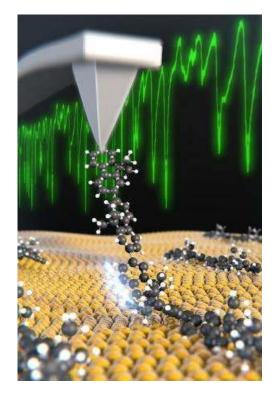
Ideal (and other) Polymers near Attractive and Repulsive Surfaces

Yacov Kantor (TAU) and Mehran Kardar (MIT)



with:

Yosi Hammer (TAU)

Mohammad F. Maghrebi, NIST

Nir Alfasi, Technion

The 62nd Annual Meeting of Israel Physical Society Tel Aviv University, December 25, 2016

Universal properties of a single polymer in "free space"

γ

 $\frac{43}{32}$

1

 $\frac{8}{7}$

V

 $\frac{3}{4}$

 $\frac{1}{2}$

0.59 1.16

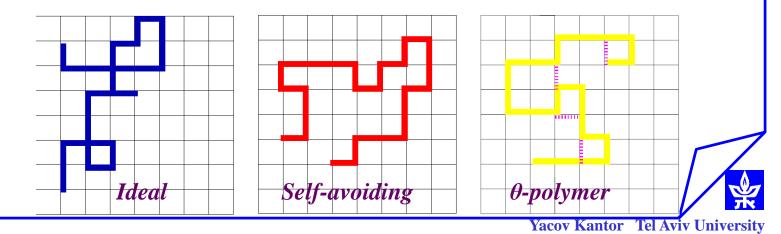
 $\begin{array}{rcl} R &=& a N^{\nu} \\ \mathcal{N}, \ \mathcal{Z} &=& b z^{N} N^{\gamma-1} \end{array}$

R

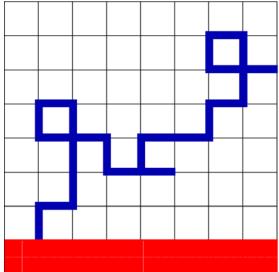
self - avoiding polymer in d = 2self - avoiding polymer in d = 3ideal polymer in any d θ - polymer in d = 2

Ideal polymer \leftrightarrow Random walk (RW)Polymer in good solvent \leftrightarrow Self-avoiding walk (SAW) θ -polymer \leftrightarrow Self-avoiding walk with a tunednearest neighbor attraction

 $F = -k_B T \ln \mathcal{Z} = -k_B T N \ln z - (\gamma - 1)k_B T \ln N + \dots$



Universal properties of a single polymer near a repulsive plane

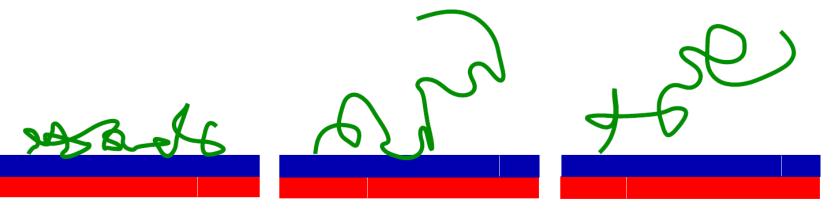


 $\mathcal{N}_{1}, \mathcal{Z}_{1} = bz^{N}N^{\gamma_{1}-1}$ $F_{1} = -k_{B}T\ln\mathcal{Z}_{1} = -k_{B}TN\ln z - (\gamma_{1}-1)k_{B}T\ln N + \dots$ $F_{1}-F = (\gamma - \gamma_{1})k_{B}T\ln N$

$\gamma_1 < \gamma$, i.e. the wall repels	$\gamma_1 \ rac{61}{64} \ 0.70$	$\gamma \\ \frac{43}{32} \\ 1.16$	self - avoiding polymer in $d = 2$ self - avoiding polymer in $d = 3$
E.Eisenriegler, K.Kremer, K.Binder, J.Chem.Phys. 77,6296 (82)	$\frac{1}{2}$	1	ideal polymer in any d
Also see, K. Binder in Phase Transitions and Critical Phenomena (83)	0.53	$\frac{8}{7}$	θ - polymer in $d = 2$
K. De'Bell and T. Lookman, RPM 65, 87 (93) E.Eisenriegler, Polymers near Surfaces (93)			*

Yacov Kantor Tel Aviv University

Polymer near an attractive surface. Adsorption transition.



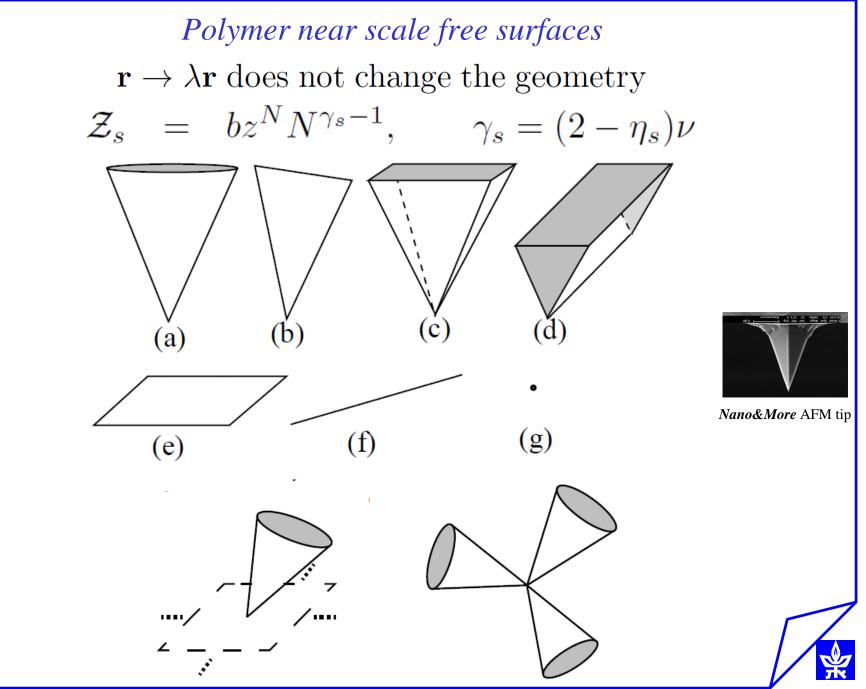
T>*T_c* repulsive regime $T < T_c$ adsorbed $T=T_c$ transition

> P.G. de Gennes, Rep.Prog.Phys., 32, 187 (69)

$$\begin{aligned} \mathcal{Z}_a &= b z^N N^{\gamma_a - 1} \\ F_a &= -k_B T \ln \mathcal{Z}_a = -k_B T N \ln z - (\gamma_a - 1) k_B T \ln N + \dots \\ F_a - F &= (\gamma - \gamma_a) k_B T \ln N \end{aligned}$$

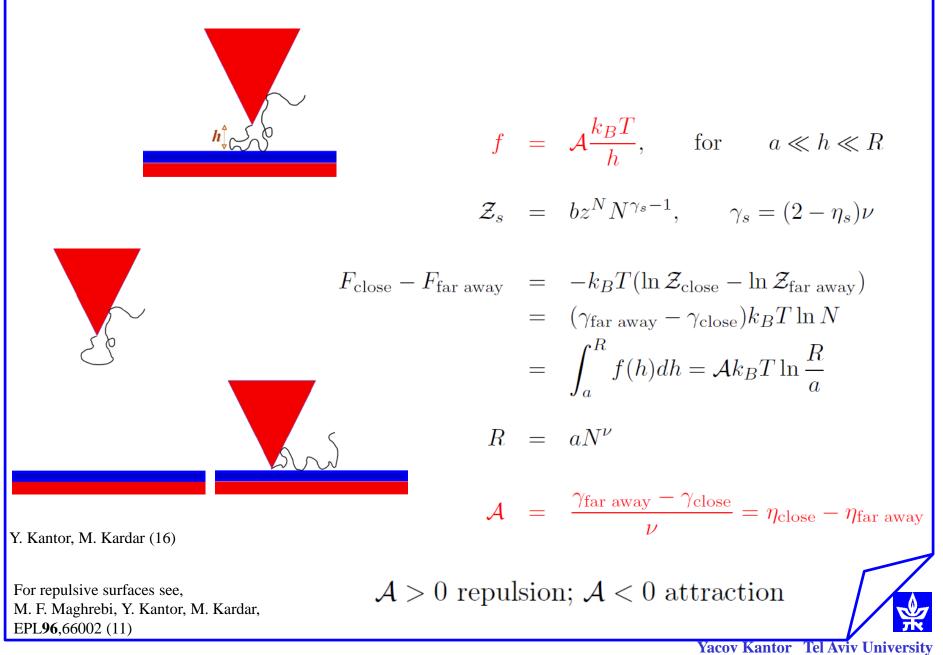
 $\gamma_{\alpha} \geq \gamma$, i.e. the wall attracts

See, E.J. Jense van Rensburg, The Stat.Mech. of Interacting Walks...

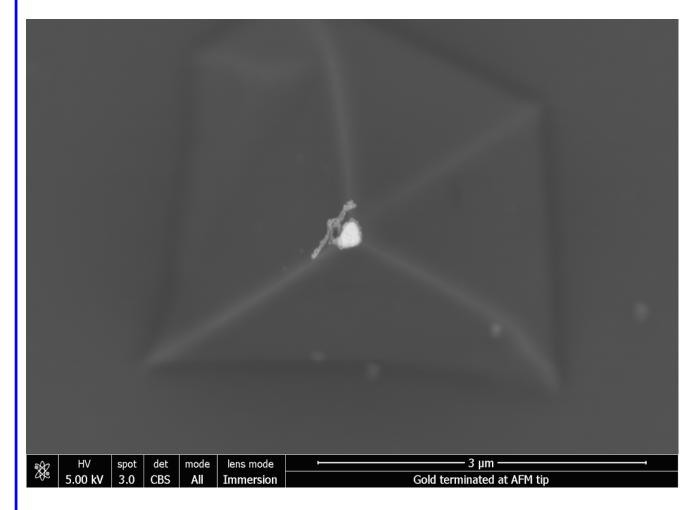


Yacov Kantor Tel Aviv University

Constant in a polymer mediated force



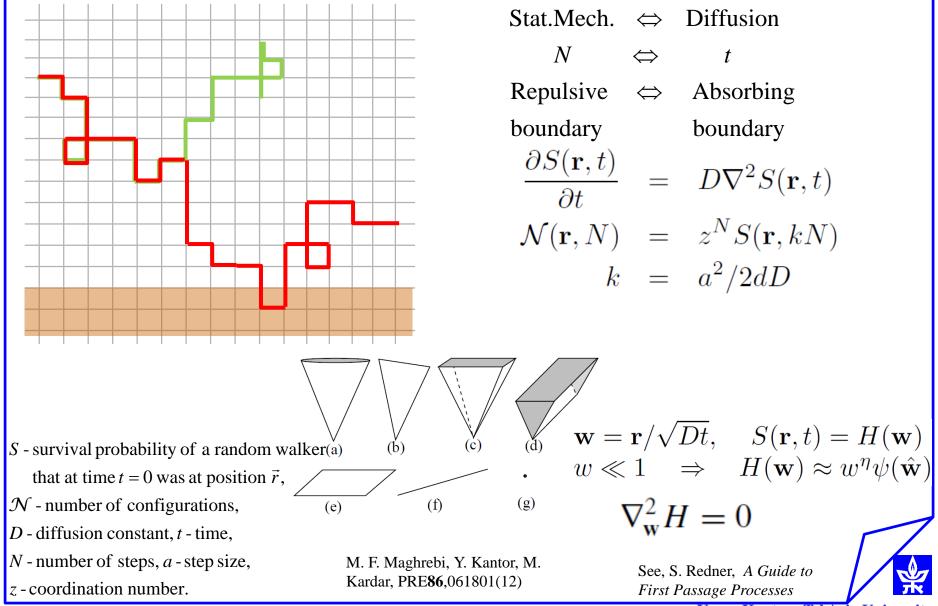
Experiment: polymers in good solvent attached to pyramidal tip



U. Mohideen, UCR (2015-16)

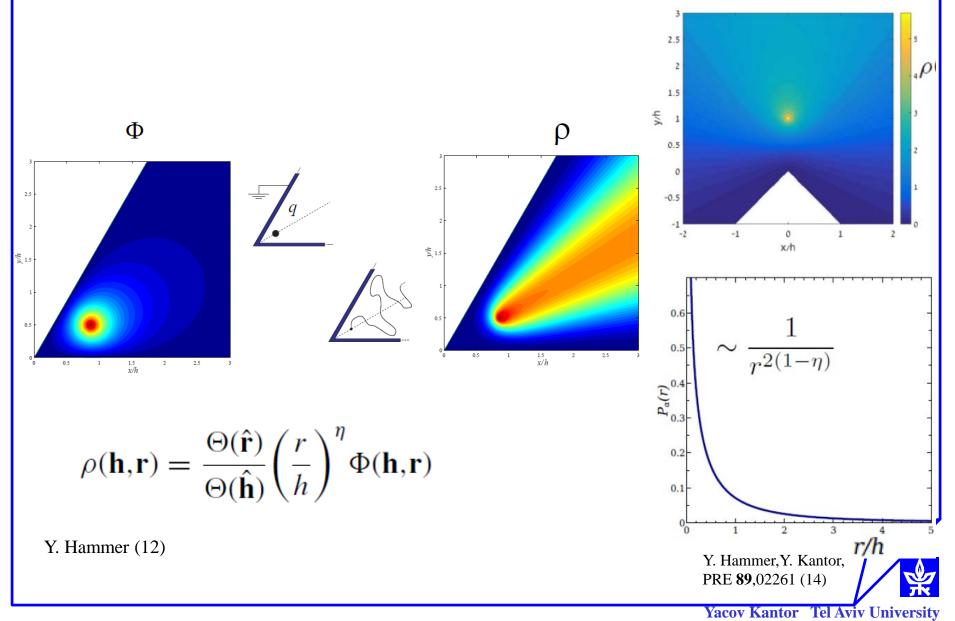
Parameters: AFM tip with polymers Silicon pyramid, gold patch R_g=1-7nm MW=350-40,000 (N=8-900) Surface roughness 2-6nm # polymers=4000-5000

Ideal polymers near repulsive surface as a diffusion problem

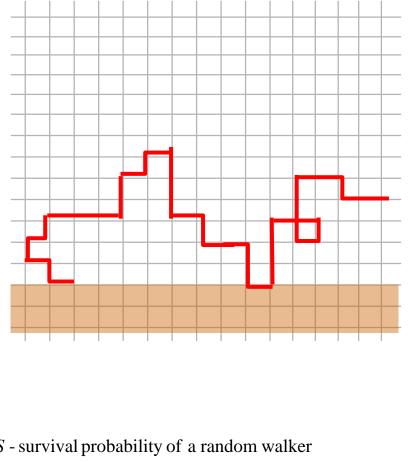


Yacov Kantor Tel Aviv University

Electrostatic potential and monomer density inside a (two-dimensional) wedge



Ideal polymers near critical attractive surface as a diffusion problem



Stat.Mech.	\Leftrightarrow	Diffusion	
N	\Leftrightarrow	t	
Adsorbing	\Leftrightarrow	Reflecting	
boundary	boundary		
$\frac{\partial S(\mathbf{r},t)}{\partial t}$	=	$D\nabla^2 S({\bf r},t)$	
$\mathcal{Z}(\mathbf{r},N)$	=	$z^N S({f r},kN)$	
k	=	$a^2/2dD$	
boundary $\frac{\partial S(\mathbf{r},t)}{\partial t}$ $\mathcal{Z}(\mathbf{r},N)$	=	boundary $D \nabla^2 S(\mathbf{r},t)$ $z^N S(\mathbf{r},kN)$	

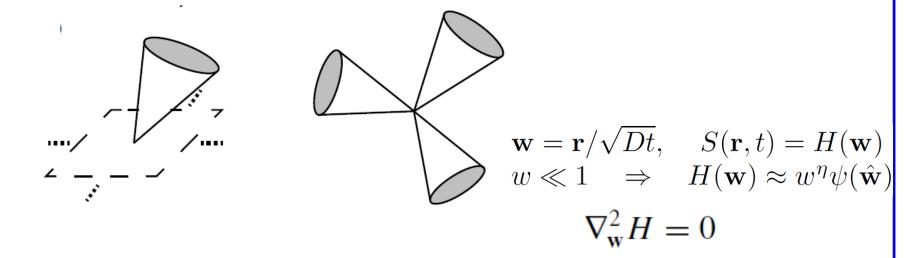
 $\begin{aligned} \mathbf{w} &= \mathbf{r}/\sqrt{Dt}, \quad S(\mathbf{r},t) = H(\mathbf{w}) \\ w \ll 1 \quad \Rightarrow \quad H(\mathbf{w}) \approx w^{\eta} \psi(\hat{\mathbf{w}}) \end{aligned}$

 $\nabla^2_{\mathbf{w}} H = 0$

- *S* survival probability of a random walker
 - that at time t = 0 was at position \vec{r} ,
- \mathcal{N} number of configurations,
- D diffusion constant, t time,
- N number of steps, a step size,
- *z* coordination number.

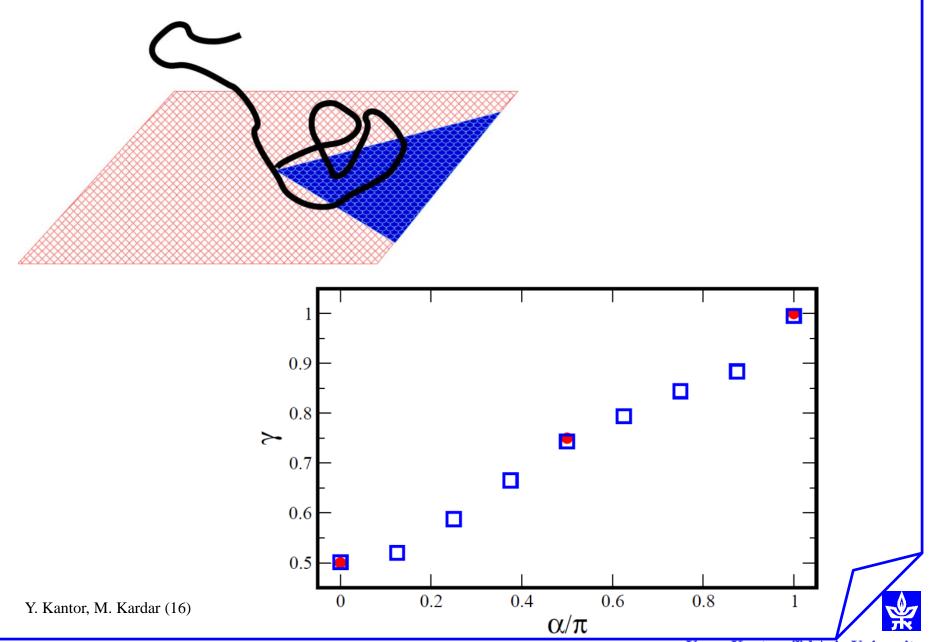
R.J. Rubin, J.Chem.Phys. 33, 2392 (65); AIP Conf. Proc. 109, 73 (84)

Ideal-polymer-mediated force constant between critical attractive surfaces always vanishes



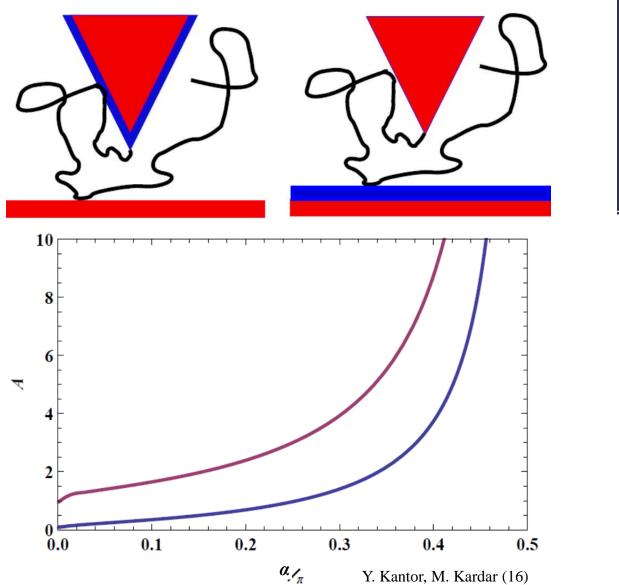
The equation for *H* with vanishing normal derivative is solved by *H*=const., leading to $\eta=0$ (or $\gamma=1$) and $\mathcal{A}=0$.

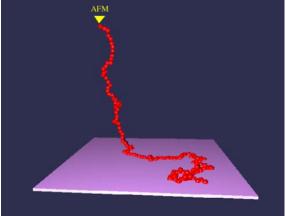
Repulsive plane decorated by a critical attractive sector



Yacov Kantor Tel Aviv University

Ideal-polymer-mediated force constant between attractive and repulsive surfaces





S. Bhattacharya, V.G. Rostiashvili, A. Milchev, T.A. Vilgis:, Eur. Phys. J. E**29**, 28 (09)

۲۲ Yacov Kantor Tel Aviv University

Conclusions & prospects

Probe shapes influence force constants of polymers and polymer-mediated interactions between surfaces

•For scale invariant surfaces prefactor of the force law can be calculated exactly if the surfaces are repulsive or at adsorption transition point.

By decorating surfaces it is possible to change exponent γ and, consequently, the force constant.

•For ideal polymers the force constants are non-negative but for self-avoiding polymers they can be both positive and negative.

By a suitable selection of geometries and surface coverage it is possible to get a vanishing force constant.

•Away from the exact critical point – well-defined crossovers appear.

