Assume a two dimensional lattice. Define $Z(N, i)$ to be the following partition function:

$$
Z(N, i)=\sum_{p \in P(0 \rightarrow i)} \alpha^{n_{0}(p)}
$$

The sum is over all paths $P(0 \rightarrow i)$ starting at the origin and ending at a distance i from the surface; $\alpha=\exp (V / k T)$, and $n_{0}(p)$ is the number of times a path p touches the surface. The following recursion relation holds:

$$
Z(N+1, i)= \begin{cases}2 \alpha Z(N, 0)+\alpha Z(N, 1) & , \quad i=0 \\ Z(N, i-1)+2 Z(N, i)+Z(N, i+1) & , \quad i>0\end{cases}
$$

Hence $p(N, i)$, the propability for the polymer end-point to be at distance i from the surface, obeys:

$$
\lambda_{N+1} p(N+1, i)= \begin{cases}2 \alpha p(N, 0)+\alpha p(N, 1) & , \quad i=0 \tag{1}\\ p(N, i-1)+2 p(N, i)+p(N, i+1) & , \quad i>0\end{cases}
$$

where

$$
\lambda_{N+1}=\frac{\sum_{i=0}^{\infty} Z(N+1, i)}{\sum_{i=0}^{\infty} Z(N, i)}
$$

Let us assume that $p(N, i)$ approaches a stationary limit, $p(i)$, as N goes to infinity, and find this limit; λ_{N} will also approach a limiting value, which we denote by λ. Using equation (1)

$$
\begin{align*}
\lambda p(0) & =2 \alpha p(0)+\alpha p(1) \tag{2}\\
\lambda p(i) & =p(i-1)+2 p(i)+p(i+1), \quad i>0 \tag{3}
\end{align*}
$$

The solution of Eq. (3) is

$$
\begin{equation*}
p(i)=p_{0} a^{i} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\frac{1}{a}+2+a \tag{5}
\end{equation*}
$$

Only one of the solutions of Eq. (5) is valid, the one obeying $|a|<1$. Eq. (4) must hold at all distances from the wall, including $i=0$. A boundary condition is found from (2)

$$
\frac{p(1)}{p(0)}=\frac{\lambda-2 \alpha}{\alpha},
$$

This ratio must also be equal to a in light of (4). This equality, together with Eq. (5), yields a quadratic equation for a, whose roots are

$$
a=-1 \pm \sqrt{\frac{\alpha}{\alpha-1}}
$$

The negative root is not valid because $p(i)$ cannot be negative. At very small temperature $(\alpha \rightarrow \infty) a$ approaces zero, whereas at large temperature ($\alpha \rightarrow$ 1) a diverges. We recall now that a must be smaller than one, otherwise the distribution (4) is not normalizable, yielding a requirement that

$$
\alpha>\frac{4}{3}
$$

and a transition temperature

$$
\frac{V}{k T}=\ln \frac{4}{3} \simeq 0.29
$$

Above this temperature $p(N, i) \rightarrow 0$ as $N \rightarrow \infty$.
For a cubic lattice of dimension d a similar derivation yields

$$
a=-(d-1)+\sqrt{(d-1)^{2}+\frac{1}{\alpha-1}}
$$

and the condition for localization is

$$
\alpha>\frac{2 d}{2 d-1}
$$

