TE multipole is concentrated in a toruslike
shape. Currents proportional to a multipole field near the origin
generate the multipole in space so the multipole fields are
prescriptions for such current sources. A spherical layer can
couple to a multipole source centered at the origin and enhance
its radiation. For example, an oscillating point dipole or a
molecule, which emits a TM l = 1 multipole, can couple to a
spherical dielectric layer, similarly to a molecule in an optical
cavity [6,7,10]. An l = 1 TE multipole near the origin also
generates the same multipole field which can excite a spherical
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layer that will drive the multipole currents near the origin. This
analysis is valid also for the coupling between l > 1 TE and
TM multipoles and a spherical layer. Finally, if a spherical

layer or a sphere is excited with a given multipole it can be
coupled to another concentric polarizable spherical layer or
sphere.
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Eigenstate expansion of the quasistatic electric field of a point charge
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A point charge in the presence of a metallic nanosphere is a fundamental setup, which has implications for
Raman scattering, enhancement of spontaneous emission of a molecule by an antenna, sensing, and modeling
a metallic tip in proximity to a nanoparticle. Here we analytically expand the electric field of a point charge in
an ε2 host medium in the presence of an ε1 sphere using the sphere eigenstates, where ε1 and ε2 can take any
complex values. We develop a simple procedure to treat charge distribution, which results in a simple eigenstate
expansion for the electric field of charge sources and is able to treat volume sources analytically. The electric
field is strongly enhanced when ε1/ε2 is close to an (ε1/ε2)l eigenvalue of a dominant mode, which is determined
by the point charge location and the measurement point. An electric field exists inside the sphere when ε1/ε2 is
close to a (ε1/ε2)l resonance even when ε1 is a conductor. Low-order modes generate an electric field far away
from the interface, where the l = 1 mode with a resonance at ε1 = −2ε2 generates a field at the sphere center. The
high-order modes, which are associated with high spatial frequencies, become more dominant when the point
charge approaches the sphere surface or when the physical parameters are close the high-order modes resonances.
When ε1/ε2 is smaller or larger than the eigenvalues of the dominant modes, the modes interfere constructively
and generate a strong signal at an angular direction equal to that of the source. The spectral information at the
sphere surface may be utilized to calculate the point charge location without knowing its magnitude.

DOI: 10.1103/PhysRevA.96.043806

I. INTRODUCTION

The electrostatic potential of a point charge in proximity to
a conducting sphere was calculated analytically long ago [1].
This calculation assumes a constant potential on the sphere
envelope and uses the method of images to construct a potential
outside the sphere. The electrostatic potential of a point
charge next to a dielectric sphere with vanishing conductivity
was calculated by using solutions of Laplace’s equation and
matching boundary conditions of the electric field [2]. The
electrodynamics of surface systems has been approached using
a Green’s function formalism in Ref. [3]. The electromagnetic
field of an oscillating dipole outside a conducting sphere
has been calculated by transforming an infinite series of
spherical harmonics for the Hertzian vector into a more rapidly
converging series [4]. In another study the electric field of
an oscillating dipole inside a dielectric sphere was calculated
by expanding the field in the vector spherical harmonics and
matching the field boundary conditions [5]. Radiation emission
rates for such a setup, where the dipole models a molecule,
were calculated, taking into account electrostatic spherical and
spheroidal cavity effects [6]. Asymptotic expressions for the
potential and the field very close to an interface between an
inclusion and a host medium in the limit ε1 = −ε2, both real,
have also been obtained [7–10].

In the quasistatic regime, which occurs when the typical
lengths of the system are much shorter than the wavelength,
Maxwell’s equations reduce to Poisson’s equation with a com-
plex and frequency-dependent permittivity ε(ω). To account
for a nonlocal conductivity and permittivity, ε(ω) should be

*asaffarhi@post.tau.ac.il
†bergman@post.tau.ac.il

expressed as a tensor that depends also on the wave vector k [1].
Metals at optical frequencies can be described using an
only ω-dependent permittivity and we therefore assume this
dependence in our derivations. To investigate a composite
system with a source in the quasistatic regime, a point charge
is often used to observe its properties. Scattering eigenstates
of Maxwell’s equations have been exploited to calculate the
electric field in electrostatics [11–15] and in electrodynamics
[16,17]. Recently, a procedure to treat current sources using the
electromagnetic spectral expansion has been introduced [17].

Here we introduce a procedure to treat charge sources using
the electrostatic eigenstate expansion. Such a procedure results
in a simple eigenstate expansion for the electric field of charge
sources and is able to treat volume sources analytically. In
addition, we show that when the system is close to a resonance
a strong electric field exists inside the sphere even if it is a
conductor.

Potential applications are enhancement of spontaneous
emission of a molecule by an antenna [18] in the quasistatic
regime, modeling a tip in proximity to a metallic nanosphere,
near-field imaging, sensing, and Raman spectroscopy. In
particular, enhancement of Raman scattering and spontaneous
emission of a molecule become more dominant when the field
intensity at the molecule is higher, which can be obtained
when the system is close to a resonance. Near-field imaging
exploits evanescent waves to generate an image with resolution
that is better than the diffraction limit. In this technique a
two-dimensional image is generated by scanning the surface
with a scattering tip. We show that the spectral information of
the electric field can be utilized to calculate the point charge
location when it is not at the sphere surface, which we define
as the detector.

In Sec. II we present the theory and introduce a procedure
to treat charge sources. In Sec. III we describe how we can
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obtain the point charge location from the spectral content of
the electric field on the sphere surface. In Sec. IV we present
the potential and the electric field for permittivity values that
are close to the resonances of the dominant eigenstates. In
Sec. V we discuss our results and potential applications.

II. THEORY

In the quasistatic regime Maxwell’s equations reduce to
Poisson’s equation with a complex and frequency-dependent
permittivity

∇ · (ε∇ψ) = −4πρ. (2.1)

By expressing the permittivity using the step functions θ1 and
θ2 of the ε1 and ε2 media [θi(r) = 1 when ε(r) = εi ; otherwise
θi(r) = 0] we write [11]

∇ · [(ε1θ1 + ε2θ2)∇ψ] = −4πρ,

∇2ψ = −4πρ + u∇ · (θ1∇ψ), u ≡ 1 − ε1

ε2
.

(2.2)

This is transformed to [11]

ψ = ψ0 + u�ψ, (2.3)

where

�ψ =
∫

dV ′θ1(r′)∇′G(r,r′) · ∇′ψ(r′),

G = 1

4π |r − r′| , ψ0 = q

ε2|r − r0| , (2.4)

and r0 is the point charge position, assumed to be in the
ε2 medium.

The eigenstates satisfy Eq. (2.3) when there is no source,
namely,

snψn = �ψn,
1

sn

≡ un = 1 − ε1n

ε2
. (2.5)

By defining the scalar product

〈ψ |φ〉 ≡
∫

dV θ1∇ψ∗ · ∇φ, (2.6)

� becomes a Hermitian operator and therefore it has a complete
set of eigenstates. We insert the unity operator in Eq. (2.3) and
arrive at

ψ = ψ0 +
∑

n

sn

s − sn

〈ψn|ψ0〉ψn, s ≡ 1/u, (2.7)

where ψn are the normalized eigenstates.
The sphere eigenstates are [11]

ψn ≡ ψlm(r) = Ylm(
)

(la)1/2
×

⎧⎪⎨
⎪⎩

( r

a

)l

, r < a(a

r

)l+1
, r > a,

(2.8)

where a is the sphere radius, Ylm are the spherical harmonics,
and the eigenvalues are

ε1l = −ε2
l + 1

l
, slm ≡ sl = l

2l + 1
. (2.9)

Clearly, in the l → ∞ limit sl → 1/2. Thus, for a choice of
s ≈ 1/2 the high-order modes make a large contribution to the
potential [11,12,15].

Note that the inclusion permittivity eigenvalues are real
and on the order of magnitude of the host medium permittivity
(with the opposite sign). In statics, the imaginary part of a
metal permittivity is very high and it is impossible to approach
the resonances. At high frequencies that imaginary part can
become small and the resonances can be approached. In such a
case, the physical electric field becomes very large due to a high
contribution of one of the modes in the eigenstate expansion.
The coefficient of an eigenstate s2

l /(s − sl) can be expressed as

s2
l

s − sl

= s2
l /s

1 − sl(1 − ε1/ε2)

and becomes large when the real and imaginary parts of
the denominator 1 − sl(1 − ε1/ε2) are small. Assuming
Im(ε1),Im(ε2) > 0 and Re(ε1) < 0, Im(ε1) and Im(ε2)
are required to be small with respect to |ε2|2/Re(ε2) and
|ε2|2/|Re(ε1)|, respectively, in order for the imaginary part of
the denominator to be small. When one of the constituents has
gain [14] we can approach the condition for vanishing imagi-
nary part of the denominator Im(ε1)/Im(ε2) = Re(ε1)/Re(ε2).

Now we proceed to calculate the scalar product 〈ψlm|ψ0〉.
We exploit the fact that ψ0(r) = 4π/ε2

∫
G(r,r′)ρ(r′)dV ′ and

use Eq. (2.5) to obtain

〈ψlm|ψ0〉 = 4π

ε2

∫ ∫
θ1∇ψ∗

lm · ∇G(r,r′)ρ(r′)dV ′dV

= 4π

ε2
sl

∫
ψ∗

lm(r′)ρ(r′)dV ′

= 4πq

ε2
slψ

∗
lm(r0), (2.10)

where we assumed a point charge ρ = qδ3(r − r0). We finally
get

ψ(r) = ψ0(r) + 4πq

ε2

∑
l,m

s2
l

s − sl

ψ∗
lm(r0)ψlm(r). (2.11)

It can readily be seen from Eqs. (2.8) and (2.11) that as the point
charge approaches the sphere surface the contribution of the
high-order modes becomes non-negligible [because ψ∗

lm(r0) is
larger] and they become more dominant in the expansion. In
addition, low-order modes decay more slowly away from the
interface and can therefore generate fields far away from the
interface.

The ratio ε1/ε2 can be chosen to enhance a contribution
to the electric field of one or more modes. We can there-
fore decompose each term in the sum in Eq. (2.11) into
(4πq/ε2)s2

l ψ
∗
lm(r0)ψlm(r), which does not depend on s, and

1/(s − sl), which is determined by the distance between the
physical s and an eigenvalue sl .

For a point charge at r0 = z0ẑ, ψ∗
lm(r0) = ψlm(r0) and

ψlm(r0) �= 0 only when m = 0. Thus, ψ(r) is independent of
the azimuthal angle φ and the sum in Eq. (2.11) is considerably
simplified. In addition, it can be seen that when the ratio
ε1/ε2 is fixed, ψ(r)/ψ0(r) is also fixed since s does not
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change and ε2 cancels out. Therefore, the relative effect of
a sphere inclusion on the potential and the electric field does
not change when keeping this ratio fixed, even when ε1 is large.
For example, the l = 1 resonance occurs when ε1 ≈ −2ε2. If
Re(ε1) ≈ −2 Re(ε2) and ε1 and ε2 have small dissipation we
will be close to the resonance. When downscaling the system
by a factor b we get that |E|2 increases by a factor of b4, as is
the case for a point charge in a uniform medium.

To verify our result in Eq. (2.11) we placed a point charge at
r0 = z0ẑ (z0 > a) and took the ε1 → ∞ limit, assuming ε2 is
finite. We then summed a geometric series to obtain the known
textbook result for r on the +z axis

ψ(r) = ψ0(r) − qa/z0

|r − a2/z0| . (2.12)

We also took the limit of a point charge near a plane.
Assuming r ≈ z0 ≈ a and defining k ≡ l/a and z ≡ r

we obtained( r

a

)l

r < a ≈ e−k(a−z),
(a

r

)l+1
r > a ≈ e−k(z−a),

(
a

z0

)l+1

z0 > a ≈ e−k(z0−a), sk ≈ 1

2
(1 − e−2ka). (2.13)

From symmetry considerations one can obtain for the eigen-
states dependence on the directions parallel to the plane
ψk(ρ,z) = exp(ik · ρ)fk(z), where ρ is the radial vector in
cylindrical coordinates and k ≡ (kx,ky). In this limit the spec-
trum of eigenvalues is continuous and there is an accumulation
point of the eigenvalues at s = 1/2 [11,12,15]. Note that the
eigenstates can be normalized according to Eq. (2.6) due to
their exponential dependence on the direction perpendicular
to the plane.

The electric field can be written as

E(r) = −∇ψ0(r) − Escat, (2.14)

where

Escat ≡ −4πq

ε2

∑
l

s2
l

s − sl

ψ∗
lm(r0)∇ψlm(r); ∇ψlm(r) = erYlm

∂fl(r)

∂r
+ eφ

fl(r)

r sin θ
imYlm + eθ

fl(r)

r

∂Yl,m

∂θ
;

fl(r) = 1

(la)1/2
×

⎧⎪⎨
⎪⎩

( r

a

)l

, r < a

(a

r

)l+1
, r > a;

∂fl(r)

∂r
= 1

(la)1/2
×

⎧⎪⎨
⎪⎩

l
( r

a

)l 1

r
, r < a

−(l + 1)
(a

r

)l+1 1

r
, r > a;

(2.15)

and where ∂ψlm/∂θ can be written as [19]

∂ψlm

∂θ
= eθ

fl(r)

r sin θ

[
l(l + 1)

[(2l + 1)(2l + 3)]1/2
Yl+1,m − l(l − 1)

[(2l − 1)(2l + 1)]1/2
Yl−1,m

]
. (2.16)

Note also that the field of the l = 1 mode does not vanish
at the origin and extends far from the sphere surface. In
addition, the spherical harmonics satisfy Yl,m=0(θ = 0) = 1
and Yl,m=0(θ = π ) = ±1. Hence, when s is very close to a
resonance a dominant mode is excited and the intensity peaks
at both θ = 0 and θ = π . The l components Escat, r,l at θ = 0
have a positive sign for sl < s and a negative sign for sl > s.
In addition, Yl,m=0 and Yl+1,m=0 at θ = π have opposite signs,
but at the transition between sl′ < s and sl′+1 > s, Escat, r,l′ and
Escat, r,l′+1 have the same sign because the coefficient 1/(s − sl)
also changes sign. Thus, when s ≈ (sl′ + sl′+1)/2 the dominant
l′ and l′ + 1 modes will interfere destructively at θ = 0 and
constructively at θ = π . When s < sl for every l (s < 1/3),
which corresponds to ε1 � −2ε2, all Escat, r,l at θ = 0 have
the same sign and they interfere constructively to generate a
strong signal. In this case the low-order modes that extend far
from the sphere surface are strongly enhanced. Similarly, when
s > sl for every l (s > 1/2), which corresponds to ε1 � −ε2,
all Escat, r,l at θ = 0 interfere constructively and a strong signal
is expected there. In this case the high-order modes that are
associated with high spatial frequencies are strongly enhanced.
When s > sl or s < sl for every l the signs of Escat, r,l alternate
at θ = π and a relatively weak signal is expected there.

III. CALCULATING THE POINT CHARGE LOCATION
FROM THE SPECTRAL CONTENT OF THE

ELECTRIC FIELD

In the far field, a point in the object is mapped into a point
in the image due to constructive interference, enabling 3D
imaging. Near-field imaging exploits evanescent waves and
achieves resolutions better than the diffraction limit. However,
measuring an electric field in the near-field region produced
by a point source that is not very close to the detector is
usually difficult. This is since the modes decay exponentially
with distance and since there can be orders of magnitude
differences among electric-field intensities produced by point
sources at different distances from the detector. When we are
close to a resonance, the local physical field is enhanced and
there is a significant field also due to point sources that are
not very close to the detector (e.g., at the sphere surface).
Thus, high-order components of the electric field can be
detected. For a single point charge source, which we will
treat as the object, the image field intensity will be maximal
at an angular direction equal to that of the source and at
the reflected direction with respect to the spherical surface
(see Sec. II).
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We start by calculating the field at the sphere surface and
requiring full retrieval of an l mode of the electric field. We
expand ψ0 inside the sphere, where there are no sources, using
the unity operator. We then take the gradient of Eq. (2.14) to
obtain the following expression for the electric field, which is
valid inside the sphere:

Einside = −
∑

l,m=0

[
〈ψlm|ψ0〉∇ψlm + sl

s − sl

〈ψlm|ψ0〉∇ψlm

]

= −
∑

l,m=0

s

s − sl

〈ψlm|ψ0〉∇ψlm. (3.1)

From this expression we calculate the electric field at r = a+,
i.e., just outside the sphere, using continuity conditions (note
that the right-hand side is taken at r = a−, not r = a+)

E(r = a+,θ )

= −
∑

l,m=0

s

s − sl

〈ψlm|ψ0〉
(

ε1

ε2

∂ψlm

∂r
r̂ + 1

r

∂ψlm

∂θ
θ̂

)
r=a−

.

(3.2)

We measure the field at the sphere surface and require
that the magnitude of a given field component will be of the
same order of magnitude as this field component in near-field
imaging so that it can be detected. In near-field imaging the
field of an object placed in a uniform medium is measured
approximately at the object location. We therefore require
that an l component measured at the sphere surface and an
l component of E0 = −∇ψ0 measured at the point charge
location (each field component is finite) will be approximately
equal in magnitude. For a point charge in the presence of a
sphere we define r0 = z0ẑ as the point charge location and
r = a+ẑ as the measurement point. For near-field imaging we
define the point charge location as r0 near field = a+ẑ and the
measurement point also at r = a+ẑ and write

Er,l, sphere setup(r = a+ẑ, r0 = z0ẑ)

Er,l, uniform medium(r = a+ẑ,r0 near field = a+ẑ)

=
ε2
ε1

ssl

s−sl
ψlm(r0 = z0ẑ) ∂ψlm

∂r

∣∣∣
r=a− ẑ

slψlm(r = a+ẑ) ∂ψlm

∂r

∣∣∣
r=a− ẑ

= ε2

ε1

s

s − sl

(a/z0)l+1 � 1, (3.3)

where we have used Er,l(r = a−ẑ) = Er,l(r = a+ẑ) for a point
charge in a uniform medium. Assuming s � 1/2 and sl − s �
0.0025 we obtain

(a/z0)l+1 � 2(sl − s) � 0.005,

and for l = 10 we get

z0/a � 1.62.

This means that if we assume ε1 � −ε2, s − sl � (ε1 −
ε1l)/4ε2 and for ε2 = 1.5, ε1 − ε1l � 0.015, and z0/a � 1.62,
the l = 10 mode magnitude is equal to or higher than its
magnitude when measuring E0 at the point charge location.
The angular half-width of this mode near θ = π calculated

using the l = 10 Legendre polynomial is 0.14 rad, which
translates to 4 nm for a sphere with a radius of 30 nm.

We now calculate the point charge location using the
spectral content of the electric field on the sphere surface.
Our motivation for calculating the source location without
knowing its magnitude q is, for example, fluorescence in
which the emission strength of the source can be unknown. The
electric field at the sphere surface is composed of modes with
magnitudes that depend on the point charge location. Thus,
the spectral information of the electric field is affected by the
point charge location. If s � sl , the electric field is dominated
by this l mode. Alternatively, if the radial component of the
electric field on the sphere surface can be measured then by
using a spherical harmonics transform defined by

F (l,m) =
∫

ErY
∗
lmd
, (3.4)

we can obtain the spectral content of an l,m mode in the
expansion of the physical electric field. Note that this transform
gives the spectral content since

∫
Yl′m′Y ∗

lmd
 = δll′δmm′ and
Er,lm has a Yl,m associated with it. To perform the transform
we need to choose the coordinate system so that θ = 0 points
to the point charge location. Since the maximal intensity is
always at θ = 0,π we must choose between them to define
θ = 0 according to the s value (see discussion above) or by
knowing in which half space the point charge is located. The
ratio between the magnitudes of the l1 and l2 components of
the electric field of a point charge located at r0 = z0ẑ is

F (l1,m = 0)

F (l2,m = 0)
= l1 + 1

l2 + 1

l2

l1

sl1

sl2

s − sl2

s − sl1

al1−l2z
l2−l1
0 . (3.5)

Thus, from this ratio we can calculate the point charge
location z0 without knowing its magnitude. Now using z0, it
is straightforward to calculate q from any F (l,m) component.
In order for the l mode fields of two point charges q1 and
q2 located at z01ẑ and z02ẑ, respectively, to be comparable
in magnitude we can require 0.1 � (q1/q2)(z02/z01)l+1 � 10.
For example, for the l = 10 mode assuming q1 = q2 we
obtain that for comparable field intensities we must have
0.9 � z01/z02 � 1.11. Thus, objects in a range of 3 nm along
r for a sphere with a radius of 30 nm produce comparable field
intensities at the sphere surface.

It should be noted that measuring the electric field on the
whole sphere is possible only if the detector has a negligible
effect on the incoming field at all the measurement points.
When the detector is situated on the half sphere that is closer
to the source it will be on the path of the incoming field and
may interfere with the field. When s ≈ (sl + sl+1)/2 the field
will peak at θ = π and the object location can be approximated
using the field magnitude at the half sphere that is further away
from the source. Also, measuring the field on the sphere surface
necessitates 3D sampling (scanning the field with a detector
in three axes), which is more challenging. This concept of
transforming a field on a surface to the spectral plane may
be adjusted to setups in which the required measurements are
more suited for current experimental techniques. For example,
in a setup of a flat slab and a source in a host medium [14,17],
measuring the electric field at the slab surface that is further
away from the source is both two dimensional and has a
negligible effect on the measured field. In such a setup the
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FIG. 1. Plot of |Er,l(r)(s − sl)| at r = a−ẑ and r = a+ẑ, i.e., just
inside and just outside the sphere, and at r = z0ẑ as a function of l

for ε2 = 1, z0 = 1.5a, and a = 30 nm.

perpendicular field component at the surface may be Hankel
transformed [20] in order to retrieve the source location.

IV. RESULTS

We first considered ε2 = 1 and a point charge located
at z0 = 1.5a, where a = 30 nm. In order to exclude the
effect of the choice of physical s on the results we
decomposed each term in the sum in Eq. (2.14) into
(−4πq/ε2)s2

l ψ
∗
lm(r0)∇ψlm(r), which does not depend on the

choice of s, and 1/(s − sl). The size of the last factor is
determined by the difference between the physical s and the
eigenvalue sl . We calculated

|Er,l(r)(s − sl)| =
∣∣∣∣4πq

ε2
s2
l ψ

∗
l,m=0(r0)

∂ψl,m=0(r)

∂r

∣∣∣∣ (4.1)

at r = a−ẑ, i.e., just inside the sphere, up to l = 20. Note that
the spectral components of E0 = −∇ψ0 can be included in the
calculation of Er,l(r) both inside the sphere and at the sphere
surface. We found that the l = 3 mode with sl = 0.4286 and
ε1,l=3 = −4/3 is the most dominant one. In Fig. 1 we present
the results as a function of l.

We then chose ε1 = −1.3256 and s = 0.43, which are close
to the l = 3 mode resonance. We calculated the electric field
for these s and ε1 values. The calculation of the electric field
was performed analytically using Eq. (2.15). In Fig. 2 we
present the intensity of the electric field.

It can be seen that the electric field is significantly enhanced
with maximal intensity at the interface between the sphere and
the host medium at θ = 0,π .

We also calculated |Er,l(r)(s − sl)| at r = a+ẑ, i.e., just
outside the sphere, and at the point charge location r = 1.5aẑ
(see Fig. 1). The field intensity at the point charge location is
relevant for phenomena such as enhancement of spontaneous
emission of a molecule by an antenna and Raman spectroscopy,
which become more dominant as the intensity at the molecule
increases. The most dominant modes at r = a+ẑ and at
the point charge location r = 1.5aẑ are l = 2 and l = 1,
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FIG. 2. Plot of |E|2 for a point charge at z0 = 1.5a, a = 30 nm,
s = 0.43, ε2 = 1, and ε1 = −1.3256.

respectively. The contributions to the electric field inside and
outside the sphere do not need to have the same l dependence
since continuity of Dr for each mode is satisfied for the
eigenvalue ε1l but not for ε1.

We then calculated |Er,l(r)(s − sl)| for z0 = 2a. The most
dominant modes of the electric field at r = a−ẑ and r = a+ẑ
and at the point charge location r = 2aẑ were found to be
l = 2, 1, and 1, respectively.

Then, for a point charge located at r0 = 1.15aẑ we
calculated |Er,l(r)(s − sl)| at both r = a−ẑ and r = a+ẑ and at
the point charge location r = 1.15aẑ, and the most dominant
modes were found to be l = 8, 7, and 3, respectively (see
Fig. 3). Thus, as the point charge approaches the sphere
interface the most dominant modes are of higher order,
including for a measurement at the point charge location. These
calculations necessitated 50 modes in the expansion. Here we
were interested to excite high-order modes and compromise on
intensity, which is high anyway. We therefore chose s = 0.487,
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FIG. 3. Plot of |Er,l(r)(s − sl)| at r = aẑ inside and outside the
sphere and at r = z0ẑ as a function of l for ε2 = 1, a point charge
located at z0 = 1.15a, and a = 30 nm.
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FIG. 4. Plot of |E|2 for a point charge at z0 = 1.15a, a = 30 nm,
s = 0.487, ε2 = 1, and ε1 = −1.0534.

which corresponds to ε1 = −1.0534 and is in between the
sl=19 = 0.4872 and sl=18 = 0.4865 resonances. In Fig. 4 we
present the electric-field intensity. It can be seen that the field
intensity is greatly enhanced. In addition, the field is highly
localized at θ = π with exp(−1/2) of the maximal intensity
at �2 nm from the maximum.

We were then interested in considering a system that is
close the l = 1 resonance. The electric field of the l = 1 mode
extends far from the interface and does not vanish at the
origin. A resonance of this mode occurs when the material
parameters satisfy ε2 ≈ −ε1/2 and with small and positive
Im(ε1) and Im(ε2) we can approach this resonance. Note that a
resonance occurs when s = sl and the effect of approaching the
resonance can be computed by calculating s2

l /(s − sl) (see the
discussion in Sec. II). We chose ε1 = −3.38 + 0.192i (silver
at 380 nm) and ε2 = 1.69 + 0.08i and placed a point charge at
r0 = 2aẑ. In Fig. 5 we present |E|2 in space. It can be seen that
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FIG. 5. Plot of |E|2 for a point charge at z0 = 2a, a = 30 nm,
s = 1/3, ε2 = 1.69 + 0.08i, and ε1 = −3.38 + 0.192i.
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FIG. 6. Plot of |E|2 for a point charge at z0 = 3.5a, a = 30 nm,
s = 0.3, ε2 = 1, and ε1 = −2.33.

there is a strong electric field inside the sphere even though
it is a conductor. Interestingly, water permittivity at 380 nm
is ε2 = 1.797 + 8.5 × 10−9 and a strong electric field inside
and outside the sphere is expected for a silver nanosphere
immersed in water.

Finally, we calculated |E|2 for setups in which s is smaller
or larger than sl of all the dominant modes. In these setups the
low- and high-order modes interfere constructively at θ = 0.
In Fig. 6 we present |E|2 for z0 = 3.5a and s = 0.3 (ε2 = 1
and ε1 = −2.33), which is smaller than all the eigenvalues sl .
It can be seen that the intensity is strong at θ = 0 and that
the electric field extends far from the sphere surface since s is
closer to sl of the low-order modes. In Fig. 7 we present |E|2 for
z0 = 1.5a and s = 0.492 (ε2 = 1 and ε1 = −1.0325), which
is larger than the eigenvalues sl of the dominant modes. The
intensity is again strong at θ = 0 and is spatially concentrated
since s is closer to sl of the high-order modes that are associated
with high spatial frequencies.
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FIG. 7. Plot of |E|2 for a point charge at z0 = 1.5a, a = 30 nm,
s = 0.492, ε2 = 1, and ε1 = −1.0325.

043806-6

46



EIGENSTATE EXPANSION OF THE QUASISTATIC . . . PHYSICAL REVIEW A 96, 043806 (2017)

To verify our results we checked the continuity of the
physical Dr at the interface. In the electric-field expansions
E0 is continuous and all the eigenstates satisfy continuity of
Dr with their ε1l eigenvalue. Thus, none of the terms in the
expansion is expected to satisfy continuity of physical Dr at
the interface. Our calculations showed that the physical Dr

is continuous at the interface for various s values to a high
accuracy.

The calculations were performed using a grid of 70 × 70
on the y and z axes. In our calculations of the potential and the
electric field in all space, the running times on a single core
were ∼2, 3, and 8 s for z0 = 2a, 1.5a, and 1.15a, respectively,
which can be reduced by an order of magnitude with code
optimization in MATLAB.

V. DISCUSSION

We presented an analytic expansion of the potential and
the electric field for a setup of an ε1 sphere embedded in an
ε2 host medium, where the permittivity values of the sphere
and the host medium can take any value. For a point charge
on the z axis at z0 the expansion only includes the m = 0
terms and involves up to 20 terms when z0 � 1.5a. For a given
charge location and measurement point a dominant mode can
be readily identified and one can select a sphere permittivity
value that is close to the mode resonance in order to obtain a
significant enhancement of the electric field.

We placed a point charge at z0 = 1.5a, 1.15a, 2a, and 3.5a

and chose permittivity values that are close to a resonance.
We observed very high enhancement of the electric field.
Interestingly, a significant electric field can exist inside the
sphere even if it is a conductor, when ε1/ε2 is close to (ε1/ε2)l
of a dominant mode. The contribution of the high-order modes
becomes non-negligible as the point charge approaches the
sphere surface. The low-order modes decay more slowly
and generate an electric field away from the surface. Very
high resolution is obtained when a high-order mode is
excited since high-order modes are associated with high

spatial frequencies. When s ≈ (sl + sl+1)/2 the dominant l and
l + 1 modes interfere constructively at θ = π . When ε1 �
−2ε2, the radial field component of all the modes at θ = 0
interfere constructively and generate a strong signal dominated
by the low-order modes that extend far from the sphere surface.
Similarly, when ε1 � −ε2 the radial field component of all the
modes at θ = 0 interfere constructively and a strong signal
dominated by the high-order modes that are associated with
high spatial frequencies is generated.

We showed that the spectral information at the sphere
surface can be utilized to calculate the point charge location
without knowing its magnitude. In addition, when the system
is close to a resonance the high-order modes of the electric
field can be retrieved. These may have relevance for near-field
imaging of objects that are not at the surface. To assist in
balancing the smaller magnitudes of evanescent waves from
distant sources, the magnitude of the light sources can be larger
for larger r , which can be achieved by back illumination. Gain
can both enhance the incoming field and enable s that is closer
to the sl resonances that are real. Another possible mechanism
to enable detection of high-order modes in the expansion of
the electric field of a point charge that is not very close to the
surface is to mediate them through resonant particles inside the
medium that enhance them, similarly to the isolated sphere.
Since we can calculate the point charge location for a single
point charge, selectively exciting local points that radiate at
different times may enable one to retrieve their locations too
[21,22]. A similar analysis can be formulated for a setup of
a flat slab in a host medium [14] where the spectrum of the
eigenvalues is continuous.

Potential applications are enhancement of spontaneous
emission of a molecule by an antenna [18], where the point
charge and the sphere can model the molecule and the antenna,
respectively, sensing, modeling a tip in proximity to a metallic
nanosphere, near-field imaging, and Raman spectroscopy.
Finally, since the expansion employs a small number of terms
for a single point charge source, calculating the potential and
the electric field in all space is very fast.
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3 Discussion

The PhD thesis consists of four projects. In the �rst project, we expanded the
quasistatic electric �eld for a setup of a slab in a host medium and a point
source using the structure eigenstates. In this expansion the permittivities of
the two constituents ε1 and ε2 can take any complex values. We analyzed
Veselago lens imaging for permittivity values satisfying ε1 ≈ −ε2 and revealed
that the optimal imaging is at the interface between the slab and the host
medium. In the second project we expanded the electrodynamic �eld for the
same structure with an oscillating dipole source. In this project the treatment
of volume current sources was introduced to the eigenpermittivity formalism. In
the third project, based on the relation between phased arrays and plane waves,
we introduced the spherical analog of a phased array, which generates a vector
spherical harmonic, and showed that it can be used to generate a focal spot
eight times smaller in volume compared with the one generated by conventional
lenses. Our fourth project was an eigenstate expansion of the quasistatic �eld
for a spherical inclusion structure and a point charge source. In this project the
treatment of charge density was introduced to the eigenpermittivity formalism.
It was shown that a strong electric �eld can exist inside a sphere even though it
is a conductor. In addition, a procedure to calculate the point charge location
without knowing the charge magnitude was developed.

Our �rst result that the optimal imaging for Veselago-lens imaging in the
near �eld is at the interface between the slab and the medium was surprising
[16, 17]. Veselago lens imaging in the near �eld had been analyzed previously
using geometric optics, with image locations derived accordingly. It was thus
believed that since evanescent waves, which carry high spatial frequencies, are
employed in the imaging, the imaging is both subwavelength and three dimen-
sional (3D). We showed that this imaging can in fact have subwavelength reso-
lution, but that the images are formed at the interface between the slab and the
medium, rendering this imaging technique 2D, similarly to near �eld imaging.
Evanescent waves, do not propagate according to geometric optics and do not
accumulate phase in their propagation direction. They thus form an image in
every plane perpendicular to the direction in which they decay, with a better
resolution as higher spatial frequency modes are involved. Therefore, dominant
evanescent modes result in enhanced resolution and 2D imaging while dominant
propagating modes result in di�raction-limited resolution and 3D imaging. The
slab setup with ε1 ≈ −ε2 or n1 ≈ −n2 is interesting in near �eld imaging since
the slab ampli�es evanescent waves and when the object is close to the slab
surface very high spatial resolutions can be obtained, even exceeding the con-
ventional near-�eld imaging resolutions. A procedure to perform 3D near-�eld
imaging of a single source with an unknown magnitude was also developed [18].

The second result is the incorporation of charge and current volume sources
into the eigenpermittivity formalism [17, 18]. Since a current can model a
molecule and medium polarization, this extension is very important and en-
ables analyzing many physical phenomena such as Purcell e�ect and nonlinear
optics. Using the eigenpermittivity formalism analytic expansions of the elec-
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tric �eld for a slab, sphere, and cylindrical inclusion in a host medium can be
derived. Incorporating current sources thus results in analytic calculations for
these setups with localized or volume sources. The �elds of a localized source
in the electrodynamic regime and volume sources in two-constituent media had
not been previously derived analytically and this result can enable us to gain
new insights in physical phenomena such as enhancement of spontaneous emis-
sion close to an antenna and nonlinear response of an inclusion. This result
has already been applied in the calculation of the �eld generated by a current
source for an inclusion with a general geometry using numerical COMSOL im-
plementation [15]. These developments position the eigenpermittivity formalism
as a state-of-the-art method for performing such calculations. This result can
also be applied in setups of multiple inclusions, which are important for �eld
localization [23] and designing metamaterials.

The third result is the spherical analog of a phased array, which generates a
vector spherical harmonic �eld in space [24]. This points to a general relation - a
current source modulated by a uniform medium eigenstate in a plane generates
the same eigenstate in all space. The l = 1 TM vector spherical harmonics have
a small focal spot at the origin and can be used in 3D imaging as the illumination
source. Since the focal spot is small it can enable to image with better spatial
resolution compared to conventional lenses. Moreover, since a VSH distribution
is a prescription for the current distribution in a spherical volume or a spherical
layer volume, which generates the VSH �eld in space, sources which generate
VSH �elds may be engineered. Interestingly, a source that consists of a complete
set of incoherent TE multipoles with the order l results in isotropic radiation and
such radiation pattern may be designed. In addition, since a spherical layer or a
sphere polarized according to a VSH generates a VSH �eld in space, it explains
the coupling between such structures - they transfer the VSH �eld components
back and fourth.

The fourth result is that when a source is in proximity to a spherical conduc-
tor embedded in a host medium, the electric �eld inside the conductor can be
strongly enhanced even though it is in the quasistatic regime [18]. We showed
that this e�ect indeed occurs for realistic materials at high-visible frequencies
[18]. This is counterintuitive since in the static treatment the �eld is totally
screened by the surface charges, which had enough time to equilibrate. While it
is known that an electric �eld can penetrate inside conductors and that it can
be enhanced at the metal surface at some frequencies, here the �eld is strongly
enhanced throughout all the conductor volume, which is the opposite of the �eld
screening e�ect usually encountered in metals.

The �fth result is that using the spectral content at the sphere or slab surface
we can retrieve the point charge location without knowing the charge magnitude
[18]. This may form a basis for 3D near �eld imaging of dilute emitters, whose
emission magnitude is unknown. Clearly, near �eld imaging has the advantage of
high spatial resolution, which in combinations with detecting the object distance
can be attractive for imaging small objects. The requirement for small objects
arises from the fact that the �eld can only be retrieved from objects at a distance
of the order of the slab or sphere size.
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In summary, the PhD research extended the eigenpermittivity formalism to
treat charge and current volume sources, which enables advantageous numer-
ical calculations and new analytic calculations of the electric �eld in various
two-constituent setups. Several new understandings in Veselago lens and near
�eld imaging have been developed. A new class of current sources has been
pointed out, together with implications for far-�eld imaging and coupling be-
tween spherical current sources, spherical layers, and spheres. Finally, it has
been shown that at the center of a metal sphere there can sometimes be a very
strong electric �eld.
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 תקציר
 

. ללא מקורשדות או פוטנציאלים שיכולים להתקיים במערכת  ןפונקציות עצמיות של משוואות מקסוול ה

פונקציות אלו יכולות להיות מוגדרות עבור תווך הומוגני ותווך המורכב משני חומרים, שבהם הפרמטר 

כאשר מתקרבים עם פרמטר  שמאפשר את קיומן הוא הערך העצמי. החשיבות של פונקציות אלו כפולה:

הנוצר  החשמלי השדה של הסלשמש לפרי פיזיקלי לערך העצמי שלהן תגובת המערכת חזקה והן יכולות

בפונקציות אלו גם בפיסיקה קלאסית וגם בפיסיקה קוונטית  ניתן להשתמשכתוצאה מהפעלת שדה חיצוני. 

 כאשר המקורות והאינטראקציות מטופלים באופן קוונטי.

 

 בתגובה לשדה חיצוני בתווך המורכב משני חומרים הוצע לפני זמן רב לפרוס את השדה החשמלי     

את הפורמליזם לטיפול מטרות הדוקטורט הן להכליל  .בעזרת פונקציות עצמיות של משוואות מקסוול

 במקורות חיצוניים ובהתבסס על הערכים העצמיים לנתח תופעות פיזיקליות כגון דימות ואפקט פרסל.

 

במהלך הדוקטורט, השדה החשמלי של מקור במערכת של לוחית בתוך תווך הומוגני נפרס בעזרת     

ואות מקסוול בקירוב הקווזיסטטי ושל משוואות מקסוול המלאות. בעזרת הפונקציות העצמיות של משו

לעדשה השטוחה אינדקס שבירה בסימן הפוך לזה של  בדימות זה .דימות עדשת ווסלגומערכת זו נותח 

הדימות האופטימלי שמיקום  לרזולוציות מעבר לגבול הדיפרקציה. הוראה תווך ההומוגני וניתן להגיעה

הוא בתווך ההומוגני בצמוד לעדשה. בנוסף, השדה של מקור במערכת של כדור בתווך הומוגני נפרס 

מערכת זו יכולה לשמש לניתוח  מקסוול בקירוב הקווזיסטטי. בעזרת  הפונקציות העצמיות של משוואות

תופעות פיזיקליות כגון הגברה של פליטה ספונטנית של מולקולה בסמוך לאנטנה, דימות שדה קרוב 

וחדירה של שדות חשמליים לתוך מוליכים. הוראה ששדה של מקור נקודתי יכול להיות מוגבר בתוך כל 

 קירוב הקווזיסטטי.ב שנמצאים רכי דיאלקטריים מציאותיים למרותהתווך של הכדור המוליך עבור ע

של פונקציות תכונות הבנת  בעקבותהוצג  (phased array) לבסוף, האנלוג הכדורי של מערך מופע

עצמיות בתווך הומוגני. מערך מופע כדורי יכול ליצור אור ממוקד בעל נפח קטן פי שמונה מזה המושג 

 קרינה איזוטרופית.יכול ליצור  כדוריים שילוב של מערכי מופעבעדשות קונבנציונליות ו
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