
Assume a two dimensional lattice. Define Z(N, i) to be the following
partition function:

Z(N, i) =
∑

p∈P (0→i)

αn0(p)

The sum is over all paths P (0 → i) starting at the origin and ending at
a distance i from the surface; α = exp(V/kT ), and n0(p) is the number of
times a path p touches the surface. The following recursion relation holds:

Z(N + 1, i) =

{

2αZ(N, 0) + αZ(N, 1) , i = 0
Z(N, i − 1) + 2Z(N, i) + Z(N, i + 1) , i > 0

Hence p(N, i), the propability for the polymer end-point to be at distance i
from the surface, obeys:

λN+1p(N +1, i) =

{

2αp(N, 0) + αp(N, 1) , i = 0
p(N, i − 1) + 2p(N, i) + p(N, i + 1) , i > 0

, (1)

where

λN+1 =

∑

∞

i=0 Z(N + 1, i)
∑

∞

i=0 Z(N, i)

Let us assume that p(N, i) approaches a stationary limit, p(i), as N goes to
infinity, and find this limit; λN will also approach a limiting value, which
we denote by λ. Using equation (1)

λp(0) = 2αp(0) + αp(1) (2)

λp(i) = p(i − 1) + 2p(i) + p(i + 1) , i > 0 (3)

The solution of Eq. (3) is
p(i) = p0a

i (4)

where

λ =
1

a
+ 2 + a (5)

Only one of the solutions of Eq. (5) is valid, the one obeying |a| < 1. Eq. (4)
must hold at all distances from the wall, including i = 0. A boundary
condition is found from (2)

p(1)

p(0)
=

λ − 2α

α
,

1



This ratio must also be equal to a in light of (4). This equality, together
with Eq. (5), yields a quadratic equation for a, whose roots are

a = −1 ±

√

α

α − 1

The negative root is not valid because p(i) cannot be negative. At very small
temperature (α → ∞) a approaces zero, whereas at large temperature (α →
1) a diverges. We recall now that a must be smaller than one, otherwise the
distribution (4) is not normalizable, yielding a requirement that

α >
4

3

and a transition temperature

V

kT
= ln

4

3
' 0.29

Above this temperature p(N, i) → 0 as N → ∞.
For a cubic lattice of dimension d a similar derivation yields

a = −(d − 1) +

√

(d − 1)2 +
1

α − 1

and the condition for localization is

α >
2d

2d − 1

2


