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Knots in polymers
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Abstract. Knots and topological entanglements play an important role in the statistical
mechanics of polymers. While topological entanglement is a global property, it is possible
to study the size of a knotted region both numerically and analytically. It can be shown
that long-range repulsive interactions, as well as entropy favor small knots in dilute sys-
tems. However, in dense systems and at the Θ-point in two dimensions the uncontracted
knot configuration is the most likely.
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1. Introduction

Knots and links naturally appear in long polymers [1] and play an important role in
biological processes [2]. The simplest statistical–mechanical model of a polymer is a
self-avoiding walk either on a lattice or in continuous space. It faithfully represents
the properties of dilute solutions of long polymers in good solvents. Thus, the
numerical study of knots is frequently reduced to the study of self-avoiding loops
(SALs). It can be shown [2,3] that the probability of finding a knot in a SAL
approaches 1 as the number of monomers N in the loop increases. Nevertheless,
the knots are rare in polymers of moderate size. Figure 1 (from ref. [4]) depicts a
trefoil knot that has been found by examining randomly generated 64-step SALs on
a cubic lattice. Probability of finding a knot in such a short SAL is 0.00002. Only
for the number of monomers N of order 105 the majority of closed loops are knotted
[4,5]. Since most numerical studies are performed with N of a few thousands, they
are in fact performed in the range where knotted configurations are an exception
rather than the rule among SALs with unrestricted topologies.

Since knots and other topological entanglements may present an obstacle to
biological processes (see, e.g., ref. [6]), in many cases it would be advantageous
if there existed a possibility to recognize a knot locally, i.e. without examining
the entire closed loop. This is possible if the knotted region is localized rather than
spread out over the entire chain. If a method can be found to identify the number
of monomers Nk forming the ‘knotted part’ of the N -monomer loop, then we may
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Figure 1. A trefoil knot in a 64-step self-avoiding loop on a cubic lattice.

inquire as to the N -dependence of Nk. We will say that the knot is delocalized if
Nk ∼ N . If Nk is independent of N , we will call it a strongly localized knot, while
in the case of Nk ∼ N t with 0 < t < 1, we will denote it as weakly localized.

Position and size of tight knots, such as a simple knot on a rope, are easily
recognized visually both in theoretical constructions [7], and in actual experiments
with knots on DNA [8]. However, in general situations we need mathematical tools
to identify the presence of a knot. The mathematical knot theory provides a large
number of invariants for classification of the knots [9]. Unfortunately, they are
not ‘absolute’: Every invariant eventually fails to distinguish between some of the
(complicated) different topologies. However, in practical calculations they are more
than sufficient to correctly identify simple knots. In fact the oldest (and simplest)
invariant, Alexander polynomial [10], provided the first quantitative insight into
the frequency of appearance of knots in random loops [11]. By their very nature,
these mathematical methods use the entire closed loop to determine the presence of
a knot, and provide no indication regarding the position or the size of the ‘knotted
region’. The lack of ability to rigorously define Nk led the entire research of knot
sizes to use very indirect methods.

2. Knot size detection – methods and results

Delocalized knots may be expected to influence the radius of gyration Rg of a loop.
Indeed an early study of Rg revealed that for fixed N , Rg decreases with increasing
complexity of the knot [12]. However, later studies [13] demonstrated that the ratios
of Rg of loops with different (fixed) topologies approach 1 as N increases. This is
a strong indicator that the knots are localized, since in such a case there is no
difference between loops with various topologies for sufficiently large N . Grosberg
et al [14] estimated the free energy of a knotted polymer under an assumption that
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the knot is either spread out over the entire polymer or is concentrated in a small
area, and concluded that for each knot type for sufficiently large N the knotted
region becomes localized.

The most direct method of estimating Nk was devised by Katrich et al [15]:
They determined whether a particular part of a loop is knotted by removing finite
segments of a loop, attaching them to semi-infinite straight lines and checking (by
standard knot recognition techniques) whether the new closed (via infinity) loop
contains a knot. By selecting segments of different lengths from different parts of
the loop, they established the size of the smallest segment that is still knotted.
Unfortunately, this method sometimes produces false identifications – sometimes a
segment of an unknotted loop forms a knot when it is connected to semi-infinite
straight lines. This introduces a degree of uncertainty into the recognition process,
which must be tolerated if the method is to be used. It is impossible to perform
an ‘objective’ check of the accuracy of the method since there is no other method
to compare it with. One may imagine that the error rate is larger when the knots
are less tight and include larger number Nk of monomers. This effect may distort
the distribution of the sizes of the knotted region. Katrich et al investigated loops
formed by random walks (without self-avoidance) and concluded that Nk ¿ N ,
although it was difficult to establish how strongly the knots are localized.

If knots are localized they can be viewed as finite size corrections. In the absence
of knots of finite size corrections in SALs usually have a very small amplitude, and
the power-law relation Rg = aNν holds true even for moderate Ns. However, in the
presence of a knot the corrections become significant. We may attempt to correct
that relation by replacing N by N − Nk. Thus by measuring Rg as a function
of N we may extract the values of Nk for various values of N . Such data can be
extracted, e.g., from the results of ref. [13]. We used such an approach in a slightly
different numerical study [16]: We considered a polymer attached to two walls by
its ends. The stretching force f exerted on the polymer by the walls was measured
as a function of the separation R between the walls. Figure 2 depicts two examples
of a stretched polymer with trefoil knot tied on it (from ref. [16]). When a polymer
is strongly stretched it forms a linear sequence of ‘blobs’ [17], and the number of
monomers Nb in each blob depends on f . On length-scales smaller than the size of
a blob, the polymer behaves as if there is no external force. We note that in the
presence of a knot the knotted region must be restricted to a single blob. Thus by
increasing f we effectively consider systems with decreasing values of N [18], and
we may assume that Nk ∼ N t

b. By considering finite size effects in force-separation
curves we were able to show [16] that the knots are weakly localized, i.e. in SALs
Nk ∼ N t with t = 0.4± 0.1.

3. Simplified cases

Since we encounter such difficulties in identifying knotted regions, it may be useful
to consider few cases for which clear answers can be provided. For instance, in a
charged polymer loop the interplay between Coulomb interactions and irreducible
topological constraints leads to strongly localized (tight) knots, while the composite
knots are factored and separated as depicted in figure 3 (from ref. [19]). This can
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Figure 2. Two examples of a stretched polymer with N = 334 with trefoil
knot on it. Grey segments indicate the knotted region.

be demonstrated both by semi-quantitative arguments and by numerical simula-
tions [19]. It can also be shown, that such behavior survives even for screened
Coulomb interaction, until the screening length λ becomes shorter than a critical
value λc (which is proportional to

√
N). For λ < λc the polymer is dominated

by the bending rigidity (which was generated on the short-length scales by the
Coulomb interactions) and the knot becomes delocalized.

Another simple approach to topological entanglements is to replace the real en-
tanglement by a ring sliding on a polymer and enforcing a contact between one
pair of monomers [20]. The ring can slide from one pair to another. Such a ring,
called slip-link, forces a polymer loop to behave as figure-8. Several slip-links may
create complex figures. Although this is not a real topological entanglement, it
provides us with an indication as to what entanglements may do. For instance we
find that a single slip-link on a SAL, forces figure-8 geometry (in two- and three-
space dimensions) to look like a very large loop to which a very small and tight
loop has been attached. This is analogous to the strongly localized case of a knot.
(Our theoretical predictions in two dimensions (2D) have been confirmed both by
numerical simulation [20] and by an interesting experiment of figure-8 chain placed
on a vibrating surface [21].) In dense or Θ-point solution figure-8 becomes weakly
localized [22].

In two dimensions we can make an additional step towards understanding the
entanglements [20,22]: Imagine a knotted polymer loop pressed by a strong poten-
tial to a two-dimensional plane. The loop will attempt to eliminate all possible
accidental intersections of lines except for the bare minimum of intersections that
remain because of the presence of the knot. The two-dimensional picture will look
like a projection of a knot into 2D with a minimal number of intersections. It can
also be viewed as a two-dimensional network. The scaling behavior of 2D networks
has been studied in great detail by Duplantier and his co-workers [23]. Their re-
sults can be applied to the case of 2D knots, with modifications resulting from
the fact that a number of monomers can redistribute between the segments of the
network. (One also needs to treat separately the cases when one or more segments
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Figure 3. Polymer loops with composite knots (knot type [9,10] is indicated
near each picture). Left column depicts clearly the type of the knot. Right
column depicts low-temperature configurations of the system with monomers
repelling each other via Coulomb potential. (The figures in the right column
have been scaled down.)

become very short and we effectively have a network of different topology and differ-
ent number of bonds and vertices.) By analysing such 2D networks we arrived at a
conclusion that 2D knot is strongly localized in dilute good solvent regime [20] and
becomes delocalized in dense and Θ-point conditions [22]. The prediction regarding
the dense phase is consistent with the numerical results of ref. [24]. However, our
prediction regarding the behavior at the Θ-point is at variance with [24].

4. Discussion

Statistical mechanics of knotted polymers presents a fascinating challenge of local
detection of the knotted region. Both indirect measurements of the size of the
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knotted region and investigations of simplified systems indicate, that at least in
dilute systems the knot is localized. One can therefore view a composite knot as
a collection of interacting localized objects. If the knots are weakly localized, the
components of a composite knot may have long range interactions. If a convenient
method for detecting position of the knotted region can be found, one may attempt
to investigate such a ‘gas’ of components. Unfortunately, the simplified objects
presented in the previous section (figure-8, 2D knots) will not be of much use for
this purpose, and we will probably need to work with true three-dimensional knots.
The method of Katrich et al [15] was originally employed to study knots in random
walk loops. It seems as a good candidate method for the study of the size and
position of knotted regions in simple and complex knots, provided the error rate
of the method can be controlled. Marcone et al [25] have recently attempted to
use such a method to study polymer loops in both dilute good solvent regime, and
in collapsed regime with some surprising results: In the good solvent regime their
exponent t is almost two times larger than the one obtained in ref. [16]. Clearly
more detailed studies are needed to resolve such contradictions.
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