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ENERGETIC AND ENTROPIC ELASTICITY OF THE SIERPINSKI GASKET
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Two complementary (energetic and entropic) models of the problem of elasticity on the Sierpiiski gasket are compared and
discussed. Both models are known to exhibit a power-law scaling of the elastic constants. These results are compared with the
properties of random systems. and 1t 1s shown that the Sierpiiski gasket is significantly more siable than a “typical™ random
system. in the energetic elasticity model the elastic constants decay very slowly with increasing length scale while in the entropic
elasticity model the excluded-volume effects are able 1o stabilize the shape of the gasket. 1.c. 1ts relative shape fluctuations decas

with increasing system size.

1. Introduction

In recent years there has beer a renewed interest in
the elastic properties of inhomogeneous materials. In
many such systems one van identify a correlation &
above which the maicial can be treated as homoge-
neous. The linear elastic response of /ftomogeneous
solids is characterized by the elastic stiffness tensor
C.,.... This tensor is simply related to the volume and
shape dependence of the free energy F of the solid
[V]:C,.,.=(1/1") 0 F/d¢, d¢,,. where I'is the volume
of the system, while ¢, is the applied strain. At finite
temperature 7. both the energy U/ and ihe entropy S
contribute to the shape dependence of F={'-T78S. For
the purpose of the theoretical research one can roughly
divide the inhomogeneous systems into two groups:
(a) Materials whose elementary grains are very large
will belong to the energetic elasticity group. The
weakly conipacted sandstone is a typical member of
such a group. Under applied external distortion the
ntropy of these materials remains unchanged. and
the change 1n the free energy F can pe attributed to
the increase in the energy L. (b) Materials consisting
of very small “*building blocks”. e.g. polymeric sys-
tems such as rubbers and gels [2]. belong 1o the cn-
tropie elasticity group. The distortion of a polymeric
network reduces the available phase space thus de-
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creasing the entropy of the system and increasing its
free energy [3].

The “borderline™ between the tv 0 groups 1s not
sharp. and depends on such properties as grain size.
geometre and temperature. One may quantify the
difference between the types of the svstems by com-
paring their relative fluctuations [4].

Frequently. at length scales L < the geometnical
properties of the systems can be characterized by a
fractal dimension d, { 3] which relates the mass Veof
the object 10 its linear size L: N~ L. In the fractal
regime on¢ may expect a power-law dependence on
length ot the various physical properties such as re-
sistance or force constants. These power laws can be
used to infer the properties on length scales L> S by
assuming a smooth crossoer Irom the fractal regime
10 a homogeneous regime. In some cases. such as coi-
loidal aggregates [6.7] there is no crossaver 1o the
homogeneous regime. and the fractal behavior is hm-
ited by the finite size of the aggrezate. In these 8-
tems one directly measures the length-scale depen-
denee of the elastic properttes [7] The theoreucd!
analysis of the vibrations in the fractal regime led to
the discovery [81 of medes deinowed “fractions™, with
a peculiar power-law scaling of the density of states.
More recently, these states have been observed ev-
perimentally [9].
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In this paper. 1 compare several approaches [10-
12] to the elasticity of a particular regular fractal -
the Sierpinski gasxet [5]. I show that certain prop-
erues of that object differ from what one could call
*a typical random fractal”. Nevertheless. the system
permits one 1o guantify several important concepts
of the elastic behavior of inhomogeneous systems.

2. The Sierpinski gasket - basic properties

The Sierpinski gasket is a deterministic fractal de-
fined by the following iterative procedure [$]. A tri-
angle is subdivided into four triangles by lines con-
necting the mid-poinis of s edges. followed by
removal of the central triangle and inflation of the
entire system by a factor of 2. The procedure is re-
peatedly apnlie? 10 each of ‘he remaining triangles.
The fractal dimension of the gasketl is d;=In3/
In2=x~1.585.

A considerable number of investigations [13.i
dealt with the properties of various models defined
on the Sicrpinski gasket. hoping that it will provide a
gualitative insight into the general behavior of ran-
dom fractals. as well as supply some quantitative es-
timates for critical exponents. Gefen et al. [13] in-
vestigated the scaling of the conductis 11y of a resistor
network having the topology of the Sierpinski gasket:
¢qual resistors have been glaced along the edges of
the present triangles of the gasket. and it has been
shown that the resistance of a two-dimensional gas-
kel increases by a factor 5/3 afier each iteration.
leading to the power- la“ dependence of the two-point
conductance X~ L -, with .,,_In(5/1)/ln._~0 737.
(For a d-dimensional gasket J = In[(d+3)/

(d+11]/In2 " Since the fractal dimension of lhe
Sterpiiiskr gasket is close to the fract
the backbone of the percolating clusxer it has been
suggested [ 131}, that the value of ¢, obiained for the
gasket could approximate the conductivity exponent
ef a random system. Later. an appreciable discrep-
ancy in the numerical values has been found. How-

ever. the pashet remarned one of the simplest. but.

revertheless, nontrivial models for testing the prop-
erties of the random sysiems.

3. Energetic elasticity models

The behavior of elasticity and conduction in a con-
tinuum are governed by similar differential equa-
tions. Thus, it was frequently assumed that the criti-
cal behavior of both properties is identical. Bergman
has suggested [ 15] to use the Sierpinski gasket (o look
for possible differences between the problems. In its
simplest form, one replaces the resistors described in
the previous section by springs [10]. i.e. uses central
forces between the neighboring nodes of the network.
and measures the changes in the elastic response of
the system under the rescaling. Different elastic mod-
uli can be measured by applying a variety of displace-
raents to the external corners of the gasket. It has been
found [ 10] that all possible force constants & (which
are the analogues of the conductance £ in the electric
case ) halve after each iteration, leading to the scaling
relation k~L <. with &, =1. (This result remains
unchaaged iIf one considers a d-dimensional gasket. )

The behavior of the central force model is gov-
erned by a single force constant. which describes 1he
properties of the elementary spring. A more general
case was considered by introducing a three-terminal
element at each node of the gasket [10]. as well as by
considering three-body bending forces on the gasket
[ I1]. Both models have the same effect of adding an
energetic cost to the change of the angle between the
bonds. However. these modifications did not change
the behavior of the effective elastic moduli of the gas-
ket. and 2, remained 1.

The immediate conclusion from the above results
is that the critical behavior of elasuicity ditfers from

the behavior of conduciivity. The subsequeni inves-
uigations of the energetic elasticity of percolating sys-
tems revealed sigmificant differences between the
predictions of the Sierpiriski gasket model and the
beharor of random systems: in the presence of cen-
trai torces the rigidity threshold was found to be sig-
nificantly larger than the percolation threshold [ 16].
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i.e. the geometric continuity was insufficient to sup-
port stress. In the presence of bending forces C, is sig-
mificantlv larger than ¢, and its value is primarily de-
termined by the bending forces [17]. The differences
in the behavior can be attributed to the fact that the
Sierpinski gasket consists of the “most stable struc-
tures” - triangles. while the elastic response of a per-
colating system is primarily determined by the long
tortuous paths [17].

So far we considered a purely energetic model.
What happens to the system at finite temperature 77
The fluctuations & of the gasket size can be related to
the force constant k via [18]

kd*xkyT. ()

Therefore the relative fluctuations of the Sierpinski
gasket decay with increasing length scale:

J/Lz(\"kaT/k)/L~L:" N

By contrast. for percolation clusters. where 7]
. = 3. the relative fluctuations increase with increas-
ing length scale. Thus. for most tenuous structures
large fluctuations will {on sufficiently large length-
scales) eventually break the validity of 1he energetic
approach which essentially assumed smalil fluctua-
tions [4].

4. Elasticity of polymeric networks

Linear and branched polymers are examples of en-
tropy-dominated tenuous structures. They do not
have a “ground-state shape™, and can be defined only
by the conncctiviry. while their relative shape fluctua-
tions are of order unity. The radius of gyration (rms
size) R, of such a system can be usually related to its
tmternal linear size L (in the case of a linear polymer
umber of monomers, while in the case ol g
polymer«< surtace L is the linear size of a sir2tched
surface) by a power law: R, ~ L* In such a sitwation
one cannol use the regular elastic stitfness tensor.,
However. the scaling A ~ L ~~ of a typical force con-
stant & can be easily determined: since the typical
fluctuation ¢ sausfies eq. (1), and d is of order R,.

Foie tha e
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the force constant [19] k= kgT/R*~ L ->*. Thus. the
elasticity exponent &, =2 v for polymeric structures.

The success of t1e scaling theory in poly mer phys-
1cs rests on detaile 1 investigation of linear poly mers
[2]. The treatment of more complicated objects usu-
ally relies on approximate theories. It is believed that
on sufficiently long length-scale a tenuous network
without self-avoidance (i.e. without the excluded-
volume, or steric, interactions) can be correctly de-
scribed by a network of harmonic springs which have
a vanishing equilibrium length (“Gaussian net-
work™ ). It can be shown [20,21] that the squared ra-
dius of gyration R, of such a polymeric network is
proportional to the mean resistance of a resistor net-
work. which has the same topology as the polymeric
network. Therefore. in the absence of the self-avoid-
ance in polymer having the connectivity of a Sierpin-
ski gasket we should expect Ry~L™, with ry=
& /2~0.368. (For the gasket we define L as the length
of a stretched fractal. i.e. it is proportional 1o 2", where
n is the number of iterations of the gasket.)

Excluded-volum: interactions cause an expansion
of the system (compared with the cas? without seli-
avoidance) and an increase in . From a aimensional
analysis one finds that the seli-avoidance becomes ir-
relevant when the structure 1s embedded 1n space di-
mension [20] d>d.=4d,/Z,. Forastructure with the
connectivity of a two-dimensional Sierpiriski gasket
the upper critical dimension d.+ 8.6, For d<d. we
can approximate the free energy F by a Flon-type
expression [22]:

F (R, (NY,. 5
Zl_i—j-:\R‘_:\_l) +!(-R—:) RY. i)

of gyration ol the same network without seif-a»oud-
ance). The second term is an esumate of the repul-
sive interaction energy {the squared density of the
monomers ( N/RY)" 1s a mean-lield-type estimate of
the number of pairs of monomers coming into close
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contact with each other in a unit volume). By mini-
mizing (2). we find Ry~ L*", with rp=(J, +2d;)/
(d+2).

For a polymer with the connectivity of the Sierpin-
ski gaskel in d=2. r¢=0.977. Notice, that for
d<d,={ +2d;-2. we have v¢> 1. In general, the
definition of the internal size L is somewhat arbitrary
(the value of » depends on that definition) and v can
exceed unity. However, with the particular definition
of L for the Sierpinski gasket. such result would mean
that the system is overstreiched. and the Flory ap-
proximation fails. For the gasket the approximation
breaks down at space dimension d,~1.907. We
should keep in mind that the expression for d; has
been obtained within an approximate treatment. and
it is quite possible that even at d=2 the system is al-
ready completely stretched.

5. Monte Carlo simulation of the entropic model

Duering and Kantor [12] considered a two-di-
mensional model systern which is described by the
Hamiltonian

E;H?: Z Fallr—r ) + :‘Fm Feep(lr —r,0). (3)
where 7, 15 the position of the ith atem The attractive
potential I',, acts only betwecn pairs (1, j)> of atoms,
which are nearest neighbors on a regular Sierpiriski
gasket. thus ensuring the connectivity' (but nor the
shape) ot the gasket. 1°,,,(r) =0, for r< b. and o oth-
erwise. (This type of “tethering poiential™ has been
previously used to investigate self-avoiding surfaces
{23].) The excluded-volume interaction was imple-
mented by a hard-core repulsive potential I o which
acts between any pair {1. ;i of aloms. The physical
propertizs of the svstem are determined by the en-
tropy. and the force constants are stricily propor-
tiona} 0 T

The configuration space of the structure has been
sampied using the Monte Carlo (NC) method [24]
which consisted of randomly picking an aiom and ai-
wempting to displace it in a randomly chosen direc-

tion. To verify the standard assumption that without
the excluded volume the system should approach the
behavior of a Gaussian network. an equilibration was
performed for a modified version of the model in
which F., was restricted to act only between the
nearest neighbors of the network, and an excellent
agreement with the theoretical prediction ha. been
found.

In the MC simulation R, was measured for a se-
quence of gasket sizes L. For small L the effective
value of v was somewhat smaller than unity. but it
increased with increasing L and tended towards
v=1.002£0.005, leaving the Flory estimate outside
the error bars. Since v < 1, the result suggests that y=1
exactly. This conclusion also follows naturally from
a simple inspection of fig. 1: we notice that on short
length scales the structure is quite featureless. How-
ever. on larger length scales the “regular shape of
the gasket becomes apparent. This behavior, resem-
bling homogeneous structure. indicates that v=1.

The *“shape stability™ permits introduction of
regular ciastic compliance tensor S, and its MC
measurement from the strain fluctuations [25]:

Fig | A typical equilibrium configuration of a polymer which
has the connecin ity of the Sierpinsks gasket.
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S,.=(4/kgT) (e, > . where 4 is the area of the sys-
tem, while ¢,, is the thermally induced strain. All non-
vanishing elemenis of §,,;, had the same L-depen-
dence. and were consistent with the (expected)
isotropic symmetry, thus reducing the results to two
independent constants with the same scaling proper-
ties. From the L-dependence of the elastic moduli one
obtains an estimate of the entropic elasticity expo-
nent &, =0.90+0.15. which is close to the value 1 ex-
pected in the energetic elasticity models of the gasket
[10.11] with central forces (with or without bending
forces ), and somewhat exceeds the value 0.737 which
would follow from a scalar elasticity model [11]. The
result is, obviously. inconsistent with § =2v=2.
which would be expected in a polymeric system.

The most surprising part of the results described in
this section is the fact. that the excluded-volume ef-
fects are able 10 stabilize the shape of the fractal. Once
we accept such stability, the scaling of the elastic con-
stants becomes quite natural: One could assume that
beyond a certain length scale, the fluctuations are
small and the entire system can be approximately de-
scribed by a simply energetic Hamiltonian. Since we
have shown that the relative fluctuations of the en-
ergetic elasticity model on a Sierpinski gasket do not
grow, such an effective description will remain valid
also on even larger length-scales.

6. Discussion

In this work several elasticity models on Sierpiniski
gasket have been compared. It has been shown. that
the gasket is significantly more stable than “a typical
random fractal™. The indications of the exceptional
behavior came from the fact that the relative fluctua-
tions of energetic models do not grow, and that the
excluded valume in the entropic model stabilizes the
structure. Both behaviors are related to an exception-
ally high connectivity and 1o the fact that the fractal
consists of stable structures - triangles. Only further
investigation of additional models wili show in a more
quantitative way. which properties of fractals cause
such an exceptional behavior.

From the theoretical point of view the results 1n-
dicate that some additional parameter (besides the
fractal and spectral dimensions) might enter the the-
ory of fractal polymers. The results also imply that
one should not use the Sierpinski gasket as a proto-
type for explaining the properties of gels [ 26 ], unless
one has experimental evidence for the presence of
such connectivity in a gel. The exceptional geometry
of the Sierpinski gasket, however, does not mean that
such **highly triangulated™ structures are rare, since
in certain random aggregation processes su~h stable
structures may be preferably created.
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