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Two complementary (energetic and entropic) models o f  the problem of  elasticity on the Sierptfiskt gasket are compared and 

discussed. Both models are known to exhibn a power.law scaling of  the elastic constants. These results are compared ~tth the 

properties of  random s),stems, and tt ts shown that the S,erp,~isks gasket ,s s~gnificantly more stable than a "'typical'" random 

system, m the energetic elasticny model the elastic constants deca~ very slowly, ~mth mcreasmg length scale while in the entrop~c 

elasticity model the excluded-volume effects are able to stabdize the shape of the gasket. ~.e. its relative shape fluctuations deca~ 

~.~th increasmg system size. 

I. Introduction 

In recent ~,ears there has bee~ a renewed interest in 

the elastic properties of  inhomogeneous materials. In 

many such systems one ,-an identify a correlation ¢. 

above which lhe matcr~al can be treated as homoge- 

neous. The linear elastic response of  homogeneous 
solids is characterized by the elastic stiffness tensor 

C,,,.. This tensor is simply related to the volume and 

shape dependence of  the free energ~ F of  the solid 

[ I ]: C,,,~= ( I / I ") ~'-F/O~,, 0c,~. where l ' i s  lhe volume 

of the  system, while ¢,, is the applied strain. At finite 

temperature 7". both the energy U and ~he entropy S 

contribute to the shape dependence of  F =  [ ' -  TS. For 

the purpose of the theoretical research one can roughly 
divide the inhomogeneous systems into two groups: 

( a ) Materials whose elementary grains are vet) large 

will belong to the energetic elastwity group. The 

weakly con@acted sandstone is a typical member of 

such a group. Under  applied external distortion the 

mtrop~ of  these materials remains unchanged, and 

the change m the free energ3 F can t',e ~uributed to 

the increase in the energy L'. ( b ) Materials consisting 

of  veD. small "'building blocks", e.g. polymeric sys- 

tems such as rubbers and gels [ 2 I. belong !o the c,,- 

trop," elesttcity group. [he distortion of  a polymeric 

net~,ork reduces lhe available phase space thus de- 

Essa.x.s ~n honour of  Benott B Mandelbrot 
Fractals m Phxs]cs - ~, Aharon.,, and J. Feder (edttors~ 

creasing the entropy of  the system and increasing its 

free energy [ 3 ]. 

The "'borderline" between the t~, o groups ts not 

sharp, and depends on such properties as grain size. 

geomem.' and temperature. One may quantif.~ the 

difference between the t.x pes of  the s: st.em ~_ b.~ com- 

paring their relative fluctuations [4 ]. 

Frequently. at lenglh scales L<~ the geometnca! 

properties of the systems can be characterized by a 
fractal dimension d, [ 5 ] ~ htch relates the mas: .'v cf  

the object to its linear size L: N -  L J'. In the fractal 

regime one may expect a power-law dependence on 

length of  the various physical properties such as re- 

sistance or force constants. These pov, er laws can be 

used to infer the properties on length scales L>  ~ b.~ 

assuming a smooth erosso~ er I¥om the fractal regime 

to a homogeneous regime. In some cases, such as coE- 
Ioidal aggregates [6.7] r, here is no crossover to the 

homogeneous regime and the fraetal beha~ ior is I~nl- 

ited b~ the finite size of  the aggregate, in ~t~ese s3s- 

terns o~e direct!.~ measures the !ength-scale deoen- 

dence of the elastic properties [ 7 ] The :t~eore~,l~:.i 

analysis of  the v~.brations in the fraetal regime led wo 

the discovery 181 of  ~odc:,  dc f~oted "'fractions". ~.ith 
a peculiar power-law scaling of the densiD of  sta~.es. 

More recently, these states have been observed ex- 

per,mentally r0 1. 
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In th~s paper. I compare several approaches [ 10- 

121 to the elasticity of  a particular regular fractal - 
the Sierpifiski gasket [5]. I show that certain prop- 

erttes of that object differ from what one could call 
"'a typical random fractal". Nevertheless, the s}.stem 

permits one to quantify several important concepts 

of the elastic behavior of  inhomogeneous s~.stems. 

2. The Sierpiaiski gasket - basic properties 

The Sierpifiski gasket is a deterministic fractal de- 

fined b} the following iterative procedure [5]. A tri- 
angle is subdivided into four triangles by lines con- 

necting the mid-points of  ,is edges, followed by 
removal of the central triangle and inflalion of the 

entire system b). a factor of 2. The procedure is re- 
pe,atedly .~ppli,~. m each nf ,'he remaining trtaagles. 

The fractal dimension of the gasket is d,.=ln3/ 
In 2~ 1.585. 

considerable number of investigations [ 13. i , 

dealt x~.ith the properties of xarious models defined 
on the Sicri0~riskl gasket, hoping that it will pro~ ide a 
qualitative insight into the general behavior of ran- 
dom fractals, as ~ell as supply some quant t ta tne  es- 

timates for critical exponents. Gefen et al. [131 m- 
• estimated the scaltng of the  conduct~ ~l~ " • O~ a r e s i s t o r  

netv, ork having the topology of the Sierpif~ski gasket: 

equal resistors have been ~laced along the edges of 
the present triangles of the gasket, and it has been 

shown that the resislance of a two-dimensional gas- 

ket ~ncreases by a faclor 5/'3 after each iteration. 
leading to the power-lav, dependence of  the l~.o-pomt 
conductance S-- L - 3' ,,~th s, = Inl 5/3 I/In 2 ~ 0.737. 

(For a "/-dimensional gasket ~.,= I n [ ( d + 3 ) /  

~ d + l ) I / I n  2 ! Since the fractal dimension of the 

. . . . . . .  I ~  1 1 1 ~  I I ~ [ ~ 1  U I 0 1 [ ' . L I . ' I I ~ , . J I I  ~ , J I  

~he backbone of the percolating cluster, it has been 

,_.ug~es~ed [13]. that Ihe xalue of~. oblamed lot ihe 

gasket could approximate the conducti~ ity exponent 
of a random system. Later. an appreciable discrep- 

anc.~ m the numerical values has bee]: found, hox~- 
exer. the gasket remained one of the simplest, but. 

pevertheless, nonlrivial models for testing the prop- 
erties of  the random s.~ stems. 

3. Energetic elasticity models 

The behavior ofelasticity and conduction in a con- 
tinuum are governed by similar differential equa- 
tions. Thus. it was frequently assumed that the criti- 

cal behavior of both properties is identical. Bergman 

has suggested [ 15 ] to use the Sierpifiski gasket to look 
for possible differences between the problems. In its 
simplest form, one replaces the resistors described in 
the previous section by springs [ 10], i.e. uses central 
forces between the neighboring nodes ofthe network. 
and measures the changes in the elastic response of 
the system under the rescaling. Differe,t  elastic mod- 

uli can be measured b~, applying a variety ofdisplace- 

r~ents to the external corners of  the gasket, it has been 

foun,l [ 10] that all possible force constants k (which 

are the analogues of  the conductance S in the electric 
case ) halve after each iteration, leading to the scaling 
relation k-~ L-z'. with ~',. = I. (This result remains 

,anchaaged if one considers a d-dimensional gasket. ) 

The behavior of the central force model is gov- 

erned b} a single force constant, which describes the 
properties of the elementarS' spring. A more general 

case was considered by introducing a three-terminal 

element at each node of  the gasket [ 10], as well as by 
considering three-body bending forces on the gasket 

t i l l .  Both models have the same effect of  adding an 
energetic cost to the change of  the angle between the 

bonds. Hox~ever, these modifications did not change 
the behavior of the effective elastic moduli of  the gas- 
l'et. and ~. remained I. 

The immediate conclusion from the above results 

is that the crit,cal behavior of elasticity differs from 
t l l ~ ,  L/%,II¢,.l~ I~.PI ~.11 L U I I U U I , . I . I ~  I L ~ .  I I 1~  3 U U ~ I , , I U { I ! |  i i l ~ . ~ ' ~ -  

ttgattons of the energetic elasticity of percolating sys- 

tems revealed sigmficant differences between the 
predictions of the Sierpiriski gasket model and the 
beha- tor of random s~stems: in the presence ofcen-  
tral forces the rigidity ihreshold was Ibund to be sig- 

nifican0.~ larger than the oercolat~on Ihreshold [ 16 ]. 
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i.e. the geometric continuity was insufficient to sup- 

port stress. In the presence of bending forces ~,, is stg- 

n(ficanth' larger than ~.  and its value is primarily de- 

termined by the bending forces [ 17 ]. The d~fferences 

in the behavior can be attributed to the fact that the 

Sierpifiski gasket consists of  the "'most stable struc- 

tures" - triangles, while the elastic response of  a per- 

colating system is primarily determined by the long 
tortuous paths [ 17 ]. 

So far we considered a purely energetic model. 
What happens to the system at finite temperature T? 

The fluctuations di of  the gasket size can be related to 
the force constant k via [ 18 ] 

k t J ' - ~ k s T .  ( I )  

Therefore the relative fluctuations of  the Sierpitiski 

gasket decay with increasing length scale: 

6 / L ~ ( v ' k B T / k ) / L - . L  5 :-~ = L - " :  

By contrast, for percolation clusters, where 7] 

~,, ~ 3, the relative fluctuations increase with increas- 

ing length scale. Thus. for most tenuous structures 
large fluctuations will (on sufficiently large length- 

scales) eventually break the validity of  the energetic 

approach which essentmlly assumed small fluclua- 
lions [4]. 

4, Elastieit)' of polymeric networks 

Linear and branched polymers are examples of en- 

tropy-dominated tenuous structures. They do not 
have a "'ground-state shape", and can be defined only 

by the connecth,it)' ,  while their relative shape fluctua- 

tmns are o fo rde r  unity, l 'he radius of  gyration I rms 

size) R.~ of  such a system can be usually related to its 

m w r n a l l i n e a r  size L ( in the case of  a linear polymer 

I $  L l l g  i l U l l l ~ l t ~ : i  ~ J i  I | i ~ I I I K J I I I ~ . I $ I  , 'l i l l | l i ~  I I I  [ l l ~ .  ~..¢,.13~ ~.wl 4,~ 

polymer,c ,:urlhce L is the linear sire of  a slr,:lched 

surface) b.~ a power law: R~ -.- L' la such a situation 

one cannot use the regular elastic stiffness tensor. 

Hov~ever. the scaling k-.-L -:'~ o f a  t~.pical lbrce con- 

stant k can be easily determined: s,nce the tyD~cal 

fluctuation 6 sausfies eq. ( I ) ,  and d is of  order R~, 

the force consta'u [ ! 9 ] k "~ k s T /  R 2 .. L - ~-". Thus, the 

elasticity exponent ~. = 2 t, for polymeric structures. 
The success of  i've scaling iheor), in pob met  ph~s- 

tcs rests on detailet investigation of linear pol> mers 

[ 2 ]. The treatment of  more complicated objects usu- 

ally relies on approximate theories, it is believed that 

on sufficiently long length-scale a tenuous network 

without self-avoidance (i.e. without the excluded- 

volume, or steric, interactions) can be correctly de- 

scribed by a network o f  harmonic springs which have 

a vanishing equilibrium length ("Gaussian net- 

work") ,  it can be shown [ 20,21 ] that the squared ra- 

dius of  gyration R~o of  such a polymeric network is 
proportional to the mean resistance of a resistor net- 

work, which has the same topology as the pob merle 

network. Therefore, in the absence of  the self-avoid- 

ance in polymer having the connectivity o fa  Sierpiri- 

ski gasket we should expect R~o-,-L'":, with I,o- 

~'~/2 = 0.368 (For the gasket we define L as the length 

of  a stretched fractal, i.e. it is proportional to 2", where 

n is the number of  iterations of the gasket. 

Excluded-volum- interactions cause an expansion 

of  the system (compared with the case without self- 

avoidance) and an increase in t'. From a mmens,onal 

analysis one finds that the self-avoidance becomes ~r- 

relevant when the structure ~s embedded m space d~- 

mension [ 20] d>  d, - 4d, !,.=,. For a struclure ,~ ith :.he 
connectivity of a two-dimensional Sierpifiski gasket 

the upper critical dimension d,.'e 8.6. For d <  d,. we 

can approximate the free energ.~ F b.~. a Flor3-t.~ pe 

expression [22 I: 

F ,,) 
i2) 

where we omit the dimensionless prefactors of  order 

~2 " • ,~;t,, T h . . - ,  G ~ , - t  t ~ : ~  " " 1  el-,.. ,-,,.,,h,v ,~i" ~ ,¢ IL~.- , - i ~ ¢ t l -  

tentrepic ~ !'tee energ~ o fa  n.:,v.~ ork { :~., is ~h ~. raJ;us 
o1" gyration of the same network v,.il.hou| sei(8' ,  old- 

ance).  The second term is an estimate of  the repul- 
sive interaction energy (the squared density of the 

%rlD,.II2 monomers (, ~,,e # ~s a mean-field-type estimate of 
the number of pa~rs of  monomers coming into close 
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contact with each other in a unit ~,olume). By mini- 
mizing (2). ~e find R~--L ''~. with e F = ( , , , + 2 d . ) /  
( d + 2 L  

For a polymer with the connectivity of the Sierpifi- 
ski gasket in d=2. J,r=0.977. Notice, that for 
d < d ~ - C + 2 d f - 2 ,  we have ~'F> 1. in general, the 
definiuon of the internal size L is somewhat arbitrary 
(the value of l, depends on that definition ) and u can 
exceed unity. However, with the particular definition 
of L for the Sierpiriski gasket, such result would mean 
that the system is overstretched, and the Flory ap- 
proximation fails. For the gasket the approximation 
breaks down at space dimension d t ~  1.907. We 
should keep in mind that the expression for d~ has 
been obtained within an approximate treatment, and 
it is quite possible that even at d=  2 the system is al- 
ready completely stretched. 

5. Monte Carlo simulation of the entropic model 

Duering and Kantor [12] considered a two-di- 
mensional model system x'`hich is descrtbed by the 
Hamiltonian 

tton. To verify the standard assumption that without 
the excluded volume the system should approach the 
behavior ofa  Gausstan network, an equilibration was 
performed for a modified version of the model in 
which I;~p was restricted to act only between the 
nearest neighbors of the network, and an excellent 
agreement with the theoretical prediction ha.. been 
found. 

in the MC simulation R~ was measured for a se- 
quence of gasket sizes L. For small L the effective 
value of  v was somewhat smaller than unity, but it 
increased with increasing L and tended towards 
~,= i.002 + 0.005, leaving the Flory estimate outside 
the error bars. Since e_< !, the result suggests that J,= I 
exactly. This conclusion also follows naturally from 
a simple inspection of fig. I: ~.e notice that on short 
length scales the structure is quite featureless. How- 
ever, on larger length scales the "regular" shape of 
the gasket becomes apparent. This behavior, resem- 
bling homogeneous structure, indicates that 1,= I. 

The "shape stability" permits introduction of  
regular elastic compliance tensor S, m, and its MC 
measurement from the strain fluctuations [25]: 

H 
kBT- ~ l~ , , ( I r , - r , I )+  ~ I ,~p(Ir ,-r , I ) ,  (3) 

' 1  , ,-,¢. :+ t 

~ here r, is the position ofthe Ith atom The attractive 
potential I ".,,, acts only between pairs ( t , j )  ofatoms, 
which are nearest neighbors on a regular Sierpifiski 
gasket, thus ensuring the connectwit.v (but not the 
shape) of the gasket. !.'~,, (r) = O, for r < b, and .~. oth- 
erwise. (This type of"tethering polential'" has been 
previously used to !nvestigate self-avoiding surfaces 
[ 23 l- J The excluded-volume interactton ','.'as imple- 
mented b~ a hard-core repulsive potential | ",,p. which 
acts between any pair {t. j~ of atoms. The physical 
prope.~,ies of the s'-'s'..em are determined by th~ en- 
~rop.v, and the Ibrce constants are strictl.~ propor- 
tional ',o T 

The configuration space of the structure has been 
sampled using the Monte Carlo (MC) method [24 I 
~'̀  h~ch consisted ofrandoml)  picking an atom and at- 
tempting to displace it in a randoml~ chosen d~rec- 

Fig I A t.~p~cal equf l tbr ium configurauon of a pol.,.mer ~.,,.h~ch 
has the connecu,, it.~ of the Slerplriskl gasket. 
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S,:t= (A/kBT) (¢,,(~t). where .4 is the area of  the sys- 
tem. while ~,, is the thermally induced strain. All non- 

vanishing elements of  S,,, had the same L-depen- 

dence, and were consistent with the (expected) 

isotropic symmetry,  thus reducing the results to two 

independent constants with the same scaling proper- 

ties. From the L-dependence of the elastic moduli one 

obtains an estimate of  the entropic elasticity expo- 

nent ~'~ =0.90_+ 0.15. which is close to the value I ex- 

pected in the energetic elasticity models of  the gaskel 

[ I 0.11 ] with central forces (with or without bending 

forces), and somewhat exceeds the value 0.737 which 

would follow from a scalar elasticity model [ I 1 ]. The 

result is, obviously, inconsistent with ~ = 2 v = 2, 

which would be expected in a polymeric system. 

The most surprising part of  the results described in 

this section is the fact, that the excluded-volume ef- 

fects are able to stabilize the shape of  the fractal. Once 
we accept such stability, the scaling of  the elastic con- 

stants becomes quite natural: One could assume that 

beyond a certain length scale, the fluctuations are 

small and the entire system can be approximatel.~ de- 
scribed by a simply energetic Hamiltonian. Since we 

have shown that the relative fluctuations of  the en- 

ergetic elasticity model on a Sierpiriski gasket do not 

grow, such an effective description will remain valid 

also on even larger length-scales. 

6. Discussion 

In this work several elasticity models on Sierpifiski 

gasket ha~e been compared. It has been shown, that 

the gasket is significantly more stable than "'a typical 
random fractal". The indications of  the exceptional 

beha~ ior came from the fact that the relative fluctua- 

tions of energetic models do nol grow. and that the 
excluded volume in the emrnpic model stabilizes the 

structure. Both behaviors are related to an exception- 

ally high co/mectivity and to the faca that the fractal 

consists of  stable structures - triangles. Only further 

investigatton of  additional models will show in a more 

quantitatix, e way, which properties o f  fractals cause 

such an exceptional behavior. 

From the theoretical point of  view the results in- 

dicate that some additional parameter (besides the 

fractal and spectral dimensions) might enter the the- 
ors' o f  fractal polymers. The results also imp[)' ~hat 

one should not use the Sierpifiski gasket as a proto- 

type for explaining the properties ofgels [ 26 ], unless 

one has experimental evidence for the presence of  
such connecttvity in a gel. The exceptional geometry 

o f  the Sierpifiski gasket, however, does not mean that 

such "'highly triangulated" structures are rare, since 
in certain random aggregation processes su-h stable 

structures may be preferably created. 
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