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Force-extension relations for polymers with sliding links
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Topological entanglements in polymers are mimicked by sliding ristig links) that enforce pair contacts
between monomers. We study the force-extension curve for linear polymers in which slip links create addi-
tional loops of variable sizes. For a single loop in a phantom chain, we obtain exact expressions for the average
end-to-end separation. The linear response to a small force is related to the properties of the unstressed chain,
while for a large force the polymer backbone can be treated as a sequence of Pincus—de Gennes blobs, the
constraint effecting only a single blob. Generalizing this picture, scaling arguments are used to include self-
avoiding effects.
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Entanglements play an important role in the behavior ofcently, a detailed study of the size distribution of loops in SL

macromolecules. For instance, mechanical litkkg., in ca-  structures was performdd3]. In this work we consider FE

tenanepand knots naturally appear in long polyméig. In  curves of such polymers, with or without self-avoidance. We

biological systems, specific proteins act upon topologicashow that the knowledge of the statistics in the absence of

states: the degree of entanglement of chromosomes duririe force, combined with the Pincus—de Genfb4| blob

cell division [2] or knotted states in bacterial DNA, which Picture, suffices to understand many features of the FE

may arise during random ring closui@, can be modified by ~curves. We first discuss the statistical effects of the slip link

topological enzyme$4]. Synthetic RNA trefoil knots have for non-self-avoiding chaingphantom polymeps Consider

been used to prove the existence of a similar, previouslgh N-step chain with mean-squared step siaé in

unknown, topology-changing enzynig]. Tight molecular ~d-dimensional space. In tH¢>1 limit, the probability den-

knots have even been found deep inside the native state &fty function for the end-to-end distan¢€ED) r is

proteins[6]. Experimental advances now make it possible to 42 )

manipulate single molecules by optical tweezers. Thus, tight . dr

knots could be tied into single actin filaments or DNA pN(r)_(ZWNaz ex;{ B 2N a2

strands[7]. Mechanical properties, and forces in the pN

range relevant to biopolymeric processes, can be measurethis expression also describes Mrstep random walk on a

by atomic force microscopy or more direct micromechanical(hypepcubic lattice with lattice constard. The number of

methods[8]. It is therefore possible to record the force- closedN-step loops on such a lattice isq@¥[d/(27N)]92.

extension(FE) curve of single polymers with a fixed topol- Now consider the case where a SL forces a closed loop of

ogy, from which valuable information about the properties ofsjze n. Since the loop can be located on anyNf n posi-

a molecule can be obtained and compared to theoretical préions on theN-step chain, the number of possible configura-

dictions. tions of the combined system of the polymer and the SL is
While there has been extensive progress in the statisticgN —n)(2d)N~"(2d)"[d/(27n)]¥2. Thus, forn>1 and (N

mechanics of polymers in the last decaf@d.0], the analy- —n)>1, the probability for a givem is

sis of topological constraints is hampered by the difficulty of

treating the resulting division of phase space into accessible gn(N)=MN-n)n~92 (2)

and inaccessible regions. Since the mathematical methods of

knot detection using topological invariant$1] cannot be ~Where\ is a normalization factor. Fat>2, A depends on

conveniently incorporated into a statistical-mechanical forthe short-distance cutoff, i.e., on the microscopic details of

mulation, one may try to use geometrical constrictions to

mimic knots. Consider a polymer threaded through a small

ring as depicted in Fig. 1, and not allowed to withdraw from

it, although the ring may freely slide along the polymer and

the loop size can change. Constrictions of this tjpeled

slip links (SLs)] were introduced about 20 years dd@] to

investigate the elasticity of rubber, where they were used to

represent entanglements between different polymers. Re-

FIG. 1. Polymer threaded through a slip lifring) forms a loop
*Electronic address: metz@nordita.dk and two dangling ends. It is not allowed to withdraw from the slip
"Electronic address: kantor@post.tau.ac.il link.
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the walk[15]. The presence of the SL also modifies the prob-Here,c4 are short length scale cutoff-dependent constants. In
ability density of the EEDp(r), by reducing the length of this expression{n), is simply the mean number of mono-
the backbone toN—n). mers inside the constricted loop, aRd is obtained by re-
When the end points of a polymer are stretched by a forcglacingN in the expression foR? of a simple phantom chain
f, its properties can be derived from the partition function by N—({n),. We note that ford>2, (n), has a sublinear
dependence oN, and asd increases, the correction created

2(f)= f ddr p(r) e/ 3) by the SL depends more weakly di{16]. Ford>4 random
' walks do not form long loops an@h), becomes independent
L L of N.
where f=|f|, and the temperatur€ is in energy units, i.e., The expression foR? of a phantom chain with a SL can
kg=1. In the presence of the force, the veatds on average oy he substituted in E5) to obtain the FE relatior );
p_arallel tof, and from Eq.(3) its mean projection alonfjis —f(a2/dT)(N—(n)) for smallf. For largef, this expression
given by is no longer valid. However, by direct inspection of the re-
Jin 2 quired average we find that Eq®8), (4), and(6) lead to
(ry=T : 4
! ot P f2a2(N—n)
<r>f=T—fIn f dn gy(n) exg —————
In particular, forp(r)=py(r) in Eq. (1), the partition func- J 2dT
tion is Z=exy{Na?f?/(2dT%)], while the mean EED is a linear o2
function off, (r);=fNa?/(dT) for any arbitrary value of the = d__l_(N_<n>f)f, (8)

force. Since the mean-squared EE3 of an unstrained
(zero-forc@ phantom chain isNa?, the FE relation can be

rewritten as where(n); is the mean loop size in the presence of the force,

equal to
2

=—f, 5 N
(r)s aT ®) J dn n gy(n)exd — f?a?n/(2dT?)]

Mo

More complicated forms ofp(r) do not lead to a simple (M= N s 5 ©

linear relation, and in many cases the relation betw@ép fn dn gy(n)expd —f“an/(2dT) ]

0

and an arbitrary cannot be calculated exactly. However, for
sufficiently smallf, linear response theory provides a simple
universal answer. By expanding the exponent in &).in
powers off and by omitting powers higher than 2, we see
that Eq.(5) is valid for arbitrary spherically symmetrja(r),
provided thaR? is the mean-squared EED calculated at zer
force. The force can be considered small wken<R, i.e.,
for f<T/R.

The probability density of the EED of a phantom chain
with a simple SL(Fig. 1) is given by

The lower limit of ny in the above integrals is the minimal
loop size allowed by the specific model. The FE relation is
no longer linear even for a phantom polymer with one SL,
although the deviation disappears rapidly with increading
%or the simple SL with the weight in E€R), the nonlinearity
is barely detectable even for the relatively small valuéNof
=100, as indicated by the top line in Fig. 2. In more com-
plicated topologies of many SLs, we frequently encounter
the behaviorgy(n)~n~“ [13], wheren is the total number

_ of monomers that do not belong to the direct path between
P(1) = Py-n(N)Gn(N) © the ends of the polymer, whilld appears in the prefactor or

[see Eqs(1) and (2)]. Here,N—n is the number of mono- Other nonsingular parts of the probability density. In such

mers in theforce-carrying backbonef the polymer. Thus, cases, the nonlinearities become more pronounced @s-
R2 can be found by integrating? with the above statistical Créases. Let us specifically consider the “toy example” of a

weight, over all possible andn, leading to SL in which m additional rings slide around the loop, as
depicted in Fig. 3. The number of ways of placing these
R2=a2(N—(n)o), (7a)  sliding rings leads togy(N)=AMN-—n)n™ 92 [17]. De-
pending on the values ah andd, three different behaviors
where can be distinguished:
p (i) Form>d/2—1, the integrals in Eq(9) are dominated
Cd for d>4, by largen. We can thus set the lower limit of the integrals to
cynN for d=4, 0, and introduce the new varialke=n/N, to get
cgN?~ 92 for 2<d<4, fl - ,
_ dx Xm+17d/2efxf a“N/(2dT9)
M=) LN o4y ™, ral] e
= AMANSEL) Y B
ayN Tv2d 1dx 02~ x12a2NI(20T?)
2—d for d<2 0
— or .
Gk (10
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6r T FIG. 4. In the Pincus—de Gennes scenario, the stretched poly-
mer is viewed as a linear sequence of “blobgircumscribed by
circles. Within each blob the polymer is unstressed; the size and
number of blobs depends on the stretching force.

This case may be most similar to that of knots in three di-
mensions, and indeed such corrections to scaling were used
in Ref.[18] to extract the size of the knot.

(iii) For m<d/2—2, both integrals in Eq(9) are domi-
nated by the short-distance cutoff, resulting{im~ny, in-
dependent of. The FE curve is thus linear in this regime,
with finite size corrections that disappear abl.1/

10 . 20 While the above results are easily obtained for a phantom
JaN /T polymer with a SL, it is convenient to restate them in a form
that is more generally valid, and in particular, applicable to
interacting polymers. This will be done using the Pincus—de
Gennes picturgl4], according to which a stretched polymer
(without a SL) at short scales does not feel the influence of
the external force, and correlations remain as in the unforced
This FE curve now satisfies a scaling forgr)i/R  polymer, while at longer distances it is essentially a linear
=®(fR/[2dT]), where the scaling function has the limits object aligned to the force. The polymer can then be visual-
ized as a linear chain dflobs as depicted in Fig. 4. The
number of monomersl,, inside a blob is determined by the

FIG. 2. Force-extension curves for a 100-monomer polyme
with a slip link in d=3 with its loop threaded through additional
(from top to bottom m=0, 1, 2, 3, and 4, rings.

zI(1+m—d/2), z—0,

d(z2)~ (11  conditionfR,~T, whereR, is the EED ofN, monomers. In
z—clz, z—0e. the case of a phantom polymeRy=aN{?), this leads to
N,~(T/fa)?, while in the more general case witR,
it i i in Ei =aN{, we getN,~(T/fa)”. Consequently, for large forces
The initial slope is reduced for largen, as depicted in Fig. b b '

2, while the asymptotic form at largeis reached with a the EED of a whole polymer is the size of a single blob times

correction that falls off as 1/ The physical origin of the the number of blobs, i.e.,
nonlinearity is the tightening of the initially large loop in the - (1)-1
intermediate regime. (r)¢=(N/Np)R,=aNNj~“=aN(fa/T) . (13

(ii) Ford/2—2>m>d/2— 1, the mean loop size grows as o
N2*M-d2 plaving the role of an additionalsubleading  For phantom polymers the FE curve remains linear even for

length scale. Consequently, the FE curve no longer has lgrgef, while for a self-avoiding polymer il=3 (with »
simple scaling form, and behaves as ~0.58) the relation is highly nonlinear. We now note tNgt
is the scale over which the exponential factor in E®).
decays, and consequently the mean size of the SL loop for

(ryy 1R L Nz fR 15 f>T/(ayN) can be estimated as
Rzt ATl @2

Np
f dn n gy(n)
No

()¢~ (14)

Nb .
J dngy(n)
No

i; However, this expression is exactly the size of the link in a
polymer consisting ofN,, monomersin the absence of an

external forcei.e.,
% (Men=~(Mon,- (15

The first subscript in this equation denotes the size of the

force, while the second index indicates the total number of

FIG. 3. A slip link whose loop is threaded through additional monomers. We can, therefore, view the SL loop as being
m=3 rings that are restricted to stay on the loop. confined to a single blob. Since within a blob the external
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~n"¢ wherec>2. Consequentlyn), is independent oN,

and will cause no detectable modification in the FE curve of
a self-avoiding polymer. This picture can be easily general-
ized to a sequence dafoninterpenetratingSLs. At zero
FIG. 5. Qualitative representation of a stretched polymer with aforce, the loops will compete for the available length, each
SL. The loop created by the SL is contained within a single blob,acquiring a fraction of the overall length, as described in Ref.
and its size is determined only by the number of the monomers in13]. At strong force, in the blob regime, each slip link is
the blob. most likely confined to its own blob.

Viewing the stretched polymer as a sequence of blobs,
force is not felt, its size is determined by regarding the entirgvith only individual blobs affected by the presence of the
polymer length adN,, as depicted qualitatively in Fig. 5.  constraints such as SLs, creates a convenient framework for

While the leading term in the expression for the EED of aevaluation of FE relations. This picture may possibly be ex-
strongly stretched polymer with a SL will still have a form tended to knotted polymers. If the size of each prime knot
given by Eq.(13), subleading corrections depend on the in-factor depends on the number of mononféiss a power law
fluence that the presence of SL has on the EED of the urhN', then the application of a strong stretching force will con-
stretched polymer. For a phantom chain there is a clear sepéine the knot to a blob and will reduce its sizeNg. Such a
ration between the segment that creates the link and thecenario(at small forces was explored in a recent Monte
remainder of the chain, and consequently, in the absence &arlo study[18].
an external force, the reduction R? can be simply related We thank A. Hanke and O. Farago for helpful discussions.
to the reduction oN by Eq. (7). This is not necessarily the This work was supported by US-Israel Binational Science
case in the presence of interactions, and each case must Beundation(Grant No. 1999-00)7and by the National Sci-
considered separately. In the presence of self-avoiding inteence FoundatiofiGrants Nos. DMR-01-18213 and PHY99-
actions(for d<4), it can be showii13] that forn<N the = 07949. R.M. acknowledges financial support from the Deut-
statistical weight of am-monomer loop is given bgy(n)  sche Forschungsgemeinschatft.
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