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Statistics of largest loops in a random walk
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We report further findings on the size distribution of the largest neutral segments in a seque¥ice of
randomly charged monome{®. Ertasand Y. Kantor, Phys. Rev. B3, 846 (1996]. Upon mapping to
one-dimensional random walkRW’s), this corresponds to finding the probability distribution for the &izsf
the largest segment that returns to its starting position ifNatep RW. We focus primarily on the lardé,

/' =LIN<1 limit, which exhibits an essential singularity. We establish analytical upper and lower bounds on
the probability distribution, and numerically probe the distribution dowwr 60.04 (corresponding to prob-
abilities as low as 10'%) using a recursive Monte Carlo algorithm. We also investigate the possibility of
singularities at”’=1/k for integerk. [S1063-651X97)09301-X]

PACS numbdis): 02.50~r, 05.40:+j

[. INTRODUCTION In the continuum N—-o°) limit, it is more convenient to
work with the probability density
It has recently been shown that ground state conforma-

tions of polyampholytes, a particular type of heteropolymers (/)= E[P (L)+Py(L+1)] 1)
built with a random mixture of positively and negatively 20 N N
charged groups along their backbone, are extremely sensitive
to their total (excess chargeQ. A detailed study of the) &7
dependence of the radius of gyratiéty [1,2] determined Y
that a reasonable compromise between stretclfimigich z(/’)=f d/"'p(/"), 2
minimizes the electrostatic enefggnd remaining compact 0
(which gains in condensation enejgis for the polyam-
pholyte to form anecklaceof weakly charged blobs con-

nected with highly charged “necks,” by taking advantage of ™ tpo1q is an apparent simplicity of the formulation of the
the charge fluctuations along the chain. The results of Montf)roblem, i.e., it is similaand relatefito the classical RW
Carlo [1] and exact enumeratiof?] studies qualitatively nroplems[5], such as the problem of first passage times or
support such a picture. o __the problem of last return to the starting point, for which
While the exact treatment of electrostatic interactions isyropability distributions can be computed exactly by using
not possible, we can pose a simplified problem which, wehe method of reflectiongs], and obey the same scaling in
hope, captures some essential features of this necklagge continuum limit. However, the search for thengest
model. For example, we may ask what the typical size of thgoop of the RW, among all possible starting points, creates a
largest neutralor weakly chargerdsegment in a random se- more complicated problem. In its essence, the problem is
quence oN charges will be. In order to answer this question,more related to the statistics of self-avoiding, rather than
we investigated the size distribution of the largest neutrategular, random walks. This relation becomes more transpar-
segments in polyampholytes with monomers N-mers.  ent in the/—1 and/—0 limits. The former limit had been
This problem can be mapped to a one-dimensional randoraxtensively studied in Ref4], and the latter will be dis-
walk  (RW): the sequence of charges{qi} cussed in Sec. Illl. The “self-interacting nature” of the prob-
(i=1,...N;g;==1) corresponds to anN-step walk |em can be seen even more clearly in its generalizations to
w={qy, . .. gy} with the same sequence of unit steps in thearbitrary space dimensiah where many analogies between
positive or negative directions along an axis, where the probthjs problem and the self-avoiding walks exist.
ability of going up or down is equal to 1/2 at each step. OQur earlier investigations revealed remarkable properties
Figure 1 depicts an example of such a sequence and th§ the probability density p(/): It diverges as
corresponding path, whe&(w) =X;_,'q; is the position of  p(,)~1/\J1=/ for /—1, and has a discontinuous deriva-
the path at index. [Sy(w)=0.] A segment ofL monomers tive at/ = 1/2. Furthermore, it has an essential singularity at
with zero total charge thus corresponds tolastep loop /=0 of the formp(/) ~exp(—B//). An analytical solution
inside the RW. In this paper, we further investigate properin this limit still remains elusive. We had not been able to
ties of the probabilityP\(L) that thelargestloop in an  determinep(/) even numerically below’~0.15 due to the
N-step RW has length., or, equivalently, the probability very small probabilities involved neaf=0, severely limit-
ZN(L)=EtT=10PN(L’) that all loops in anN-step RW are ing a straightforward Monte Carlo approach. Because of
shorter tharl. Earlier results about a generalized version ofthese difficulties, the existence and precise form of this sin-
this and other related problems can be found in Refgl]. gularity (including possible power law prefactors, ¢taas

where /=L/N is the appropriate scaling variable for this
fproblem.

1063-651X/97/561)/261(5)/$10.00 55 261 © 1997 The American Physical Society



262 DENIZ ERTAS AND YACOV KANTOR 55

roughly 1/ segments of similar size. There amecessary

o=f + - +- - - +++ -+ + +} conditions that each segment must satisfy independently for
S (®) the overall walk to contribute te(/"). If the probability for a
A random segment to satisfy these conditionspjs, then
z(/")<p,11//. Similarly, each segment can be designed to sat-
el I isfy certain conditions that arsufficientto ensure that the
B overall walk contributes ta(/). If the corresponding prob-
2 ability for these conditions igs, thenz(/)>pZ” . The rest
of this section is devoted to establishing a set of necessary
0 ¢ - and sufficient conditions and calculating the corresponding
2 4 6 8 o 12 14 5 probabilities.
5 Let us first investigate necessary conditions. kelbe an

N-step walk whose largest loop is less thassteps long, and
hasSy(w)>0. We shall focus on the cases where-N/L is
FIG. 1. Example of a sequencewith N=14 charges, and the an integer for now. Let us splid into m mutually exclu-

corresponding walk depicted b§(w). In this case, the longest sive segments{wq, ...,w,} of length L where o;

loops have lengthk =10 (dotted lines. ={di-1nL+1, --- it Itis easy to see thab satisfies the
inequalities

not well established. Since the publication of that work, we )

have developed an improved Monte Carlo algorithm that is SL(@)>Si-1(w), 0<ism, €)

capable of probing significantly smaller values/0humeri-
cally. Combined with strict analytical bounds afv), the
results strongly favor the existence of this singularity, and S (0)>0, 0<i=m, (4)
the proper form of theZ—0 limit can be determined with
high precision. In this paper, we report the results of thesge., each of then segments need to have a positive displace-
complementary findings. ment. The probability for this is jugt,= 1/2, and therefore

It should be noted that similar behavior is exhibited byz, (N/m)<2'~™ (the additional factor of 2 comes from
extremal properties of a number of random processes, sugws with Sy<0). ConsequentlyZy(L)<22~ N for any
as a one-dimensional random cutting prodgggwhich can  yajue of N and L. This establishes a strict upper bound,

be generalized to higher dimensidigd) and return times in  which is significant for small values of
a random walk[8]. These models exhibit singularities at

/=1/k, which become progressively weaker as the integer z(/)<4dexpg —In2l/). (5)
k is increased, leading to an essential singularity”at0.
Although it was claimed that our problem falls into the samelt is possible to further improve on this upper bound, and we
category and therefore should exhibit singularities atwill next demonstrate such an improvement which is by no
/'=1/2,1/3,1/4, . . .[8], we believe that it differs from these Mmeans final. Consider a pair of adjacent segméa., w,
models in a way that undermines the reasoning for thignd »,) described above, witB (»1),S (w;)>0. Leti be
claim, as we shall discuss in Sec. IV. In particular, we havehe smallestindex whereS;(w,) =S (w1), andj the largest
numerically verified that the suggested singularity atindex whereS;(w,)=0. In that case, the segment franto
/'=1/3 does not exist, unless it has a very small prefactor.L+]j (on ) is a loop, and thereforé>| since w cannot
The rest of the paper is organized as follows: First, wehave a loop larger thah. For two randomly selected seg-
establish upper and lower bounds z{n) . We then describe ments, this condition is satisfied with probability 1/2, which
an efficient Monte Carlo algorithm that enables us to detercan be calculated from the known probability distribution of
mine z(/) down to very small values, and present results‘last return to the origin”[4,6]. Since there aren/2 statis-
from its implementation. Finally, we discuss the possible relically independent adjacent pairs, this observation further
evance of other random models with similar characteristicsuppresses the upper bound on the probability distribution by

or, equivalently,

properties. a factor of 2 ™2, improving the overall upper bound to
, 3In2
Il. UPPER AND LOWER BOUNDS 2(/)<4\2exd — 57 6)

In this section, we establish rigorous upper and lower
bounds on the probability distribution(/), both of which  which makes the begso fa) analytical lower bound on the
have the same functional form. The existence of thesexponential factoB>3In2/2~1.039 72.
bounds significantly restricts possible asymptotic forms of In order to find a lower bound on the probability distribu-
z(/) in the /—0 limit. tion, let us again consider the sequenrc@nd itsm pieces
The main strategy is similar for establishing both upper{w;} of lengthL each. We would like to construct each
and lower bounds. Walks whose largest loops are mucindependently in such a way as to guarantee that the result-
smaller than their overall length are typically very biased ining walk w does not have loops larger thenThis can again
one direction, and sections of the walk that are separated Hye done in many different ways, and the following is by no
more than the largest loop size are very weakly correlatedneans optimal. The quality of the bound usually depends on
For a given(smal) value of 7, let us divide each walk into how complicated the specifications of each piece are, and the
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vincing numerical evidence that there is no power law pref-

i actor inz(/), i.e., that lim-_ 4z(/)=Cexp(~B//), where
A C andB are constants that are determined in the following
section.

Ill. NUMERICAL WORK

In this section, we present numerical studies to determine
p(/) andz(/) in the /<1 limit. As stated earlief3,4], a
standard Monte Carlo method of determinipf/) from a
random sample of all possible walks is ineffective at probing

%\\ \ \\\

0F N2 i /'<0.15, since the probabilities become very small. A simi-
§\\\\\\\\\ lar problem arises when it is necessary to randomly sample
O very large self-avoiding walkéSAWS) in two and three di-
(@) mensions: The probability of generating a SAW is exponen-
S tially small in its overall length, i.e., the probability of pick-
i o®" ing a SAW out of RWs of lengthN<1 scales as

Psaw(N)~N”e 3N wherea and y are constants that de-
pend only on the dimensionality of the SAW. A common
way to circumvent this problem is to build large SAWSs re-
cursively by joining smaller SAWs. This method signifi-
cantly reduces the number of operations needed by com-
pletely eliminating its dependence on the leading exponential
factor: The probability of creating a SAW of lengtt by

. | . . ; joining two randomly selected SAWSs of lenghl2 scales

L 2L 3L 4L 5L 6L oo only asN™ 7, and the number of operations needed to gener-

(b) ate a randomly sampled SAW grows @%$°%V2 instead of
e?N. Of course, creating SAWSs in one dimension is trivial,
FIG. 2. (8) Example of a walk that satisfies the conditions in Eq. but the extension of this method to one-dimensional walks is
(7). Each such walk remains entirely within the shaded afiea. Still very useful for our problem, since creating RWs with
When such walks are joined together, the resulting walk does notery small loops is similar to creating SAWgn fact
have loops that are larger than or equallipsince such loops Pgaw(N)=2Zy(1)], and can be used to sammé/) effi-
cannot fit in the shaded area. ciently at small/”.
In this implementation of the algorithm, we start from
limiting factor seems to be the analytical tractability of the pairs of RWs of lengtiL (with nonzero total displacement
associated probabilities. The following represents the besind join them, keeping only resultant walks whose largest

\\\“\\\

5.\\\\\\3\\\\\
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bound we have been able to establish analytically. loops are smaller thah. At the first level, this creates walks
The specifications of each piece are as follows: that contribute taZ,, (L), with equal probability. We then
iterate this process by pairing the resultant walks at each
—a<§<S —a, 0<isL/2, level. After thenth level, we end up with a representative
a<S<S +a, Li2<is<L. @) sample of all walks that contribute @,n (L), which can

then be used to determine a histogram for the probability

Figure Za) shows these specifications graphically. Clearly,distributions for 6</ <27 ".
S >2« is required. Figure @) shows how the joining of We also need to keep track of the probability of success
such pieces results in a sequenreehat has no loops larger R, at each level, which is given by
thanL.

The probabilityps of meeting the stated specifications can R.(L)= Zon (L)
be evaluated numerically to high accuracy using the method n [Zyn-1,(L)]?
of reflections[6] and summing over all possible values of
S, » andS, for a givena. The largest value for the probabil- in order to determine the overall normalization of the prob-
ity yields the tightest lower bound @{/), so it is desirable ability distributions. One big advantage of studying one-
to tune « in order to optimize the bound. We pick dimensional walks is that the probability of succéggL)
a=0.5/L, which is very close to the optimal value. In that actually becomesndependent of pi.e., in the continuum
case, the probability for a RW to satisfy the requireméits  limit
for largeL is ps~0.031 585. This yields

(€)

2(/)=R[2(2/)]?, /<1, (10)
2(/)>2psexp —Inps//)~0.063 12345 (g)
whereR=lim__,lim,_.R,(L) is a nonzero constantFor
Clearly, neither the upper nor the lower bounds we havdhe one-dimensional SAW, the probability of success is just
established are very tight, and they do not rule out the post/2) Typically, variations inR,(L) were within statistical
sibility of a power-law prefactor. However, there is very con- fluctuations(0.1% to 0.3% for n=3. WhenR,(L) is inde-
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FIG. 3. The probability densitp(/) for 0.04</'<1/2 confirms

the suggested forrti.1) down to probabilities as low as 1¢°. The FIG. 4. Size dependence of the constants that appear in the

overall walk size isN=2048. Four(partially overlapping plots  |/N<1 limit of Zy(L) andPy(L). Top: The exponential constant

were generated from runs that terminated after recursion levels B(N) determined from plots of ?p(/) as a function of total walk

through 4. lengthN. Statistical errors are smaller than symbol sizes. Bottom:
The prefactolC(L) determined from success probabilitRg(L) as

pendent ofn, the number of operations needed to sample a function of largest loop size. Statistical errors are roughly the

representative walk that contributesz@”) is only polyno-  size of symbols.

mial in /~1, which speeds up the algorithm enormously.

Furthermore, this implies that fof <1, origin of these singularities can be traced to the fact that the

pieces(among which the largest one is choseonstitute a
partition of the entire interval, which implies that the sum of
the sizes of all pieces equals the size of the initial interval,
(12) which is 1. Consequently, any piece that is larger than 1/2 is
necessarily the largest, and in general there can be at most
k—1 pieces that are larger thank1/This causes singular
whereC=R"* andB are constants; there are no power-law hehavior inp’ (/) at/ = 1/ for all k. Similar “sum rules”
pl’efactors II’]Z(/) This result can be verified numerica”y by app|y to all the other Systems that are discussed in mf
|00king at the results of the described recursive algorithmHowever, this property is not satisfied by our pr0b|em, since
Fig. 3 confirms the functional fornil2) over about twelve |oops can and do overlap. We have numerically examined
decades in the probability densip(~), probing values of  the vicinity of /= 1/3, and conclude that there are no singu-
/" down to 0.04[9]. larities in the first and second derivatives pf/) with a
The constant<C and B in the continuum limit can be prefactor ofO(1). Although we cannot rule out the possibil-
determined accurately by plotting their dependence on walky of weaker singularities or unusually small prefactors, the

length.C is simply the inverse of the success probabiity evidence seems to suggest that they do not exist.
as mentioned earlier, whereBsis given by the slope of the

graph in Fig 3. Figure 4 shows these plots, which yield

z(/)=Cexg{—B//}, (11

~ BC ,
p(/)= —7 exg—BI/},

V. CONCLUSION

C=4.57+0.01, (13 ) - :
With the help of an efficient Monte Carlo algorithm and

analytical upper and lower bounds, we have clarified some of
the issues surrounding the behavior of the probability density
p(/) for small values of its argument, and we have been
able to better understand and characterize the essential sin-
gularity at/’=0. In this limit, the connection of this problem

Behavior that is strikingly similar to those @f(/) are R
exhibited by probability distributions of extremal properties to SAWS becom_es much more transpar_ent, and it is likely
hat this connection can be further exploited.

in certain random systems. One simple example is a oné
dimensional random cutting proc€s§8]: A unit interval is

cut at a randomly selected poitwith uniform probability,

and the same cutting process is repeatedly applied to the

interval that remains to theght of the latest cut, ad infini- This work was supported by the National Science Foun-
tum. The probability distributiorp’ (/) for the size of the dation, by the MRSEC program through Grant No. DMR-
largestinterval that remains at the end of the cutting proces®400396, and through Grants No. DMR-9106237, No.
exhibits singularities of the forfy’—1/k|*" ! at each value DMR-9417047, and No. DMR-9416910, and by the Israel
of k, which become progressively weaker as the intdgisr  Science Foundation founded by The Israel Academy of Sci-
increased, leading to an essential singularity’at0. The  ences under Grant No. 246/96.

B=1.73-0.02. (14)
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