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Two-dimensional polymers with random short-range interactions
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We use complete enumeration and Monte Carlo techniques to study two-dimensional self-avoiding polymer
chains with quenched “charges®* 1. The interaction of charges at neighboring lattice sites is described by
g;q;. We find that a polymer undergoes a collapse transition at a temperBjyrevhich decreases with
increasing imbalance between charges. At the transition point, the dependence of the radius of gyration of the
polymer on the number of monomers is characterized by an expeper@.60+0.02, which is slightly larger
than the similar exponent for homopolymers. We find no evidence of freezing at low temperatures.
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A polymer in a solvent is subject to monomer-monomerwhereA;; =1 if monomersi andj are located on adjacent
interactions which consist of a short-range repulsion and #attice sites and\;;=0 otherwise. The homogeneous repul-
slightly longer-range attraction. At high temperatur@s  sion is imposed by the constraint of self-avoidance. This
good solvent conditionsthe repulsive interactions are domi- Hamiltonian is a particular case of the one introduced by
nant, and the polymer is swollen: Its radius of gyratRy  Obukhov[14]. It should be noted, that in our Hamiltonian
scales with the number of monomeké as Ry;~N", with like charges repel, in contrast to most similar moddl§]
v>1/2. As temperaturd is lowered(or solvent conditions which try to simulate hydrophobic effects. The use of a 2D
worsen, a point is reached, called the point, where the system enables us to investigate longer chains than in 3D
repulsive and attractive interactions effectively cancel andnodels[16], and thus examine aspects not studied before.
the polymer scales, for space dimensidas3, like an ideal We find that a polymer undergoewaransition, with a criti-
random walk ¢=0.5) [1,2]. For T smaller than the transi- cal exponentr,=0.60+=0.02, which is slightly larger than
tion temperaturel ,, the attractive interactions prevail and the value for the homopolymer case, meaning that heteroge-
the polymer collapses into a compact shape, withl/d.  neity is a significant perturbation in this model. For a poly-
Such homopolymersare often modeled by self-avoiding mer with unbalanced numbers of positive and negative
walks (SAW’s) on a discrete lattice, with the attractive inter- charges N, # N_) we find thatT ;, decreases, and eventually
actions included by introducing a negative energy for eaclvanishes, with increasing the excess charges fraction
pair of monomers residing on neighboring lattice sites. NuX=|N, —N_|/N (see Fig. L Finally, we explore the ground
merous Monte CarléMC) and exact enumeration studies of state and the energy landscape of a nelt®l, X=0) poly-
the @ point have been performd&-5]. mer, in an attempt to find evidence for the existence of a

The collapse transition dfieteropolymerss particularly  glasslike freezing transition for such a polymer. We do not
interesting in view of its possible relation to the problem of find much evidence for this transition, a result which is in
protein folding[6,7]. While models based on random het- accordance with theoretical predictions for our model.
eropolymers significantly oversimplify the complexity of
real proteins, they bring in fresh perspectives from the statis- 1
tical mechanics of random systems and spin glaE&&: A
guestion of high interegtvith no definite answers whether 0.8
the interactions between different monomer types can
modify the collapse transition of a polymgiO]. Another
interesting feature of heteropolymer chains concerns the
compact state: Is there a freezing transition at some tempera- +
ture T;(<T,), below which the configurational entropy per
monomer vanishes, and few conformations with low energy
dominate[9,11]. This freezing transition is assumed to be
analogous to the glass transition in Derrida’s random energy
model(REM) [12], although this analogy is not always valid I
[13]. : o

We study self-avoiding polymer chains on a two- 0.2 0.4 X 0.6 0.8 1
dimensional (2D) square lattice. Each polymer chain is

formed from two types of monomers, with charges pig. 1. phase diagram of a random heteropolymer in the plane
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gi=*1. The interaction Hamiltonian is of temperature T) and excess chargeX]. Vertical bars indicate
estimated uncertainties ifiy,. The lighter shaded area indicatés
H,=1 2 aigi A (1) values where the results are rather ambiguous, due to the poor qual-
< HiMj=ij s
0]

ity of the MC results.
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FIG. 2. Expanded and collapsed configurations of a neutral 50-
monomer polymer at =2 (top) and T= 0.6 (botton), obtained by
MC simulation. Oppositely charged monomers are denoted by dark
and light solid circles.

T
FIG. 4. Heat capacity divided by chain length, for neutral poly-
Following Kantor and Kardaf16], we study polymers mers. For details of chains see Fig. 3.
with quenched heterogeneity and a fixed number of mono- o
mersN. The calculation of thermodynamic quantities is per- ~The presence of a collapse can be clearly seen in Fig. 2,
formed as follows: For chain lengths of up to 15 stép8 depicting two conformations of a 50-monomer neutral poly-
monomery we completely enumerate all possible spatialMer, sampled by the MC procedure at high and low tempera-
conformations, and average over all possible charge sdure. We expect the polymer to be SAW-likewith
quencegquencheksfor a givenX. The number of the spatial ¥saw=0.75) at high temperature, and become compact
conformations grows exponentially with [17]. However,  (Ycompac= 1/d=0.5) when we lower the temperature. Thus,
we take advantage of lattice symmetries to reduce the nunR3/N~const in the collapsed state aff/N~N°%in the
ber of independent configurations. Thus, for a 16-monomeswollen state. Temperature dependenc&®gN for various
neutral chain we have to enumerate 802 075 different conN’s, depicted in Fig. 3, indeed exhibits such behavior. The
figurations (unrelated by symmetly and average further presence of a phase transition is also indicated by the peak in
over 12 870 quenches, giving10'° possibilities. For chain the heat capacity, as shown in Fig. 4. The peak grows and
lengths of up to 23 steps, we still enumerate all conformaslightly shifts toward higher temperatures with increasing
tions, but average over a limited numbé20-100 of  N. Our results bear qualitative resemblance with the known
quenches. For chains of up =100, we use MC simula- behavior of homopolymertsee, e.g.[4]).

tions, applying the “pivot” algorithm[18]. We cannot use the simple method used to findn the
3D case[16], which is to observe the intersection of the
0.7 - ' - graphs ofRS/N vs T for different N’s (using the facts that
o ~ V= Vigea—= 0.5 andvsaw™ 7> Veompad . This is because in
06l 4o ] the 2D caseycompact Videa= 0.5. Moreover, unlike in 3D, it
is believed that for 2Dy ;> vgea[2,19], and the 2D value of
05 vy is not knowna priori. The method we use to estimate
' T, andv, is based on the observation, made by de Gennes,
pd that the @ point is atricritical point [2,20]. Based on the
o 04 general theory for tricritical phase transitions, it has been
« shown theoretically2,21] and verified numerically for ho-
0.3¢ mopolymers([3,4] that Ry for different temperatures and
chain lengths can be described using a single scaling func-
0.2 tion:
RG/NZ"o=f. (N¢7), 2
0.1 : ‘ ‘
0 0.5 1 15 2 for N>1 andr<1, wherer=|T—T,|/T, and ¢ is a cross-

over exponent. The scaling functidn.(x) should have the

FIG. 3. Squared radius of gyration, divided by chain length, forfollowing limits:
neutral polymers. Distances are measured in lattice constants, tem-
perature is normalized by monomer interaction energy. Curves are
for all quenchegunless stated otherwisand the following number f.(x)o x2(rsaw=vo)ld for x o0, T> Ty, &)
of monomers(from bottom righy: 6, 8, 10 , 12, 14, 16, 18100 -
quenchers 20 (100 quenches enumeration, 50 quenches),MA2
(100 quenches 24 (20 quenches 26 (50 quenches 36 (25
quenchek 50 (10 quenches 80 (10 quenches 100 (10 quenches It is easily seen that the asymptotesfofx) at high and low
Solid lines represent results of enumeration, connected circles refjemperatures reconstitute the behavior of a SAW and of a
resent results of Monte Carlo simulation. compact chain, respectively.

const forx—0

x2(Vcompact V9)/ ¢ forx—o, T< Ty.
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FIG. 5. Logarithmic plot ofRg/N<"¢ vs N¢7, close to the tri- FIG. 6. RS/NZW’ vs temperature, for neutral polymers of length

critical temperature. Data from chain lengths 7-99 is used, with_gg (for details see Fig.)3 The graphs intersect at thepoint.
values of 7 up to 0.25. Parameters usedv,=0.60,

T,=0.83,6=0.636. Dots denote enumeration data, circles denot
MC data. Dashed lines show theoretical asymptpieg (3)], with
amplitude fitted to data.

%o a valueX~0.6 where the collapse vanishes and SAW
behavior prevails at all temperatures. The phase diagram in
(X,T) plane(Fig. 1) is similar to that obtained for 3D16].
. . ) . 2, Finally, we have attempted to find evidence of a freezing
~ Figure 5 depicts the scaling functlﬁglN ?vsthe scal-  yansition for a neutral polymer, analogous to the glasslike
ing variableN?, using data of all chain length§—-99 for  transition occurring in the random energy model, which was
temperatures satisfying<0.25, and choosing the param- ghserved for other heteropolymer modgld]. An indicator
etersTy, vy, andé so that the points fall on two converging of the transition[11] is the parametex(T)=1-3,p?,
lines as required. As seen in the figure, a very good datghere p, is the normalized Boltzmann weight of a given
collapse is achieved fof ,=0.83 andv,=0.60, and the re-  ,ntormationk. x(T) characterizes the number of conforma-
sulting lines also approach the slopes of the theoretical ag;jons which are thermodynamically relevant at a given tem-
ymptotes. It should be further pointed out that the scalingyerature, and in the case of a freezing transition it should
behavior is found to be very sensitive to the valuevgf decrease—when averaged over all quenches—#ert at
slightly less to the value of 4, and quite insensitive to the i, freezing temperatuf® to x~0 atT=0. Investigation of
choice of¢. After examining numerous figures of the like of model, however, shows thatT) does not reach zero
Fig. 5, using various parameter values, we evaluate the traf| e even aff=0, due to the degeneracy of the ground
sition ~ parameters  to  be T,=0.83£0.02 and = giate |n addition, the decreasexiroccurs in the same tem-
vy=0.60+0.02, where the errors were estimated according,eratyre range where the polymer collapses, meaning that the
to the parameter values where data did not collapse anymoggycrease in number of relevant conformations comes mainly
(according to out subjective judgmenitVe verify these val-  f3m the folding—as is the case of homopolymers. Another
ues by plottingRg/N>"» vs T for various chain lengthéFig.  attempt to validate the analogy with the REM was done by
6). The curves should intersect aT=T, (because examining the similarity between the degenerate ground state
Vsaw™ V> Veompad - 1NIS is indeed what happens, within conformations of a randomly chosen polymer. The similarity
the estimated errors of the parameters and of the simulatggktween each two configurations was characterized by the
data. number of monomer pairs which are nearest neighbors in
Our value ofv, seems to be larger than the 2D homopoly-poth of the configuration§11]. It was found that, on the
mer value, for which most estimates lie in range 0.51-0.5&verage, there is indeed a significant dissimilarity between
[19]. In order to support this claim, we have used our ownground state conformations. However, this dissimilarity is
enumeration and MC procedurgsroperly alterefito simu-  not pronounced enough to declare that the ground states are
late homopolymers, and found that;°"°=0.55-0.01.  definitely “structurally different,” as is the case in the REM.
Therefore, our conclusion is thaf}®*®™®>%°™_ Simple di- We note that the seeming absence of a freezing transition
mensional arguments show that randomness is marginallip our model may come from specific features of this model:
relevant for ideal polymers in 2D. One might expect thatThe lack of a strong attractive homopolymeric term in the
swelling of the chain at th@ point will render randomness Hamiltonian, which would lead to the formation of a “mol-
irrelevant. Beyond simple argumen{d0] no extensive ten globule,” and a lack of sufficient heterogeneity in the
analysis of the problem has been performed. monomer-monomer interaction. These two may be required
What happens to the collapse transition if the charges oim order to achieve an analogy between a heteropolymer and
the chain are not exactly balanced? We have repeated thke REM, and are usually included in model studies, both
procedures described above for increasing values of excessalytical and numerical, which exhibit a freezing transition
chargeX. A decrease i, is observed with increasing, up  [22]. In addition, it appearf7,23] that formation of a unique
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structure in heteropolymers is very sensitive to space dimerthe difference between the exponents. For non-neutral
sionality, withd=2 being a marginal and nonuniversal casepolymers, we have observed a decrease infthemperature
that strongly depends upon the type of lattice, type of interwith increasing excess charge, until the collapse disappears
action and so on. and SAW behavior prevails at all temperatures. Finally,
In conclusion, we have investigated a 2D lattice model ofve did not find evidence for the existence of a glasslike
polymers, with a quenched random short-range interactiorf’®ezing transition for a neutral polymer, a result which
We have seen that a neutral polymer undergoes a tricritica?ﬁems to be in accordance with theoretical predictions for
0 transition with a critical exponent,=0.60+0.02, a value this model.
that seems to be higher than the homopolymer value. Since |.G. would like to thank E. Brenner for useful discussions.
the difference is rather small, further MC studies with largerThis work was supported by the US-Israel BSF under Grant
N, and renormalization-group studies, are needed to verifjNo. 92-26.
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