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Model ground state of polyampholytes
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(Received 1 December 1997

The ground state of randomly charged polyampholytes is conjectured to have a structure similar to a
necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged
stretched “strings.” We suggest a specific structure, within the necklace model, where all the neutral parts of
the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of
the chain, the longest neutral segméhe second longest neutral segmerampacts into a globule, then the
third longest, and so on. We investigate the size distributions of the longest neutral segments in random charge
sequences, using analytical and Monte Carlo methods. We show that the lengthnih tomgest neutral
segment in a sequence Nfmonomers is proportional th/n?, while the mean number of neutral segments
increases ag/N. The polyampholyte in the ground state within our model is found to have an average linear
size proportional to/N, and an average surface area proportionaii13. [S1063-651X98)01705-X]

PACS numbg(s): 36.20—r, 02.50—r, 05.40:+j, 33.15.Bh

[. INTRODUCTION calculations[12], resolves the apparent contradiction be-
tween the scaling and the Debye-d¢kel motivated argu-
The desire to understand long chain biological macromolments.
ecules, and especially proteins, stimulates extensive studies To gain some insight into the behavior of PA’s, analogies
of polymers[1-3]. An important class of polymers are those to charged drops were explor¢ti3—15: A spherical drop
with an electric charge along their backbone. This workcharged beyond a certain charge, called the Rayleigh charge
deals with heteropolymers, which carry positive and negativ&®g, which depends on the surface tension and volume of the
charges, known agolyampholytesPA’s) [4]. Models of  drop, becomes locally unstable to elongation, since the pres-
PA’s are important to the study of proteins, since under norsure difference between the inside and outside of the drop
mal physiological conditions, five of the 20 naturally occur- vanishes. Even before the total charge reahgsthe drop
ring amino acids have an excess chafje We consider a becomes unstable to splitting into two equal drops. Addi-
polymer of charged monomers, interacting via unscreenetlonal splittings of the drop occur for larger charges. A simi-
Coulomb interactions, and we investigate its ground stat¢ar behavior is expected in PA's charged @~ \N. Al-
structure. Throughout this work, we discuss PA’s that consisthough a PA cannot split, the analogy to charged drops can
of a random mixture of positive and negative charges, whiclstill be exploited: Constraining the structure to maintain its
cannot move along the chain. connectivity by attaching droplets with narrow tubes results
We are interested in the geometrical features of then a necklace-type structure of droplets connected by strings.
ground state of a PA, and in particular in the dependence of For homogeneously charged polymépwlyelectrolytey
its radius of gyratior(rms siz¢ Ry on the number of mono- the charged drop analogy was ugd] to characterize the
mersN: Ry~N". Higgs and Joanny5] and later Wittmer, structure completely within the necklace modgicluding
Johner, and Joanr$], elaborated on arguments of RET],  the number of “beads” and “strings,” their sizes, and the
and suggested, on the basis of a Debyeléli type theory number of monomers in them, for a given temperature and
[8], a collapsed structurevE3) for neutral PA’s in the charge density However, trying to apply the necklace
ground state: The chain takes advantage of the presence wiodel to quenched PA’s having random char#3,14,
two types of charges along its backbone, and assumes a spgseveral difficulties occur due to the randomness. It was
tial conformation in which every charge is predominantly noted, for instance, that a situation occurs in which most
surrounded by charges of an opposite sign. spherical shapes are unstable, while there is on average no
A different approach to the study of the ground state ofenergetic gain in splitting the sphere into two equal parts. A
PA’s [9] is by scaling arguments, requiring that the interac-consistent theoretical picture for random PA’s beyond the
tion energy be the same on all length scales. These arginstability threshold was not found, but a typical PA is con-
ments lead to a stretched structure of the ground state, whejectured to be composed of rather compact globules con-
Ry~N. In this approachR, is averaged over a complete nected by long strings. In order to reduce the electrostatical
ensemble of all quenches, and the typical ovefaicesy  energy, the globules consist of segments of the chain that are
chargeQ of the PA is~+/N. In the Debye-Hukel approxi-  approximately neutra(collapsing according to the Debye-
mation, however, all the chains are neutral, since the overatiuckel picturg, while the strings are formed by highly
neutrality of the PA is an essential condition for the validity charged segments.
of the Debye-Huakel approximation. The extreme sensitivity ~ Since the structure of a randomly charged PA cannot be
of the ground state structure to the excess charge, noted lopharacterized completely analytically, we turn to numerical
Kantor and co-workerg10,11, and supported by Monte MC methods in order to characterize the ground state of such
Carlo (MC) simulations as well as variational mean field PA’s within the necklace model. A key role in the structure
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of randomly charged PA's is played by the neutral segments O={+---++-+++++-+-++++--+-+++-+}
in the chain(forming the beads in the necklgc&Ve there- ﬂ_L W_L TL T_/

1 3 2 4

fore apply MC methods to study the neutral segment size
distribution of randomly charged PA'’s. The rest of the paper
is organized as follows: In Sec. Il, we describe the process o
construction of a ground state for a randomly charged PA, by
dividing it into neutral segments. We discuss the motivation
for this process, define the important parameters of the prob
lem, and compare the process to similar existing models. Ir
Sec. lll, we investigate the sizes of the globules in the sug-
gested ground state, including their dependence on the tote
number of monomers and on other parameters. In Sec. IV )
we discuss effects of finite chains, investigate the depen:
dence of the total number of neutral segments in such finite _ t/
chains onN, and construct a self-consistent picture of the L, 4
structure of the ground state. In Sec. V, we obtain some of / /
O

L1\ JLS
the physical characteristics of the constructed ground state ~
11/3 /

discuss our results and compare them to other studies. L1B+ |
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such as its linear size and surface area, and in the Sec. VI w

Il. MODEL—MOTIVATION AND DEFINITIONS FIG. 1. An example of a charge sequer_ac,emapped i_nto_ alD
RW S;(w), and a typical loops structure. Filled circles indicate the

Empirical observations of the energy of randomly chargedstarting and ending points of loops. The longest loop in the RW has
PA’s suggested that the quench-averaged energy can be peight steps I(;=8), the second longest loop has six steps (
sented as a sum of condensation, surface, and electrostati®), Ls=4, andL,=2. The excess chargwhich is equivalent to
energied 13,14 the total displacement of the RM& Q= +8, and the total length is

N=28.
05 Q?
E=—aN TSt = @ sequence of positionS;(w) =={_,q; (So=0) of a random
walker. (From now on we will measure charges in units of
wherqula is (approximately the condensation energy gain the basic charggg, and thereforey; will be dimensionless.
per particle o is the typical charge of a monomer aads ~ The random sequence of charges is thus equivalent to a RW,
a microscopic distance such as diameter of the monpmera chain segment with an excess cha@eorresponds to a
y~q3/a is the surface tension, ariél is the linear size of RW segment with total displacement Qf steps, and a neu-
the chain[In Eq. (1), we omitted dimensionless prefactors of tral segment is equivalent to a loop inside the RW. Through-
order unity] When the excess charggis very small, the PA out the paper we will use the terminologies of randomly
will form a single globule. WherQ increases, the electro- charged PA’s and RW's interchangeably.
static forces will overcome the surface tension, and the glob- When the longest neutral segment forms a globae
ule will split (similarly to the splitting of a drop charged assumed in Ref$17-19), the remaining part of the chain is
beyond the Rayleigh chargeNumerical studies suggest Very large (~N). It is natural to assume that neutral seg-
[13-15 that a PA forms aecklaceof weakly charged glob- ments on that tail will further reduce the total energy by
ules, connected by highly charged strings. This structure is §lding into globules. Eventually, the necklace will consist of
compromise between the tendency to reduce the surface arB#@ny nheutral globules. However, there are many ways in
(i.e., to form globulesdue to surface tension, and the ten- Which the chain can be divided into neutral segments, and we

dency to expand, in order to reduce the Coulomb interactio@'e interested in a simple unique structure. We therefore sug-
caused by the excess charge. gest aspecific necklace-type structure, and construct the
Kantor and Erta§17—19 attempted to quantify the quali- ground state for a randomly charged PA in the following
tative necklace model, by postulating that the ground state oiay, depicted in Fig. 1: The longest neutral segment contains
a PA will consist of a single globule, formed by the longestL1 monomers; it compacts into a globule of linear size pro-
neutral segment of the PA, while the remaining part will portional toL1%; in the remaining part of the chain the long-
form a tail. They investigated the probability that the longestest neutral segmerithe second longest neutral segmeoft
neutral segment in a chain 6f monomers has length. A sizel, also compacts into a globule, then the third longest,
probability density was defined and investigated in the limitand so on, until the segments become very sifwdlbnly a
whereN,L—o, while the reduced length=L/N is fixed. =~ few monomers Generally L, denotes the number of mono-
The probability density was obtained numerically and invesdmers in thenth longest neutral segment, which compacts into
tigated analytically, but a complete analytical solution to thea globule of radiug.*®. Eventually, all the neutral segments
problem was not found. We follow R€f17], and investigate are exhausted, and we are left only with strings which carry
the problem of the size distribution of neutral segments inthe PA’'s excess charg®, and connect the globules. The
randomly charged PA’s by mapping the charge sequencwmtal number of monomers in the chain is the number of
into a one-dimensional random walkD RW). The charge monomers in all the neutral segments, plus the absolute
sequencew={q;} (i=1,... N;gi==1) is mapped into a value of the excess charg&rom now on, we will denote by
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Q the absolute valuef the excess charge.

The ground state, generated by this process of longes
neutral segments compacting into globules, does not neces
sarily minimize the total energy of the PA. First of all, the
process does not consider the possibility of weakly chargec
globules, which can include many more monomers than the
neutral globules, thus compensating by surface energy fo
the additional electrostatic energy. Second, even when conz=,
sidering only neutral globules, it is not necessary that thes
procedure of compacting the longest neutral segment at eac 4
step generates the lowest energy state: It is possible that tw
“medium sized” globules will have lower surface energy
than a long one and a very short améhich remains after the
first long segment was already choken 1

A similar model, describing a breaking of a RW into

loops, is the loop erased self-avoiding wallESAW) model e e 0 o 0 o
[20]. A LESAW is constructed from a RW, in which any ' ' ' ' n ' ' '

loop generated by a self-intersection is erased. The LESAW o -, _ )
model was the subject of intensive sty@L—25, and many FIG. 2. Probability densities of the five longest loops from right

do left [pa(I;)—thick points; py(l,)—solid line; ps(l3)—dashed

properties of the lengths of the erased loops in it were found;, ! i .
line; p,(l,)—dot-dashed lineps(ls)—dotted ling, as functions of

However, these results do not consider issues otdhgest L= LN from MC its of 16 rand £l
erased loops, and are therefore of little help to us. " ot rom MC results of 18 random sequences of length
Division of a charged sequence into neutral or almost :

neutral segments played an important role in a determinatio
of the ground state properties of a model self-interacting ran[-zength of the longest loop was fourid7,1§ to be propor-

dom polymer, represented by a directed 1D R¥26,27). tional toN. Expecting the same behavior for the length of the

Both discrete and continuous charge distribution have beiﬁth longest loop, we define the probability density of tita

considered, and the resulting ground state resembles a ne Q_ngest loop,
lace. In that model, however, all possible divisions into neu- N
tral segments play a role, while we concentrate on a particu- pn(l)= E[PN,n(Ln) +Pyn(Lat+ 1)1, )
lar division of the charge sequence into neutral segments.

Other related models are those of randomly broken ob-
jects[28,29, in which an object, such as a segment of unitwherel,=L,/N. [Note that at least one term in E@) van-
length, is divided into mutually exclusive parts by a self-ishes, since loops can be only of even length. Therefore,
similar random process. The division of a segment into partgefinition (2) includes an average of probabilities fof and
resembles the “breaking” of a RW into loops: The probabil- Ln+1 as in the definitions used in continuum limits for dis-
ity densities of the longest segments in some models of rarfrete RW's, in order to prevent even-odd oscillatigrisor
domly broken objects resemble the probability density of thesmallN’s this definition ofp,(l,) still depends orN, but in
longest loop in Ref[18]. However, one main difference be- the N,L,— limit it becomes a function of only,. Nu-
tween models of randomly broken objects and the longesmerical evidence of thi independence qi; (1) for N — «
loop problem is that the probabilities of the longest loops arevas presented in Reff18]. MC results forp,(1,) for several
not self-similar.(The probability of a certain fraction of the values ofn indicate that the probability densities are virtually
chain to form the longest loop and the probability of theindependent oN [30]. For smallN and largen, the prob-
same fraction of the remaining chain to form a second longability densityp,(l,)) depends oM, sincelL ,’s are short, and
est loop are different.We will return to this absence of continuum limit is expected only wheh,>1. In order to
self-similarity in Sec. Ill. overcome the effects of finithl, we determined thé&l de-
pendence ofL,), through an extrapolation of the slopes of
the linear fits of IfL,) vs InN to N—o°. For any givem we
calculated, through a local linear fit, slopes for several values

In order to characterize a PA in the necklace-type lowof N, and estimated them &t— limit. Furthermore, it can
energy state, made of neutral globules and highly chargebe proven analytically30] that the probability density of the
strings, we are interested not just in the size distribution ofongest loop is “universal,” i.e., for long RW'’s, it does not
the longest neutral segment, but also in the size distributiodepend on the number of steps, or on details of a single step.
of the second longest segment, the third longest, and so on. Sincep,(l,,) areN independent, we can investigate them
We examined the statistics of loops in a 1D RWhbkteps, for any given(large enoughN. The probability densities of
using MC method for severdl’s, up toN=10*. For each\ the five longest loops in a chain are depicted in Fig. 2 for
we randomly selected $Gequences. For each sequence weéN=1000. Several properties @f,(1,,) are evident from this
found the lengths , of the (nonoverlappinyloops, and cal- figure. The probability densityp,(l;) was shown[18] to
culated their distributions and averages. have a square root divergencel gt 1, and a discontinuous

We denote byPy (L) the probability of thenth longest  derivative atl ;= 3. When the length of the first loop; in a
loop in a RW ofN steps to be of lengti.,,. The average specific chain is long, then the lengths of the other lobps

Ill. SIZE DISTRIBUTION OF NEUTRAL SEGMENTS
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(for n>1) in that chain must be short, since the total length  © ' : ' ' ' - : -
of all the loops cannot exceed. Therefore, since in many  _, _
chains the length of the longest loop is almost equal {@s
indicated by the divergence gf,(I;) whenl;—1], the
lengths of the other loops approach zero. This is evident -osf- .
from the divergence op,(l,)) whenl,—0 for alln>1. Be-
cause in any specific chain the length of tite longest loop %
is shorter than the length of theh longest loop, fom>Kk, lg -r ]
the divergence op,(l,) near zero is stronger for large e
Since the probability densitigs,(l,,) are normalized sepa-
rately for eachn, then any two of them must intersddie.,
pn(l,) always intersectp,(l,) for n#n’]. The length of -16f .
the second longest loop never exceeds the length of the firs
longest loop, and the sum of their lengths never excé&ds
Therefore, the length of the second longest loop cannot ex 25—+ 57 oz o3 o7 o5 o8 o7 os
ceed half the length of the chain. Consequentlss 3 for all log,5(n)
the chains, ang,(l,) vanishes identically fot,>3. Simi-
larly we can show thak,<1/n for all n and p,(l,)=0 for
[,>1/n.

We note thatp,(l,) is qualitatively similar to the prob- linear fit to the data points has a slope e£2.3+0.4. We
ability densities of the length of the second segment in diftherefore conclude that, &— «,
ferent models of randomly broken obje¢®8,29 [see Figs. N
1(b) and 3b) in Ref.[28]]. However, the probability densi- (Lyy~—
ties of the length of the second segment in R&8] have n
strong singularitiegof the first derivative at |,= 3, and are

-0.4r B

FIG. 3. Logarithm of the average reduced length of ttik
longest loop as a function of the logarithm of loop number

shown to have singularities &= 1/ for all integersk=2. where

All the probability densitie,(I,) of the longest loops have @=2.3+0.4. )
a singularity when they become identically zem\(I,) van-  |n Sec. IV, we will argue thatr=2, which is within the error
ishes forl ,>1/n, and therefore is nonanalytical lat=1/n]. limits of Eq. (3).

It is possible that, due to the singularity i,y (1,/), at 1h’

all the other probability densitiep,(l,) (for n<n’) also IV. NEUTRAL SEGMENTS IN FINITE CHAINS

have singularities at &/, since all the probability densities So far we have discussed only long chains and their prop-
are dependent. Apparently, these singularities do not CauseBrins in theN— s limit. There are several differences be-

d_ls_cont!nwty of the _f'rSt derivative, and, therefore are NOtyyeen the properties of infinitely long chains and finite size
visible in the numeric data. In several models of randomlycpaing. First of all, in finite size chains the monomers that do
broken object$28,29, the probability densities of the length ot pelong to any neutral segment constitute a finite part of
of the nth segment have singularities &&1/n" (for N {he chain, as opposed to a vanishing parNas. Second,
<n’'). These singularities are due to a self-similar processin infinitely long chains the number of neutral segments is
which leads to a different analytical expression for the probinfinite, while for finite N at some point there are no more
abilities on each interval 1/( + 1)<I<1/n'. Since the ran- neutral segments.
dom process of generating the longest loops in our process is Let us consider the total number of monomers which do
not self-similar(as indicated in Sec. )l the reason for the not belong to any neutral segment, for fine It is easily
singularities in the models of randomly broken objects doeshown that the number of monomers left out from all the
not hold in the case of theth longest loogas was suggested neutral segments in any specific random sequence is exactly
in Ref. [31]). Therefore, the probability of thath longest Q, the absolute value of the excess charge of the correspond-
loop does not necessarily have singularities at valueb of ing PA: The excess charge cannot exceed the number of
=1/n'. monomers left out, because, by definition, the neutral seg-
Since in any specific RW,,=L,=---=L,,, the average ments do not have excess charge. On the other hand, all the
length of thenth longest loop(L,,) decreasesfor fixed N) monomers left out from the neutral segments must be part of
with increasing loop number. There is no typical scale in the excess charge: If, for instance, a PA has excess positive
the problem, and we may expect a power law dependenceharge, then no negative charge can be left out from all the
(Lyy~Nn~?, with «>0. The total number of steps in all the neutral segments(If there had been a group of negative
loops in any given RW cannot excedd (i.e., Z,L,<N), charges, it would have joined a group of positive charges to
and thereforeX(L,)<N. The convergence of the sum make a neutral segment, or together with a group of positive
means thakv>1. In Fig. 3, we depict the average reducedcharges, would have joined an existing neutral segment and
length(l,,) vsn on a logarithmic scale. To avoid systematic make it longe). Since the rms excess charge of a randomly
errors due to finiteN, each value ofl,) in the graph was charged sequence &f charges of£1 is equal toyN, the
determined through an extrapolation: For eaghve plotted rms number of monomers not in any neutral segment in the
(I,y vs 1IN, and found the extrapolated value @f) near chain is also equal tq/N, becoming a vanishing fraction of
1/N=0. These values ofl,) are depicted in Fig. 3. The the chain adN—o.
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' ' Knowing the statistical properties of the chain, we try to
construct a self-consistent complete picture, in which our
numerical results fit together. We know that the total length
of all the loops (sz:an) is equal to the entire length of the
chain minus the steps not in any lophich are the excess
charge, which are on the averaghl). Dividing this equality

by N, taking an average over the random sequences, we ob-
tain

25

1

ng
] 1—<n§l In> T )

On the other hand, from Eq$3) and (4) we know that,
omitting constants of order unity:

(ng) (n)
| | ==—— N
% o1 02 08 04 05 06 07 08 09 1 <§ |n>=§, <|n)2j n~“dn~1-NY1"9 (g
n=1 n=1 n=1

ng /NO.5

FIG. 4. Probability density ofi, the total number of loops ina Comparison of the powers & in Egs.(5) and(6) leads to
chain, divided by\/N, for N=100, 300, 500, 1000, 3000, 5000, and 1
10 000(from right to leff. y=———— 7
2(a—1)’

At some point, the process of search for the next longe
loop exhausts all the loops in the RW. We investigate thi
stage in the process, by analyzing the numbeof loops in a=2, y=43. (8)

a RW. WhenN is infinite, the average length of thath
longest loop is given byL,)~Nn~¢. Application of this These equalities are satisfied by the valuesysf0.46
equality for finiteN’s would predict, for large enough's, =~ +0.06, anda=2.3+0.4 obtained numerically, and consti-
(L,)=<1. Since this is not possibkthe minimal length of a tute a self—cor_15|stent picture, in which the average.conforma-
loop is two steps we argue that Eq(3) is valid, for finite tional properties of the constructed ground state fit together.
N’s, only to describe the average lengths of the longgst
loops. There is no typical scale to the problem of the total
number of loops, and we therefore expect a power law de- In this section we investigate some of the physical char-
pendence ofn¢) on N. The length of the last loop, for all acteristics of the constructed ground state of randomly
chain lengths, is usually very shditonsisting of only few charged PA’s. We focus on the linear siReand on the
positive and negative chargesaving a length independent surface are& of the proposed ground state, trying to explain
of N, i.e., (Lnf>~N0, which means tha(lnf>~N*1. Since their dependencies oN through the self-consistent picture
constructed in Sec. IV. We defirg, the linear size of the
chain, according to the picture of Fig. 1: The neutral seg-
ments in the chain compact into globul@sach with a linear
size Of Reegment~ Lasgmen- |f @ll the globules are linearly
packed, then the total linear size is the sum of the linear sizes
of all the globules R=ZRggment- The linear size of the
chain must include the monomers not in any neutral segment
(4 (the strings in the necklace, which are the absolute value of
the total excess charg@). We therefore obtain a means to
describe the chain’s size:

i\;vhich, together with Eq(4) is satisfied by

V. PHYSICAL PROPERTIES OF THE GROUND STATE

(In,)~ng “ [substitutingn=ny in Eq. (3)], we can expect
(ne)~NY

where

y=4
Substitutinga from Eq. (3) leads to a value ofy=0.43
+0.09. Investigating numerically the dependencém} on ng
N, we found thaty=0.46+0.06, which is within the error R=Y, L¥3+Q. 9
limits of the value predicted by Eg$3) and (4). n=1

At the end of this section we will argue that=2 andy \jere and throughout this section, we omit prefactors of

=0.5, values which are within the error limits of those de- g jer nity) It is evident that the generated state captures
duced from the numeric data. In order to confirm {mg) g5 ne essential features of the ground state suggested by the
~+/N relation, in Fig. 4 we show the probability density of ocklace model: The necklace type structure is comfact

n divided by JN for several chain lengthdN=1C? to 10).  R—N13) when the PA is neutrathe longest neutral segment
The division by VN causes a reasonable collapse of thejs the entire chainor has very small excess charge, and
graphs for different values & to a single function, which is  pegins to stretch as the excess charge incregisesharged
(almosy N independent. We see that the probability densitystrings become longgrFinally, the PA becomes completely
has a maximum when; /N is close to zergthe most prob- stretchedi.e., R~N) for the fully charged polymer.

able value ofn; is finite and independent df), and it de- Investigating the average chain’s linear size dependence
creases to zero with increasing//N. on N, we obtain the dependence
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Ny
0.5F . SEE Lﬁ/3+ Q. (12
o n=1

The absolute valu€ of the excess charge in the definition
(12) can be viewed either as the surface area of the “necks”
of the necklacdin the language of continuum drop moygel
since their diameter is of order unifgne monomer in diam-
etep or as the loss of condensation energy due to removal of
the necks from the globules. In either case, this term contrib-
utes to the energy a ter@, which we shall see is negligible.

S can have values ranging fron?’3, for a neutral chain, to

N, for a completely charged chain. These limits indeed cor-
1 respond to the expected behavior of PA. ObviouStyN?"3,

We analyzed thé&l dependence 0§, and found that

<S>"’ N0'67i0'01. (13)

When we subtract fron$ its minimal value, and divide the
FIG. 5. Probability density oR, the linear size of the entire result byN?>, we obtain a distribution which is identical for
chain, for several chain lengths!=100 (dotted line, 300 (dot-  all N. This dependence means that the average surface en-

dashed ling 1000 (dashed ling 3000 (solid line), and 10000 ergy of the generated structure has the s&ingependence
(thick point3. The minimal possible value d® (R,=N9) is sub-  as the surface energy of a single compact gloloiteseveral
tracted fromR, and the result is divided byN to collapse the data. compact globules, each containing a finite part of the ghain
From the same arguments that led to EHl), we obtain

(R)~N” (n) v N2
(9)=(Q)+ 2>, <Ln>2’3~dﬁ+f (—) dn~N23,
n=1 n=1\ n%
(14

This power ofN is in accordance with the numerically ob-

. _ . _ - tained value of 0.620.01, and indicates that tHé¢ depen-
Figure 5 depicts the probability density Bf divided by \N  gence of the average surface area is determined by the neu-
for several values oN. From the data collapse we deduce {4 segmentsi.e., the beads in the necklacand is not

that theN dependence in Eq10) is valid not just for the  affected by the excess chargie strings in the necklage
average linear size, but represents a scaling of the entire o investigated the expressi@ (Q2/R), which has
e . 1 . !
probability density. Thev=3; power in Eq.(10) means that  {he sameN dependence as the energy of the generated struc-
the chain is not compactalthpugh the distribution is  {re [We considered the energy terms of E), and omit-
peaked” near the lowest possible value B), and is not (g the condensation term, since it is the same for all struc-
completely stretched, but has a linear size as an ideal RW,res of a givenN]. Exploring the N dependence o

with N steps. _ _ + (Q?R) (denoted a£), we found that
We can explain the dependence in EtQ), by assuming

that = (L, Y3 and = (L,)*® have the sam&l dependence,
and by using the power laws ¢h;) and(L,) [Egs.(3) and
(4)], with =2 andy=13 [Eq. (8)]:

where

r=0.50+0.01. (10

2
<E>E < S+ %> — NO.GG‘:0.0].. (15)

When subtracting fronk its minimal value and dividing the

n (no) ENIEE result byN?3, we obtain a probability density which is iden-
z <|_ﬁ/3>~ 2 <|_n>1/3~f <_> dn~N%5 (11 tical for all N. This dependence means that the total energy is
n=1 n=1 n=1\ n“ very low: The surface energy terng) obtains its minimal

value (~N?3), and R~N? thus bringing the electrostatic
In order to confirm this dependence, we investigatecenergy term to a point where it does not affect khelepen-
(=" L¥3 as a function ofN, and found the power law dence of the total energy. The total energy behaves very
dependence with exponent 0:#0.02, in accordance with Mmuch like the surface energy, as if the chain is constructed of
the prediction of Eq(11). We see that the average linear @ Single compact neutral globule
chain size(R) in Eq. (9) is a sum of two terms, each pro-
portional toN.

Similarly to the definition oRR, we can define the surface  We have studied the properties of a conjectured structure
area$S of the chain. Each neutral segment compacts into &f randomly charged PA'’s in the ground state. According to
globule of surface area ngmem, all the globules are lin- the necklace mod€]13,14], in the ground state of PA’s,
early packed, and the surface area of the strings is proponeutral segments in the chain compact into globules. Follow-
tional to the number of monomers not in any neutral seging Ertasand Kantor{17,18, we have mapped the problem
ment, which is the absolute value of the excess charge. Wef longest neutral segments to the problem of longest loops
can therefore define in 1D RW’s, and applied numerical methods along with ana-
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lytical estimates to study the size distribution of longestglobules are formed within our moddby allowing for
loops. weakly charged globules or by not forcing all the neutral
Since we believe that a structure of PA's based on th&egments to completely compacin order to try to repro-
necklace model has a very low energy, we suggested a spguce this “swelling” of the average chain.
cific detailed necklace-type structure for polyampholytes in  The investigation of the size distribution of neutral seg-
the ground state, and numerically obtained its conformaments through the analogy to 1D RW's, was limited to a
tional and phySical propertidme number and sizes of beads particu'ar class of RW’S, in which a unit disp'acement ap-
and strings in the necklace, the spatial extent, the surfacgears at each stdpe., each monomer in the chain is charged
area, and the enerpyThis structure is compact when the +1) |n a future publicatio30], we will define the problem
chain is neutral or weakly charged, and stretches as the chagy |ongest loops in the limit where the RW becomes a true
becomes charged. We have found that the ground state strugaussian walk, and prove through a scaling process the uni-
ture has a very low energy, which depends on the number Gjersality of the probability densities of longest loops. This
monomers as the energy of a single compact neutral globulgyjyersality means that the probability densities of longest
We have also shown that the unrestricted average of the lingops are independent of the number of steps and of the
ear size of the polymer in the ground state depends on thgature of the single step of the RW. Therefore, the results
number of monomers as the linear size of an ideal chaingptained for a specific case of randomly charged PA’s are
with a critical exponent ofy=0.50+0.01. Although the yalid for all randomly charged polymers, in whicfor long

qualitative behavior of our distribution for the linear size is Chains the Charge distribution is an unbiased Gaussian.
similar to this obtained in Refl15] (it is peaked near its

smallest possible value, and has a tail, which determines the

asymptotic behavior ofv), Kantor and Kardaf15] con- ACKNOWLEDGMENT

cluded that the average linear size increases Witht least
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