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Statistics of largest loops in a random walk
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~Received 5 September 1996!

We report further findings on the size distribution of the largest neutral segments in a sequence ofN
randomly charged monomers@D. Ertaş and Y. Kantor, Phys. Rev. E53, 846 ~1996!#. Upon mapping to
one-dimensional random walks~RW’s!, this corresponds to finding the probability distribution for the sizeL of
the largest segment that returns to its starting position in anN-step RW. We focus primarily on the largeN,
l 5L/N!1 limit, which exhibits an essential singularity. We establish analytical upper and lower bounds on
the probability distribution, and numerically probe the distribution down tol '0.04 ~corresponding to prob-
abilities as low as 10215) using a recursive Monte Carlo algorithm. We also investigate the possibility of
singularities atl 51/k for integerk. @S1063-651X~97!09301-X#

PACS number~s!: 02.50.2r, 05.40.1j
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I. INTRODUCTION

It has recently been shown that ground state confor
tions of polyampholytes, a particular type of heteropolym
built with a random mixture of positively and negative
charged groups along their backbone, are extremely sens
to their total ~excess! chargeQ. A detailed study of theQ
dependence of the radius of gyrationRg @1,2# determined
that a reasonable compromise between stretching~which
minimizes the electrostatic energy! and remaining compac
~which gains in condensation energy! is for the polyam-
pholyte to form anecklaceof weakly charged blobs con
nected with highly charged ‘‘necks,’’ by taking advantage
the charge fluctuations along the chain. The results of Mo
Carlo @1# and exact enumeration@2# studies qualitatively
support such a picture.

While the exact treatment of electrostatic interactions
not possible, we can pose a simplified problem which,
hope, captures some essential features of this neck
model. For example, we may ask what the typical size of
largest neutral~or weakly charged! segment in a random se
quence ofN charges will be. In order to answer this questio
we investigated the size distribution of the largest neu
segments in polyampholytes withN monomers (N-mers!.
This problem can be mapped to a one-dimensional rand
walk ~RW!: the sequence of charges $qi%
( i51, . . . ,N;qi561) corresponds to anN-step walk
v[$q1 , . . . ,qN% with the same sequence of unit steps in t
positive or negative directions along an axis, where the pr
ability of going up or down is equal to 1/2 at each ste
Figure 1 depicts an example of such a sequence and
corresponding path, whereSi(v)5( j51

iqj is the position of
the path at indexi . @S0(v)[0.# A segment ofL monomers
with zero total charge thus corresponds to anL-step loop
inside the RW. In this paper, we further investigate prop
ties of the probabilityPN(L) that the largest loop in an
N-step RW has lengthL, or, equivalently, the probability
ZN(L)5(L850

L21 PN(L8) that all loops in anN-step RW are
shorter thanL. Earlier results about a generalized version
this and other related problems can be found in Refs.@3,4#.
551063-651X/97/55~1!/261~5!/$10.00
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In the continuum (N→`) limit, it is more convenient to
work with theprobability density

p~ l ![
N

2
@PN~L !1PN~L11!# ~1!

and

z~ l !5E
0

l

dl 8p~ l 8!, ~2!

where l 5L/N is the appropriate scaling variable for th
problem.

There is an apparent simplicity of the formulation of th
problem, i.e., it is similar~and related! to the classical RW
problems@5#, such as the problem of first passage times
the problem of last return to the starting point, for whic
probability distributions can be computed exactly by usi
the method of reflections@6#, and obey the same scaling i
the continuum limit. However, the search for thelongest
loop of the RW, among all possible starting points, create
more complicated problem. In its essence, the problem
more related to the statistics of self-avoiding, rather th
regular, random walks. This relation becomes more trans
ent in thel →1 andl →0 limits. The former limit had been
extensively studied in Ref.@4#, and the latter will be dis-
cussed in Sec. III. The ‘‘self-interacting nature’’ of the pro
lem can be seen even more clearly in its generalization
arbitrary space dimensiond, where many analogies betwee
this problem and the self-avoiding walks exist.

Our earlier investigations revealed remarkable proper
of the probability density p(l ): It diverges as
p(l );1/A12l for l →1, and has a discontinuous deriv
tive at l 51/2. Furthermore, it has an essential singularity
l 50 of the formp(l );exp(2B/l ). An analytical solution
in this limit still remains elusive. We had not been able
determinep(l ) even numerically belowl '0.15 due to the
very small probabilities involved nearl 50, severely limit-
ing a straightforward Monte Carlo approach. Because
these difficulties, the existence and precise form of this s
gularity ~including possible power law prefactors, etc.! was
261 © 1997 The American Physical Society
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262 55DENIZ ERTAŞAND YACOV KANTOR
not well established. Since the publication of that work,
have developed an improved Monte Carlo algorithm tha
capable of probing significantly smaller values ofl numeri-
cally. Combined with strict analytical bounds onz(l ), the
results strongly favor the existence of this singularity, a
the proper form of thel →0 limit can be determined with
high precision. In this paper, we report the results of th
complementary findings.

It should be noted that similar behavior is exhibited
extremal properties of a number of random processes, s
as a one-dimensional random cutting process@7# ~which can
be generalized to higher dimensions@8#! and return times in
a random walk@8#. These models exhibit singularities
l 51/k, which become progressively weaker as the inte
k is increased, leading to an essential singularity atl 50.
Although it was claimed that our problem falls into the sam
category and therefore should exhibit singularities
l 51/2,1/3,1/4, . . .@8#, we believe that it differs from thes
models in a way that undermines the reasoning for
claim, as we shall discuss in Sec. IV. In particular, we ha
numerically verified that the suggested singularity
l 51/3 does not exist, unless it has a very small prefacto

The rest of the paper is organized as follows: First,
establish upper and lower bounds onz(l ). We then describe
an efficient Monte Carlo algorithm that enables us to de
mine z(l ) down to very small values, and present resu
from its implementation. Finally, we discuss the possible r
evance of other random models with similar characteri
properties.

II. UPPER AND LOWER BOUNDS

In this section, we establish rigorous upper and low
bounds on the probability distributionz(l ), both of which
have the same functional form. The existence of th
bounds significantly restricts possible asymptotic forms
z(l ) in the l →0 limit.

The main strategy is similar for establishing both upp
and lower bounds. Walks whose largest loops are m
smaller than their overall length are typically very biased
one direction, and sections of the walk that are separate
more than the largest loop size are very weakly correla
For a given~small! value of l , let us divide each walk into

FIG. 1. Example of a sequencev with N514 charges, and the
corresponding walk depicted bySi(v). In this case, the longes
loops have lengthsL510 ~dotted lines!.
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roughly 1/l segments of similar size. There arenecessary
conditions that each segment must satisfy independently
the overall walk to contribute toz(l ). If the probability for a
random segment to satisfy these conditions ispn , then
z(l ),pn

1/l . Similarly, each segment can be designed to s
isfy certain conditions that aresufficient to ensure that the
overall walk contributes toz(l ). If the corresponding prob-
ability for these conditions isps , thenz(l ).ps

1/l . The rest
of this section is devoted to establishing a set of neces
and sufficient conditions and calculating the correspond
probabilities.

Let us first investigate necessary conditions. Letv be an
N-step walk whose largest loop is less thanL-steps long, and
hasSN(v).0. We shall focus on the cases wherem5N/L is
an integer for now. Let us splitv into m mutually exclu-
sive segments$v1 , . . . ,vm% of length L where v i
5$q( i21)L11 , . . . ,qiL%. It is easy to see thatv satisfies the
inequalities

SiL~v!.S~ i21!L~v!, 0, i<m, ~3!

or, equivalently,

SL~v i !.0, 0, i<m, ~4!

i.e., each of them segments need to have a positive displa
ment. The probability for this is justpn51/2, and therefore
ZN(N/m),212m ~the additional factor of 2 comes from
RWs with SN,0). Consequently,ZN(L),222(N/L) for any
value of N and L. This establishes a strict upper boun
which is significant for small values ofl :

z~ l !,4exp~2 ln2/l !. ~5!

It is possible to further improve on this upper bound, and
will next demonstrate such an improvement which is by
means final. Consider a pair of adjacent segments~e.g.,v1
andv2) described above, withSL(v1),SL(v2).0. Let i be
the smallestindex whereSi(v1)5SL(v1), and j the largest
index whereSj (v2)50. In that case, the segment fromi to
L1 j ~on v) is a loop, and thereforei. j sincev cannot
have a loop larger thanL. For two randomly selected seg
ments, this condition is satisfied with probability 1/2, whic
can be calculated from the known probability distribution
‘‘last return to the origin’’ @4,6#. Since there arem/2 statis-
tically independent adjacent pairs, this observation furt
suppresses the upper bound on the probability distribution
a factor of 22m/2, improving the overall upper bound to

z~ l !,4A2expS 2
3ln2

2l D , ~6!

which makes the best~so far! analytical lower bound on the
exponential factorB.3ln2/2'1.039 72.

In order to find a lower bound on the probability distrib
tion, let us again consider the sequencev and itsm pieces
$v i% of lengthL each. We would like to construct eachv i
independently in such a way as to guarantee that the re
ing walkv does not have loops larger thanL. This can again
be done in many different ways, and the following is by
means optimal. The quality of the bound usually depends
how complicated the specifications of each piece are, and
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55 263STATISTICS OF LARGEST LOOPS IN A RANDOM WALK
limiting factor seems to be the analytical tractability of t
associated probabilities. The following represents the b
bound we have been able to establish analytically.

The specifications of each piece are as follows:

H 2a,Si,SL2a, 0, i<L/2,

a,Si,SL1a, L/2, i<L.
~7!

Figure 2~a! shows these specifications graphically. Clear
SL.2a is required. Figure 2~b! shows how the joining of
such pieces results in a sequencev that has no loops large
thanL.

The probabilityps of meeting the stated specifications c
be evaluated numerically to high accuracy using the met
of reflections@6# and summing over all possible values
SL/2 andSL for a givena. The largest value for the probabi
ity yields the tightest lower bound onz(l ), so it is desirable
to tune a in order to optimize the bound. We pic
a50.5AL, which is very close to the optimal value. In th
case, the probability for a RW to satisfy the requirements~7!
for largeL is ps'0.031 585. This yields

z~ l !.2psexp~2 lnps /l !'0.063 17e23.455/l . ~8!

Clearly, neither the upper nor the lower bounds we ha
established are very tight, and they do not rule out the p
sibility of a power-law prefactor. However, there is very co

FIG. 2. ~a! Example of a walk that satisfies the conditions in E
~7!. Each such walk remains entirely within the shaded area.~b!
When such walks are joined together, the resulting walk does
have loops that are larger than or equal toL, since such loops
cannot fit in the shaded area.
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vincing numerical evidence that there is no power law pr
actor in z(l ), i.e., that liml →0z(l )5Cexp(2B/l ), where
C andB are constants that are determined in the followi
section.

III. NUMERICAL WORK

In this section, we present numerical studies to determ
p(l ) andz(l ) in the l !1 limit. As stated earlier@3,4#, a
standard Monte Carlo method of determiningp(l ) from a
random sample of all possible walks is ineffective at prob
l &0.15, since the probabilities become very small. A sim
lar problem arises when it is necessary to randomly sam
very large self-avoiding walks~SAWs! in two and three di-
mensions: The probability of generating a SAW is expon
tially small in its overall length, i.e., the probability of pick
ing a SAW out of RWs of lengthN!1 scales as
PSAW(N);Nge2aN, wherea and g are constants that de
pend only on the dimensionality of the SAW. A commo
way to circumvent this problem is to build large SAWs r
cursively by joining smaller SAWs. This method signifi
cantly reduces the number of operations needed by c
pletely eliminating its dependence on the leading exponen
factor: The probability of creating a SAW of lengthN by
joining two randomly selected SAWs of lengthN/2 scales
only asN2g, and the number of operations needed to gen
ate a randomly sampled SAW grows aseg(log2N)

2/2 instead of
eaN. Of course, creating SAWs in one dimension is trivia
but the extension of this method to one-dimensional walk
still very useful for our problem, since creating RWs wi
very small loops is similar to creating SAWs@in fact
PSAW(N)5ZN(1)#, and can be used to samplez(l ) effi-
ciently at smalll .

In this implementation of the algorithm, we start fro
pairs of RWs of lengthL ~with nonzero total displacement!
and join them, keeping only resultant walks whose larg
loops are smaller thanL. At the first level, this creates walk
that contribute toZ2L(L), with equal probability. We then
iterate this process by pairing the resultant walks at e
level. After thenth level, we end up with a representativ
sample of all walks that contribute toZ2nL(L), which can
then be used to determine a histogram for the probab
distributions for 0,l ,22n.

We also need to keep track of the probability of succ
Rn at each level, which is given by

Rn~L ![
Z2nL~L !

@Z2n21L~L !#2
, ~9!

in order to determine the overall normalization of the pro
ability distributions. One big advantage of studying on
dimensional walks is that the probability of successRn(L)
actually becomesindependent of n, i.e., in the continuum
limit

z~ l !5R@z~2l !#2, l !1, ~10!

whereR5 limL→`limn→`Rn(L) is a nonzero constant.~For
the one-dimensional SAW, the probability of success is j
1/2.! Typically, variations inRn(L) were within statistical
fluctuations~0.1% to 0.3%! for n>3. WhenRn(L) is inde-
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264 55DENIZ ERTAŞAND YACOV KANTOR
pendent ofn, the number of operations needed to sampl
representative walk that contributes toz(l ) is only polyno-
mial in l 21, which speeds up the algorithm enormous
Furthermore, this implies that forl !1,

z~ l !5Cexp$2B/l %, ~11!

p~ l !5
BC

l 2 exp$2B/l %, ~12!

whereC5R21 andB are constants; there are no power-la
prefactors inz(l ). This result can be verified numerically b
looking at the results of the described recursive algorith
Fig. 3 confirms the functional form~12! over about twelve
decades in the probability densityp(l ), probing values of
l down to 0.04@9#.

The constantsC and B in the continuum limit can be
determined accurately by plotting their dependence on w
length.C is simply the inverse of the success probabilityR
as mentioned earlier, whereasB is given by the slope of the
graph in Fig 3. Figure 4 shows these plots, which yield

C54.5760.01, ~13!

B51.7360.02. ~14!

IV. RELATED PROBLEMS

Behavior that is strikingly similar to those ofp(l ) are
exhibited by probability distributions of extremal properti
in certain random systems. One simple example is a o
dimensional random cutting process@7,8#: A unit interval is
cut at a randomly selected point~with uniform probability!,
and the same cutting process is repeatedly applied to
interval that remains to theright of the latest cut, ad infini-
tum. The probability distributionp8(l ) for the size of the
largestinterval that remains at the end of the cutting proc
exhibits singularities of the formul 21/kuk21 at each value
of k, which become progressively weaker as the integerk is
increased, leading to an essential singularity atl 50. The

FIG. 3. The probability densityp(l ) for 0.04,l ,1/2 confirms
the suggested form~11! down to probabilities as low as 10215. The
overall walk size isN52048. Four~partially overlapping! plots
were generated from runs that terminated after recursion leve
through 4.
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origin of these singularities can be traced to the fact that
pieces~among which the largest one is chosen! constitute a
partition of the entire interval, which implies that the sum
the sizes of all pieces equals the size of the initial interv
which is 1. Consequently, any piece that is larger than 1/
necessarily the largest, and in general there can be at m
k21 pieces that are larger than 1/k. This causes singula
behavior inp8(l ) at l 51/k for all k. Similar ‘‘sum rules’’
apply to all the other systems that are discussed in Ref.@8#.
However, this property is not satisfied by our problem, sin
loops can and do overlap. We have numerically examin
the vicinity of l 51/3, and conclude that there are no sing
larities in the first and second derivatives ofp(l ) with a
prefactor ofO(1). Although we cannot rule out the possibi
ity of weaker singularities or unusually small prefactors, t
evidence seems to suggest that they do not exist.

V. CONCLUSION

With the help of an efficient Monte Carlo algorithm an
analytical upper and lower bounds, we have clarified som
the issues surrounding the behavior of the probability den
p(l ) for small values of its argument, and we have be
able to better understand and characterize the essentia
gularity atl 50. In this limit, the connection of this problem
to SAWs becomes much more transparent, and it is lik
that this connection can be further exploited.
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FIG. 4. Size dependence of the constants that appear in
L/N!1 limit of ZN(L) andPN(L). Top: The exponential constan
B(N) determined from plots ofl 2p(l ) as a function of total walk
lengthN. Statistical errors are smaller than symbol sizes. Botto
The prefactorC(L) determined from success probabilitiesR4(L) as
a function of largest loop sizeL. Statistical errors are roughly th
size of symbols.
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