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Abstract: We examine the statistics of knots with numerical simulations of a simplified model of polyethylene.
We can simulate polymers of up to 1000 monomers (each representing roughly three CH, groups), at a
range of temperatures spanning coil (good solvent) and globule (bad solvent) phases. We quantify the
abundance of knots in the globule phase and in confined polymers, and their rarity in the swollen phase.
Since our polymers are open, we consider (and test) various operational definitions for knots, which are
rigorously defined only for closed chains. We also associate a typical size with individual knots, which are
found to be small (tight and localized) in the swollen phase but large (loose and spread out) in the dense
phases.

Introduction On the other hand, knots formed by random cyclization of DNA
in a good solvent are ratél?Likewise, there are only few knots
in globular protein structure'$:4

Does the presence (or the absence) of knots in a polymer
(e.g., DNA or protein) provide any clues to its function or
origin? The first step toward answering such a question is to
compare with the expected number (and variety) of knots in
the polymer due to pure chance. Existing numerical results are
not entirely satisfactory for such comparison because they are
mostly based on somewhat abstract polymer models. The first
simulations of knotted states can be traced back to the ground-
breaking works of Vologodskii et al. in 197416 After some
initial interest in random polygons, many groups focused on
self-avoiding polymers in the swollen (coil) phade?? There
are relatively few simulations of dense (globular) polymers,
mainly involving simplified lattice models such as Hamiltonian
walks?3-25 or self-avoiding polygons in prism and slab geom-

As a topological property of closed strings, knots are primarily
a topic of mathematical inquiry, yet they have long fascinated
chemists and physicists. Indeed, the classification of knots starts
with the work of scientists such as Thomp$oand Tait?
motivated by the ideal of “vortex atoms”. Polymers provide a
practical testing ground for entanglements, and considerations
of their configurations in the early 1960s led to the Frisch
Wasserman Delbrick conjecturé;* that sufficiently long poly-
mers must be knotted. Unfortunately, the rigorous proof of this
conjecture for lattice polygofR€ does not provide a means to
estimate the typical size at which knots are likely to appear in
a particular polymer. This is a relevant question for biological
systems whose fundamental constituents are long biopolymers:
An early example was provided by the discovery of knots in
single-stranded DNA by Liu et al. in 1976Since then, many
knots were created artificially, e.g., by the action Ef coli
topoisomerase | on circular DNA. In this case, an abundance -
of the enzyme changes the quality of the solvent and provides (&) N80 J-Vazduez, M. THoUew0s, oy pumners: D- Wei Rodrod.
internal constraints which favor the formation of complex kifots.  (10) Liu, L. F.; Davis, J. L.; Calender, Rucleic Acids Res981, 9, 3979~
In the capsid of normal phages (wild type), there is no knot (;1) ?Q%/Ei)e'nkov, V. V.; Cozzarelli, N. R.; Vologodskii, A. \Proc. Natl. Acad.
formation in a strict mathematical sense because one end of _ Sci. U.S.A1993 90, 5307-5311.

(12) Shaw, S. Y.; Wang, J. Gciencel993 260, 533-536.

the linear DNA stays in the loading channel and cannot join (13) Taylor, W. R.Nature200q 406, 916-919.
the other terminus. Complex knots are, however, frequently(

2)
)
4) Taylor, W. R.; Lin, K.Nature 2003 421, 25.

Vologodskii, A. V.; Lukashin, A. V.; Frank-Kamenetskii, M. D.; An-
observed in mutants in which both ends enter the c&}$id. 1) N
)
)
)

shelevichSa. Phys. JETPL974 39, 1059-1063.
(16) Frank-Kamenetskii, M. D.; Lukashin, A. V.; Vologodskii, A. Wature
1975 258, 398-402.

T Department of Physics, Massachusetts Institute of Technology. (17) Koniaris, K.; Muthukumar MPhys. Re. Lett. 1991 66, 2211-2214.
* School of Physics and Astronomy, Tel Aviv University. (18) Koniaris, K.; Muthukumar MJ. Chem. Phys1991, 95, 2873-2881.
(1) Thompson, W. TPhilos. Mag.1867, 34, 15-24. (19) Janse van Rensburg, E. J.; Whittington, SJ.@®hys. A: Math. Gerl99Q
(2) Tait, P. G. InScientific PapersCambridge University Press: Cambridge, 23, 3573-3590.
1898; , Vol. 1, pp 273347. (20) Janse van Rensburg, E. J.; Sumners, D. W.; Wassermann, E.; Whittington,
(3) Frisch, H. L.; Wassermann, . Am. Chem. Sod.961, 83, 3789-3795. S. G.J. Phys. A: Math. Gen1992 25, 6557 6566
(4) Delbrick, M. Proc. Symp. Appl. Mathl962 14, 55—-63. (21) Deguchi, T.; Tsurusaki, K. Inectures at Knots 9685uzuki, S., Ed.; World
(5) Sumners, D. W.; Whittington, S. Q. Phys. A: Math. Gen1988§ 21, Suentlflc Publishers: Singapore 1997; pp-922.
1689-1694. (22) Deguchi, T.; Tsurusaki, KPhys. Re. E1998 55, 6245-6248.
(6) Pippenger, NDiscrete Appl. Math1989 25, 273-278. (23) Mansfield, M. L. Macromoleculei994 27, 5924-5926.
(7) Liu, L. F.; Depew, R. E.; Wang, J. Q. Mol. Biol. 1976 106, 439-452. (24) Lua, R. C.; Moore, N. T.; Grosberg A. ¥ond-mat/0403412004.
(8) Dean, F. B Stasiak, A.; Koller, T.; Cozzarelli, N. R.Biol. Chem1985 (25) Lua, R. C,; Borovmskly, A. L.; Grosberg, A. YPolymer2004 45, 717—
260, 4975-4983. 731.
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etries?® They confirm the expected increase in the probability knots in globule and confined phases are spread out, and the
of finding knots as the polymer becomes more compact, but entangled region grows proportional ltb
are not very suitable for a quantitative comparison with realistic

polymers. _ _
Other studies have focused on mechanical properties of O_ur model for polyet_hylene consists of a sequence of bea.ds n
knotted polymers. It was demonstrated that the presence of acontlnuous three-dimensional spdg4. pair of monomers at separation
y ' . r interact by the truncated and shifted Lennaddnes potential
knot severely weakens the strand and that under tension the

Methods

polymer will break at the entrance to the kid6t2° Knots may o\12 (o\6 12771 .
o . . : = )+ ===, ifr<r,
facilitate nucleation process&sand the dynamics of unknotting Vi) = [(r) (r) 16384] Q)
has also been addressed, both with simulatfoasd experi- 0, else
ments3?

Adjacent beads are connected with FENE (finitely extensible nonlinear

One of the simplest and best studied polymeric systems is ; i
elastic) springs

polyethylene, H-(CH,),—H, for which a wealth of experimental
data is available, including phase diagrams as a function of
temperature, density, interfacial tension, amdit has been
shown that for small n much of these data can be reproduced
by a simplified polymer model dfl interacting beads, each bead The parametersando define the depth and the width of the potential;
corresponding to roughly three Ghgroups, i.e.n ~ 3N.3334 r denotes the distance between two beads, ard 232 o is the
Here, we perform simulations of this model, focusing on the upper F.UtOﬁ of the potent!al. -

. . . Equilibrated configurations are generated by a combination of
propensity for knots as a function &f and as the polymer is

A . slithering snake and local Monte Carlo moves in the compact phases,
cooled from the coil to the globule state. Knots are indeed rare 4pq by pivot and local moves in the swollen ph#st general, the

in the coil phase, with only around one percent of configurations polymer faces a competition between two opposing states. On one hand,
knotted forN = 1000, and common in the globule state it would like to have access to many configurations which favors a
roughly half the configurations are knotted fdr~ 600. We swollen state (Figure 1 left). On the other hand, it would like to
also find that an externally compacted polymer shows ap- minimize its energy by placing many monomers close to the minimum
proximately the same number of knots as in the globule phase.of the combined pair-potential of eqs 1 and 2. This favors a globular

. . . shape (Figure 1 middle). The transition between the two states for a
It is important to emphasize that the above results are obtalnedpolymer of infinite length occurs at the so-call@kpoint. At high

for open polymerswhereas mathematically, knots are only temperatures (which also correspond to good solvent conditions), the
properly defined irclosed loopsindeed, almost all investiga-  free energy is dominated by the entropic contribution. At low
tions of knotted states deal with closed strings, although most temperatures (or in bad solvent conditions) the energetic gain is more
polymers and DNA strands are actually open. One way to important, and a globule is formed. Our simulations of the swollen
overcome this difficulty is to join the ends according to a phase took place &= 1.5Te(= 4.98¢/ks).** The equilibrated globule
particular scheme, for example as suggested in refs 20,2. ByWwas obtained af = 0.5Te(= 1.66¢/ks). We also confined a polymer
comparing several such schemes we estimate a typical error°f chain lengthN = 1000 atT = 1.5 Te to a hard spherical cage of
resulting from artificial closure. Another interesting quantity that radiusR = 7 o (see Figure 1 right). This corresponds to 120% of the

. . . . . radius of gyration of an average globuleTat= 0.5 Te.
is not mathematically well defined is ttsize of a knot Is the Knot invariants, like the Alexander polynomiaf® allow us to

knot confined to a small portion of the chain, or spread outand gjstinguish between simple kndtsThe calculation, however, consumes
loose? It can be_ shown in a feW cases that interactidesg., a considerable amount of computer tin@({?)), and it is necessary
Coulomb repulsion) or entropic factéf§7 (e.g., when adsorbed  to adopt reduction schemes beforehand. In this paper we implement a
on a surface) lead to tight (small and localized) knots. We particularly efficient algorithm suggested by Koniaris and Muthuku-
explore this question using operational definitions complimen- mar*’*8 A similar scheme was developed independently by Taylor,
tary to, yet distinct from, those in ref 38. We find that in the . .

. . . . . (39) Sokal, A. D. InMonte Carlo and Molecular Dynamics Simulations in
coil phase the typical size of an isolated trefoil grows sub- Polymer SciengeBinder, K., Ed.; Oxford University Press: Oxford, 1995;
i twith t A i ion i pp 47-124.
Ilqearly_asN wltht _ 0.65. Whlle the entan_gled re_glon increases (40) Humphrey’ W.: Dalke, A Schulten, K. Mol. Graphics1996 14, 33—
with N, it vanishes in proportion to the entire chain. By contrast,

Vepnelr) = —33.75 In[l - (ﬁﬂ @)

38.
Binder, K.; Miller, M.; Virnau, P.; MacDowell, L. GAdv. Polym. Sci.
2005 173 1-105.

(41

(26) Tesi, M. C.; Janse van Rensburg, E. J.; Orlandini, E.; Whittington, S. G. (42) Alexander, J. WTrans. Am. Math. Sod 923 20, 275-306.

J. Phys. A: Math. Genl994 27, 347—360.

(27) Saitta, A. M.; Soper, P. D.; Wasserman, E.; Klein, M.Nature 1999
399 46-48.

(28) Saitta, A. M.; Klein, M. L.J. Chem. Phys1999 111, 9434-9440.

(29) Saitta, A. M.; Klein, M. L.J. Am. Chem. S0d.999 121, 11827-11830.

(30) Saitta, A. M.; Klein, M. L.J. Chem. Phys2002 116, 5333-5336.
(31) Kim E. G.; Klein M. L. Macromolecule004 37, 1674-1677.

(32) Bao X. Y. R.; Lee H. J.; Quake S. Rhys. Re. Lett. 2003 91, 265506.

(33) Virnau, P.; Miier, M.; MacDowell, L. G.; Binder, KJ. Chem. Phy2004
121, 2169-2179.

(34) We have also tested that our model reproduces the radius of gyration of
polyethylene in a dense liquid. For these simulations, a ratio of 4:1 yields

better agreement.

(35) Dommersnes, P. G.; Kantor, Y.; Kardar, Rhys. Re. E 2002 66, 031802.
(36) Metzler, R.; Hanke, A.; Dommersnes, P. G.; Kantor, Y.; KardarPRys.

Rey. Lett. 2002 88, 188101.

(37) Orlandini, E.; Stella, A. L.; Vanderzande, Bhys. Re. E 2003 68, 031804.
(38) Katritch, V.; Olson, W. K.; Vologodskii, V.; Dubochet, J.; Stasiak Phys.

Rev. E 200Q 61, 5545-5549.

(43) Livingston, C. InKnot Theory Watkins, W., Ed.; Mathematical Association

of America: Washington, 1993; pp 4%0.

(44) Knots are usually categorized according to the minimum number of

crossings in a projection onto a plane. For examplegfers to a particular
knot with eight crossings. So far, no method exists which can discriminate
all knots. The Alexander polynomial is reasonably good at distinguishing
knots: There are no duplications if we only consider the first 35 knots
with up to eight crossings. If we consider the first 250 knots with up to 10
crossings, we obtain 40 duplications (the Alexander polynomial of knot 6
is for example the same as fas9 The Alexander polynomial of the unknot,
the trefoil knot (3) and the figure-eight knot (3 are unique among the
first 250 knots. In recent years, more powerful knot invariants (like the
Jone#’ or the HOMFLY polynomial®) have been discovered. However,
the Alexander polynomial is comparatively simple to implement and
sufficient for our purposes. A table of knot invariants for knots of up to 10
crossings can be found at http://www.ms.u-tokyo.as:gbimeno/ptabl/.

(45) Jones, V. F. RBull. Am. Math. Soc1985 12, 103-112.
(46) Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W. B.R.; Millet, K. C.; Ocneanu,

A. Bull. Am. Math. Soc1985 12, 239-246.

J. AM. CHEM. SOC. = VOL. 127, NO. 43, 2005 15103



ARTICLES Virnau et al.

Figure 1. Polymer configurations in the coil phase (left), in the globule phase (middle), and under spherical confinement (right), before (up) and after
(down) the application of the KMT algorithA¥. The coil is most often reduced to its endpoints. The blue line in the reduced compact structures marks the
artificial connection between the first and the last particle, which is necessary for calculating Alexander polynomials. Both compact stmiztires ¢

trefoil knot. Pictures were rendered with VMD (Visual Molecular Dynamf€s).

2), then we keep the monomer in the middle (#6) because a further
reduction (from 56 and 67 to 57) could change the relative position of
the chain with respect to the intersecting bond. The first and the last
monomer are never deleted. Going back and forth between the termini,
we either end up with two particles (the first and the last monomer,
see Figure 1 lower left) or with a highly reduced representation of the
original chain (Figure 1 lower middle and right). The procedure works
surprisingly well and almost always reduces the chain to its termini
when no knots are present. In rare cases, however, entangled configura-
tions with no knots remain. As demonstrated in Figure 1, the scheme
also provides us with a first impression on the abundance of knots,
their sizes and locations.

The size of a simple trefoil knot can be determined by a series of
deletions from each side as suggested by Tayldihroughout the
procedure, we keep the termini of the chain. We successively remove
all particles between the end-monomers and the knotted region, first

1 from one side, then from the other. After each particle removal, we
3 determine whether the chain is still knotted. We continue along one
Figure 2. lllustration of the KMT algorithm. Monomers 2 and 4 can be  side until we obtain an unknot. Then, we repeat the procedure for the
removed in the first iteration step without changing the topology of the  remaining side of the chain, this time starting with the last configuration
fﬁ:'g&%eerbliﬂ?sdgéﬂﬁsé ;:‘ggdw‘i"t’;“;?e'?rgfélgf fgrg:féedrigt ;i‘;tc')%‘e?; which resulted in a trefoil. Again, we proceed until we obtain an unknot.
5, 6, and 7. Particle 6 is not removed because by replacing bonds 56 anave analy_ze the last c_onflgurat_lon which contained a trefoil, and de_flne
67 with 57 we cross the impinging bond and potentially alter the topology. the knot size as the difference in monomer numbers of the two particles
next to the termini. An alternative definition of knot sizes is imple-
mented in ref 38.
and we will therefore refer to this method as the KMT reduction. As The algorithm for computing the Alexander polynomidl) is given
the knot definition requires closure, we need to join both ends of the elsewherdd43 However, we would like to mention a technical trick
polymer before invariants can be calculated. We test four variations: \hich simplifies the procedureA(t) can only be determined up to a
First, we simply join the two termini by a straight line. Second, We  factor of -t with m being an arbitrary integer. A common solution to
connect both ends to infinity by straight lines along the line passing s problem is to calculate onlA(—1)|. Unfortunately,/A(—1)| is a
through the end monomers. Both closures are repeated, but this timey, ,ch weaker invariant thai(t) and even some of the simplest knots
we apply the KMT reduction beforehand. Each method has itS capnot be distinguished: Although knots and 5 have different
advantages and drawbacks: The reduction does not change topology exander polynomials€1 + 3t — 2and 1— t + 2 — £ + t4),
in closed loops, but if we close before reducing the chain we may create |z (—1)| = 5 in both cases. Some authors calculate additional invariants
knots simply as a result of the closure. This influence decreases g,cp as Vassiliev numbéPs®to further discriminate knots. Another
substantially when we reduce the configuration first. In this case, option is to compute the full polynomial using machine algebra which
however, the specifics of the reduction procedure also have some yjios for normalization of the final resuff281n this paper, we would
potential to alter the outcome as reported in ref 47. like to propose an alternative solution, which provides full access to

In our implementation of the KMT reduction, we start with one end  ha Alexander polynomial and is similar to an approach suggested in

of the chain and consider successively triangles of adjacent monomers;gt 23 |f one calculatedp(t) = |A(t)* A(L4)], the pre-factors cancel

(123, 345, 567 in Figure 2). If a triangle (like 123 in Figure 2) is not ot The product is also a knot invariant and inherits some properties
intersected by any part of the remaining chain, we delete the monomer

in the middle (#2). If any bond crosses the triangle (black dot in Figure (48) Deguchi, T.; Tsurusaki, Phys. Lett. AL993 174 29-37.

(49) Moore, N. T.; Lua, R. C.; Grosberg, A. Yroc. Natl. Acad. Sci. U.S.A.
(47) Millett, K.; Dobay, A.; Stasiak, AMacromolecule005 38, 601-606. 2004 101, 13431-13435.
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Figure 3. Probability of not having any knots (unknot) in the globule phase
(atT = 0.5Tg), and of observing a trefoil knot (B a figure-eight knot (4

and composite trefoils (&3;). “Ideal” representations of these knots are
depicted below. Inset: The probability of not finding any knots in the
swollen phase (af = 1.5Tg). The line to the right of the figure is marked
with the knotting probabilities for a polymer of lengtth = 1000 under
spherical confinement. All symbols and closed lines refer to a closure, which
was obtained by joining the two end monomers by a straight line after the
application of the KMT reduction. The errors of the mean values were based
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Figure 4. Average size (length of the knotted segment) of a trefoil knot in
the globule and in the coil phase. The size appears to grow linearlyNvith
for the globule and sub-linearly for the coil. All straight lines are power-
law fits to the data. Crosses and closed line: Closure obtained from
connecting the end monomers by a straight line after the application of the
KMT reduction. Dash-dotted line: Closure obtained from connecting the
end monomers to infinity after the application of the KMT reduction. The
respective power-law exponents are 0.63 (coil) and 1.02 (globule) for the
closure with the straight line and 0.65 (coil) and 1.04 (globule) for the
attachment to infinity. The line on the right is marked with the size of a
trefoil knot for a polymer of lengtiN = 1000 under spherical confinement.

800 1000

increases the likelihood of finding an unknotted chain. The
discrepancies are, however, rather small and do not affect our

on the number of independent configurations estimated by the correspondingqualitative findings: The difference in absolute probabilities is

autocorrelation times. Error bars for the swollen phase are too small to be
visible in the inset. Dashed line: Closure obtained from joining the end
monomers before the application of the KMT reduction. Dadbtted
(dotted) line: Closure obtained by connecting end monomers to infinity
after (before) the application of the KMT algorithm. Error bars for these
alternative closures are not shown but are of comparable size.

of the Alexander polynomial: First\p(t) of the unknot is always one.
SecondAp(t) of a composite knot is the product Ab(t) of the single
knots from which it is derived. For our implementation, we evaluate
Ap(t) att = — 1.1 and keep the first five decimal places. As a quick
check reveals, knots;4nd 5 can now be distinguished\¢(—1.1) ~
25.09099 and 25.45745, respectively.) We have testedAifatl.1)

at most 10% for the globule and about 1% for the swollen phase
(Figure 3).

Compactness not only increases the likelihood of finding
knots, but also their complexity. In the coil phase, the few knots
we observe are almost exclusively trefoils, whereas more
complicated knots are present in the dense phaseN Fo1000,
around 60% of all globules contain composite knots or knots
with at least 5 crossings. Both frequency and complexity will
continue to increase with chain length. However, we will
probably need two more orders of magnitud&ito frequently
observe single knots in the swollen phase. In globules of such

discriminates simple knots of up to 10 crossings as does the completelengths, the knotting complexity will be tremendous. Another

Alexander polynomial. The choice oftaclose to—1 further helps us
to avoid numerical inaccuracies which occur for larger

Results

The resulting knot formation probabilities are plotted in Figure
3. We find that polymers in bad solvent conditions become

gauge for complexity is the probability of observing no knots
in the chain which is expected to decay as exXji{Nog).°
Numerical simulations lead sy = 241 for random polygon®,
andNg = 196 for Hamiltonian walk&423 A similar fit for the
open polymers in our globular phase yields an estimate 0f470
535 forNp depending on which knot definition we apply. This

knotted at rather small chain lengths, whereas knots are rare invalue should, however, only be considered with caution because

good solvent conditions: FoN = 1000 about 80% of all
globular polymers are knotted. By contrast, only about 1% of
all polymers are knotted in the swollen phase (inset). The
probabilities of finding a specific knot in a polymer confined
to a spherical cage (Figure 3, right line) are very similar to those

it is sensitive to temperature (solvent quality) and finite-size
effects.

The results for the size (length of the knotted segment) of
thetrefoil knotas defined by operations described in the previous
section are depicted in Figure 4. We find that the knots are

observed in a globule. Consequently, the abundance of knotssmaller in the coil than in the globule, the ratio getting smaller
appears to predominantly depend on the density and not on thewith increasingN. In the swollen phase, it is entropically

means of achieving compactification. Assuming a coarse-
graining ratio of roughly 3:1, we expect that a globular or
confined polyethylene chain with a few thousand Qjfoups
is already knotted.

Knotting probabilities also depend to some extent on how
we connect the two ends, and particularly on whether we apply

favorable to restrict the knot to a limited region of the polymer.

In the globule, there is no such gain as the whole structure is
compact. Characterizing the size of the knot has garnered serious
attention only in the past few years. The knot size can be
rigorously defined for polymers absorbed on a two-dimensional
surface, where exact scaling results are available. In this case,

the reduction process before or after closing the loop. The formerthe distribution of knot sizes follows a power-law with an

J. AM. CHEM. SOC. = VOL. 127, NO. 43, 2005 15105
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universal exponeft that depends only on the phase of the Discussion
polymer=?In the swollen (coil) phase, knots are sndlin the In summary, we suggest that all chainlike molecules with

compact (globule) phase, typical knots are loose and spread ouljn,jjar repetitive units become highly knotted in compact phases
over thg entire pollyméRTI'he results in Figure 4 indicate similar agreement with refs 23, 24, and 26. On the basis of our model,
trends in three dimensions. In the globule phase the averagey e estimate that a single globular polyethylene molecule with
length of the knotted segment scales linearly with the chain a few thousand Ciigroups is already knotted. Knots disappear
lengthN, whic_:h is in qualitative agreement with recent studies -« the polymer is allowed to expand due to a change in solvent
on self-avoiding polygon$. conditions or a release from confinement (compare with refs
In the swollen phase knots are neither maximally tight (of 17 and 20). The time scale involved in the disentanglement is
the order of a few monomers), nor spread out, and the mostessentially the equilibration time, and it would be interesting
frequent size is around seventy monomers. (There is anotherg study the dynamics of this process. We have also attempted
spike for sizes close to the polymer length which can be to characterize the number of monomers that form the knotted
attributed to the closure procedure.) The value for the most likely portion of the chain. For the trefoil, we find that the size is

size appears to be similar for all chain Iengths, although StatiStiCS|arge (the knot is |OOSE) in Compact phases’ and re|ative|y small
are somewhat poor. This is in qualitative agreement with results jn good solvent conditions.
from a study on knot sizes in random lodBsiowever, without It is intriguing to consider the role of knots in entangled
excluded volume the typical length of a knotted segment is piological systems. In some cases, nature appears to have
considerably smaller (68 bonds). developed mechanisms to avoid knots altogether: Globular
A natural description for the average knot size in good proteins are mostly unknottédalthough it is not entirely clear
solution is given by a power law increase with This is why. Human DNA is wrapped around histone proteins and
justified by the exact results in two dimensiofis? and by a phage DNA is usually coiled in its capsid. It was also argued
previous numerical study in three dimensighsmploying an that confined DNA has to be unknotted to preserve its function
indirect measure of the knot size. The best fit to the data in and can therefore be described as a “crumpled glot&l&n
Figure 4 indicates a sub-linear growth with an exponent of the other hand, recent experiments suggest that the rather short
approximately 0.65. This lies between the previously reported (unanchored) DNA (10 kB pairs) strand in the P4 deletion
values of 0.75 (for self-avoiding polygdisand 0.4 (for abead-  mutants is highly knotted. Even in healthy phages some degree
tether modéP). The simulations in Figure 4 only depict cases of entanglement exists, potentially forming knots if the ends
in which we reduce the configurations before joining the ends. were to be connectétdOtherwise, chances of finding a knot in
As indicated, statistical errors are smaliq.05), and the two a 10 kB DNA molecule which undergoes random cyclization
closures yield similar results. However, if we close first, the in good solvent conditions are only a few percEntDo
exponent increases considerably, and the most likely size of aentanglements and knots play any role in the ejection process?
knot in the swollen phase becomes very small. A visual If so, to what extent are simple equilibration processes involved
inspection reveals that these small knots exclusively depend onin the disentanglement afterward? Why have only few knots
the connection of the end points and disappear without it. We been found in globular proteins? These are just a few examples
therefore believe that the results reported in Figure 4 give a of questions which arise in the context of entangled biopolymers.
more faithful representation of typical trefoil sizes. Clearly, more
work is needed to establish the universality and the exact value
of this exponent. The qualitative statement, however, stands:
While the size of the knotted region in good solution grows
with increasing chain length, it occupies a progressively smaller
fraction of the polymer.
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