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Model ground state of polyampholytes

Shay Wolfling and Yacov Kantor
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

~Received 1 December 1997!

The ground state of randomly charged polyampholytes is conjectured to have a structure similar to a
necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged
stretched ‘‘strings.’’ We suggest a specific structure, within the necklace model, where all the neutral parts of
the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of
the chain, the longest neutral segment~the second longest neutral segment! compacts into a globule, then the
third longest, and so on. We investigate the size distributions of the longest neutral segments in random charge
sequences, using analytical and Monte Carlo methods. We show that the length of thenth longest neutral
segment in a sequence ofN monomers is proportional toN/n2, while the mean number of neutral segments
increases asAN. The polyampholyte in the ground state within our model is found to have an average linear
size proportional toAN, and an average surface area proportional toN2/3. @S1063-651X~98!01705-X#

PACS number~s!: 36.20.2r, 02.50.2r, 05.40.1j, 33.15.Bh
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I. INTRODUCTION

The desire to understand long chain biological macrom
ecules, and especially proteins, stimulates extensive stu
of polymers@1–3#. An important class of polymers are thos
with an electric charge along their backbone. This wo
deals with heteropolymers, which carry positive and nega
charges, known aspolyampholytes~PA’s! @4#. Models of
PA’s are important to the study of proteins, since under n
mal physiological conditions, five of the 20 naturally occu
ring amino acids have an excess charge@1#. We consider a
polymer of charged monomers, interacting via unscree
Coulomb interactions, and we investigate its ground s
structure. Throughout this work, we discuss PA’s that con
of a random mixture of positive and negative charges, wh
cannot move along the chain.

We are interested in the geometrical features of
ground state of a PA, and in particular in the dependenc
its radius of gyration~rms size! Rg on the number of mono
mersN: Rg;Nn. Higgs and Joanny@5# and later Wittmer,
Johner, and Joanny@6#, elaborated on arguments of Ref.@7#,
and suggested, on the basis of a Debye-Hu¨ckel type theory
@8#, a collapsed structure (n5 1

3) for neutral PA’s in the
ground state: The chain takes advantage of the presenc
two types of charges along its backbone, and assumes a
tial conformation in which every charge is predominan
surrounded by charges of an opposite sign.

A different approach to the study of the ground state
PA’s @9# is by scaling arguments, requiring that the intera
tion energy be the same on all length scales. These a
ments lead to a stretched structure of the ground state, w
Rg;N. In this approach,Rg is averaged over a complet
ensemble of all quenches, and the typical overall~excess!
chargeQ of the PA is;AN. In the Debye-Hu¨ckel approxi-
mation, however, all the chains are neutral, since the ove
neutrality of the PA is an essential condition for the valid
of the Debye-Hu¨ckel approximation. The extreme sensitivi
of the ground state structure to the excess charge, note
Kantor and co-workers@10,11#, and supported by Monte
Carlo ~MC! simulations as well as variational mean fie
571063-651X/98/57~5!/5719~7!/$15.00
l-
ies

k
e

r-

d
te
st
h

e
of

of
pa-

f
-
u-
re

ll

by

calculations @12#, resolves the apparent contradiction b
tween the scaling and the Debye-Hu¨ckel motivated argu-
ments.

To gain some insight into the behavior of PA’s, analog
to charged drops were explored@13–15#: A spherical drop
charged beyond a certain charge, called the Rayleigh ch
QR , which depends on the surface tension and volume of
drop, becomes locally unstable to elongation, since the p
sure difference between the inside and outside of the d
vanishes. Even before the total charge reachesQR , the drop
becomes unstable to splitting into two equal drops. Ad
tional splittings of the drop occur for larger charges. A sim
lar behavior is expected in PA’s charged toQR;AN. Al-
though a PA cannot split, the analogy to charged drops
still be exploited: Constraining the structure to maintain
connectivity by attaching droplets with narrow tubes resu
in a necklace-type structure of droplets connected by strin

For homogeneously charged polymers~polyelectrolytes!,
the charged drop analogy was used@16# to characterize the
structure completely within the necklace model~including
the number of ‘‘beads’’ and ‘‘strings,’’ their sizes, and th
number of monomers in them, for a given temperature a
charge density!. However, trying to apply the necklac
model to quenched PA’s having random charges@13,14#,
several difficulties occur due to the randomness. It w
noted, for instance, that a situation occurs in which m
spherical shapes are unstable, while there is on averag
energetic gain in splitting the sphere into two equal parts
consistent theoretical picture for random PA’s beyond
instability threshold was not found, but a typical PA is co
jectured to be composed of rather compact globules c
nected by long strings. In order to reduce the electrostat
energy, the globules consist of segments of the chain tha
approximately neutral~collapsing according to the Debye
Hückel picture!, while the strings are formed by highl
charged segments.

Since the structure of a randomly charged PA cannot
characterized completely analytically, we turn to numeri
MC methods in order to characterize the ground state of s
PA’s within the necklace model. A key role in the structu
5719 © 1998 The American Physical Society
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5720 57SHAY WOLFLING AND YACOV KANTOR
of randomly charged PA’s is played by the neutral segme
in the chain~forming the beads in the necklace!. We there-
fore apply MC methods to study the neutral segment s
distribution of randomly charged PA’s. The rest of the pap
is organized as follows: In Sec. II, we describe the proces
construction of a ground state for a randomly charged PA
dividing it into neutral segments. We discuss the motivat
for this process, define the important parameters of the p
lem, and compare the process to similar existing models
Sec. III, we investigate the sizes of the globules in the s
gested ground state, including their dependence on the
number of monomers and on other parameters. In Sec.
we discuss effects of finite chains, investigate the dep
dence of the total number of neutral segments in such fi
chains onN, and construct a self-consistent picture of t
structure of the ground state. In Sec. V, we obtain some
the physical characteristics of the constructed ground s
such as its linear size and surface area, and in the Sec. V
discuss our results and compare them to other studies.

II. MODEL—MOTIVATION AND DEFINITIONS

Empirical observations of the energy of randomly charg
PA’s suggested that the quench-averaged energy can be
sented as a sum of condensation, surface, and electro
energies@13,14#:

E52
q0

2

a
N1gS1

Q2

R
, ~1!

whereq0
2/a is ~approximately! the condensation energy ga

per particle (q0 is the typical charge of a monomer anda is
a microscopic distance such as diameter of the monom!,
g;q0

2/a3 is the surface tension, andR is the linear size of
the chain.@In Eq. ~1!, we omitted dimensionless prefactors
order unity.# When the excess chargeQ is very small, the PA
will form a single globule. WhenQ increases, the electro
static forces will overcome the surface tension, and the g
ule will split ~similarly to the splitting of a drop charge
beyond the Rayleigh charge!. Numerical studies sugges
@13–15# that a PA forms anecklaceof weakly charged glob-
ules, connected by highly charged strings. This structure
compromise between the tendency to reduce the surface
~i.e., to form globules! due to surface tension, and the te
dency to expand, in order to reduce the Coulomb interac
caused by the excess charge.

Kantor and Ertas¸ @17–19# attempted to quantify the quali
tative necklace model, by postulating that the ground stat
a PA will consist of a single globule, formed by the longe
neutral segment of the PA, while the remaining part w
form a tail. They investigated the probability that the long
neutral segment in a chain ofN monomers has lengthL. A
probability density was defined and investigated in the lim
whereN,L→`, while the reduced lengthl[L/N is fixed.
The probability density was obtained numerically and inv
tigated analytically, but a complete analytical solution to t
problem was not found. We follow Ref.@17#, and investigate
the problem of the size distribution of neutral segments
randomly charged PA’s by mapping the charge seque
into a one-dimensional random walk~1D RW!. The charge
sequencev5$qi% ( i 51, . . . ,N;qi561) is mapped into a
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sequence of positionsSi(v)5( j 51
i qj (S050) of a random

walker. ~From now on we will measure charges in units
the basic chargeq0, and thereforeqj will be dimensionless.!
The random sequence of charges is thus equivalent to a
a chain segment with an excess chargeQ corresponds to a
RW segment with total displacement ofQ steps, and a neu
tral segment is equivalent to a loop inside the RW. Throu
out the paper we will use the terminologies of random
charged PA’s and RW’s interchangeably.

When the longest neutral segment forms a globule~as
assumed in Refs.@17–19#!, the remaining part of the chain i
very large (;N). It is natural to assume that neutral se
ments on that tail will further reduce the total energy
folding into globules. Eventually, the necklace will consist
many neutral globules. However, there are many ways
which the chain can be divided into neutral segments, and
are interested in a simple unique structure. We therefore s
gest a specific necklace-type structure, and construct t
ground state for a randomly charged PA in the followi
way, depicted in Fig. 1: The longest neutral segment conta
L1 monomers; it compacts into a globule of linear size p
portional toL1

1/3; in the remaining part of the chain the long
est neutral segment~the second longest neutral segment! of
sizeL2 also compacts into a globule, then the third longe
and so on, until the segments become very small~of only a
few monomers!. Generally,Ln denotes the number of mono
mers in thenth longest neutral segment, which compacts in
a globule of radiusLn

1/3. Eventually, all the neutral segmen
are exhausted, and we are left only with strings which ca
the PA’s excess chargeQ, and connect the globules. Th
total number of monomers in the chain is the number
monomers in all the neutral segments, plus the abso
value of the excess charge.~From now on, we will denote by

FIG. 1. An example of a charge sequencev, mapped into a 1D
RW Si(v), and a typical loops structure. Filled circles indicate t
starting and ending points of loops. The longest loop in the RW
eight steps (L158), the second longest loop has six steps (L2

56), L354, andL452. The excess charge~which is equivalent to
the total displacement of the RW! is Q518, and the total length is
N528.
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57 5721MODEL GROUND STATE OF POLYAMPHOLYTES
Q the absolute valueof the excess charge.!
The ground state, generated by this process of lon

neutral segments compacting into globules, does not ne
sarily minimize the total energy of the PA. First of all, th
process does not consider the possibility of weakly char
globules, which can include many more monomers than
neutral globules, thus compensating by surface energy
the additional electrostatic energy. Second, even when
sidering only neutral globules, it is not necessary that
procedure of compacting the longest neutral segment at
step generates the lowest energy state: It is possible that
‘‘medium sized’’ globules will have lower surface energ
than a long one and a very short one~which remains after the
first long segment was already chosen!.

A similar model, describing a breaking of a RW in
loops, is the loop erased self-avoiding walk~LESAW! model
@20#. A LESAW is constructed from a RW, in which an
loop generated by a self-intersection is erased. The LES
model was the subject of intensive study@21–25#, and many
properties of the lengths of the erased loops in it were fou
However, these results do not consider issues of thelongest
erased loops, and are therefore of little help to us.

Division of a charged sequence into neutral or alm
neutral segments played an important role in a determina
of the ground state properties of a model self-interacting r
dom polymer, represented by a directed 1D RW@26,27#.
Both discrete and continuous charge distribution have b
considered, and the resulting ground state resembles a n
lace. In that model, however, all possible divisions into ne
tral segments play a role, while we concentrate on a part
lar division of the charge sequence into neutral segment

Other related models are those of randomly broken
jects @28,29#, in which an object, such as a segment of u
length, is divided into mutually exclusive parts by a se
similar random process. The division of a segment into p
resembles the ‘‘breaking’’ of a RW into loops: The probab
ity densities of the longest segments in some models of
domly broken objects resemble the probability density of
longest loop in Ref.@18#. However, one main difference be
tween models of randomly broken objects and the long
loop problem is that the probabilities of the longest loops
not self-similar.~The probability of a certain fraction of th
chain to form the longest loop and the probability of t
same fraction of the remaining chain to form a second lo
est loop are different.! We will return to this absence o
self-similarity in Sec. III.

III. SIZE DISTRIBUTION OF NEUTRAL SEGMENTS

In order to characterize a PA in the necklace-type l
energy state, made of neutral globules and highly char
strings, we are interested not just in the size distribution
the longest neutral segment, but also in the size distribu
of the second longest segment, the third longest, and so
We examined the statistics of loops in a 1D RW ofN steps,
using MC method for severalN’s, up toN5104. For eachN
we randomly selected 106 sequences. For each sequence
found the lengthsLn of the ~nonoverlapping! loops, and cal-
culated their distributions and averages.

We denote byPN,n(Ln) the probability of thenth longest
loop in a RW ofN steps to be of lengthLn . The average
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length of the longest loop was found@17,18# to be propor-
tional toN. Expecting the same behavior for the length of t
nth longest loop, we define the probability density of thenth
longest loop,

pn~ l n![
N

2
@PN,n~Ln!1PN,n~Ln11!#, ~2!

wherel n[Ln /N. @Note that at least one term in Eq.~2! van-
ishes, since loops can be only of even length. Therefo
definition ~2! includes an average of probabilities forLn and
Ln11 as in the definitions used in continuum limits for di
crete RW’s, in order to prevent even-odd oscillations.# For
small N’s this definition ofpn( l n) still depends onN, but in
the N,Ln→` limit it becomes a function of onlyl n . Nu-
merical evidence of theN independence ofp1( l 1) for N→ `
was presented in Ref.@18#. MC results forpn( l n) for several
values ofn indicate that the probability densities are virtual
independent ofN @30#. For smallN and largen, the prob-
ability densitypn( l n) depends onN, sinceLn’s are short, and
continuum limit is expected only whenLn@1. In order to
overcome the effects of finiteN, we determined theN de-
pendence of̂ Ln&, through an extrapolation of the slopes
the linear fits of ln̂Ln& vs lnN to N→`. For any givenn we
calculated, through a local linear fit, slopes for several val
of N, and estimated them atN→` limit. Furthermore, it can
be proven analytically@30# that the probability density of the
longest loop is ‘‘universal,’’ i.e., for long RW’s, it does no
depend on the number of steps, or on details of a single s

Sincepn( l n) areN independent, we can investigate the
for any given~large enough! N. The probability densities of
the five longest loops in a chain are depicted in Fig. 2
N51000. Several properties ofpn( l n) are evident from this
figure. The probability densityp1( l 1) was shown@18# to
have a square root divergence atl 151, and a discontinuous
derivative atl 15 1

2. When the length of the first loopL1 in a
specific chain is long, then the lengths of the other loopsLn

FIG. 2. Probability densities of the five longest loops from rig
to left @p1( l 1)—thick points; p2( l 2)—solid line; p3( l 3)—dashed
line; p4( l 4)—dot-dashed line;p5( l 5)—dotted line#, as functions of
l n5Ln /N from MC results of 106 random sequences of lengthN
51000.
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5722 57SHAY WOLFLING AND YACOV KANTOR
~for n.1) in that chain must be short, since the total leng
of all the loops cannot exceedN. Therefore, since in many
chains the length of the longest loop is almost equal toN @as
indicated by the divergence ofp1( l 1) when l 1→1], the
lengths of the other loops approach zero. This is evid
from the divergence ofpn( l n) when l n→0 for all n.1. Be-
cause in any specific chain the length of thenth longest loop
is shorter than the length of thekth longest loop, forn.k,
the divergence ofpn( l n) near zero is stronger for largen.
Since the probability densitiespn( l n) are normalized sepa
rately for eachn, then any two of them must intersect@i.e.,
pn( l n) always intersectspn8( l n8) for nÞn8]. The length of
the second longest loop never exceeds the length of the
longest loop, and the sum of their lengths never exceedN.
Therefore, the length of the second longest loop cannot
ceed half the length of the chain. Consequently,l 2< 1

2 for all
the chains, andp2( l 2) vanishes identically forl 2. 1

2. Simi-
larly we can show thatl n<1/n for all n and pn( l n)50 for
l n.1/n.

We note thatp2( l 2) is qualitatively similar to the prob-
ability densities of the length of the second segment in
ferent models of randomly broken objects@28,29# @see Figs.
1~b! and 3~b! in Ref. @28##. However, the probability densi
ties of the length of the second segment in Ref.@28# have
strong singularities~of the first derivative! at l 25 1

4, and are
shown to have singularities atl 251/k for all integersk>2.
All the probability densitiespn( l n) of the longest loops have
a singularity when they become identically zero@pn( l n) van-
ishes forl n.1/n, and therefore is nonanalytical atl n51/n].
It is possible that, due to the singularity inpn8( l n8), at 1/n8
all the other probability densitiespn( l n) ~for n,n8) also
have singularities at 1/n8, since all the probability densitie
are dependent. Apparently, these singularities do not cau
discontinuity of the first derivative, and, therefore are n
visible in the numeric data. In several models of random
broken objects@28,29#, the probability densities of the lengt
of the nth segment have singularities atl 51/n8 ~for n
<n8). These singularities are due to a self-similar proce
which leads to a different analytical expression for the pr
abilities on each interval 1/(n811), l ,1/n8. Since the ran-
dom process of generating the longest loops in our proce
not self-similar~as indicated in Sec. II!, the reason for the
singularities in the models of randomly broken objects d
not hold in the case of thenth longest loop~as was suggeste
in Ref. @31#!. Therefore, the probability of thenth longest
loop does not necessarily have singularities at valuesl
51/n8.

Since in any specific RW,L1>L2>•••>Ln , the average
length of thenth longest loop̂ Ln& decreases~for fixed N)
with increasing loop numbern. There is no typical scale in
the problem, and we may expect a power law depende
^Ln&;Nn2a, with a.0. The total number of steps in all th
loops in any given RW cannot exceedN ~i.e., (nLn<N),
and therefore(n^Ln&<N. The convergence of the sum
means thata.1. In Fig. 3, we depict the average reduc
length^ l n& vs n on a logarithmic scale. To avoid systema
errors due to finiteN, each value of̂ l n& in the graph was
determined through an extrapolation: For eachn, we plotted
^ l n& vs 1/N, and found the extrapolated value of^ l n& near
1/N50. These values of̂ l n& are depicted in Fig. 3. The
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linear fit to the data points has a slope of22.360.4. We
therefore conclude that, asN→`,

^Ln&;
N

na

where
a52.360.4. ~3!

In Sec. IV, we will argue thata52, which is within the error
limits of Eq. ~3!.

IV. NEUTRAL SEGMENTS IN FINITE CHAINS

So far we have discussed only long chains and their pr
erties in theN→` limit. There are several differences be
tween the properties of infinitely long chains and finite s
chains. First of all, in finite size chains the monomers that
not belong to any neutral segment constitute a finite par
the chain, as opposed to a vanishing part asN→`. Second,
in infinitely long chains the number of neutral segments
infinite, while for finite N at some point there are no mor
neutral segments.

Let us consider the total number of monomers which
not belong to any neutral segment, for finiteN. It is easily
shown that the number of monomers left out from all t
neutral segments in any specific random sequence is ex
Q, the absolute value of the excess charge of the corresp
ing PA: The excess charge cannot exceed the numbe
monomers left out, because, by definition, the neutral s
ments do not have excess charge. On the other hand, a
monomers left out from the neutral segments must be pa
the excess charge: If, for instance, a PA has excess pos
charge, then no negative charge can be left out from all
neutral segments.~If there had been a group of negativ
charges, it would have joined a group of positive charges
make a neutral segment, or together with a group of posi
charges, would have joined an existing neutral segment
make it longer!. Since the rms excess charge of a random
charged sequence ofN charges of61 is equal toAN, the
rms number of monomers not in any neutral segment in
chain is also equal toAN, becoming a vanishing fraction o
the chain asN→`.

FIG. 3. Logarithm of the average reduced length of thenth
longest loop as a function of the logarithm of loop numbern.
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57 5723MODEL GROUND STATE OF POLYAMPHOLYTES
At some point, the process of search for the next long
loop exhausts all the loops in the RW. We investigate t
stage in the process, by analyzing the numbernf of loops in
a RW. WhenN is infinite, the average length of thenth
longest loop is given bŷLn&;Nn2a. Application of this
equality for finiteN’s would predict, for large enoughn’s,
^Ln&<1. Since this is not possible~the minimal length of a
loop is two steps!, we argue that Eq.~3! is valid, for finite
N’s, only to describe the average lengths of the longesnf
loops. There is no typical scale to the problem of the to
number of loops, and we therefore expect a power law
pendence of̂ nf& on N. The length of the last loop, for al
chain lengths, is usually very short~consisting of only few
positive and negative charges!, having a length independen
of N, i.e., ^Lnf

&;N0, which means that̂ l nf
&;N21. Since

^ l nf
&;nf

2a @substitutingn5nf in Eq. ~3!#, we can expect

^nf&;Ny

where

y5
1

a
. ~4!

Substitutinga from Eq. ~3! leads to a value ofy50.43
60.09. Investigating numerically the dependence of^nf& on
N, we found thaty50.4660.06, which is within the error
limits of the value predicted by Eqs.~3! and ~4!.

At the end of this section we will argue thata52 andy
50.5, values which are within the error limits of those d
duced from the numeric data. In order to confirm the^nf&
;AN relation, in Fig. 4 we show the probability density
nf divided byAN for several chain lengths (N5102 to 104!.
The division by AN causes a reasonable collapse of
graphs for different values ofN to a single function, which is
~almost! N independent. We see that the probability dens
has a maximum whennf /AN is close to zero~the most prob-
able value ofnf is finite and independent ofN), and it de-
creases to zero with increasingnf /AN.

FIG. 4. Probability density ofnf , the total number of loops in a
chain, divided byAN, for N5100, 300, 500, 1000, 3000, 5000, an
10 000~from right to left!.
st
s

l
e-

-

e

y

Knowing the statistical properties of the chain, we try
construct a self-consistent complete picture, in which o
numerical results fit together. We know that the total leng
of all the loops ((n51

nf Ln) is equal to the entire length of th
chain minus the steps not in any loop~which are the excess
charge, which are on the averageAN). Dividing this equality
by N, taking an average over the random sequences, we
tain

12K (
n51

nf

l nL ;
1

N1/2
. ~5!

On the other hand, from Eqs.~3! and ~4! we know that,
omitting constants of order unity:

K (
n51

^nf &

l nL 5 (
n51

^nf &

^ l n&.E
n51

Ny

n2adn;12Ny~12a!. ~6!

Comparison of the powers ofN in Eqs.~5! and ~6! leads to

y5
1

2~a21!
, ~7!

which, together with Eq.~4! is satisfied by

a52, y5 1
2 . ~8!

These equalities are satisfied by the values ofy50.46
60.06, anda52.360.4 obtained numerically, and const
tute a self-consistent picture, in which the average conform
tional properties of the constructed ground state fit togeth

V. PHYSICAL PROPERTIES OF THE GROUND STATE

In this section we investigate some of the physical ch
acteristics of the constructed ground state of random
charged PA’s. We focus on the linear sizeR and on the
surface areaS of the proposed ground state, trying to expla
their dependencies onN through the self-consistent pictur
constructed in Sec. IV. We defineR, the linear size of the
chain, according to the picture of Fig. 1: The neutral se
ments in the chain compact into globules~each with a linear
size of Rsegment;Lsegment

1/3 ). If all the globules are linearly
packed, then the total linear size is the sum of the linear s
of all the globules (R5(Rsegment). The linear size of the
chain must include the monomers not in any neutral segm
~the strings in the necklace, which are the absolute value
the total excess chargeQ). We therefore obtain a means t
describe the chain’s size:

R[ (
n51

nf

Ln
1/31Q. ~9!

~Here, and throughout this section, we omit prefactors
order unity.! It is evident that the generated state captu
some essential features of the ground state suggested b
necklace model: The necklace type structure is compact~i.e.,
R;N1/3) when the PA is neutral~the longest neutral segmen
is the entire chain! or has very small excess charge, a
begins to stretch as the excess charge increases~the charged
strings become longer!. Finally, the PA becomes completel
stretched~i.e., R;N) for the fully charged polymer.

Investigating the average chain’s linear size depende
on N, we obtain the dependence



ce

nt

R

,

te

ar
-

e
o

po
eg
W

n
ks’’
l

l of
rib-
.

or-

r
en-

in

-

neu-

ruc-

uc-

-
y is

c

ery
d of

ture
to

,
w-

ops
a-

.

5724 57SHAY WOLFLING AND YACOV KANTOR
^R&;Nn

where

n50.5060.01. ~10!

Figure 5 depicts the probability density ofR, divided byAN
for several values ofN. From the data collapse we dedu
that theN dependence in Eq.~10! is valid not just for the
average linear size, but represents a scaling of the e
probability density. Then. 1

2 power in Eq.~10! means that
the chain is not compact~although the distribution is
‘‘peaked’’ near the lowest possible value ofR), and is not
completely stretched, but has a linear size as an ideal
with N steps.

We can explain the dependence in Eq.~10!, by assuming
that (n^Ln

1/3& and (n^Ln&
1/3 have the sameN dependence

and by using the power laws of^nf& and^Ln& @Eqs.~3! and
~4!#, with a52 andy5 1

2 @Eq. ~8!#:

(
n51

nf

^Ln
1/3&; (

n51

^nf &

^Ln&
1/3;E

n51

Ny S N

naD 1/3

dn;N0.5. ~11!

In order to confirm this dependence, we investiga
^(n51

nf Ln
1/3& as a function ofN, and found the power law

dependence with exponent 0.4960.02, in accordance with
the prediction of Eq.~11!. We see that the average line
chain size^R& in Eq. ~9! is a sum of two terms, each pro
portional toAN.

Similarly to the definition ofR, we can define the surfac
areaS of the chain. Each neutral segment compacts int
globule of surface area;Lsegment

2/3 , all the globules are lin-
early packed, and the surface area of the strings is pro
tional to the number of monomers not in any neutral s
ment, which is the absolute value of the excess charge.
can therefore define

FIG. 5. Probability density ofR, the linear size of the entire
chain, for several chain lengths:N5100 ~dotted line!, 300 ~dot-
dashed line!, 1000 ~dashed line!, 3000 ~solid line!, and 10 000
~thick points!. The minimal possible value ofR (R05N1/3) is sub-
tracted fromR, and the result is divided byAN to collapse the data
ire

W

d

a

r-
-
e

S[ (
n51

nf

Ln
2/31Q. ~12!

The absolute valueQ of the excess charge in the definitio
~12! can be viewed either as the surface area of the ‘‘nec
of the necklace~in the language of continuum drop mode!,
since their diameter is of order unity~one monomer in diam-
eter! or as the loss of condensation energy due to remova
the necks from the globules. In either case, this term cont
utes to the energy a termQ, which we shall see is negligible
S can have values ranging fromN2/3, for a neutral chain, to
N, for a completely charged chain. These limits indeed c
respond to the expected behavior of PA. ObviouslyS>N2/3.
We analyzed theN dependence ofS, and found that

^S&;N0.6760.01. ~13!

When we subtract fromS its minimal value, and divide the
result byN2/3, we obtain a distribution which is identical fo
all N. This dependence means that the average surface
ergy of the generated structure has the sameN dependence
as the surface energy of a single compact globule~or several
compact globules, each containing a finite part of the cha!.
From the same arguments that led to Eq.~11!, we obtain

^S&5^Q&1 (
n51

^nf &

^Ln&
2/3;AN1E

n51

Ny S N

naD 2/3

dn;N2/3.

~14!

This power ofN is in accordance with the numerically ob
tained value of 0.6760.01, and indicates that theN depen-
dence of the average surface area is determined by the
tral segments~i.e., the beads in the necklace!, and is not
affected by the excess charge~the strings in the necklace!.

We investigated the expressionS1 (Q2/R), which has
the sameN dependence as the energy of the generated st
ture. @We considered the energy terms of Eq.~1!, and omit-
ted the condensation term, since it is the same for all str
tures of a givenN]. Exploring the N dependence ofS
1 (Q2/R) ~denoted asE), we found that

^E&[ K S1
Q2

R L ;N0.6660.01. ~15!

When subtracting fromE its minimal value and dividing the
result byN2/3, we obtain a probability density which is iden
tical for all N. This dependence means that the total energ
very low: The surface energy term (S) obtains its minimal
value (;N2/3), and R;N1/2, thus bringing the electrostati
energy term to a point where it does not affect theN depen-
dence of the total energy. The total energy behaves v
much like the surface energy, as if the chain is constructe
a single compact neutral globule.

VI. CONCLUSIONS AND DISCUSSION

We have studied the properties of a conjectured struc
of randomly charged PA’s in the ground state. According
the necklace model@13,14#, in the ground state of PA’s
neutral segments in the chain compact into globules. Follo
ing Ertaşand Kantor@17,18#, we have mapped the problem
of longest neutral segments to the problem of longest lo
in 1D RW’s, and applied numerical methods along with an
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lytical estimates to study the size distribution of longe
loops.

Since we believe that a structure of PA’s based on
necklace model has a very low energy, we suggested a
cific detailed necklace-type structure for polyampholytes
the ground state, and numerically obtained its conform
tional and physical properties~the number and sizes of bead
and strings in the necklace, the spatial extent, the sur
area, and the energy!. This structure is compact when th
chain is neutral or weakly charged, and stretches as the c
becomes charged. We have found that the ground state s
ture has a very low energy, which depends on the numbe
monomers as the energy of a single compact neutral glob
We have also shown that the unrestricted average of the
ear size of the polymer in the ground state depends on
number of monomers as the linear size of an ideal ch
with a critical exponent ofn50.5060.01. Although the
qualitative behavior of our distribution for the linear size
similar to this obtained in Ref.@15# ~it is peaked near its
smallest possible value, and has a tail, which determines
asymptotic behavior ofn), Kantor and Kardar@15# con-
cluded that the average linear size increases withN at least
as fast as a self-avoiding walk~i.e., n.0.6). We believe that
it is worthwhile to slightly alter the way in which compac
-

t
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n
-

ce

ain
uc-
of
le.
n-
he
n,

he

globules are formed within our model~by allowing for
weakly charged globules or by not forcing all the neut
segments to completely compact!, in order to try to repro-
duce this ‘‘swelling’’ of the average chain.

The investigation of the size distribution of neutral se
ments through the analogy to 1D RW’s, was limited to
particular class of RW’s, in which a unit displacement a
pears at each step~i.e., each monomer in the chain is charg
61). In a future publication@30#, we will define the problem
of longest loops in the limit where the RW becomes a tr
Gaussian walk, and prove through a scaling process the
versality of the probability densities of longest loops. Th
universality means that the probability densities of long
loops are independent of the number of steps and of
nature of the single step of the RW. Therefore, the res
obtained for a specific case of randomly charged PA’s
valid for all randomly charged polymers, in which~for long
chains! the charge distribution is an unbiased Gaussian.
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