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Two-dimensional polymers with random short-range interactions
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We use complete enumeration and Monte Carlo techniques to study two-dimensional self-avoiding polymer
chains with quenched ‘‘charges’’61. The interaction of charges at neighboring lattice sites is described by
qiqj . We find that a polymer undergoes a collapse transition at a temperatureTu , which decreases with
increasing imbalance between charges. At the transition point, the dependence of the radius of gyration of the
polymer on the number of monomers is characterized by an exponentnu50.6060.02, which is slightly larger
than the similar exponent for homopolymers. We find no evidence of freezing at low temperatures.
@S1063-651X~97!50508-3#
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A polymer in a solvent is subject to monomer-monom
interactions which consist of a short-range repulsion an
slightly longer-range attraction. At high temperatures~or
good solvent conditions!, the repulsive interactions are dom
nant, and the polymer is swollen: Its radius of gyrationRg
scales with the number of monomersN as Rg;Nn, with
n.1/2. As temperatureT is lowered~or solvent conditions
worsen!, a point is reached, called theu point, where the
repulsive and attractive interactions effectively cancel a
the polymer scales, for space dimensionsd>3, like an ideal
random walk (n50.5) @1,2#. For T smaller than the transi
tion temperatureTu , the attractive interactions prevail an
the polymer collapses into a compact shape, withn51/d.
Such homopolymersare often modeled by self-avoidin
walks ~SAW’s! on a discrete lattice, with the attractive inte
actions included by introducing a negative energy for e
pair of monomers residing on neighboring lattice sites. N
merous Monte Carlo~MC! and exact enumeration studies
the u point have been performed@3–5#.

The collapse transition ofheteropolymersis particularly
interesting in view of its possible relation to the problem
protein folding @6,7#. While models based on random he
eropolymers significantly oversimplify the complexity o
real proteins, they bring in fresh perspectives from the sta
tical mechanics of random systems and spin glasses@8,9#. A
question of high interest~with no definite answer! is whether
the interactions between different monomer types
modify the collapse transition of a polymer@10#. Another
interesting feature of heteropolymer chains concerns
compact state: Is there a freezing transition at some temp
ture Tf(,Tu), below which the configurational entropy pe
monomer vanishes, and few conformations with low ene
dominate@9,11#. This freezing transition is assumed to b
analogous to the glass transition in Derrida’s random ene
model~REM! @12#, although this analogy is not always val
@13#.

We study self-avoiding polymer chains on a tw
dimensional ~2D! square lattice. Each polymer chain
formed from two types of monomers, with charg
qi561. The interaction Hamiltonian is

HI5
1
2 (

i , j
qiqjD i j , ~1!
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whereD i j 51 if monomersi and j are located on adjacen
lattice sites andD i j 50 otherwise. The homogeneous repu
sion is imposed by the constraint of self-avoidance. T
Hamiltonian is a particular case of the one introduced
Obukhov @14#. It should be noted, that in our Hamiltonia
like charges repel, in contrast to most similar models@15#
which try to simulate hydrophobic effects. The use of a 2
system enables us to investigate longer chains than in
models@16#, and thus examine aspects not studied befo
We find that a polymer undergoes au transition, with a criti-
cal exponentnu50.6060.02, which is slightly larger than
the value for the homopolymer case, meaning that hetero
neity is a significant perturbation in this model. For a po
mer with unbalanced numbers of positive and negat
charges (N1ÞN2) we find thatTu decreases, and eventual
vanishes, with increasing the excess charges frac
X[uN12N2u/N ~see Fig. 1!. Finally, we explore the ground
state and the energy landscape of a neutral~i.e., X50) poly-
mer, in an attempt to find evidence for the existence o
glasslike freezing transition for such a polymer. We do n
find much evidence for this transition, a result which is
accordance with theoretical predictions for our model.

FIG. 1. Phase diagram of a random heteropolymer in the pl
of temperature (T) and excess charge (X). Vertical bars indicate
estimated uncertainties inTu . The lighter shaded area indicatesX
values where the results are rather ambiguous, due to the poor
ity of the MC results.
R1318 © 1997 The American Physical Society
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Following Kantor and Kardar@16#, we study polymers
with quenched heterogeneity and a fixed number of mo
mersN. The calculation of thermodynamic quantities is pe
formed as follows: For chain lengths of up to 15 steps~16
monomers!, we completely enumerate all possible spat
conformations, and average over all possible charge
quences~quenches! for a givenX. The number of the spatia
conformations grows exponentially withN @17#. However,
we take advantage of lattice symmetries to reduce the n
ber of independent configurations. Thus, for a 16-monom
neutral chain we have to enumerate 802 075 different c
figurations ~unrelated by symmetry!, and average furthe
over 12 870 quenches, giving;1010 possibilities. For chain
lengths of up to 23 steps, we still enumerate all conform
tions, but average over a limited number~20–100! of
quenches. For chains of up toN5100, we use MC simula-
tions, applying the ‘‘pivot’’ algorithm@18#.

FIG. 2. Expanded and collapsed configurations of a neutral
monomer polymer atT52 ~top! andT50.6 ~bottom!, obtained by
MC simulation. Oppositely charged monomers are denoted by d
and light solid circles.

FIG. 3. Squared radius of gyration, divided by chain length,
neutral polymers. Distances are measured in lattice constants,
perature is normalized by monomer interaction energy. Curves
for all quenches~unless stated otherwise! and the following number
of monomers~from bottom right!: 6, 8, 10 , 12, 14, 16, 18~100
quenches!, 20 ~100 quenches enumeration, 50 quenches MC!, 22
~100 quenches!, 24 ~20 quenches!, 26 ~50 quenches!, 36 ~25
quenches!, 50 ~10 quenches!, 80 ~10 quenches!, 100~10 quenches!.
Solid lines represent results of enumeration, connected circles
resent results of Monte Carlo simulation.
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The presence of a collapse can be clearly seen in Fig
depicting two conformations of a 50-monomer neutral po
mer, sampled by the MC procedure at high and low tempe
ture. We expect the polymer to be SAW-like~with
nSAW50.75) at high temperature, and become comp
(ncompact51/d50.5) when we lower the temperature. Thu
Rg

2/N;const in the collapsed state andRg
2/N;N0.5 in the

swollen state. Temperature dependence ofRg
2/N for various

N’s, depicted in Fig. 3, indeed exhibits such behavior. T
presence of a phase transition is also indicated by the pea
the heat capacity, as shown in Fig. 4. The peak grows
slightly shifts toward higher temperatures with increasi
N. Our results bear qualitative resemblance with the kno
behavior of homopolymers~see, e.g.,@4#!.

We cannot use the simple method used to findTu in the
3D case@16#, which is to observe the intersection of th
graphs ofRg

2/N vs T for different N’s ~using the facts that
nu5n ideal50.5 andnSAW.nu.ncompact). This is because in
the 2D case,ncompact5n ideal50.5. Moreover, unlike in 3D, it
is believed that for 2D,nu.n ideal @2,19#, and the 2D value of
nu is not knowna priori. The method we use to estima
Tu andnu is based on the observation, made by de Genn
that theu point is a tricritical point @2,20#. Based on the
general theory for tricritical phase transitions, it has be
shown theoretically@2,21# and verified numerically for ho-
mopolymers @3,4# that Rg for different temperatures an
chain lengths can be described using a single scaling fu
tion:

Rg
2/N2nu5 f 6~Nft!, ~2!

for N@1 andt!1, wheret[uT2Tuu/Tu andf is a cross-
over exponent. The scaling functionf 6(x) should have the
following limits:

f 6~x!}H const forx→0

x2~nSAW2nu!/f for x→`, T.Tu,

x2~ncompact2nu!/f for x→`, T,Tu .
~3!

It is easily seen that the asymptotes off 6(x) at high and low
temperatures reconstitute the behavior of a SAW and o
compact chain, respectively.
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FIG. 4. Heat capacity divided by chain length, for neutral po
mers. For details of chains see Fig. 3.
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Figure 5 depicts the scaling functionRg
2/N2nu vs the scal-

ing variableNft, using data of all chain lengths~7–99! for
temperatures satisfyingt<0.25, and choosing the param
etersTu , nu , andf so that the points fall on two convergin
lines as required. As seen in the figure, a very good d
collapse is achieved forTu50.83 andnu50.60, and the re-
sulting lines also approach the slopes of the theoretical
ymptotes. It should be further pointed out that the scal
behavior is found to be very sensitive to the value ofnu ,
slightly less to the value ofTu , and quite insensitive to the
choice off. After examining numerous figures of the like o
Fig. 5, using various parameter values, we evaluate the t
sition parameters to be Tu50.8360.02 and
nu50.6060.02, where the errors were estimated accord
to the parameter values where data did not collapse anym
~according to our subjective judgment!. We verify these val-
ues by plottingRg

2/N2nu vs T for various chain lengths~Fig.
6!. The curves should intersect atT5Tu ~because
nSAW.nu.ncompact). This is indeed what happens, with
the estimated errors of the parameters and of the simul
data.

Our value ofnu seems to be larger than the 2D homopo
mer value, for which most estimates lie in range 0.51–0
@19#. In order to support this claim, we have used our o
enumeration and MC procedures~properly altered! to simu-
late homopolymers, and found thatnu

homo50.5560.01.
Therefore, our conclusion is thatnu

hetero.nu
homo. Simple di-

mensional arguments show that randomness is margin
relevant for ideal polymers in 2D. One might expect th
swelling of the chain at theu point will render randomnes
irrelevant. Beyond simple arguments@10# no extensive
analysis of the problem has been performed.

What happens to the collapse transition if the charges
the chain are not exactly balanced? We have repeated
procedures described above for increasing values of ex
chargeX. A decrease inTu is observed with increasingX, up

FIG. 5. Logarithmic plot ofRg
2/N2nu vs Nft, close to the tri-

critical temperature. Data from chain lengths 7–99 is used, w
values of t up to 0.25. Parameters used:nu50.60,
Tu50.83,f50.636. Dots denote enumeration data, circles den
MC data. Dashed lines show theoretical asymptotes@Eq. ~3!#, with
amplitude fitted to data.
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to a valueX'0.6 where the collapse vanishes and SA
behavior prevails at all temperatures. The phase diagram
(X,T) plane~Fig. 1! is similar to that obtained for 3D@16#.

Finally, we have attempted to find evidence of a freez
transition for a neutral polymer, analogous to the glassl
transition occurring in the random energy model, which w
observed for other heteropolymer models@11#. An indicator
of the transition @11# is the parameterx(T)[12(kpk

2 ,
where pk is the normalized Boltzmann weight of a give
conformationk. x(T) characterizes the number of conform
tions which are thermodynamically relevant at a given te
perature, and in the case of a freezing transition it sho
decrease—when averaged over all quenches—fromx'1 at
the freezing temperatureTf to x'0 atT50. Investigation of
our model, however, shows thatx(T) does not reach zero
value even atT50, due to the degeneracy of the groun
state. In addition, the decrease inx occurs in the same tem
perature range where the polymer collapses, meaning tha
decrease in number of relevant conformations comes ma
from the folding—as is the case of homopolymers. Anoth
attempt to validate the analogy with the REM was done
examining the similarity between the degenerate ground s
conformations of a randomly chosen polymer. The similar
between each two configurations was characterized by
number of monomer pairs which are nearest neighbors
both of the configurations@11#. It was found that, on the
average, there is indeed a significant dissimilarity betwe
ground state conformations. However, this dissimilarity
not pronounced enough to declare that the ground states
definitely ‘‘structurally different,’’ as is the case in the REM

We note that the seeming absence of a freezing trans
in our model may come from specific features of this mod
The lack of a strong attractive homopolymeric term in t
Hamiltonian, which would lead to the formation of a ‘‘mo
ten globule,’’ and a lack of sufficient heterogeneity in th
monomer-monomer interaction. These two may be requ
in order to achieve an analogy between a heteropolymer
the REM, and are usually included in model studies, b
analytical and numerical, which exhibit a freezing transiti
@22#. In addition, it appears@7,23# that formation of a unique

h

te

FIG. 6. Rg
2/N2nu vs temperature, for neutral polymers of leng

7–99 ~for details see Fig. 3!. The graphs intersect at theu point.
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structure in heteropolymers is very sensitive to space dim
sionality, withd52 being a marginal and nonuniversal ca
that strongly depends upon the type of lattice, type of int
action and so on.

In conclusion, we have investigated a 2D lattice mode
polymers, with a quenched random short-range interact
We have seen that a neutral polymer undergoes a tricri
u transition with a critical exponentnu50.6060.02, a value
that seems to be higher than the homopolymer value. S
the difference is rather small, further MC studies with larg
N, and renormalization-group studies, are needed to ve
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the difference between the exponents. For non-neu
polymers, we have observed a decrease in theu temperature
with increasing excess charge, until the collapse disapp
and SAW behavior prevails at all temperatures. Fina
we did not find evidence for the existence of a glassl
freezing transition for a neutral polymer, a result whi
seems to be in accordance with theoretical predictions
this model.
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