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Résumé. 2014 Certaines structures de basse densité, telles que des amas colloïdaux, se déforment plus
facilement lorsque leur taille augmente. Nous utilisons des propriétés d’homogénéité qui ont été
récemment proposées afin d’étudier les effets dus aux fluctuations thermiques ainsi qu’aux forces
de gravitation sur ces amas. Pour des amas colloïdaux typiques, formés de particules de taille 100 A,
le diamètre ne doit pas dépasser 103 à 104 fois celui des particules sans que se produisent des défor-
mations importantes dues à ces deux effets. Les particules composantes de cette taille sont opti-
males : un important changement de taille quelconque rendrait l’amas moins stable.

Abstract. 2014 Low-density structures such as colloidal aggregates become increasingly easy to deform
mechanically as their size increases. We use recently-proposed scaling properties of such aggregates
to investigate the effects of thermal fluctuations and of gravitational forces on such structures. For
typical colloidal aggregates, made of 100 A particles, the diameter may not exceed 103 to 104 particle
diameters without significant distortion due to both thermal and gravitational effects. Constituent
particles of this order of size are optimal : much larger or much smaller particles make mechanically
less stable aggregates.
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1. Introduction.

Certain random forms of matter, such as macromolecules in solution [1] or colloidal aggre-
gates [2] have a wispy, tenuous structure. Their density is typically much smaller than that of
the constituent material and appears to decrease indefinitely as their overall size increases. Yet
the structures maintain their mechanical integrity; they support stress, screen hydrodynamic
flows, and can transmit heat or electricity. The question naturally arises, how tenuous can such
structures become before being compromised by their environment. That is, how low can the
density become before the inevitable random forces acting on the object are sufficient to deform
it appreciably.

In this note we investigate the effect of thermal vibrations and of gravitational stresses on
some model structures thought to be similar to observed tenuous structures. We consider diffu-
sion-limited aggregates [3] and cluster aggregates [4]. Similar reasoning would apply to rigid
percolating clusters or random animals [5], but not to flexible objects like macromolecules.
Our estimates rely on recently discovered scaling properties of these model structures. The
structures appear to have the spatial scale invariance characteristic of a fractal : that is the ave-
rage mass M(L) within a distance L of an arbitrary point on the structure varies as a definite
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power L D. The exponent D is known as the fractal dimension [6]. These objects cannot maintain
their rigidity at non-zero temperature or in a non-zero gravitational field beyond some maximum
size. The maximum depends on well-defined scaling properties of the geometric structure. The
thermal stability improves if the objects are made with larger constituent particles. This may
explain why observed rigid tenuous structures are made with constituents of a colloidal rather
than an atomic scale. By contrast, the gravitational stability improves with smaller constituent
particles. Thus a large aggregate must be made with particles which are neither too small nor
too large if it is to be stable in both respects.

2. Thermal stability.

The thermal stability of an ordinary homogeneous solid may be readily expressed in terms of
its elastic modulus K [7]. If the matter at distance L from the origin is displaced by an amount u,
this produces strains of the order 8 ~ u/L. The strain costs an elastic energy whose density is
KE2/2. Elastic moduli in bulk matter are in the range of 2-50 eV per atomic volume [8]. At tem-
perature T, thermal vibrations induce an average strain ET given by

Here d is the dimension of space and kB is the Boltzmann constant. (We note that this is the energy
associated with the average strain, and it does not include the energy for local strains.) Thus in
homogeneous solids the average strain fluctuates by an amount proportional to L-a~2 ; overall
distortions are smaller for larger objects.

In the tenuous structures of our study, a displacement u certainly does not produce a uniform
density of strain energy. Instead, the strain energy depends on the large-scale geometry of the
structure. The situation is similar for another fundamental response of the structure : the conduc-

tivity. For this latter case the response can be related [9] to the ant-in-a-labyrinth problem [10].
De Gennes has argued [11] that the elasticity of some tenuous structures scales with their conduc-
tivity. But de Gennes’ reasoning does not apply to rigid elastic structures, and for these a diffe-
rent approach is needed. We consider first a branched structure such as that of diffusion-limited
aggregates and cluster aggregates. In these structures, there is essentially only one path connecting
any pair of constituent particles, as illustrated in figure 1. We imagine placing one of these parti-
cles at the origin and holding it fixed in position and orientation while the other is displaced
by an amount u. For a branched structure, only the one-dimensional path connecting the two
particles is strained. For distances L much larger than the particle size « a » the average number
of particles in a connecting path, N~, scales as some power of L ; we denote this power as D~
The elasticity of branched aggregates is thus essentially that of contorted, rigid linear chains.

Such chains have been recently studied by Kantor and Webman [12]. They find that the dis-
placement u under an applied force costs an energy E given by

Here R;crp is the squared radius of gyration of the path minus the squared radius of gyration of
its projection on the direction of the applied force. If the applied force is in an arbitrary direction,
RpCfP is of the order of L. The coefficient of u2 is the force constant associated with the displace-
ment. We denote it as K (L). Now, the thermal fluctuations of u have an energy E of order kB T ;
thus,

Here K (a) is the force constant for a pair of constituent particles. Its magnitude depends heavily
on the strength of the bond between particles. For convenience we express K (a) as a factor (X times
the force constant for deformation of a single particle, obtained from equation (1) above. The



L-677MECHANICAL STABILITY OF TENUOUS OBJECTS

Fig. 1. - A diffusion-limited aggregate [3] (left) and cluster aggregate [4] (right) in two dimensions. The
absence of loops on all but smallest scales is evident.

factor (X accounts for the weak bonding between particles. It is much smaller than 1 for weakly
bonded particles, and may approach unity for, e.g., welded metallic particles. Clearly the stability
is reduced if a is decreased. We estimate that it is typically of order 10-1 or smaller. Thus for
a single particle

We may write the volume ad as the volume per atom ba times the number of atoms n in a particle.
Then the mean squared strain may be compactly expressed as

As noted above, Kbd is in the range of 10 eV, while kB T is 1/40 eV at room temperature. Evi-
dently the average strain increases with the length scale L. For sufficiently large L and N c’ the
strain becomes of the order of unity. Aggregates larger than this become complete1v flexible,
and are free to respond to internal forces like a flexible polymer. If these forces are attractive,
the structure may attain a « collapsed » state of non-zero limiting density, as the size grows.
The range of rigid behaviour becomes narrower if the number of atoms per particle n is reduced.

For colloidal particles n is 103 or more, and so the maximal value which can be attained by Nc
before the thermal fluctuations distort the structure may be 104 or more. But for atomic-scale
particles, with n ~ 1, N~ is only of the order of 10. This stabilizing effect of n may explain why
the tenuous aggregates familiar in nature tend to be composed of particles of a colloidal scale
or larger.
To make further predictions about thermal stability requires information about how Nc
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scales with L. The power De describing this scaling has not been reported for either diffusion-
limited aggregates or cluster aggregates. This De must be at least 1 to provide a connected path.
Measurement of De by simulations would be very valuable.
Our approach can be readily extended to tenuous objects such as percolation clusters [5],

which have more than one path connecting any pair of points. In that case De in the above expres-
sions should be replaced by the exponent f - d, where f defines the scale dependence of the
effective bulk modulus :

In a branched structure which is sufficiently homogeneous, the exponent De may be related
to the scaling of the conductivity, and thence to the spectral dimension [9, 13] d of Alexander
and Orbach. We have argued elsewhere [14] that the conductivity is determined primarily by
linear, unbranched segments whose arc length is of the order of N~(L). Using standard relations
[9, 13] for the conductivity in terms of D and d, we find De = D(2/d- - 1).
Using the simulation data of Meakin and Stanley [15] for diffusion-limited aggregates, we

may get information about their De. The simulations yield d values ranging from 1.1 to 1.45
in,two dimensions, and from 1.2 to 1.64 in three. The fractal dimension D is about 1.7 in two
dimensions and about 2.5 in three. Using these values we infer that 1  D~ ~ 1.4 in two dimen-
sions and 1  D~  1.67 in three. These limits on Dc could be used to refine slightly our pre-
dictions for thermal stability.

3. Gravitational stability.
Another limit on the rigidity of an aggregate comes from gravitational effects. For an aggregate
sedimenting under gravity, the weight force is compensated by hydrodynamic friction from the
surrounding fluid. The weight acts uniformly throughout the aggregate, while the friction acts
primarily at the surface. (The aggregates are dense enough to screen the hydrodynamic field [1].)
For an aggregate of mass M and size L, the resulting force is of order Mg. (Strictly, M should be
the mass of the aggregate less that of the displaced fluid.) The corresponding displacement u
is of order Mg/K(L). The ratio of gravitational strain Gg --_ yL to thermal strain squared is
independent of the assumed elasticity K(L) :

The factor on the right is the size L relative to the mean equilibrium height h for Brownian par-
ticles of mass M. Aggregates which attain a size h without becoming thermally unstable are
ultimately limited by gravitational effects. The gravitational stability is not improved by making
larger constituent particles. If the number of particles in the aggregate is N,

where m is the atomic mass. The first fraction arises from the constituent material. For gold [8]
it is 3 x 10’~ ; for silica [8] it is 2 x 10- ". The factor alab depends on the size of the consti-
tuent particles and on how strongly they are bonded together. For colloidal particles it is of
order 10~. The factor LNNeja depends on the amount of aggregation : it is unity for a single
particle and scales as (Lla)’ 1 ~ ° + D~.
For the aggregate to be gravitationally stable, the strain Gy must be smaller than one. Using

our estimates for gold or silica, this gives
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where t/1 = 1/(1 + D + DJ. Using D~ = 1 and the D values given above we obtain L/a  103
for diffusion-limited aggregates and 104 for cluster aggregates. If De &#x3E; 1, the limit of stability
is smaller. Aggregates much larger than the limit would sag into a pancake shape.

4. Conclusion.

Our limits for gravitational and thermal stability are rather similar in magnttude for typical
colloidal aggregates, provided D~ ~ 1. Both effects set limits on L of roughly 103 to 104 particle
diameters. This suggests that such typical particles are of optimal size; any large change in the
radius a would reduce the limit of either thermal or gravitational stability. It appears [2, 17]
that aggregates approaching these limits are actually produced in practice. Thus the prospects
for extending the range of tenuous aggregates on earth greatly beyond what is presently known
are distinctly limited.
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