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Abstract: We examine the statistics of knots with numerical simulations of a simplified model of polyethylene.
We can simulate polymers of up to 1000 monomers (each representing roughly three CH2 groups), at a
range of temperatures spanning coil (good solvent) and globule (bad solvent) phases. We quantify the
abundance of knots in the globule phase and in confined polymers, and their rarity in the swollen phase.
Since our polymers are open, we consider (and test) various operational definitions for knots, which are
rigorously defined only for closed chains. We also associate a typical size with individual knots, which are
found to be small (tight and localized) in the swollen phase but large (loose and spread out) in the dense
phases.

Introduction

As a topological property of closed strings, knots are primarily
a topic of mathematical inquiry, yet they have long fascinated
chemists and physicists. Indeed, the classification of knots starts
with the work of scientists such as Thompson1 and Tait,2

motivated by the ideal of “vortex atoms”. Polymers provide a
practical testing ground for entanglements, and considerations
of their configurations in the early 1960s led to the Frisch-
Wasserman-Delbrück conjecture,3,4 that sufficiently long poly-
mers must be knotted. Unfortunately, the rigorous proof of this
conjecture for lattice polygons5,6 does not provide a means to
estimate the typical size at which knots are likely to appear in
a particular polymer. This is a relevant question for biological
systems whose fundamental constituents are long biopolymers.
An early example was provided by the discovery of knots in
single-stranded DNA by Liu et al. in 1976.7 Since then, many
knots were created artificially, e.g., by the action ofE. coli
topoisomerase I on circular DNA. In this case, an abundance
of the enzyme changes the quality of the solvent and provides
internal constraints which favor the formation of complex knots.8

In the capsid of normal phages (wild type), there is no knot
formation in a strict mathematical sense because one end of
the linear DNA stays in the loading channel and cannot join
the other terminus. Complex knots are, however, frequently
observed in mutants in which both ends enter the capsid.9,10

On the other hand, knots formed by random cyclization of DNA
in a good solvent are rare.11,12Likewise, there are only few knots
in globular protein structures.13,14

Does the presence (or the absence) of knots in a polymer
(e.g., DNA or protein) provide any clues to its function or
origin? The first step toward answering such a question is to
compare with the expected number (and variety) of knots in
the polymer due to pure chance. Existing numerical results are
not entirely satisfactory for such comparison because they are
mostly based on somewhat abstract polymer models. The first
simulations of knotted states can be traced back to the ground-
breaking works of Vologodskii et al. in 1974.15,16 After some
initial interest in random polygons, many groups focused on
self-avoiding polymers in the swollen (coil) phase.17-22 There
are relatively few simulations of dense (globular) polymers,
mainly involving simplified lattice models such as Hamiltonian
walks,23-25 or self-avoiding polygons in prism and slab geom-
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etries.26 They confirm the expected increase in the probability
of finding knots as the polymer becomes more compact, but
are not very suitable for a quantitative comparison with realistic
polymers.

Other studies have focused on mechanical properties of
knotted polymers. It was demonstrated that the presence of a
knot severely weakens the strand and that under tension the
polymer will break at the entrance to the knot.27-29 Knots may
facilitate nucleation processes,30 and the dynamics of unknotting
has also been addressed, both with simulations31 and experi-
ments.32

One of the simplest and best studied polymeric systems is
polyethylene, H-(CH2)n-H, for which a wealth of experimental
data is available, including phase diagrams as a function of
temperature, density, interfacial tension, andn. It has been
shown that for small n much of these data can be reproduced
by a simplified polymer model ofN interacting beads, each bead
corresponding to roughly three CH2 groups, i.e.,n ≈ 3N.33,34

Here, we perform simulations of this model, focusing on the
propensity for knots as a function ofN, and as the polymer is
cooled from the coil to the globule state. Knots are indeed rare
in the coil phase, with only around one percent of configurations
knotted for N ) 1000, and common in the globule state-
roughly half the configurations are knotted forN ≈ 600. We
also find that an externally compacted polymer shows ap-
proximately the same number of knots as in the globule phase.

It is important to emphasize that the above results are obtained
for open polymers, whereas mathematically, knots are only
properly defined inclosed loops. Indeed, almost all investiga-
tions of knotted states deal with closed strings, although most
polymers and DNA strands are actually open. One way to
overcome this difficulty is to join the ends according to a
particular scheme, for example as suggested in refs 20,2. By
comparing several such schemes we estimate a typical error
resulting from artificial closure. Another interesting quantity that
is not mathematically well defined is thesize of a knot: Is the
knot confined to a small portion of the chain, or spread out and
loose? It can be shown in a few cases that interactions35 (e.g.,
Coulomb repulsion) or entropic factors36,37(e.g., when adsorbed
on a surface) lead to tight (small and localized) knots. We
explore this question using operational definitions complimen-
tary to, yet distinct from, those in ref 38. We find that in the
coil phase the typical size of an isolated trefoil grows sub-
linearly asNt with t ≈ 0.65. While the entangled region increases
with N, it vanishes in proportion to the entire chain. By contrast,

knots in globule and confined phases are spread out, and the
entangled region grows proportional toN.

Methods

Our model for polyethylene consists of a sequence of beads in
continuous three-dimensional space.33 A pair of monomers at separation
r interact by the truncated and shifted Lennard-Jones potential

Adjacent beads are connected with FENE (finitely extensible nonlinear
elastic) springs

The parametersε andσ define the depth and the width of the potential;
r denotes the distance between two beads, andrc ) 2x6 2 σ is the
upper cutoff of the potential.

Equilibrated configurations are generated by a combination of
slithering snake and local Monte Carlo moves in the compact phases,
and by pivot and local moves in the swollen phase.39 In general, the
polymer faces a competition between two opposing states. On one hand,
it would like to have access to many configurations which favors a
swollen state (Figure 1 left). On the other hand, it would like to
minimize its energy by placing many monomers close to the minimum
of the combined pair-potential of eqs 1 and 2. This favors a globular
shape (Figure 1 middle). The transition between the two states for a
polymer of infinite length occurs at the so-calledΘ-point. At high
temperatures (which also correspond to good solvent conditions), the
free energy is dominated by the entropic contribution. At low
temperatures (or in bad solvent conditions) the energetic gain is more
important, and a globule is formed. Our simulations of the swollen
phase took place atT ) 1.5TΘ() 4.98ε/kB).41 The equilibrated globule
was obtained atT ) 0.5TΘ() 1.66ε/kB). We also confined a polymer
of chain lengthN ) 1000 atT ) 1.5 TΘ to a hard spherical cage of
radiusR ) 7 σ (see Figure 1 right). This corresponds to 120% of the
radius of gyration of an average globule atT ) 0.5 TΘ.

Knot invariants, like the Alexander polynomial42,43 allow us to
distinguish between simple knots.44 The calculation, however, consumes
a considerable amount of computer time (O(N3)), and it is necessary
to adopt reduction schemes beforehand. In this paper we implement a
particularly efficient algorithm suggested by Koniaris and Muthuku-
mar.17,18 A similar scheme was developed independently by Taylor,13
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and we will therefore refer to this method as the KMT reduction. As
the knot definition requires closure, we need to join both ends of the
polymer before invariants can be calculated. We test four variations:
First, we simply join the two termini by a straight line. Second, we
connect both ends to infinity by straight lines along the line passing
through the end monomers. Both closures are repeated, but this time
we apply the KMT reduction beforehand. Each method has its
advantages and drawbacks: The reduction does not change topology
in closed loops, but if we close before reducing the chain we may create
knots simply as a result of the closure. This influence decreases
substantially when we reduce the configuration first. In this case,
however, the specifics of the reduction procedure also have some
potential to alter the outcome as reported in ref 47.

In our implementation of the KMT reduction, we start with one end
of the chain and consider successively triangles of adjacent monomers
(123, 345, 567 in Figure 2). If a triangle (like 123 in Figure 2) is not
intersected by any part of the remaining chain, we delete the monomer
in the middle (#2). If any bond crosses the triangle (black dot in Figure

2), then we keep the monomer in the middle (#6) because a further
reduction (from 56 and 67 to 57) could change the relative position of
the chain with respect to the intersecting bond. The first and the last
monomer are never deleted. Going back and forth between the termini,
we either end up with two particles (the first and the last monomer,
see Figure 1 lower left) or with a highly reduced representation of the
original chain (Figure 1 lower middle and right). The procedure works
surprisingly well and almost always reduces the chain to its termini
when no knots are present. In rare cases, however, entangled configura-
tions with no knots remain. As demonstrated in Figure 1, the scheme
also provides us with a first impression on the abundance of knots,
their sizes and locations.

The size of a simple trefoil knot can be determined by a series of
deletions from each side as suggested by Taylor.13 Throughout the
procedure, we keep the termini of the chain. We successively remove
all particles between the end-monomers and the knotted region, first
from one side, then from the other. After each particle removal, we
determine whether the chain is still knotted. We continue along one
side until we obtain an unknot. Then, we repeat the procedure for the
remaining side of the chain, this time starting with the last configuration
which resulted in a trefoil. Again, we proceed until we obtain an unknot.
We analyze the last configuration which contained a trefoil, and define
the knot size as the difference in monomer numbers of the two particles
next to the termini. An alternative definition of knot sizes is imple-
mented in ref 38.

The algorithm for computing the Alexander polynomial∆(t) is given
elsewhere.18,43 However, we would like to mention a technical trick
which simplifies the procedure:∆(t) can only be determined up to a
factor of(tm with m being an arbitrary integer. A common solution to
this problem is to calculate only|∆(-1)|. Unfortunately,|∆(-1)| is a
much weaker invariant than∆(t) and even some of the simplest knots
cannot be distinguished: Although knots 41 and 51 have different
Alexander polynomials (-1 + 3t - t2 and 1 - t + t2 - t3 + t4),
|∆(-1)| ) 5 in both cases. Some authors calculate additional invariants
such as Vassiliev numbers48,49 to further discriminate knots. Another
option is to compute the full polynomial using machine algebra which
allows for normalization of the final result.17,18In this paper, we would
like to propose an alternative solution, which provides full access to
the Alexander polynomial and is similar to an approach suggested in
ref 23. If one calculates∆P(t) ≡ |∆(t)*∆(1/t)|, the pre-factors cancel
out. The product is also a knot invariant and inherits some properties
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Figure 1. Polymer configurations in the coil phase (left), in the globule phase (middle), and under spherical confinement (right), before (up) and after
(down) the application of the KMT algorithm.18 The coil is most often reduced to its endpoints. The blue line in the reduced compact structures marks the
artificial connection between the first and the last particle, which is necessary for calculating Alexander polynomials. Both compact structures contain a
trefoil knot. Pictures were rendered with VMD (Visual Molecular Dynamics).40

Figure 2. Illustration of the KMT algorithm. Monomers 2 and 4 can be
removed in the first iteration step without changing the topology of the
chain. The black dot marks a bond which is part of a different section of
the polymer. This bond intersects with the triangle formed by monomers
5, 6, and 7. Particle 6 is not removed because by replacing bonds 56 and
67 with 57 we cross the impinging bond and potentially alter the topology.
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of the Alexander polynomial: First,∆P(t) of the unknot is always one.
Second,∆P(t) of a composite knot is the product of∆P(t) of the single
knots from which it is derived. For our implementation, we evaluate
∆P(t) at t ) - 1.1 and keep the first five decimal places. As a quick
check reveals, knots 41 and 51 can now be distinguished (∆P(-1.1) ≈
25.09099 and 25.45745, respectively.) We have tested that∆P(-1.1)
discriminates simple knots of up to 10 crossings as does the complete
Alexander polynomial. The choice of at close to-1 further helps us
to avoid numerical inaccuracies which occur for largert.

Results

The resulting knot formation probabilities are plotted in Figure
3. We find that polymers in bad solvent conditions become
knotted at rather small chain lengths, whereas knots are rare in
good solvent conditions: ForN ) 1000 about 80% of all
globular polymers are knotted. By contrast, only about 1% of
all polymers are knotted in the swollen phase (inset). The
probabilities of finding a specific knot in a polymer confined
to a spherical cage (Figure 3, right line) are very similar to those
observed in a globule. Consequently, the abundance of knots
appears to predominantly depend on the density and not on the
means of achieving compactification. Assuming a coarse-
graining ratio of roughly 3:1, we expect that a globular or
confined polyethylene chain with a few thousand CH2 groups
is already knotted.

Knotting probabilities also depend to some extent on how
we connect the two ends, and particularly on whether we apply
the reduction process before or after closing the loop. The former

increases the likelihood of finding an unknotted chain. The
discrepancies are, however, rather small and do not affect our
qualitative findings: The difference in absolute probabilities is
at most 10% for the globule and about 1% for the swollen phase
(Figure 3).

Compactness not only increases the likelihood of finding
knots, but also their complexity. In the coil phase, the few knots
we observe are almost exclusively trefoils, whereas more
complicated knots are present in the dense phase: ForN ) 1000,
around 60% of all globules contain composite knots or knots
with at least 5 crossings. Both frequency and complexity will
continue to increase with chain length. However, we will
probably need two more orders of magnitude inN to frequently
observe single knots in the swollen phase. In globules of such
lengths, the knotting complexity will be tremendous. Another
gauge for complexity is the probability of observing no knots
in the chain which is expected to decay as exp(-N/N0).5

Numerical simulations lead toN0 ) 241 for random polygons,49

andN0 ) 196 for Hamiltonian walks.24,23 A similar fit for the
open polymers in our globular phase yields an estimate of 470-
535 forN0 depending on which knot definition we apply. This
value should, however, only be considered with caution because
it is sensitive to temperature (solvent quality) and finite-size
effects.

The results for the size (length of the knotted segment) of
thetrefoil knotas defined by operations described in the previous
section are depicted in Figure 4. We find that the knots are
smaller in the coil than in the globule, the ratio getting smaller
with increasingN. In the swollen phase, it is entropically
favorable to restrict the knot to a limited region of the polymer.
In the globule, there is no such gain as the whole structure is
compact. Characterizing the size of the knot has garnered serious
attention only in the past few years. The knot size can be
rigorously defined for polymers absorbed on a two-dimensional
surface, where exact scaling results are available. In this case,
the distribution of knot sizes follows a power-law with an

Figure 3. Probability of not having any knots (unknot) in the globule phase
(at T ) 0.5TΘ), and of observing a trefoil knot (31), a figure-eight knot (41)
and composite trefoils (31#31). “Ideal” representations of these knots are
depicted below. Inset: The probability of not finding any knots in the
swollen phase (atT ) 1.5TΘ). The line to the right of the figure is marked
with the knotting probabilities for a polymer of lengthN ) 1000 under
spherical confinement. All symbols and closed lines refer to a closure, which
was obtained by joining the two end monomers by a straight line after the
application of the KMT reduction. The errors of the mean values were based
on the number of independent configurations estimated by the corresponding
autocorrelation times. Error bars for the swollen phase are too small to be
visible in the inset. Dashed line: Closure obtained from joining the end
monomers before the application of the KMT reduction. Dash-dotted
(dotted) line: Closure obtained by connecting end monomers to infinity
after (before) the application of the KMT algorithm. Error bars for these
alternative closures are not shown but are of comparable size.

Figure 4. Average size (length of the knotted segment) of a trefoil knot in
the globule and in the coil phase. The size appears to grow linearly withN
for the globule and sub-linearly for the coil. All straight lines are power-
law fits to the data. Crosses and closed line: Closure obtained from
connecting the end monomers by a straight line after the application of the
KMT reduction. Dash-dotted line: Closure obtained from connecting the
end monomers to infinity after the application of the KMT reduction. The
respective power-law exponents are 0.63 (coil) and 1.02 (globule) for the
closure with the straight line and 0.65 (coil) and 1.04 (globule) for the
attachment to infinity. The line on the right is marked with the size of a
trefoil knot for a polymer of lengthN ) 1000 under spherical confinement.
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universal exponent36 that depends only on the phase of the
polymer:50 In the swollen (coil) phase, knots are small.36 In the
compact (globule) phase, typical knots are loose and spread out
over the entire polymer.50 The results in Figure 4 indicate similar
trends in three dimensions. In the globule phase the average
length of the knotted segment scales linearly with the chain
lengthN, which is in qualitative agreement with recent studies
on self-avoiding polygons.51

In the swollen phase knots are neither maximally tight (of
the order of a few monomers), nor spread out, and the most
frequent size is around seventy monomers. (There is another
spike for sizes close to the polymer length which can be
attributed to the closure procedure.) The value for the most likely
size appears to be similar for all chain lengths, although statistics
are somewhat poor. This is in qualitative agreement with results
from a study on knot sizes in random loops.38 However, without
excluded volume the typical length of a knotted segment is
considerably smaller (6-8 bonds).

A natural description for the average knot size in good
solution is given by a power law increase withN. This is
justified by the exact results in two dimensions,36,50 and by a
previous numerical study in three dimensions52 employing an
indirect measure of the knot size. The best fit to the data in
Figure 4 indicates a sub-linear growth with an exponent of
approximately 0.65. This lies between the previously reported
values of 0.75 (for self-avoiding polygons51) and 0.4 (for a bead-
tether model52). The simulations in Figure 4 only depict cases
in which we reduce the configurations before joining the ends.
As indicated, statistical errors are small ((0.05), and the two
closures yield similar results. However, if we close first, the
exponent increases considerably, and the most likely size of a
knot in the swollen phase becomes very small. A visual
inspection reveals that these small knots exclusively depend on
the connection of the end points and disappear without it. We
therefore believe that the results reported in Figure 4 give a
more faithful representation of typical trefoil sizes. Clearly, more
work is needed to establish the universality and the exact value
of this exponent. The qualitative statement, however, stands:
While the size of the knotted region in good solution grows
with increasing chain length, it occupies a progressively smaller
fraction of the polymer.

Discussion

In summary, we suggest that all chainlike molecules with
similar repetitive units become highly knotted in compact phases
in agreement with refs 23, 24, and 26. On the basis of our model,
we estimate that a single globular polyethylene molecule with
a few thousand CH2 groups is already knotted. Knots disappear
once the polymer is allowed to expand due to a change in solvent
conditions or a release from confinement (compare with refs
17 and 20). The time scale involved in the disentanglement is
essentially the equilibration time, and it would be interesting
to study the dynamics of this process. We have also attempted
to characterize the number of monomers that form the knotted
portion of the chain. For the trefoil, we find that the size is
large (the knot is loose) in compact phases, and relatively small
in good solvent conditions.

It is intriguing to consider the role of knots in entangled
biological systems. In some cases, nature appears to have
developed mechanisms to avoid knots altogether: Globular
proteins are mostly unknotted,13 although it is not entirely clear
why. Human DNA is wrapped around histone proteins and
phage DNA is usually coiled in its capsid. It was also argued
that confined DNA has to be unknotted to preserve its function
and can therefore be described as a “crumpled globule”.53 On
the other hand, recent experiments suggest that the rather short
(unanchored) DNA (10 kB pairs) strand in the P4 deletion
mutants is highly knotted. Even in healthy phages some degree
of entanglement exists, potentially forming knots if the ends
were to be connected.9 Otherwise, chances of finding a knot in
a 10 kB DNA molecule which undergoes random cyclization
in good solvent conditions are only a few percent.11 Do
entanglements and knots play any role in the ejection process?
If so, to what extent are simple equilibration processes involved
in the disentanglement afterward? Why have only few knots
been found in globular proteins? These are just a few examples
of questions which arise in the context of entangled biopolymers.
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