On variations of the action

Consider a harmonic oscillator,

$$
\begin{equation*}
L=\frac{1}{2} \dot{x}^{2}-\frac{1}{2} \omega^{2} x^{2} . \tag{1}
\end{equation*}
$$

Consider paths with $x(0)=x(T)=0$ where $T=2 \pi / \omega$ is the period of the oscillator,

$$
\begin{equation*}
S=\int_{0}^{T} L(x, \dot{x}) d t \tag{2}
\end{equation*}
$$

Stationary paths are determined by

$$
\begin{equation*}
\frac{\delta S}{\delta x(t)}=-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}+\frac{\partial L}{\partial x}=0 \tag{3}
\end{equation*}
$$

Inserting the Lagrangian, we find

$$
\begin{equation*}
\frac{\delta S}{\delta x(t)}=-\frac{d}{d t} \dot{x}-\omega^{2} x \tag{4}
\end{equation*}
$$

so the equation of motion Eq.(3) is

$$
\begin{equation*}
\ddot{x}+\omega^{2} x=0, \tag{5}
\end{equation*}
$$

which is solved by

$$
\begin{equation*}
x(t)=A \sin \omega t \tag{6}
\end{equation*}
$$

for any value of A. This is a stationary point of the action and

$$
\begin{equation*}
L=\frac{1}{2} A^{2} \omega^{2} \cos 2 \omega t \tag{7}
\end{equation*}
$$

giving

$$
\begin{equation*}
S=\int_{0}^{T} L d t=0 \tag{8}
\end{equation*}
$$

Now to see whether these solutions are minima or maxima or what, we return to Eq.(4) and differentiate again,

$$
\begin{align*}
\frac{\delta^{2} S}{\delta x(t) \delta x\left(t^{\prime}\right)} & =\frac{\delta}{\delta x\left(t^{\prime}\right)}\left[-\ddot{x}(t)-\omega^{2} x(t)\right] \tag{9}\\
& =-\delta^{\prime \prime}\left(t-t^{\prime}\right)-\omega^{2} \delta\left(t-t^{\prime}\right) \tag{10}
\end{align*}
$$

This matrix has both positive and negative eigenvalues, which means that δS can be either positive or negative, depending on the form of the variation $\delta x(t)$ around the solution (6). To be explicit,
$S[x+\delta x]=S[x]+\int \frac{\delta S}{\delta x(t)} \delta x(t) d t+\frac{1}{2} \iint \frac{\delta^{2} S}{\delta x(t) \delta x\left(t^{\prime}\right)} \delta x(t) \delta x\left(t^{\prime}\right) d t d t^{\prime}+\cdots$.

The first term $S[x]$ is zero as above, and the first variation vanishes by the Lagrange equation. When we use Eq. (10), the second variation is seen to be

$$
\begin{equation*}
\frac{1}{2} \int d t \delta x(t)\left[-\delta \ddot{x}(t)-\omega^{2} \delta x(t)\right] \tag{12}
\end{equation*}
$$

Since $\delta x(t)$ must satisfy the boundary conditions, we can consider particular cases of the form $\delta x(t)=\epsilon \sin \frac{1}{2} n \omega t$. [These are eigenfunctions of the differential operator (10).] The second variation is then

$$
\begin{equation*}
\frac{1}{2}\left(\frac{1}{4} n^{2}-1\right) \omega^{2} \epsilon^{2} \int d t[\delta x(t)]^{2} \tag{13}
\end{equation*}
$$

This is negative for $n=1$; it is zero for $n=2$ (because it is a rescaling of the classical solution, and the action is independent of A); it is positive for $n>2$.

Thus the classical solution (6) is a saddle point. Note that the reason that the $n=1$ variation is unstable (i.e., a maximum at $\delta x=0$) is that we chose the variable T to be an entire period of the oscillator. If we had chosen it to be a half-period, then the classical solution would have been stable against all variations except that of rescaling A. If we choose T to be some other integer multiple of a half-period, say $\pi m / \omega$, then all variations with $n<m$ would represent instabilities.
B. Svetitsky

July, 2002
School of Physics and Astronomy
Tel Aviv University
69978 Tel Aviv, Israel
http://julian.tau.ac.il/ ${ }^{\sim}$ bqs

