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Abstract. Numerical simulation of two-dimensional bond percolation at the percolation 
threshold shows that configurations with no singly connected bonds (SCB) appear with a 
finite probability. Nevertheless, the average minimal width of the percolation channels is 
small. This result confirms an assumption used to derive the critical exponent of the critical 
current density in superconductor-insulator composites. Higher-order bonds are shown 
to play the role of SCE in configurations with small numbers of SCB. Implications of the 
properties of low-connectivity bonds on the physical properties of percolating systems are 
discussed. 

Finite-size scaling simplifies the treatment of the physical properties of percolating 
systems, since the geometrical properties of the percolation clusters on the length scales 
L smaller than the connectivity correlation length 6 can be conveniently classified and 
investigated. For instance, the critical current density j ,  in a superconductor-insulator 
composite decays as ( p - p , ) ”  when the volume fraction p of the superconducting 
component approaches the percolation threshold p , .  The numerical value of the 
exponent U has received considerable experimental and theoretical attention (see e.g. 
[ l]) .  (A similar effect can be expected for the critical flux of superfluid He through a 
porous medium [2].) This singular behaviour of j ,  is related to the divergence of the 
correlation length 6 near the threshold as ( p  - pc)-”. Simple finite-size scaling consider- 
ations show that for L<< 6, the critical current density j,- L-”’”. Thus, the problem is 
reduced to the investigation of j ,  in the scaling, or fractal [3], regime L<c 6. It is 
convenient to reformulate the above statements in the language of the large-cell position 
space renormalisation group (LCRG) [4]: we will treat the probability p ’ ( p ,  L )  that a 
given square (&dimensional hypercubic) cell of linear size L percolates in one (pie- 
determined) direction as the renormalised probability of a bond to be present after 
the original problem has been rescaled by a factor L. The fixed point p , ( L )  of such 
a transformation is determined from p’(  p * ,  L )  = p * ,  while the (effective) correlation 
length exponent Y is determined from the equation L”” = ( d p ‘ / a p ) , ,  . The value of the 
(effective) exponent U can be determined from j , ( p * ,  L)= j c ( p * ,  l)L-”/”.  For L+m,  
the exponents v and U approach their asymptotic values, and p * ( L ) + p c .  All the 
simulations presented in this letter have been performed on a two-dimensional square 
lattice, which is self-dual and therefore 1 - p ’ (  p ,  L) = p’(  1 - p ,  L )  and p*( L )  = p c  = 0.5. 
We must keep in mind that LCRG treatment of the physical properties of percolating 
systems presumes that ( a )  those properties have only one important length scale, which 
is proportional to the geometrical correlation length 6, ( b )  the results are not sensitive 
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to the choice of boundary conditions and ( c )  the results are not sensitive to the choice 
of the variable which is averaged and to the particular averaging procedure. 

The simple ‘nodes and links’ model of Skal and Shklovskii [5] and de Gennes [6], 
restated in the LCRG language, depicts the current-carrying backbone of the percolating 
cluster (at p * ,  for finite L) as a single tortuous channel. It has been modified by 
Stanley [7], who observed that only a small portion of all bonds called ‘singly connected 
bonds’ (SCB) play a crucial role in the connectivity of the sample. A bond of a 
percolating configuration is called ‘singly connected’ if its removal creates a non- 
percolating configuration. Other low-connectivity bonds ( LCB) can be defined in a 
similar manner. For example, a pair of bonds will be called ‘doubly connected’ if 
their simultaneous removal creates a non-percolating configuration, while none of 
them is a SCB. LCB play an important role in a variety of physical properties: they are 
responsible for the decay of spin-spin correlations of the Ising model in a percolating 
system at low temperatures [8]. The disappearance of the superconductivity in a 
superconductor-insulator composite is also caused by the high density currents flowing 
in the LCB, which cause the entire sample to become normal if the current density 
exceeds some threshold value. Knowledge of the average number of SCB can also be 
used to derive bounds on the critical exponent of elasticity [9] or to compare the 
critical behaviour of lattice models with the behaviour of continuum percolation models 
[lo]. The possibility to infer physical properties from purely geometrical properties 
of the percolation clusters stimulated numerical investigations in that area (see e.g. 
[ 111). However, the amount of exact statements which can be made about the geometry 
of the percolation dusters is quite limited. It can be shown [12, 131 that the average 
number of SCB in a hypercube of size L at p c  is proportional to L””. If, following 
[ 121, we expand p‘ (  p* - p ,  L )  in powers of p and identify the coefficients of the 
expansion with the geometrical features of the percolating cluster, we find p’ (  p* - 
p , L ) = p , - ( L l ) p - ( 1 L l ( L l - 1 ) - N 2 ) ( p ) 2 / p , +  . . . ,  where L,  is thenumber of SCB, N2 
is the number of pairs of doubly connected bonds and (.  . .) denotes an ensemble 
average over all connected configurations. Thus ( d p ’ l a p ) , ,  = (Ll), and therefore the 
relation (L,) = L”” is a direct consequence of the definition of v. Similar relations can 
be found for the higher-order derivatives of p ’ .  These properties provide us with 
information concerning the averages, such as (Ll). However, in some cases the entire 
distributions may be important: treatment of spin-spin correlations of Ising spins 
requires ensemble averages of such quantities as exp(AL,) ( A  is a temperature- 
dependent constant), which requires knowledge of various moments of L l .  Knowledge 
of the distributions of LCB may also clarify their role in such processes as conductivity 
and elasticity of percolating systems. In some cases various moments of LCB are 
interrelated. For example, the two-dimensional square lattice used in our simulations 
is self-dual, and therefore (d2p’/dp2)lp. = 0. Thus from the above expansion of p’ (  p* - 
p,  L )  we obtain the relation 2(N2) = (L:) - ( L J .  Consequently, the distribution function 
of Ll also provides information on N 2 ,  the direct evaluation of which is a very tedious 
numerical procedure. 

A detailed knowledge of the statistics of LCB may also cast some light on the value 
of the exponent U describing the behaviour of j c .  Within the Skal-Shklovskii-de 
Gennes model the entire superconducting current flows through a single channel and 
therefore, if the maximal current which can flow through a bond is lo, we immediately 
find j c  = lo/ Ld- l ,  where Ld-’ is the cross section of the hypercube. Comparing this 
expression with the definition of U, we find U = ( d  - 1)v. Deutscher and Rappaport 
have noted [ 141 that a single-channel model is a poor representation of the percolation 

Yacov
Stamp

Yacov
Stamp

Yacov
Stamp

Yacov
Stamp



Letter to the Editor L499 

backbone at low d, but the expression U = ( d  - 1) v may, nevertheless, remain valid if 
the system has (for L<c 5 )  at least one ‘bottleneck‘-a single bond through which the 
entire current must flow. Validity of the expression for U is consistent with both 
experimental results [ 141 and with numerical simulations of a simple model [ 151, but 
they cannot exclude the possibility of slow divergence of the width of the ‘bottleneck’ 
with increasing L. If at least one SCB is present in a sample it will be the ‘bottleneck’ 
mentioned above. However, the fact that ( L , )  diverges when L + CO does not imply 
the presence of SCB in every sample, and more detailed information is required. 

The following results have been obtained by computer simulation of the bond 
percolation at p c  on a two-dimensional L x L square lattice, for L = 5 ,  . . . ,40, 80. For 
each L, 40 000 configurations have been generated and the statistical properties of LCB 
is the connected configurations (half of all the configurations) have been analysed. 
The probability of having a sample with exactly L,  SCB, P,( L , ) ,  depends on the sample 
size L. We may expect it to have a scaling form ( L l ) - l ( L l / ( L l ) ) ,  where the function 
is independent of L. Indeed, superposition of plots of P,(L, ) (L , )  against L , / ( L , )  for 
different L shows a reasonable convergence of the curves. Figure 1 depicts two such 
graphs (for L = 20 and L = 80). Only a slight difference can be seen. The convergence 

1 2 3 i 
L , l ( L , )  

Figure 1. Probability distdbution of the number of SCB (in scaled variables) for cell sizes 
L = 20 (dotted curve) and L = 80 (full curve). Only the probabilities for L, 3 1 are shown. 
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is demonstrated more qualitatively in figure 2, which shows the dependence of the 
relative second and third moments of L, on L. The second moment seems to be well 
converged, while the third moment appears just to reach its finite value. The graphs 
in figure 1 depict only the results for L,  2 1. While the probability to obtain any 
particular value of L,  decays with increasing L, the configurations with no SCB have 
a constant probability Ps(0) = 0.19. This result casts certain doubts on the validity of 
the derivation of the expression for the exponent U, which assumed that the minimal 
width n of the channel is always one. In order to check the probabilities P w ( n )  that 
the minimal width is n, I performed the following procedure. If a percolating configur- 
ation had no SCB ( L ,  = 0), I trimmed all the perimeter bonds on one side of the 
percolating cluster and checked the number L2 of SCB in the resulting configuration. 

0 a a 
0 0 0 0 0  
a a 

1, I 1 I I 1 
5 10 2 0  40 80 

0 a a 
0 0 0 0 0  
a a 

1, I 1 I I 1 
5 10 2 0  40 80 
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Figure 2. Semi-logarithmic plot of the relative second and third moments (middle and top, 
respectively) of the number of SCE L , ,  and (half) of the number of doublv connected 
bonds L2 (see text), when L ,  =0,  against the cell size L. 0, ( L 2 ) / ( L I ) ;  0, (L;)/(Ll)2; ., 
( L 3 / (  L, )’. 

(These SCB belonged to the pairs of doubly connected bonds in the original configur- 
ation.) If L2 > 0, that meant that n = 2. In the case of L2 = 0, the procedure has been 
repeated, and the number of SCB, L,, in the new resulting configuration has been 
found, etc. The probabilities P w ( n )  for n = 2, 3, 4 are almost independent of L, as 
depicted in figure 3. The average width of the percolation channel was 1.20i0.03. 
which is in excellent agreement with [16]. The probabilities Pw(n)  decay faster than 
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Figure 3. Semi-logarithmic plot of the probabilities P,( n) that the minimal width of the 
channel is n against the cell size L. Note that the values of the data points for n = 3 and 
n = 4 have been scaled. 0, Pw(2);  ., 10Pw(3); 0, 100Pw(4). 

exponentially with increasing n (approximately as exp( - r ~ ’ . ~ ) ) :  among 20 000 configur- 
ations only a few had n = 4, and none had n 2 5 .  This result suffices to restore the 
validity of the arguments, which lead to the expression for U. Although n is not 
necessarily one, the variability of the minimal width is extremely small and the results 
which have been obtained assuming n = 1 remain valid. This result also means that 
the differences resulting from the application of different boundary conditions are 
insignificant. For example, in the problem of critical current we can either apply a 
fixed phase difference at the boundaries of the sample or assume that a certain current 
is forced through the sample. This might lead to different results if n had a wide 
distribution, but now it is clear that both cases will give essentially the same result. 

The small variability of n also implies that the value of j c  is insensitive to the 
particular choice of equations: in the numerical simulation [ 151, j ,  has been found by 
simply assuming that the currents in the sample will have an optimal distribution, 
which carries the maximal possible current across the sample, subject to the current 
conservation laws and the restriction that the current cannot exceed a certain threshold 
value in any of the conducting bonds. A more realistic superconductor-insulator 
network model could lead to a current distribution which is not necessarily optimal. 
However, the result would not differ by more than a prefactor from the results of [ 151, 
due to the presence of a ‘bottleneck’ of finite width. This conclusion should not be 
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extended to strongly non-linear models, such as the random fuse model [17], which 
has been suggested to simulate the rupture of brittle solids. This model resembles the 
random resistor network with one essential difference: if the current in a resistor 
exceeds a certain threshold value it ‘bums’, i.e. it is removed from the network, and 
the potentials are equilibrated again. This simulates crack propagation in a disordered 
solid, where the critical stress is represented by a critical value of the applied electric 
field. While the possibility of crack propagation creates a major difference between 
the maximal current density in the random fuse model and the superconductor- 
insulator network, on the length scales L<c 6 the problems coincide, since there is 
essentially only one bond to bum, and the crack propagation property cannot express 
itself. Such a simplistic argument could lead to the conclusion that the exponents U 
of the random fuse model and superconductor-insulator network coincide, but this is 
inconsistent with the numerical results obtained in [ 171. The apparent contradiction 
may be resolved by assuming that crack propagation establishes an additional length 
scale which is not proportional to 5 of the percolation problem. 

The probability distribution of L2 (measured for n = 2) is qualitatively similar to 
the distribution depicted in figure 1. (According to our definition, L2 is proportional 
to the number of doubly connected bonds (on the average it is equal to half that 
number) in configurations with no SCB. It should not be confused with N 2 ,  which 
measures the number of pairs of doubly connected bonds in all the connected configur- 
ations.) Moreover, as can be seen from figure 2, (L,) - (Ll). Similar statements can 
be made for L, and L,. This provides some clues regarding the distributions of various 
physical quantities and their inverses: we know that the average resistance ( R )  and 
the average conductance ( ) of the connected configurations (at p * )  are related by 
( R )  - ( ) - I  [ 181. This means that, although R has a wide distribution, the probabilities 
must decay sufficiently fast when R + 0 (see [ 191). SCB as well as other LCB play an 
important role in the resistance of the sample and we could expect the configurations 
with small L1 to have low resistance. However, the probabilities of SCB do not decay 
for small L,  . Our results explain the apparent contradiction: since (L,)  - (L,) - (L,) - 
. . . , we may conclude that when L1 is small the role of SCB ‘is taken over’ by doubly 
connected bonds, etc. 

In this letter I have described several statistical properties of LCB. The detailed 
analysis showed that, although the minimal width of percolation channels is not 
necessarily one, models which make this assumption lead to essentially correct results. 
The results also indicate that, despite extremely wide distributions of LCB, their 
collective effect on the physical properties may produce considerably smaller fluctu- 
ations. It shows that if we want to proceed beyond the simple properties which can 
be obtained using (L , ) ,  we need to have more detailed information about the correlations 
between the numbers of LCB of various orders. 

This research was supported by the National Science Foundation through the Harvard 
Materials Research Laboratory and through grant no DMR 85-014638. 
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